
D3: Lightweight Secure Fault Localization in Edge Cloud

Songtao Fu∗, Qi Li∗†‖, Xiaoliang Wang‡, Su Yao∗†, Xuewei Feng∗, Ziqiang Wang§,
Xinle Du∗, Kao Wan¶, Ke Xu∗†‖

∗ Tsinghua University, † BNRist, ‡ Capital Normal University, § Southeast University,
¶ Peng Cheng Laboratory, ‖ Zhongguancun Laboratory

Emails:{fust18@mails., qli01@, yaosu@, fengxw18@mails., dxl18@mails., xuke@}tsinghua.edu.cn

wangxiaoliang@cnu.edu.cn, ziqiangwang@seu.edu.cn, sonicwk@hotmail.com

Abstract— In pursuit of high-performance applications, the
cloud is moving out of the data center and towards the edge.
Secure data forwarding is critical for the users between the edge
and the remote cloud. In this paper, we propose D3 (Demon
Detector in Data Plane), a lightweight, secure fault localization
mechanism, which can enable the users in the edge cloud to
localize faulty links and thus avoid the faulty links to guarantee
secure data forwarding along the path to the remote cloud. D3
utilizes the user to instruct the transit routers, thus empowering
the user to detect whether the transit routers forward the packet
as expected. Compared with existing schemes that are difficult
to be deployed in practice due to the incurred heavy storage,
computation, and communication overhead, D3 offloads most
of the transit router’s storage and computation overhead, thus
dramatically improving the deployment efficiency. Particularly,
the length of the additional packet header in D3 is 2-5 times
less than the state-of-the-art mechanisms, and the extra control
packet overhead is ten times less while keeping a little constant
storage overhead in the data plane. The evaluations in BMv2
and Barefoot Tofino hardware show that D3 could achieve high
fault localization accuracy and efficiency.

Index Terms—Edge Cloud, Path Verification, Fault Localiza-
tion

I. INTRODUCTION

The promise and potential of applications ranging from

Internet-of-Things (IoT) to Autonomous Vehicles have trig-

gered edge computing to become a research hotspot [1]. This

shift to a distributed edge cloud model will require the entire

cloud ecosystem to think differently about the role of network

connectivity. The edge server performs preprocessing (e.g.,

sampling), significantly reducing the amount of data being

transferred and allowing structured data to be directly sent

to the remote cloud server for storage or further processing.

The data forwarding between the edge server and remote

cloud server is inter-domain communication since the data

packet might transit several ASes (We denote an AS as a

domain). With emerging path-aware network such as SCION

[2] and SR [3], the user (edge server or remote cloud server)

could select the transit AS border router and embed its

forwarding policy (e.g., expected path) in the packet header.

But an adversary in a specific AS might drop, delay, modify,

fabricate or redirect packets, thus violating the forwarding

policy. To localize the faulty link which violates the forwarding

policy, the user in the edge cloud needs a fault localization

mechanism to detect the malicious AS, and then circumvent

it to achieve secure data forwarding.

The fault localization mechanisms (e.g., AudIt [7]) lack

the authentication of the forwarding packets. The detector in

these mechanisms cannot verify the cryptographic mark1 in

the packets. Then the adversary could manipulate the packet

and subvert the fault localization. The secure fault localization

could defend the adversary by the symmetric key shared

between the detector and each router. The most important

characteristic of secure fault localization is it requires a key

infrastructure [8]. It provides a confidential way to share the

dynamic key between the routers and the detector (source or

other entity). Then the detector could localize the faulty link

with the cryptographic mark.

Unfortunately, as presented in Table [I], the state-of-the-art

secure fault localization mechanisms are impractical in edge

cloud for the following reasons:

Heavy storage and computation overhead in each router.
ShortMAC [4] has intolerable storage (46 GB) overhead in

the data plane, thus could not be applied to the inter-domain

context. Faultprints [5] and RFL [6] incur prohibitive com-

putation overhead in each router with per-session asymmetric

cryptography operation and per-packet cryptography operation

to derive the dynamic key on the fly.

High communication overhead in network. The commu-

nication overhead in the network comes from extra control

packets and additional packet header. The number of the

extra control packet is high in Faultprints and RFL. The

source needs to probe O(n) sampling packets in an epoch.

Meanwhile, the additional packet header is 96 B and 58 B for

the path length of 5, and it would be longer with the longer

path length.

Deployment barrier. The MAC operation such as AES is hard

to implement in router hardware since it significantly decreases

forwarding performance [9]. And the per-packet timestamp

is also impractical in large-scale networks [5]. It has little

incentive towards the early adopter.

Compared with traditional inter-domain communication,

there are two different characteristics of the communication

in edge cloud: one is the number of users is much less, the

other is that it is easier for the user in the data center and edge

to upgrade new protocol. From this perspective, we propose a

lightweight and secure fault localization mechanism named D3

1This paper calls the source user who localizes the faulty link on the
forwarding path as detector and names the Message Authentication Code
(MAC) as mark.

515

2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)

2575-8411/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDCS54860.2022.00056

20
22

 IE
EE

 4
2n

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
is

tri
bu

te
d

C
om

pu
tin

g
Sy

st
em

s (
IC

D
C

S)
 |

97
8-

1-
66

54
-7

17
7-

0/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
C

S5
48

60
.2

02
2.

00
05

6

Authorized licensed use limited to: Tsinghua University. Downloaded on November 01,2022 at 07:04:04 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE PROPERTIES OF DIFFERENT FAULT LOCALIZATION MECHANISMS

Data plane storage
per 100 Gbps link

Inter-domain
support

No per-session
asymmetric cryptography

No per-packet
cryptography for

dynamic key

Control packets
in an epoch

Additional packet header
(5 hops)

ShortMAC [4] 46GB � � � O(1) 2 B
Faultprints [5] 468MB � � � O(n) 96 B

RFL [6] 468MB � � � O(n) 58 B
D3 2.56MB � � � O(1) 20 B

(Demon Detector in Data Plane) via designing a new protocol

to offload the router’s overhead to the user. Particularly, the

length of the additional packet header in our mechanism

is much shorter than the state-of-the-art mechanisms (i.e.,

2-5 times less than Faultprints and RFL). Meanwhile, our

mechanism can preserve an equal fault localization accuracy.

Our contributions are three-fold:

• Light overhead in each router. We utilize stateless

processing at each router instructed by the probabilistic

and cryptographic instructions determined by the source.

As shown in Table [I], each router only needs to store

the constant dynamic keys. And it records the per-session

counters in the control plane with a sampling instruction

determined by the source, thus having low data plane

storage overhead (i.e., 2.56 MB). It does not need

the per-session asymmetric cryptography and per-packet

cryptography to derive the dynamic key, thus decreasing

the computation overhead.

• Lower communication overhead in network. We utilize

stateful processing at the source and destination. The

users store most of the processing information of a

session. The source evaluates the end-to-end corruption

ratio based on the ACK from the destination. It only

sends one probe towards a specific router to get one

reply. Table [I] shows that the number of control packets

in an epoch is O(1). Meanwhile, D3 has a constant and

short additional packet header (20 B).

• Convenient deployment.We utilize the two-round Even-

Mansour (2EM) [10] instead of AES [9] as the MAC

operation in the data plane. With the emerging pro-

grammable switch [11] supporting packet processing us-

ing domain-specific language (e.g., P4 [12]), D3 accom-

plishes the router’s processing within one pipeline. The

evaluation in BMv2 testifies that the measured end-to-

end corruption ratio is nearly the same as the theoretical

value, and the localization accuracy could achieve 95%

to localize the adversary with a corruption ratio of 5%.

The evaluation in Barefoot Tofino hardware testifies that

D3 could perform the MAC operation within one pipeline

and incurs little computation overhead compared with the

IPv6 packet forwarding.

The rest of the paper organizes as follows: In the next

section, we present the background, adversary model, and our

assumptions. Section III presents the design of D3 at a high

(a) Faultprints/ RFL

R
2

R
3

R
4

probe and reply

ACK

DAT

(b) D3

probe and reply

ATAT RR
22

RR
33

RR
44

R
1

DS

DS

R
2

R
3

R
4

RR
22

RR
33

RR
44

R
1

n1

…
n2

n3 n4

… … …

DAT
ACK

Fig. 1. An example of fault localization in different mechanisms. S and D
represent the source and destination user (edge server or remote cloud server),
Ri represents an ingress border router of an AS.

level, section IV details the D3, section V analyzes its charac-

teristics and benefits. Section VI presents the implementation

and the evaluation. Section VII discusses the deployment and

the limitation of D3. Section VIII describes related works. We

conclude the paper in the last section.

II. PROBLEM SETTING

We first describe the background of the fault localization in

the edge cloud, then discuss the adversary model of fault local-

ization. And we describe the requirements of the localization

and some critical assumptions.

A. Background

From a bottom-up view, a general practical edge cloud

model includes three layers. Basically, end devices at the END

layer communicate with access points (APs) via the wireless

channel. Then, LAN at the EDGE layer consists of many APs

and edge servers (deployed at APs). The APs within a LAN

are connected with each other, and they communicate with the

remote cloud server via the Internet [13]. Finally, the remote

cloud server at the CLOUD layer provides online services.

To guarantee secure data forwarding, the source in the edge

cloud could achieve secure fault localization based on the

actual data traffic. Fig. 1 presents the basic procedures of fault

localization enforced by the source (S). � Data forwarding: S

instructs each transit router on the path to record the testimony.

516

Authorized licensed use limited to: Tsinghua University. Downloaded on November 01,2022 at 07:04:04 UTC from IEEE Xplore. Restrictions apply.

An adversary might manipulate the testimony by learning the

processing of other ASes. An efficient way to defend it is that

S shares a symmetric key with each router. Then S announces

each router to record the testimony according to a specific

mark, calculated with the symmetric key and particular data

packet (DAT) fields. � End-to-end corruption ratio: An epoch

has a certain number of packets (e.g., 4000). At each epoch, S

evaluates the end-to-end corruption ratio based on the ACK
from the destination (D). To prevent the adversary subvert

the evaluation, S and D have a shared symmetric key to

guarantee that D can verify each packet. � probe and reply:

If the end-to-end corruption ratio indicates there might be

an adversary on the path, the source receives the testimony

with the probe and reply mechanism towards each router.

An adversary might distinguish the probe and reply packet

and alter the testimony. The probe and reply packet should

also be encrypted by the relative symmetric key.

B. Adversary model

We assume that an adversary in the Dolev-Yao model can

compromise any routers on a path. The compromised routers

can corrupt the packet by dropping, delaying, modifying,

or fabricating it, or launch a path inconsistency attack by

redirecting the packets to unexpected AS. These routers can

launch a coward attack if they know they cannot be accurately

localized. They could also frame other ASes of adversarial

activity. Furthermore, several colluders could exchange infor-

mation (e.g., secret keys or link information) and launch the

packet corruption or path inconsistency attack. However, the

adversary cannot eavesdrop, inject or influence traffic on links

not adjacent to it [14].

C. Requirements and assumptions

The requirements for an Internet-scale deployment of fault

localization are as follows:

Strong security and light processing. An adversary could not

violate or evade the localization by observing the forwarded

packet. And the light processing in the router is necessary for

the deployment.

High fault localization accuracy. We denote the localization

accuracy as: for a certain number of epochs, the ratio between

the number of epochs the source successfully localizes the ad-

versary (without false positive and false negative) and the total

number of epochs which exists the adversary. The localization

accuracy higher than 95% is practical [5].

We assume that the source knows an AS ingress router-

level path to the destination. And the key distribution server

(KDS) in each AS could derive and distribute dynamic keys

to relative entities based on the following assumptions:

Secure dynamic key deriving system. Two KDSes in AS

S and AS I share the AS fixed key (AKSI) confidentially.

The KDS could derive the router’s dynamic key (RDK) and

the user’s dynamic key (HDK) with a MAC operation (e.g.,

AES) based on the AKSI .

Secure dynamic key distribution. The user and router have

a secure channel to get the dynamic keys from KDS in the

Data Plane

Control Plane

VerificationInitialization

reply sample/
probeCryp.

mark

Counter

ACKprobe
Epoch
End

ACK is not
correct

DAT

RoutersSource Destination

Fig. 2. Processing in different entities

local AS [15] [16]. Each router presets the dynamic keys from

the control plane, thus decreasing the computation overhead

to derive the dynamic key on the fly.

III. OVERVIEW

As shown in Fig. 2, the most important characteristic of D3

is it hardly affects the data plane forwarding. At a high level,

D3 utilizes the source to program each router on the path. With

the cryptographic mark (Cryp. mark) in each packet (section

IV-A), D3 achieves fault localization with three procedures,

which include � Data forwarding, � End-to-end corruption

ratio, and � probe and reply.

First, the data forwarding includes packet initialization at

the source (section IV-B), and lightweight processing at the

router (section IV-C). With packet initialization, the source

nests the instruction in the Cryp. mark and sends a certain

number of DAT towards the destination in each epoch. With

lightweight processing, each stateless router only processes the

Cryp. mark in the data plane. If the Cryp. mark instructs

the router to sample the packet, it records the counter as

testimony in the control plane. In contrast, if the Cryp. mark
instructs to probe a packet, it replies to the source with a

reply (packet) includes the counter information. Second, to

guarantee a comprehensive end-to-end corruption ratio, the

processing at the destination includes the verification for each

packet and sending the ACK to the source at each end of an

epoch (section IV-D). Finally, D3 achieves fault localization at

the source (section IV-E). If the end-to-end corruption ratio is

not as expected or no ACK after a timeout, the source sends

a probe (packet) towards each router and localizes the faulty

link based on the reply from each router, as shown in Fig. 1

(b). While in Fig. 1 (a), the routers record n sampling data

packets (n1, n2, n3, and n4, respectively) in Faultprints/RFL.

The source needs to probe O(n) sampling packets in an epoch.

We wedge the additional packet header of D3 as part of

the routing header in the IPv6 packet [17]. Fig. 3 shows our

designed packet header of D3 in IPv6.

• flag (8-bits): We utilize the leftmost three bits to indicate

the length of markr for each router.

• epoch (8-bits): The epoch number.

• seq (16-bits): The sequence number of a specific packet.

• tag (32-bits): The tag to instruct each router to select the

relative RDK, includes the time slot (16-bits) and the

user identifier (16-bits).

517

Authorized licensed use limited to: Tsinghua University. Downloaded on November 01,2022 at 07:04:04 UTC from IEEE Xplore. Restrictions apply.

PATH epoch

(8bits)

tag

(32bits)

markpkt
(32bits)

marksrc
(32bits)

D3 Header
seq

(16bits)
IPv6 flag

(8bits)

markr
(32bits)

Routing Header

Fig. 3. Packet Header of D3 in IPv6

• marksrc (32-bits): The mark calculated by the source

which instructs a selected router to sample or reply the

packet. The selected router updates it with a new mark
after successful verification.

• markr (32-bits): The marks verified at each router.

• markpkt (32-bits): The mark calculated by the source

with the packet payload, marksrc, markr, and HDK,

verified by the destination.

IV. PROTOCOL DESIGN

We first detail how to calculate the cryptographic mark for

each packet, then we analyze the packet initialization at the

source, the lightweight processing at each router, and the fault

localization at the source based on the ACK and reply.

A. Cryptographic mark in each packet

The cryptographic mark is calculated by a specific MAC

operation with RDKsi and HDKsd, to guarantee that an

adversary could guess the correct mark with no more than

randomness. The KDS first derives the dynamic key between

the source and router i with the fixed key (AKSI) between

the source’s AS and router i’s AS:

RDKsi = MACAKSI
(ids||idi||tag) (1)

MAC(.) represents the MAC computation (e.g., AES). ids
and idi are the identifiers of router s (the border router of

source AS) and router i. In practice, all the border routers of

an AS could utilize the same id (e.g., a virtual id) if there’s

more than one border router in an AS. tag is an identifier

to distinguish a user (named uid) and the time slot (ts), ‘||’
represents the concatenation operation.

The bit width of uid affects the dynamic key storage

overhead in the router, and the bit width of ts affects the

dynamic key switching frequency. The bit width K of uid
would exponentially increase the storage overhead with 2K .

That means each router only stores the dynamic keys for a

certain number of uid. There comes a challenge that some

users in an AS utilize the same dynamic key in a specific

time slot, giving an adversary a chance to require the dynamic

key towards a specific router i, then subverts the secure

localization. We utilize two measures to overcome it.

Firstly, the users from one group (with the exact security

requirement) use the same uid. Then the dynamic key only

affects the users in the same group. Furthermore, the KDS

could only distribute the dynamic key towards the edge router

of a group instead of the user. The edge router works as an

agent of a group. With an intra-domain secure channel, the

user sends the D3 packet to the edge router. The edge router

operates the packet header with the dynamic keys towards the

AS border routers on the path. The user eventually achieves the

localization after receiving the packet from the edge router. It

is sustainable since the throughput in the edge router is much

lower than in the AS border router.

Secondly, we could adjust the key switching frequency

with ts. A 16 bits width ts could divide 24 hours into 2-

second granularity. In practice, an AS could customize the key

switching time by utilizing different steps of ts. For example,

an AS switches dynamic key every 2 seconds could increase

the ts with the step of 1. Another AS needs to switch the

dynamic key every 200 seconds with the step of 100.

With this design, the user could customize its dynamic key

policy with other ASes, including the bit width of uid and

the switch step of ts. The KDS then presets the dynamic keys

in a border router. From this perspective, D3 is an edge-based

mechanism instead of an end-based mechanism. We will detail

the storage overhead in section V.

With RDKsi, the source instructs each router to probabilis-

tic sample a packet by a cryptographic mark. Each router

only calculates one MAC operation to get a mark with no

less than 64 bits output with the link information and cstPH .

cstPH is the constant packet header of D3, which includes

the IP address (especially the source IP address), the path

information, and the flag, epoch, seq, and tag. Router i
calculates the marki as Equation (2).

marki = MACRDKsi(idi−1||idi||cstPH) (2)

The KDS calculates the HDKsd between the source and

destination:

HDKsd = MACAKSD
(IP ||path||tag) (3)

In which AKSD is the AK between the source AS and

destination AS, IP is the concatenation of the source and the

destination’s IP address, path is the concatenation of all the

routers’ id on the path, tag is the information of the first

time slot in a session. With the HDKsd, the source calculates

the markpkt as Equation (4). In which marks represent the

marksrc and markr in the received packet header. hash
represents the hash of the upper layer information or payload.

[0 : 32] represents truncating the rightmost 32-bits for effi-

ciency reasons. It guarantees that the destination could verify

the source and the packet’s integrity.

markpkt = MACHDKsd
(cstPH ||marks||hash)[0 : 32] (4)

B. Packet initialization at source

As shown in Algorithm 1, the source first gets the path and

RDKpath, HDKsd, and determines the number of packets in

an epoch, e.g., N = 4000. At the beginning of each epoch,

the source initializes the epoch, seq (line 1-2). With seq from

0 to N − 1, it nests the cstPH in the packet header (line 3-4).

Then calculates the three marks (markpkt,marksrc,markr),

and nests them in the packet header (line 5-6), forwards the

packet to the first router, and increases the seq (line 7). At the

end of each epoch, the source processes the packet in the next

epoch if it needs to send another packet (line 8). If the source

518

Authorized licensed use limited to: Tsinghua University. Downloaded on November 01,2022 at 07:04:04 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: packet initialization at source

input : path,RDKpath, HDKsd, N

1 for each epoch do
2 seq = 0
3 while seq < N do
4 nest cstPH in the packet header
5 calculate the marks
6 nest marks in the packet header
7 forward packet and seq = seq + 1

8 epoch = (epoch+1)%256

selects router i to process the packet, it nests the marksrc in

the packet header as:

marksrc =marki[32 : 64] + ins (5)

The ins is an instruction that indicates the packet type.

For example, 0 represents a data packet that does not need

to record the sampling counter (DATUNS), 1 represents

a data packet that needs to record the sampling counter

(DATSAM), 2 represents the probe. We name this mechanism

the blind policy since only the source and the selected

router know the sampling decision. An adversary could not

distinguish the packet type with the confidential ins, thus only

corrupting these packets with no more than randomness. For

reply and ACK, we nest ins = 3 and 4 in the markpkt.
We utilize markr for each router to verify and filter the

malicious packet. The source initializes the markr as:

markr = mark0[0 : 4]|| · · · ||markn[0 : 4] (6)

For each router, marksrc and markr come from one mark.

The binding marks not only decrease the MAC operation of

a router but also improve the security characteristic with the

blind policy. We will detail it in section V.

C. Lightweight processing at router

Algorithm 2: processing at each router

input : pkt, RDKsi, idi, idi−1

1 calculates mark′srci and markri
′

2 ins = marksrci −mark′srci
3 switch ins do
4 DATUNS : update marksrci
5 DATSAM : Counter++ and update marksrci
6 probe : reply to the source

7 if markri ! = markri
′ then

8 fCounter++ and filter the packet

9 forward packet to next router

Each router keeps two counters in the control plane. One

is for DATSAM (Counter), the other is for false packet

(fCounter). As shown in Algorithm 2, when receiving a

packet, each router first calculates marki
′ with Equation (2),

then derives mark′srci = marki
′[32 : 64] and markri

′ =
marki

′[0 : 4] (line 1). It calculates the ins with Equation (5),

and processes the packet with different values of ins (line

2-6). For DATUNS , it updates the marksrc as:

marksrci = marki[0 : 32]⊕marki[32 : 64] + ins (7)

For DATSAM , it clones the packet header (the IP and D3

packet header) to the control plane, and updates the marksrc
as Equation (7). The control plane increases the Counter in

the relative epoch.

For probe, it clones the packet header to the control plane.

The control plane sends a reply with the information of the

two counters to the source. It updates the marks according

to the reverse path. We utilize the dynamic key RDKsi to

encrypt the counter information as the payload of reply:

replyinfo = encryptRDKsi
(Counter||fCounter) (8)

It then compares the mark′ri (marki[0 : 4]′) with markri
in the packet header (line 7), increases the fCounter in the

control plane and filters the packet with the wrong markri
(line 8). If this router does not filter this packet, it forwards

the packet to the next router (line 9).

The probe uses the reply border router’s address as the

destination address (instead of the destination’s). In contrast,

the reply uses its address as the source address. There comes

a challenge that an adversary might distinguish the probe and

reply with the IP address.

To prevent this, for the probe, we utilize the destination’s IP

address instead of the reply border router’s as the destination

IP address. The reply border router could distinguish it with

ins while the adversary could not.

For the reply, we modify the source IP address’s suffix

with a random bit string. The adversary could not distinguish

it from the DAT with the source IP address. The source could

distinguish it from the uid information in the packet header.

It utilizes the dynamic key to calculate the mark, then gets

the ins information.

D. Processing at destination

Algorithm 3: processing at destination

input : pkt,HDKsd

1 initialize Couter, fCounter = {0}
2 if (markpkt == mark′pkt) then
3 Counter ++
4 else
5 fCounter ++

6 if the end of an epoch then
7 forward ACK toward the source

The destination processes the packet as Algorithm 3. It

first initializes the successful and false counter (Couter and

519

Authorized licensed use limited to: Tsinghua University. Downloaded on November 01,2022 at 07:04:04 UTC from IEEE Xplore. Restrictions apply.

fCounter) with 0 (line 1). When the destination receives a

packet, it first calculates mark′pkt with Equation (4).

If the markpkt in the packet header is correct, it increases

the Couter (line 2-3). In contrast, it increases the fCouter
when a packet has the wrong markpkt (line 4-5).

The destination sends two counters to the source with an

ACK at the end of an epoch (line 6-7). An ACK has the same

packet header as the DAT , except the reverse path might not

be symmetrical with the forward path. The destination used the

HDKsd to encrypt the information. It is worth mentioning

that the destination could send all the lost seq of an epoch

to facilitate the source to get a comprehensive end-to-end

corruption ratio.

ACKinfo = encryptHDKsd
(Counter||fCounter) (9)

E. Fault localization at source

Algorithm 4: fault localization at source

input : pkt, path,HDKsd, RDKpath

1 if ins == ACK then
2 if corruption ratio > θthreshold then
3 probe toward each router

4 if no ACK after timeout then
5 probe toward each router

6 if ins == reply then
7 calculate repui

8 localize the faulty link with reputation gaps

The source localizes the faulty link with Algorithm 4. At

each end of an epoch, it decrypts the ACK and gets the

information if it receives an ACK (line 1). Then it computes

the end-to-end reputation as:

repu = (Couter − fCounter)/N (10)

In which N is the number of packets in an epoch (e.g.,

4000). We denote the end-to-end corruption ratio as corre =
1− repu. For a path length of k, the natural packet loss ratio

in a router is ρn, the theoretical corruption ratio incurred by

the natural packet loss is θn = 1− (1− ρn)
k. We denote the

corruption ratio threshold as:

θthreshold = ρ/2 + θn (11)

The source does not send probe if the measured packet

corruption ratio corre is no more than the threshold θthreshold,

e.g., 3.7% for localizing the adversary with corruption ratio of

5%, natural packet loss of 0.3%, and path length of 5. Or else,

the source forwards the probe towards each router (line 2-3).

If there’s no ACK after a timeout, the source also forwards

the probe (line 4-5).

The source calculates the reputation of each router after

it decrypts the Counter[i] and fCounter[i] from the reply
(line 6-7). If fCouter[i] is more than a threshold (e.g.,

fCouter[i] > β, β = 100), it localizes the link between i−1
and i as fault. Or else, the source calculates the reputation with

Equation (12), the reputation gap (repui − repui+1) between

two neighbor routers larger than the gap caused by natural

packet loss possibly signals the fault behavior (line 8).

repui = (Couter[i]− fCouter[i])/Countersrc[i] (12)

The setting of the threshold is based on the user’s re-

quirement, e.g., an application couldn’t bear the end-to-end

corruption ratio of more than 5%. In section VI, we will testify

that the threshold is accurate since the user samples all the

packets. We set the value of fCounter[i] as 100, since that for

4000 packets in an epoch, 100 damaged packets represent that

about 2.5% of the packets were damaged, which is intolerable

for the user. In D3, the accurate localization is that the source

localizes the specific faulty link without false positive and false

negative. For example, if R2 in Fig. 1 corrupts packets with

the ratio of ρ = 3%, the reputation gap between R2 and R3

is within ρ± ρ/2 (e.g., 3%± 1.5%), and others are less than

ρ/2. The false positive means that other links (e.g., between

R3 and R4) have a gap of more than ρ/2. In contrast, the false

negative means that the gap between R2 and R3 is less than

ρ/2. We will evaluate it in section VI.

V. ANALYSIS

We analyze the security and performance in this section

to show that D3 achieves strong security characteristics with

relatively low overhead.

A. Security analysis

As shown in Table [II], we evaluate D3 against 6 prevalent

attacks. In general, D3 could localize the faulty link that

launches the packet corruption (drops, delays, modifies, or

fabricates the packet) and path inconsistency (redirects the

packet) attack. It is resilient to coward attack, framing attack,

colluding attack, and replay attack. Finally, we explain why

D3 does not create the opportunity for a new DoS attack.

Packet corruption and path inconsistency. If the adversary

modifies or fabricates the packet header, the fCounter of the

next honest router will increase. Suppose the adversary delays

or drops the packets, the Counter in the downstream router

will decrease. If the adversary launches the path inconsistency

attack, the Counter in the downstream router will decrease

since the router in an unexpected domain will filter the packets.

The source localizes the link with the highest reputation gap

between two adjacent routers as faulty. Faultprints and RFL

have the same security property as D3.

Coward attack. An adversary might launch the coward attack

[18], e.g., only drop the packets it sampled since that other

routers on the path do not sample them. The source could

not localize the faulty link with the testimony from routers.

But as all the lost packets are sampled by the adversary, it

could localize the coward attack with the lost seq from the

destination. Faultprints and RFL act the same characteristic as

D3.

520

Authorized licensed use limited to: Tsinghua University. Downloaded on November 01,2022 at 07:04:04 UTC from IEEE Xplore. Restrictions apply.

TABLE II
COMPARISON OF SECURITY WITH EXISTING MECHANISMS

Packet corruption Path inconsistency Coward attack Framing attack Colluding attack Replay attack

Faultprints � � � (�) � (�)
RFL � � � (�) � �
D3 � � � � � �

Framing attack. The adversary might incriminate other

routers by packet corruption or path inconsistency [5]. For

packet corruption, assume that R1 in Fig. 1 modifies the

markr of R4, thus R4 records the fCounter information.

But with the binding marks, R4 will observe the framing

when it receives a correct marksrc and a wrong markr. R1

had to modify the markr and marksrc simultaneously, but

with the blind policy, R1 could not know the marksrc of R4

since it does not have the dynamic key between the source

and R4. In Faultprints and RFL, the sampling policy is based

on the chained marks from the source to the current router. If

R1 changes the mark for R4, it only affects the routers after

R4. Then the source gives R4 a low reputation. In fact, R1 is

the adversary.

For path inconsistency, R1 in Fig. 1 changes the path infor-

mation from R4 to Rj , which is not the source anticipated. But

as the path information is the partial input of the markr, R2

and R3 would filter the changed packet with the probability

of 15/16 and 255/256, thus increasing fCounter in R2. The

source would localize the link between R1 and R2 as a fault.

Faultprints and RFL have the same characteristic as D3.

Colluding attack. Colluding adversaries might avoid localiza-

tion by framing another router [5]. There are two situations

of colluding adversaries: (1) non-adjacent colluders, e.g., two

colluders Ri and Rj on the path, j > i + 1, (2) adjacent

colluders, e.g., two colluders Ri and Ri+1.

For the case of non-adjacent colluders, as the adversaries do

not know the dynamic key of a skipped honest router Ri+1, the

first adversary Ri would be localized since the source could

not get a correct reply from Ri+1. With adjacent colluders, for

example, Ri+1 and Ri share the dynamic key. If Ri corrupted

a packet should be sampled by Ri+1, Ri+1 would record

the relative information. The source could localize the link

between Ri+1 and Ri+2. Ri evades the localization since Ri+1

and Ri act like a virtual router Rvc. But the adversaries have

little benefit since the source could first circumvent Ri+1, then

localize Ri in the new epoch. D3 has the same characteristic

compared with Faultprints and RFL.

Replay attack. Assume that an adversary launches a replay at-

tack [19]. The destination could observe the misbehavior with

seq and announce it in the ACK with a massive number of

fCounter. Compared with Faultprints which utilize the times-

tamp in the packet header to defend against the replay attack,

D3 is more practical since the secure time synchronization

in the data plane is impractical with today’s implementation.

RFL does not use sequence numbers or timestamps to defend

against the replay attack.

New DoS attack. The adversary could aggressively send

packets to put a computational strain and storage overhead

on each router or the user [5]. It would not hurt D3 since

we minimize the computation overhead in the data plane and

have constant storage in the data plane. The adversary could

also aggressively send DATSAM and probe to overwhelm the

channel between the data plane and control plane. But the

router only clones the packet header to the control plane after

the verification of markr and marksrc. The adversary had

little chance to fabricate the correct marks since it did not

know the dynamic key. The only option of the adversary is

that it aggressively sends false packets. It might overwhelm the

channel between the data plane and the control plane. Each

router could set a separate interface for the false packets report

and stop increasing the fCounter when bandwidth usage is

higher than a threshold. It returns the maximum value (e.g.,

65,535) of fCounter to the source after receiving a probe.

As the user could directly filter the fabricated packet with the

markpkt, the adversary has no chance to overwhelm the user.

Moreover, adversaries might compromise the localization

system from non-deployed domains. As the adversary could

not get the dynamic key, D3 could filter the fabricated packet

with the markr in the packet header.

B. Performance analysis

As shown in Table [III], compared with the state-of-the-

art mechanisms, D3 has a significantly lighter overhead in

terms of storage, computation, communication overhead, and

localization delay.

Storage overhead. In Faultprints and RFL, each router derives

the dynamic key on the fly to keep 1 key (16 B) storage

overhead. And they record the sampling packet with the Bloom

Filter, which is a relatively sustainable way (468 MB with the

bandwidth of 100 Gbps) to store the testimony in the data

plane. D3 presets dynamic keys to keep a constant and low key

storage overhead. The total number of ASes on the Internet is

less than 80,0002. In the extreme case, a router needs to preset

the dynamic keys for all the other ASes. With the key length

of 16 B and each router presets the key for 2 time slots, the

storage overhead is 80 ∗ 103 ∗ 2 ∗ 16 = 2.56 MB.

D3 offloads the testimony storage overhead of the router to

the control plane. The storage overhead in the control plane

is also sustainable. We record the two counters (each counter

with 2 B) in the table set, and a hash table sets up the data

2https://www.cidr-report.org/as2.0/

521

Authorized licensed use limited to: Tsinghua University. Downloaded on November 01,2022 at 07:04:04 UTC from IEEE Xplore. Restrictions apply.

TABLE III
COMPARISON OF PERFORMANCE WITH EXISTING MECHANISMS

Data plane
storage overhead (B)1

Extra control
packet number (5 hops)

Additional packet
header(n hops)

No asymmetric
cryptography

MAC
operation

Localization
delay (pkts)

Faultprints 16 + 468× 106 ×BW 1-4001 (56 + 8× n) B � 2 4000
RFL 16 + 468× 106 ×BW 1-4001 (38 + 4× n) B � 2 4000
D3 32×M × (2K) 1-11 20 B � 1 4000

1 BW represents the bandwidth in metric of 100 Gbps, M represents the number of ASes, K represents the bit width of uid

index (calculated by the hash of the session information). Two

epochs are enough since each router clears the counters of

epoch i − 1 at the end of epoch i, which takes 8 B for a

session. Consider the load factor is 0.75. According to the

CAIDA results, each router’s mean flows per second are 39.73

K3. The total storage overhead of D3 in the control plane is

N = 39.73 ∗ 103 ∗ 8/0.75 = 424 KB.

Communication overhead. In Faultprints, RFL, and D3, the

number of the extra control packet is only 1 ACK if end-to-

end corruption ratio is lower than the threshold. In contrast,

when the ratio is higher than the threshold, Faultprints and

RFL need to process O(n) probe and reply. For the path

length of 5, the sampling packets number is 2000 if each router

samples 10% of the 4000 packets, and the number of extra

control packets is 4001. D3 decreases these control packets

from O(n) to O(1). The number of extra control packets is

11 if the source needs to get the reply from each router.

The additional packet header in Faultprints and RFL is 96 B

and 58 B with the path length of 5, respectively, and will grow

with the path length increase. D3 has the constant additional

packet header of 20 B and could embed the probabilistic and

cryptographic sampling policy.

Computation overhead. Faultprints and RFL need to nego-

tiate the dynamic keys with asymmetric encryption, which is

prohibited expensive in the data plane. Moreover, they need

to derive the dynamic key on the fly for each packet, which

takes 1 extra MAC operation. In D3, each router only performs

1 MAC operation, significantly decreasing the computation

overhead in the data plane.

Localization delay. We denote the localization delay as the

number of packets in an epoch. The RTT in Internet peaks at

100 ms and 200 ms4. For a packet size of 1500 B, 4000 packets

in an epoch make up 48 M bits. The forwarding delay is nearly

500 ms with an end-to-end bandwidth of 100 Mbps. One

epoch is enough to receive the ACK and reply. Therefore,

D3 utilizes 4000 packets in an epoch as default, the same as

Faultprints and RFL.

VI. EVALUATION

A. Implementation

We implement D3 in the BMv2 environment 5 and Barefoot

Tofino hardware. Our BMv2 testbed hosts in a virtual machine

3https://www.caida.org/catalog/datasets/trace_stats/
4https://www.caida.org/catalog/software/walrus/rtt/
5https://github.com/p4lang/behavioral-model

4 5 6 7 8 9 10
0

4

8

12

16

Co
rru

pt
io

n
ra

tio
 (%

)

(a) ρn = 0.001

TH. ρ = 0 ρ = 3% ρ = 5% ρ = 10%

4 5 6 7 8 9 10
0

4

8

12

16 (b) ρn = 0.002

4 5 6 7 8 9 10
Path length (n)

0

4

8

12

16

Co
rru

pt
io

n
ra

tio
 (%

)

(c) ρn = 0.003

4 5 6 7 8 9 10
Path length (n)

0

4

8

12

16 (d) ρn = 0.005

Fig. 4. The end-to-end corruption ratio with different parameters

with Ubuntu 16.04, Intel Core i5-6200U CPU, 2.4 GHz, and 4

GB RAM. We instantiate the MAC operation with 2EM [10].

As the 2EM has been proven to be secure up to 22n/3, we

utilize n = 64 to keep the confidentiality. The processing of

each router includes nearly 1000 lines P416 program in the

data plane, which performs all the data plane operations for

different kinds of packets, and nearly 500 lines of Python pro-

gram in the control plane, including preparing the reply. We

instantiate two terminals as the source and the destination user,

implement the processing of different packets, and the fault

localization with nearly 800 lines Python program. We also

implement D3 in commodity Barefoot Tofino programmable

switch S9180-32X, which includes nearly 900 lines P416
program with 2EM operation as MAC operation in hardware.

Finally, we test the packet processing performance at the user.

B. Evaluation in BMv2

End-to-end corruption ratio. We evaluate the end-to-end

corruption ratio with the path length from 4 to 10. Each

result represents an average of 1000 runs. The source sends

4000 DAT in an epoch. An adversary corrupts packets

with the corruption ratio of ρ = 0, 3%, 5%, 10%. Fig. 4

shows the comparison of theoretical (TH) and measured

end-to-end corruption ratio with different nature packet loss

(ρn = 0.001, 0.002, 0.003, 0.005). The results show that the

measured corruption ratio is nearly the same as the theoretical

value since the destination records the counter for all the

packets (more than sampling packets).

522

Authorized licensed use limited to: Tsinghua University. Downloaded on November 01,2022 at 07:04:04 UTC from IEEE Xplore. Restrictions apply.

3 5 10
0
4
8

12

Re
pu

ta
tio

n
ga

p
(%

)
(a) N = 1000

AVG. HIGH LOW

3 5 10
0
4
8

12
(b) N = 2000

3 5 10
Corruption ratio (%)

0
4
8

12

Re
pu

ta
tio

n
ga

p
(%

)

(c) N = 3000

3 5 10
Corruption ratio (%)

0
4
8

12
(d) N = 4000

Fig. 5. The range of reputation gap with different parameters

Reputation gap. We evaluate the reputation gap of the faulty

link with the sampling ratio of 15%, the path length of 5, and

ρn = 0.001. The source sends N = 1000, 2000, 3000, 4000
packets in each epoch. An adversary’s corruption ratio ρ is

3%, 5%, and 10%, respectively. As shown in Fig. 5 (a), the

low reputation gap is around 1.2% with 1000 packets in an

epoch and the corruption ratio of 10%. This false negative

decreases the localization accuracy. In Fig. 5 (b), (c), (d), with

more than 3000 packets in an epoch, the range of reputation

gap is as expected (most of the cases are within the range of

ρ ± ρ/2). With the corruption ratio of 5% and 4000 packets

in an epoch, the lowest and highest reputation gap are 4.3%

and 6.2%, while the expected value is within the range of

5%± 2.5%.

Localization accuracy. Fig. 6 (a) shows the localization

accuracy under different corruption ratios with the sampling

ratio of 15%. It shows that with the corruption ratio of 10%,

the accuracy is around 90%, 95% with 2000, 4000 packets in

an epoch, respectively. It’s around 80% when the corruption

ratio is less than 5%, and the packet number in an epoch

is 1000. It indicates that the low corruption ratio and packet

number result in a reputation gap less than the threshold.

The corruption ratio has little effect on the accuracy when

the packet number is more than 2000. It testifies that D3 can

achieve fault localization even with the adversary’s corruption

ratio of 3%. Fig. 6 (b) is the localization accuracy under

different sampling ratios with corruption ratio of 5%. It shows

that with 1000 packets in an epoch and a sampling ratio of

5%, the accuracy is only around 65%. It is around 85% with

the packet number of 2000 and a sampling ratio of 10%. And

it is more than 95% with 4000 packets and a sampling ratio

of 15%. As the baseline of the state-of-the-art mechanisms

(Faultprints and RFL) is to achieve a localization accuracy of

95% for 4000 packets in an epoch under the weaker attackers

(5% corruption ratio), we can conclude that D3 achieves nearly

the same localization accuracy with much less overhead.

Extra control packet overhead. The adversary can only

corrupt the control packets (ACK, reply, probe) with the

same ratio as DAT . The source sends another probe toward a

specific router that did not return the reply after a timeout. We

evaluate the number of probes in different corruption ratios.

The results show that under the corruption ratio of 3%, more

1000 2000 3000 4000
Packet number in an epoch

70

80

90

100

A
cc

ur
ac

y
(%

)

(a) Different corruption ratio

3%
5%
10%

1000 2000 3000 4000
Packet number in an epoch

70

80

90

100

A
cc

ur
ac

y
(%

)

(b) Different sampling ratio

5%
10%
15%
20%

Fig. 6. The localization accuracy with different parameters

than 98% of epochs return the reply with one probe; under

the corruption ratio of 5%, two probes for each router could

satisfy that more than 95% of epochs to get a reply; under

the corruption ratio of 10%, two probes could meet that more

than 90% of epochs to get a reply. Considering each epoch

has 4000 packets, and the control packet size is less than 100

B, assume that the average size of DAT is 1000 B, the extra

communication overhead incurred by D3 is less than 0.06% for

the path length of 5. In Faultprints and RFL, the corresponding

overhead is 1.81%.

C. Evaluation in hardware

We implement 2EM [10] in S9180-32X as a MAC opera-

tion. And testify that the hardware could accomplish D3 within

one pipeline. In contrast, other mechanisms have to achieve

the operation with recirculation.

Computation overhead. The MAC operation in different

mechanisms behaves the same on specific hardware. From this

perspective, we evaluate the computation overhead in terms

of the computation delay of relative MAC operation. In D3,

each router performs 1 MAC operation. In contrast, Faultprints

and RFL derive the dynamic keys with 1 MAC operation and

then accomplish the processing with 1 MAC operation. As

the hardware could not accomplish 2 MAC operations in one

pipeline, we achieve 2 MAC operations with one recirculation.

The delay in different packet sizes is shown in Fig. (7),

in which IP represents IPv6 packet forwarding without MAC

operation, which is the baseline with the value from 0.27

μs (128 B) to 0.91 μs (1500 B), D3 has nearly the same

computation delay when the packet size is more than 768 B,

and slightly above the baseline when the packet size is less

than 512 B. With a packet size of 128 B and 1500 B, the delay

is 0.41 μs and 0.92 μs, respectively. In contrast, the delay in

Faultprints/RFL is significantly higher than D3, which is 1.08

μs with the packet size of 128 B, and 1.69 μs with the packet

size of 1500 B.

Throughput. We instantiate the MAC operation of D3 as a

2EM operation, which is compatible with a single packet-

processing pipeline of the hardware. Thus, D3 can achieve

localization at the hardware line rate [10] (e.g., up to 3.2

Tbps in S9180-32X). In contrast, in Faultprints and RFL, each

packet had to recirculate to accomplish the processing. The

throughput is less than the hardware’s recirculation bandwidth

bottleneck (The default recirculation bandwidth is 200 Gbps

in S9180-32X).

523

Authorized licensed use limited to: Tsinghua University. Downloaded on November 01,2022 at 07:04:04 UTC from IEEE Xplore. Restrictions apply.

128 256 512 768 1024 1500
Packet size (B)

0.0

0.5

1.0

1.5
Co

m
pu

ta
tio

n
de

la
y

(μ
s)

0.27 0.29
0.38

0.56
0.65

0.91

0.41 0.43 0.45
0.58

0.68

0.92
1.08 1.12 1.16

1.3
1.41

1.69

IP D3 Faultprints/RFL

Fig. 7. The computation delay in Barefoot Tofino hardware

D. Performance at the user

In D3, the user requests path information and dynamic keys

from the KDS. The additional latency is insignificant since

the paths and keys information is available at the local KDS.

Moreover, a user can cache both path and key information,

eliminating extra latency for subsequent packets.

The source and destination need to perform the MAC
operations for each packet, which comprises most computation

overhead. We test the MAC operations with 2EM in the Intel

Core i5-6200U CPU virtual machine. It could achieve more

than 1,000,000 2EM operations in one second. The source

needs a 2EM operation to calculate the markpkt, and n (the

path length) 2EM operations to calculate the marks for each

transit router. In comparison, the destination needs to calculate

the markpkt. With a path length of 4, we could learn that

an ordinary commodity host could support more than 200,000

packets for the source and 1,000,000 for the destination, which

is 2.4 Gbps and 12 Gbps for the packet size of 1500 Bytes.

We can conclude that the computation overhead at the user is

sustainable.

VII. DISCUSSION

The length of markr. On Internet, the average AS path length

is less than 5, and the vast majority of the length is at most 106.

As the bit width of markr is 32, we could utilize the flag to

indicate the dynamic length of markr. We use 4 bits in each

router (marki[0 : 4]) as default to facilitate the implementation

on hardware. If the path length i is more than 8, we could use

3 bits markr to keep the ability that all the routers on the

path could filter the malicious traffic.

Limitations. When the number of adversaries passes more

than half of the path length, for example, assume that R1,

R2, and R3 in Fig. 1 launch the colluding attack, the source

might not localize them. Consider that most AS are honest.

An entity could localize the adversaries by establishing the

AS reputation system based on many detectors’ evaluations.

In future work, we will aggregate the reputation from the

detectors to establish a reputation system for each AS.

VIII. RELATED WORK

Data plane MAC operation. Achieving MAC operation in

the data plane is important for data forwarding to defend the

strong adversary. The dedicated hardware achieves the MAC

6https://bgp.potaroo.net/as6447

operation, but it needs upgrading hardware [20]. SPINE [21]

achieves the MAC operation with SipHash in the BMv2 envi-

ronment, but the hardware could not accomplish it within one

single pipeline. P4-AES [9] requires at least four recirculations

to accomplish a MAC operation, thus degrading forwarding

performance. PINOT [10] implements the 2EM operation in

a single pipeline on commercial hardware to encrypt the

IP address. Based on PINOT, we utilize the dynamic keys,

combined with the 2EM operation to calculate two 32 bits

marks in a single pipeline, then achieve the lightweight

processing with the two marks.

Path availability and verification. The path-aware network

such as SCION [2], gives transparency and choices to users,

while SR [3] provides a practical way to program the net-

work. These mechanisms provide the basis to build a path-

aware network that allows the hosts to embed their policy

in the packet header. When it comes to path verification,

EPIC [20] utilizes highly efficient symmetric cryptographic

operations in the forwarding process, while PPV [22] and

MASK [23] improve the efficiency of the path verification

with probabilistic packet marking. PSVM [24] presents a

flexible path verification scheme in SDN. These mechanisms

can only verify the forwarding path, and cannot localize the

fault entities.

Fault localization. The mechanism such as AudIt [7] without

any authentication of the packets suffers from packet modifica-

tion attacks. DynaFL [25] proposes the secure neighborhood-

based fault localization protocol in SDN. TrueNet [26] lever-

ages trusted computing technology to build a trusted network-

layer architecture. These mechanisms are difficult to apply on

the Internet. ShortMAC [4] achieves high-security assurance

even in the presence of strong adversaries. But it could only

use in intra-domain scenarios since it records per-flow testi-

mony in the data plane, thus having prohibitively heavy storage

overhead in the data plane. Faultprints [5] is the first fault

localization mechanism used in the inter-domain context based

on the mechanism deriving a per-session dynamic key on the

fly and recording the per-packet testimony with Bloom Filter.

Based on the unreliable communication channel on today’s

Internet, RFL [6] utilizes a sophisticated way to build a fault

localization mechanism. Unfortunately, the two mechanisms

probe each sampling packet. It incurs the communication

overhead, especially on the unreliable channel. In a word, these

mechanisms did not take account of the router’s performance,

thus reducing the deployability. With the edge-based mecha-

nism, D3 achieves high localization accuracy with lightweight

overhead in the router.

IX. CONCLUSIONS

It’s difficult to deploy the existing secure fault localization

mechanisms in the edge cloud for the lack of efficiency in

terms of storage, communication, and computation overhead.

This paper designs D3, which offloads the router’s overhead

to the user and KDS. D3 has low storage overhead in the

data plane and communication overhead in the network. With

524

Authorized licensed use limited to: Tsinghua University. Downloaded on November 01,2022 at 07:04:04 UTC from IEEE Xplore. Restrictions apply.

the 2EM operation, it could accomplish all the MAC opera-

tions within a single pipeline on commodity hardware, thus

significantly lowering computation overhead. Furthermore, it

has strong security characteristics with the blind policy and

binding marks. With D3, the user could program the router

on the path sophisticatedly and build a more reliable network

to meet the user’s requirements. It thus brings us closer to

localizing the malicious ASes in the edge cloud.

ACKNOWLEDGMENT

This work was in part supported by the China National

Funds for Distinguished Young Scientists with No. 61825204,

the NSFC Project with No. 61932016, No. 62132011, and No.

62132009, the Beijing Outstanding Young Scientist Program

with No. BJJWZYJH01201910003011. Ke Xu and Su Yao are

the corresponding authors.

REFERENCES

[1] L. L. Peterson, T. E. Anderson, S. Katti, N. McKeown, G. M. Parulkar,
J. Rexford, M. Satyanarayanan, M. O. Sunay, and A. Vahdat, “Democra-
tizing the network edge,” Comput. Commun. Rev., vol. 49, no. 2, pp. 31–
36, 2019.

[2] J. Kwon, J. A. García-Pardo, M. Legner, F. Wirz, M. Frei, D. Hausheer,
and A. Perrig, “SCIONLAB: A next-generation internet testbed,” in
28th IEEE International Conference on Network Protocols, ICNP 2020,
Madrid, Spain, October 13-16, 2020, pp. 1–12, IEEE, 2020.

[3] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils,
T. Telkamp, and P. François, “A declarative and expressive approach
to control forwarding paths in carrier-grade networks,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on Data
Communication, SIGCOMM 2015, London, United Kingdom, August 17-
21, 2015 (S. Uhlig, O. Maennel, B. Karp, and J. Padhye, eds.), pp. 15–
28, ACM, 2015.

[4] X. Zhang, Z. Zhou, H. Hsiao, T. H. Kim, A. Perrig, and P. Tague, “Short-
mac: Efficient data-plane fault localization,” in 19th Annual Network
and Distributed System Security Symposium, NDSS 2012, San Diego,
California, USA, February 5-8, 2012, The Internet Society, 2012.

[5] C. Basescu, Y. Lin, H. Zhang, and A. Perrig, “High-speed inter-domain
fault localization,” in IEEE Symposium on Security and Privacy, SP
2016, San Jose, CA, USA, May 22-26, 2016, pp. 859–877, IEEE
Computer Society, 2016.

[6] B. Wu, K. Xu, Q. Li, B. Liu, S. Ren, F. Yang, M. Shen, and K. Ren,
“RFL: robust fault localization on unreliable communication channels,”
Comput. Networks, vol. 158, pp. 158–174, 2019.

[7] K. J. Argyraki, P. Maniatis, O. Irzak, S. Ashish, and S. Shenker, “Loss
and delay accountability for the internet,” in Proceedings of the IEEE
International Conference on Network Protocols, ICNP 2007, October
16-19, 2007, Beijing, China, pp. 194–205, IEEE Computer Society,
2007.

[8] B. Barak, S. Goldberg, and D. Xiao, “Protocols and lower bounds
for failure localization in the internet,” in Advances in Cryptology
- EUROCRYPT 2008, 27th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Istanbul, Turkey,
April 13-17, 2008. Proceedings (N. P. Smart, ed.), vol. 4965 of Lecture
Notes in Computer Science, pp. 341–360, Springer, 2008.

[9] X. Chen, “Implementing AES encryption on programmable switches
via scrambled lookup tables,” in Proceedings of the 2020 ACM SIG-
COMM 2020 Workshop on Secure Programmable Network Infrastruc-
ture, SPIN@SIGCOMM 2020, Virtual Event, USA, August 14, 2020
(A. Chen and L. Vanbever, eds.), pp. 8–14, ACM, 2020.

[10] L. Wang, H. Kim, P. Mittal, and J. Rexford, “Programmable in-network
obfuscation of traffic,” CoRR, vol. abs/2006.00097, 2020.

[11] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and J. Wu, “Poseidon: Mitigating volumetric ddos attacks
with programmable switches,” in 27th Annual Network and Distributed
System Security Symposium, NDSS 2020, San Diego, California, USA,
February 23-26, 2020, The Internet Society, 2020.

[12] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: programming protocol-independent packet processors,” Comput.
Commun. Rev., vol. 44, no. 3, pp. 87–95, 2014.

[13] J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li, “Dedas: Online
task dispatching and scheduling with bandwidth constraint in edge
computing,” in 2019 IEEE Conference on Computer Communications,
INFOCOM 2019, Paris, France, April 29 - May 2, 2019, pp. 2287–2295,
IEEE, 2019.

[14] F. Zhang, L. Jia, C. Basescu, T. H. Kim, Y. Hu, and A. Perrig, “Mech-
anized network origin and path authenticity proofs,” in Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications
Security, Scottsdale, AZ, USA, November 3-7, 2014 (G. Ahn, M. Yung,
and N. Li, eds.), pp. 346–357, ACM, 2014.

[15] J. Wu, J. Bi, M. Bagnulo, F. Baker, and C. Vogt, “Source address
validation improvement (SAVI) framework,” RFC, vol. 7039, pp. 1–14,
2013.

[16] J. Wu, G. Ren, and X. Li, “Source address validation: Architecture and
protocol design,” in Proceedings of the IEEE International Conference
on Network Protocols, ICNP 2007, October 16-19, 2007, Beijing, China,
pp. 276–283, IEEE Computer Society, 2007.

[17] S. E. Deering and R. M. Hinden, “Internet protocol, version 6 (ipv6)
specification,” RFC, vol. 8200, pp. 1–42, 2017.

[18] B. Liu, J. T. Chiang, J. J. Haas, and Y. Hu, “Coward attacks in vehicular
networks,” ACM SIGMOBILE Mob. Comput. Commun. Rev., vol. 14,
no. 3, pp. 34–36, 2010.

[19] P. F. Syverson, “A taxonomy of replay attacks,” in Seventh IEEE
Computer Security Foundations Workshop - CSFW’94, Franconia, New
Hampshire, USA, June 14-16, 1994, Proceedings, pp. 187–191, IEEE
Computer Society, 1994.

[20] M. Legner, T. Klenze, M. Wyss, C. Sprenger, and A. Perrig, “EPIC:
every packet is checked in the data plane of a path-aware internet,”
in 29th USENIX Security Symposium, USENIX Security 2020, August
12-14, 2020 (S. Capkun and F. Roesner, eds.), pp. 541–558, USENIX
Association, 2020.

[21] T. Datta, N. Feamster, J. Rexford, and L. Wang, “SPINE: surveillance
protection in the network elements,” in 9th USENIX Workshop on Free
and Open Communications on the Internet, FOCI 2019, Santa Clara,
CA, USA, August 13, 2019 (S. E. McGregor and M. C. Tschantz, eds.),
USENIX Association, 2019.

[22] B. Wu, K. Xu, Q. Li, Z. Liu, Y. Hu, M. J. Reed, M. Shen, and F. Yang,
“Enabling efficient source and path verification via probabilistic packet
marking,” in 26th IEEE/ACM International Symposium on Quality of
Service, IWQoS 2018, Banff, AB, Canada, June 4-6, 2018, pp. 1–10,
IEEE, 2018.

[23] S. Fu, K. Xu, Q. Li, X. Wang, S. Yao, Y. Guo, and X. Du, “MASK:
practical source and path verification based on Multi-AS-Key,” in
2021 IEEE/ACM 29th International Symposium on Quality of Service
(IWQOS) (IWQoS 2021), (Tokyo, Japan), June 2021.

[24] F. Yang, K. Xu, Q. Li, R. Lu, B. Wu, T. Zhang, Y. Zhao, and M. Shen,
“I know if the journey changes: Flexible source and path validation,” in
28th IEEE/ACM International Symposium on Quality of Service, IWQoS
2020, Hangzhou, China, June 15-17, 2020, pp. 1–6, IEEE, 2020.

[25] X. Zhang, C. Lan, and A. Perrig, “Secure and scalable fault localization
under dynamic traffic patterns,” in IEEE Symposium on Security and
Privacy, SP 2012, 21-23 May 2012, San Francisco, California, USA,
pp. 317–331, IEEE Computer Society, 2012.

[26] X. Zhang, Z. Zhou, G. Hasker, A. Perrig, and V. D. Gligor, “Network
fault localization with small TCB,” in Proceedings of the 19th annual
IEEE International Conference on Network Protocols, ICNP 2011,
Vancouver, BC, Canada, October 17-20, 2011, pp. 143–154, IEEE
Computer Society, 2011.

525

Authorized licensed use limited to: Tsinghua University. Downloaded on November 01,2022 at 07:04:04 UTC from IEEE Xplore. Restrictions apply.

