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Stable Byzantine Fault Tolerance in Wide Area
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Abstract— With the increasing demand for blockchain
technology in various industry sectors, there has been a growing
interest in the Byzantine Fault Tolerance (BFT) consensus that
is the backbone of most of these blockchains. However, many
state-of-the-art algorithms that require reliable connections can
only offer limited throughput in wide-area networks (WANs),
where participants are connected over long distances and
may experience unpredictable network failures. The partially-
connected BFTs are designed for unreliable and highly dynamic
networks yet impose exponential communication complexity. This
paper proposes Stable Byzantine Fault Tolerance (SBFT), a BFT
communication abstraction that can sustain high throughput and
low latency in WAN. SBFT separates the leader from consensus
in pipelined BFT consensus and uses an adaptive consensus
mechanism to resist dynamic faulty links, maintaining consensus
efficiency when network connectivity is high while adapting
to dynamic networks with low connectivity. We implemented
a prototype of SBFT and tested it on the WAN. The results
demonstrate that SBFT has a throughput similar to HotStuff in
a fault-free environment but can reduce about 80% of consensus
latency. Besides, SBFT retains 40% of the original throughput
when the link failure probability is 0.4, while the baseline
HotStuff retains less than 40% when the link failure probability
is only 0.1.

Index Terms— Byzantine fault tolerance, stable consensus,
adaptive consensus, dynamic network, partially connected
network.

I. INTRODUCTION

RECENT advances in permissioned blockchains [2], data
sharing [22], [40], [48] and network security [26], [33],

[47] have shown that Byzantine Fault Tolerant (BFT) state-
machine replication is not a concept of solely academic interest
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Fig. 1. Design space in BFT.

but a problem of high relevance in practice. In particular,
the ability to withstand arbitrary component failures makes
BFT replication a powerful tool for building critical systems
that must meet high reliability and availability requirements.
In order to achieve high-throughput and low-latency con-
sensus, some arts focus on scaling BFT consensus via
mechanisms such as committee elections [15], sharding [25],
layering [28], and tree-structured communication [24], [36].

These new consensuses demonstrate tremendous improve-
ments; however, deployment in Wide Area Networks (WAN)
is a challenging issue [22]. The most critical problem for
distributed systems running in the WAN network is link
unreliability, which may cause the sudden increment of
message delay or even link disconnection [5], [13], [37],
[50]. Link unreliability happens all the time in WAN, due
to a variety of reasons such as national level security
audits [5], Distributed Denial of Service (DDoS) network
attacks [37], hijacking attacks against TCP [13], and even
network failures [50].

Broadly speaking, the prior work can be classified as
full-connected BFT, and partially-connected BFT protocols.
Unreliable and unstable WAN links can make the full-
connected consensus protocols [1], [8], [9], [12], [18], [19],
[34] defective or even unusable because they designed for
reliable links. For instance, Synchronous BFT protocols (such
as Sync-HotStuff [1]) assume bounded communication latency
to achieve safety, which may not hold when facing unreliable
links. Asynchronous BFT protocols (such as Dombo [18])
require more rounds of interaction and have to wait for the
link recovery to meet the minimum network connectivity
requirement, thus increasing the consensus latency. Leader-
based BFT protocols (such as PBFT [8], HotStuff [51])
will cause frequent view changes with unreliable links, thus
reducing the consensus throughput.
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TABLE I
THE SUMMARY OF KEY PROPERTIES OF SBFT AND SEVERAL KINDS OF RELATED BFT PROTOCOLS

Prior works on partially connected networks (such as [6],
[7], [41], [46]) also have several key limitations. First, they
primarily focus on static consensus, achieving high link
fault tolerance but introducing exponential communication
complexity. Second, these works mainly study the one-shot
consensus, which cannot be directly applied to replicated
services that require consecutive consensus (see details in § II).

Thus from a philosophical standpoint, it is worth asking:
Can BFT ensure high throughput and low latency with
unreliable links? Can we simply enhance the traditional BFT
consensus to WAN? How to distinguish partial-connected
networks from node errors when consensus stops running?
How to adapt to network dynamics? In this paper, we seek to
answer these questions with a new scheme Stable Byzantine
Fault Tolerance (SBFT).

Figure 1 surveys the design space for BFT and places SBFT
in context by following the thick red lines through the design
tree. At the highest level, SBFT is designed for WAN with
unreliable links. Next, SBFT is a partially-synchronous BFT,
which has low communication complexity and low latency.
As shown in the lowest branch of the design tree, SBFT falls
into the category of a high throughput anchor -based approach
that relaxes complete leader dependency and dynamically
adjusts the acceptance-rules based on link status.

In SBFT, we have two key designs, a) giving a new network
model, with which replicas can use a lightweight local state
notification mechanism to acquire liveness when the network
is not synchronous, and b) adjusting the consensus strategy
dynamically. First, we relax the complete dependency on
the leader without sacrificing consensus speed in SBFT and
propose to use anchor nodes instead of leaders to drive
consensus. Through the anchor -driven consensus design,
SBFT can make stable progress on producing blocks even
when the leader node has very limited connectivities (in fact,
the leader node only needs a single anchor neighbor to
transmit blocks) (detailed in § III). Second, SBFT allows
nodes to dynamically adjust their consensus strategies based
on their perceived status of neighbors. This ensures that SBFT
achieves high link fault tolerance for running stably when the
network connectivity is low, and meanwhile achieves the same
throughput as the pipelined HotStuff [51] given rich network
connectivities (detailed in § IV-B).

We use a system model to theoretically prove the safety and
liveness of SBFT. We implemented a prototype of SBFT with
more than 3000+ lines of code and tested it on 16 machines

in 4 regions. Our testbed experiments show that SBFT can
maintain high throughput and low latency in WAN with
unreliable links. For instance, SBFT has a similar throughput
as HotStuff in a fault-free environment but can reduce more
than 80% of consensus latency. Besides, when link failure
probability reaches 0.1, SBFT can retain at least 70% of the
original throughput and constantly low latency in different
experiment configurations, while the baseline HotStuff can
retain less than 40% of the original throughput. We further
perform the faulty-probability-determined (FPD) model [28]
simulation to evaluate the link fault tolerance of SBFT. The
results show that existing protocols like PBFT and HotStuff
start to consistently trigger leader election (even if the leader is
correct) when link failure probability exceeds 0.2, while SBFT
can run stably even when link failure probability reaches 0.4.

II. BACKGROUND AND MOTIVATION

A. Replicated Service

Replicated service is built based on state machine
replication (SMR), which aims to make a set of possibly faulty
distributed replicas execute the commands in the same order,
maintaining a consistent state.

When designing a Byzantine-fault-tolerant (BFT) protocol
for the replicated service, ensuring the following two
properties is critical.
• Safety. All correct replicas commit and execute com-

mands in the same order.
• Liveness. All correct replicas will eventually commit and

execute new commands.
When less than 1/3 byzantine replicas exist, a well-designed

BFT protocol with asynchronous commit-rules (i.e., commit a
command after collecting enough messages instead of waiting
for a sufficiently long time) can achieve safety regardless
of network conditions. Yet, it achieves liveness only if the
assumed network condition is satisfied, as discussed below.

B. Synchronous Liveness Condition

Synchronous liveness condition refers to the assumption that
the message delay between two correct nodes is bounded by an
(unknown) value ∆, i.e., the network is stable. BFT protocols,
depending on the synchronous liveness condition, often elect
a leader to drive the consensus, and such protocols probably
achieve the fastest consensus [27] in theory. Considering that
the leader may fail, these protocols set a timer to monitor the
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process of consensus. Upon timeout, the protocol considers
the leader failed, and a view-change protocol is triggered to
select a new leader, during which consensus cannot proceed.

Although synchronous liveness condition is beneficial to
achieve fast consensus, it may hurt the stability of BFT
protocols deployed on WAN, on which network jitters, faults,
attacks (such as eclipse [21], [42], [44], BGP hijacks [3],
[45], and DDoS [30], [31].) appeared frequently. When the
message delay on a link exceeds the assumed bounded value
∆, the link is considered as temporal faulty. Accumulated
faulty links will trigger frequent view changes, which may
eventually hurt liveness. In Fig. 2, we simulate a replicated
service with 61 nodes to demonstrate this.

Broadcast-based partial synchronous BFT (BP-BFT).
BP-BFT protocols [4], [8], [9], [20], [52] require all nodes
to broadcast their votes on the leader’s proposal and accept
it when collecting votes from 2/3 neighbors. Therefore, these
protocols assume a fully connected network for correct nodes,
i.e., all correct nodes can communicate with an authenticated
communication channel. Only when all messages sent on these
channels at t can arrive at t + ∆ will BP-BFT protocols
achieve liveness. Therefore, BP-BFT has a low tolerance for
link failures. As shown in Fig 2, given 20% faulty nodes (i.e.,
pn = 0.2), 10% more faulty links (i.e., pl = 0.1) will cause
a 90% probability of leader failure (i.e., plf = 0.9). However,
BP-BFT relies on all replicas to collect votes by themselves,
thus can achieve higher link fault tolerance when achieving a
simple announcement mechanism and f + 1-acceptance rule,
i.e., Passive-SBFT.

Collector-based partial synchronous BFT (CP-BFT). CP-
BFT protocols [16], [23], [43], [51] let the leader (or some
other fixed nodes [16]) to be the collector, which is responsible
for collecting votes to create a certificate and send it to
other nodes. Therefore, synchronous communication between
the leader and correct nodes is sufficient to achieve liveness,
yielding a higher link-fault tolerance than BP-BFT protocols.
However, these protocols still fully rely on a well-connected
leader to achieve liveness. As shown in Fig 2b, when pn =
0.2 and pl = 0.1, 8 view changes are expected (E(nvc)) for
CP-BFT protocols to find a new leader.

Synchronous BFT (S-BFT). Synchronous BFT protocols
[1], [19], [29], [39] rely on complete synchronization to
achieve both liveness and safety. Thus, they achieve 1/2
Byzantine fault tolerance. However, when deployed in a
network with unreliable links, synchronous protocols may
not achieve safety, i.e., correct nodes may commit different
commands for the same sequence.

In summary, although the synchronous liveness condition
enables fast BFT protocols given a synchronous network,
it is ill-suited for achieving stable consensus in WAN with
unreliable links.

C. Relaxed Liveness Conditions

Asynchronous BFT (A-BFT). Asynchronous BFT pro-
tocols [10], [11], [12], [18], [34], [49] relax the liveness
condition by assuming no maximum message delays, thus
can tolerate unstable network links. However, these protocols

Fig. 2. plf and E(nvc) with respect to pl when pn = 0.2.

still require reliable links between all correct nodes, and
the sent messages must arrive eventually to achieve liveness.
Followed by the pioneering FLP impossibility [14] (i.e.,
no deterministic consensus is reachable in an asynchronous
network), asynchronous BFT protocols require all nodes to
propose a block just as a leader, and then sort these committed
blocks (a total order) with a randomized consensus. Therefore,
compared with leader-based protocols requiring 3 message
latency to achieve consensus, asynchronous BFT protocols
will incur more latency caused by the process of achieving
a total order among blocks. For instance, state-of-the-art total-
order protocol needs an average of 12 message latency to
terminate [17].

Partially connected BFT (PC-BFT). Prior art (such as [6],
[7], [41], [46]) on partially connected networks usually design
the protocols that can run stably on an assumed topology,
which the network must satisfy to achieve liveness. However,
existing works all study static consensus, which may tolerate
more link faults, but introduce high communication overhead
when the network is synchronous. For example, the protocols
in [41] assume an arbitrary dynamic network but introduce
exponential communication complexity; Bonomi et al. [7]
avoids exponential transmission of message payload in
the traditional reliable broadcast (RBC) protocol with the
assumption of 2f +1-connected topology (i.e., any two nodes
have 2f+1 disjoint paths), yet it still introduces O(n2|B|+n!)
communication complexity. Besides, these works mainly study
the one-shot consensus, which cannot be easily applied to
replicated services that require consecutive consensus.

D. Motivation

The motivation of our SBFT is to find a relaxed liveness
condition (a prerequisite for achieving stable consensus in
WAN), and meanwhile, retain consensus efficiency (i.e.,
low communication complexity and consensus latency) that
is usually only possible under the synchronous liveness
condition. To this end, we propose the following key designs
in SBFT:

i) SBFT relaxes the strong dependency on the leader and
lets the anchor drive fast consensus, thus can proceed in
a relaxed anchor -based topology.

ii) SBFT assumes a dynamic network and allows nodes to
adjust their consensus strategies based on their perceived
network connectivity. Thus, it can achieve the same
communication complexity as BP-BFT, though on a
relaxed anchor -based topology.
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We analytically compare SBFT with the related BFT
protocols in Table I.

III. SYSTEM MODEL

We assume a system consisting of n = 3f + 1 replicas,
and index each replica with an integer in {0, . . . , n − 1}.
We use a static byzantine failure model [1], [8], [32], [51],
i.e., the adversary decides a fixed byzantine replica set B
(|B| ≤ f ) before starting the consensus, and the remaining
nodes are correct. We assume the cryptography techniques
(such as collision-resistant hashing, message authentication
codes (MACs), and signatures) are secure.

Network. We assume an unreliable dynamic network,
on which replicas communicate with a point-to-point and
authenticated bi-direction communication channel (e.g., the
TLS channel). Unreliable means that all channels can be
correct or faulty, r1 and r2 are neighbors to each other only
when the channel between them is correct. Thus all correct
channels and related replicas construct the network topology.
Dynamic means that the network topology can change over
time. Authenticated means that a replica r receives a message
from its correct neighbor only if the neighbor sent the message
to r, i.e., no replicas can disguise a correct replica to send a
spoof message. We denote a channel to be correct when all
messages sent on it at t will be received before t + ∆, and
other channels are denoted as faulty.

Goals. Like the traditional BFT protocols, safety and
liveness are two primary goals of SBFT. SBFT achieves safety
without any assumption on the network topology but achieves
liveness during the anchor-based interval, i.e., the network
presents an anchor-based topology. We give three related
definitions as follows.

Definition 1 (Anchor): An anchor is a correct replica,
which has at least 2f correct neighbors.

Definition 2 (Anchor-based topology): There is at least one
anchor in the anchor-based topology, and all correct replicas
have at least one anchor neighbor.

Definition 3 (Ts-anchor-based interval): A time interval
Ts, during which the network is anchor-based topology.

Another goal of SBFT is to adapt to the dynamic topology,
which can help SBFT run stably on WAN. We assume that
the anchor nodes are fixed between any two topology-change,
then we give a supplement definition as follows.

Definition 4 ((Ts, Td)-anchor-based interval): A time
interval with length Ts, during which the network exhibits
anchor-based topology, and the length of the time interval
between any two network topology changes greater than Td.

Based on the definitions, we describe the safety and liveness
properties of SBFT as follows. With the description of
liveness, the smaller the value Td, the stronger the ability to
adapt to the dynamic changes of the network.
• Safety. For any two correct replicas r1 and r2, suppose

that r1 and r2 commit command c and c′ respectively at
sequence s, then c = c′.

• Liveness. There exist two limited values Ts and Td, all
correct replicas will commit at least one new command
during a (Ts, Td)-anchor-based interval.

IV. THE SBFT PROTOCOL

SBFT uses a pipeline mechanism [23], [51] and relies
on a leader to order the commands. The leader packages
the ordered commands as a block (also including a hash
of its predecessor block) and pre-proposes the block to
all other nodes. Correct replicas accept blocks based on
some acceptance-rules (detailed in § IV-B). Once a block
is accepted, replicas can commit its predecessor block, and
propose its successor block (i.e., broadcast a vote on it).
Before diving into the details of SBFT, we first introduce
some essential building blocks. We will explain how these
technologies help improve stability.

A. Relaxing Complete Leader Dependency

Traditional pipelined BFT protocols require the leader to
be an anchor to drive the consensus, and the leader will pre-
propose a new block only after it has accepted its predecessor
block. Such an interaction mode may affect the liveness of
BFT protocols in a dynamic anchor -based topology, because
every network topology change may cause the existing leader
to be a non-anchor .

Considering an illustrative example of a replicated service
with 4 replicas and 2f +1 = 3. As shown in Fig. 3, the leader
can only communicate with its anchor neighbor r2 correctly,
r1 and r3 will not output any vote since they cannot receive the
pre-proposed block from the leader. Therefore, the consensus
stalls and is forced to enter the view change process.

To address the limitation in the traditional pipelined BFT
protocols, We first use a simple announcement mechanism to
ensure the blocks arrive at all replicas. As shown in Fig. 4a,
all replicas will announce the blocks they received, and reply
to replicas who require missed blocks from them. Therefore,
at most 10∆ is enough for a block arriving at 2f + 1 correct
replicas when the leader has an anchor neighbor. Besides,
we give the claim 1 and prove it in Appendix A.

Claim 1: In anchor-based topology, when the correct
leader broadcasts a message, and all nodes help transmit it
with the announcement mechanism, it takes at most 10∆ for
all correct replicas to get the message.

Based on the announcement mechanism, we further
introduce the pipelined pre-proposing mechanism: the leader
pre-proposes new blocks at a fixed rate without waiting for
consensus (shown in Fig. 4b). Replicas will add all received
blocks to a consensus-waiting queue (denoted as cw-queue),
and vote them sequentially (shown in Fig. 4c). With such a
consensus mode, all anchor replicas can collect 3 votes and
accept a block although the leader is non-anchor . When the
cw-queue is not empty, all anchor replicas accept a new
block, on average, in one round interaction. Considering that at
least one round of interaction is necessary for nodes to collect
2f + 1 votes, accept a block, and propose a new block, the
improved interaction model can achieve the theoretical optimal
block throughput in the pipelined BFT protocols.

B. Anchor Based Acceptance-Rules

Traditional BFT protocols mainly use the 2f + 1-anchor
acceptance-rule, which requires the correct replicas to collect
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Fig. 3. The traditional pipelined interaction model with a non-anchor leader.

Fig. 4. Improved pipelined interaction model built on separation of the leader
and consensus.

2f + 1 votes (2f votes from their neighbors and 1 vote from
themselves) to accept a block. Therefore, at least 2f + 1
anchor nodes are needed for these protocols to achieve
liveness. While in anchor -based topology, the number of
anchor replicas varies from 1 to 2f + 1. Thus, SBFT
introduces another two anchor -based acceptance-rules.

f+1-anchor Acceptance-Rule. In SBFT, when f+1 replicas
claim to have accepted a block, at least one of them is correct
and indeed receives 2f + 1 votes. Based on such an idea,
we define the f + 1-anchor acceptance-rule as follows.
• Accept. Upon collecting 2f +1 votes for the same block,

replica r accepts the block; Upon collecting f + 1 votes
for the same block, if a replica r has not accepted its

predecessor block, then r will accept the predecessor
block.

Based on the f + 1-anchor acceptance-rule, anchor
replicas accept a block by collecting 2f + 1 votes and
further broadcast the vote on the next block. Therefore,
correct replicas can proceed to achieve consensus as long
as they have at least f + 1 anchor neighbors. Comparing
with 2f + 1-anchor acceptance-rule that requires at least
2f + 1 anchor replicas, f + 1-anchor acceptance-rule
reduces the topology requirement while retaining the O(n2)
communication complexity.

1-anchor Acceptance-Rule. 1-anchor acceptance-rule
relies on the anchor replicas to additionally prove they indeed
received 2f + 1 votes by broadcasting quorum certificates
(QC, a message constructed by 2f + 1 vote messages) upon
accepting a block. In particular, the definition of 1-anchor
acceptance-rule is defined as follows.
• Accept. Upon collecting 2f +1 votes for the same block,

replica r accepts it; upon collecting f + 1 votes for the
same successor block, or receiving a QC for a block that
has not been accepted, replica r accepts it.

Based on the 1-anchor acceptance-rule, SBFT can always
achieve liveness in anchor -based topology. However, due to
the extra broadcasting of the QC by the anchor nodes, the
communication complexity is O(n3) when there are 2f + 1
anchor exist. We will discuss how to achieve O(n2)
communication complexity via adaptive consensus
in § V-C.

C. Adaptive Consensus Strategies

The final critical building block is adaptive consen-
sus, aiming to achieve efficiency when using 1-anchor
acceptance-rule while also adapting to dynamic anchor -based
topology, achieving fast recovery when the network topology
changes.

In the traditional leader-based BFT protocols, replicas
cannot distinguish network failure from leader failure because
of the FLP impossibility. Therefore, replicas can only trigger
the view change when consensus fails to work out. Only
when the network meets the synchronization assumption and
a correct leader is elected can liveness be achieved. The core
idea for adaptive consensus is to use a more lightweight
local-state notification to replace the view change when the
network meets the requirement of anchor -based topology
but not the synchronous network. Based on the local-state
notification mechanism, replicas can subscribe to QC from the
potential anchor neighbor and acquire liveness in anchor -
based topology. However, one challenge in achieving the idea
is to decide when to trigger the local state notification instead
of the view change. To resolve such a challenge, we first define
the stable state of SBFT as follows.

Definition 5 (Stable state): The stable state means that the
network is anchor-based topology, no conflict blocks from the
leader are observed, and all correct replicas have subscribed
from at least 1 anchor neighbor for the QC.

When in anchor -based topology, a legitimate leader can
consistently pre-propose new blocks, and the anchor will
help to transmit them to fill cw-queue of all correct nodes.
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Fig. 5. The local state notification mechanism.

When the cw-queue of all correct replicas are non-empty,
we can prove that the disruption of the stable state is
regardless of the leader. We give the claim 2 and prove it
in Appendix A.

Claim 2: When consensus is stable, and the cw-queue of
all correct replicas are non-empty. Suppose that all correct
nodes have accepted the same block at T , these nodes accept
no more than k new blocks at T + k∆, and no less than k
new blocks at T + 2k∆.

Therefore, when consensus fails to work out but the cw-
queue is non-empty, replicas can attempt to use the local
state notification mechanism to acquire liveness. As shown
in Fig. 5, a replica can broadcast the local-state message to
tell the basic information of its latest accepted block. Such
behavior is an attempt to subscribe to QC from neighbors who
have the QC for a higher block. replicas who received a local-
state message from r could have three behaviors. The first is
to reply to r a local-state message when only having QC for
a lower block. The second is to revote on the next block by
replying to r a vote message when having QC for the same
block. The third is to reply to r the QC for a higher block,
which means a successful subscription, i.e., the replica will
send the QC to replica r when accepting a new block. Based
on such a mechanism, we give the claim 3 and prove it in
Appendix A.

Claim 3: In anchor-based topology and the cw-queue of
all correct replicas are non-empty, at most 5 rounds of state
notification can ensure that SBFT enters a stable state.

Considering that the byzantine leader can pre-propose
different blocks at the same height (i.e., conflicted blocks),
and all these conflict blocks will be relayed to correct replicas,
replicas should trigger view changes (detail in § V-D) upon
detecting such Byzantine activities.

V. PROTOCOL DETAILS

This section describes the details of SBFT, which include
three parts: passive-SBFT, adaptive consensus, and view
change protocol. Passive-SBFT is the normal case of SBFT,
which builds on the pipelined interaction model and f + 1-
anchor acceptance-rule and relaxes complete dependency on
the leader. Adaptive consensus uses a dynamic subscription
mechanism and the 1-anchor acceptance-rule to tolerate more
link failures without sacrificing efficiency.

A. Notations

Running of SBFT can be divided into continuous views,
and every view is denoted by a number v. The leader in view
v is replica i such that i = v (mod N) [8], [19], [32], and it
is responsible for coordinating the acceptance of new blocks
in the steady-state protocol, which is designed in a pipelined
version. All replicas will monitor the leader. When replicas
suspect leader failures, they will change the leader based on
the view change protocol. In the following description, we use
H(m) to denote hash digest of the message m, σr(m) to
denote a signature of replica r on H(m), and < m >r to
denote the message (m, σr(m)).

Block Format. Block has the format as follows:

Bk := (b, k, v,H(Bk−1), H(Bk), σL) (1)

In block Bk, b includes the packaged commands, k is the
height of block, H(Bk−1) is hash digest of the prior block
Bk−1, v is the view number, H(Bk) can be get by computing
the Hash of (b||k||v||H(Bk−1)), σL is the signature of the
leader L on H(Bk). The first block B0 has the format
(b, 0, 0,⊥, H(B0),⊥).

Block Relationships. If a block Bk contains hash of another
block Bk−1, we say Bk extends Bk−1, then Bk is successor
of Bk−1, and Bk−1 is predecessor of Bk. For any two blocks
Bk and Bk′ , if there exists blocks Bk0 , Bk1 , . . . , Bkn

, where
Bki

extends Bki−1 when 1 ≤ i ≤ n, Bk extends Bkn
, and

Bk0 extends Bk′ , then we say Bk is before Bk′ , Bk′ is after
Bk. if two blocks do not have any of the above relationships,
we say they are in conflict with each other. In addition, for
block Bk which is proposed in view v, and block Bk′ which is
proposed in view v′, we say Bk is higher than Bk′ if k > k′,
Bk is newer than Bk′ if either (i) k > k′ or (ii) k = k′ and
v > v′.

Quorum Certificate. We use σr(H(Bk)) to denote replica
r’s proposal signature for block Bk. We use QC(Bk) to denote
the quorum certificate (QC) for block Bk, which is either q
different proposal signatures for Bk or f +1 different proposal
signatures for Bk+1 that extends Bk. When a replica receives
QC(Bk), it will accept Bk, and commit all blocks before
Bk to its local committed chain. Replicas will execute the
committed block Bk when all blocks before Bk are executed.

Block Status. We say block Bk is safe if it does not conflict
with committed blocks from any correct replica. Every replica
maintains four state variables. Bproposed records the latest
proposed block, Bcommitted records the highest committed
block, Blocked records the safe block, which is typically the
latest accepted block or the decision block in view change
protocol. Bpre records the latest received pre-proposed block.

B. Passive-SBFT

Passive-SBFT uses the f + 1-anchor acceptance-rule, thus
requiring correct nodes to have at least f + 1 anchor
neighbors. Passive-SBFT separates the leader from consensus,
thus a non-anchor leader can also pre-propose new blocks,
and other replicas will help to relay the pre-proposed blocks.
We will explain the details of passive-SBFT according to
Fig. 6.
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Fig. 6. Passive-SBFT.

Pre-Propose. The leader L pre-proposes new blocks by
broadcasting a pre-propose message, which includes the
successor block of Bpre (we denote the block to be Bk,
in which k equals to 1 plus the height of Bpre). Then, the
leader changes the value of Bpre to record the latest pre-
proposed block and adds it to cw-queue. When replica r
receives a valid pre-propose message for Bk, it changes the
value of Bpre to record the latest pre-proposed block and adds
it to cw-queue.

To achieve the optimal throughput and avoid being
suspected, a legitimate leader can pre-propose blocks faster
at the beginning of the new view and then slow down when
several blocks have accumulated in cw-queue. Besides, SBFT
uses a simple announcement mechanism for transmitting
blocks (details in Fig. 6). When deployed, SBFT can also
use other existing protocols [35], [38] for saving network
bandwidth.

Propose. Since the leader pre-proposes new blocks
consistently, the cw-queue is nonempty in the steady state.
Therefore, when accepting Bproposed, i.e., the latest proposed
block in cw-queue, a replica r could simultaneously propose
the next block that extends Bproposed. The block is denoted
to be Bk, in which k equals to 1 plus the height of Bproposed,
r proposes Bk by broadcasting a propose message and set
Bproposed to Bk to record the latest proposed block.

Accept. The QC is proof for accepting the related block.
Therefore, when receiving QC(Bk) and Bk has not been
accepted, replicas will accept and execute the commands in
it. The exact block execution process depends on the local
state of the replica, as discussed below.

In passive-SBFT, there is no need for replicas to send
accept messages. The propose message for a block is
equivalent to the accept message for its predecessor block.
Therefore, QC(Bk) has two possible formats: one is q
propose messages for Bk, and the other one is f +1 propose
messages for Bk+1 that extends Bk.

Learn. There are three cases for executing learn(Bk) based
on the local state of replicas. In the case where the accepted
block Bk extends Blocked, Blocked can be safely committed by

replicas to their local committed chains. Replicas then change
the value of Blocked to Bk, which is safe to be extended in
the next proposal.

In the case where Bk has the same height of Blocked, Bk

must be a block decided in view change protocol (see details
in § V-D), which means that Bk is safe to be extended by
next proposal. Then, replicas only need to change the value
of Blocked to Bk, because the blocks before Bk should have
been committed in previous views.

If Bk is higher than Blocked, then the replicas have just
recovered from failures and missed several accepted blocks
during its failure. Therefore, the replicas change the value of
Blocked to ensure the participation of proposing the next block,
then request all missed blocks from other replicas.

Predict the latency and set the timer. As stated in Claim 5,
when consensus is stable, and the cw-queue of all correct
replicas are non-empty, SBFT can acquire throughput of no
more than 1/∆ and no less than 1/2∆. Thus, SBFT can record
the average time interval tavg of accepting new blocks and
predict ∆ as tavg . When accepting a new block, replica r
reset the timer to 2∆, the bounded value for SBFT accepts a
new block in the stable state.

C. Adaptive Consensus

For the adaptive consensus to run successfully, every replica
r uses a timer to monitor the consensus process and maintains
a local set To, which is initialized to be an empty set and
includes all replicas who have subscribed from r for QC.
When r acquires a QC by collecting 2f+1 propose signatures,
it will send the QC to all replicas in To. We will explain the
protocol details according to Fig. 7.

OnCertificate. With the 1-anchor acceptance-rule used in
adaptive consensus, nodes may receive the QC from their
neighbors. When receiving a QC that can accelerate the
consensus, nodes will accept the block directly without waiting
to collect q propose messages. However, When receiving
a QC that cannot promote consensus, nodes can send the
unsubscribe message to the neighbor who sent the QC to
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Fig. 7. Adaptive consensus.

cancel the subscription to avoid unnecessary communication
overhead.

Status Notification. The network topology may have
changed when the timer timer expires while cw-queue is non-
empty. Then, replica r will join the status notification process
instead of suspecting the leader.

When joining into the status notification process, replica r
will broadcast a local-status message mainly for two goals.
One is to attempt to subscribe QC from potential anchor
neighbors. The other is to tell the poor-connected neighbors
to subscribe to QC from r itself.

When a replica r′ receives a valid local-status message
from r, which includes hash of block Bk at height k,
it proceeds based on its local state as follows:
• If Bk is after Blocked (indicating that r′ is slow), replica

r′ constructs and sends a local-status message to r to
subscribe the QC.

• If Bk has the same height of Blocked (indicating that r
and r′ are accepting blocks at the same rate), replica r′

just sends a propose message for Bproposed to r.
• If Bk is before Blocked (indicating that the connectivity of

r is poor and cannot accept new blocks in time), replica r′

sends the local stored QC(Blocked) to r and adds r to To.
Considering that r could be a recovered anchor without
the latest status, r′ will also send a propose message
for Bproposed to r, help replica r to collect q propose
messages and confirm its identity of anchor node.

Considering that a byzantine node can first disguise as
anchor node and then stop issuing certificates, in which case,
the victim nodes would only need to find another anchor
neighbor by joining the status notification process when
timeout. When completing the broadcast of the local-status
message, replica r has subscribed QC from all its potential
anchor neighbors. Only after providing QC for accepting
new blocks will these neighbors not be unsubscribed, thus the
malicious behaviors of byzantine nodes will not affect protocol
liveness.

Set the timer. After broadcasting a local-status message,
replica r will reset timer to 2∆, for the reason that r will
receive q propose messages or a local-status message in
2∆. In both cases, r can proceed to accept a new block.

D. View Change Protocol

The view change protocol is triggered when replicas observe
abnormal behaviors of the current leader. The goal of view

change is to elect a new leader and decide the block that is
safe to be extended in the next view. We explain the protocol
using Fig. 8.

Leader Failure Suspicion. During the execution of the
steady-state protocol, all replicas monitor the leader to detect
possible malicious behaviors. Whenever replica r suspects
the leader in view v, it will broadcasts ⟨suspect, v⟩r. There
are two possible triggers for raising leader failure suspicions.
The first one is the timeout. Every replica maintains timer
to monitor the rate of accepting new blocks. Different from
traditional BFT protocols, replicas will proceed to confirm the
status of cw-queue when timer reaches 0. When cw-queue
is non-empty, replicas will join the status notification process
(detailed in § V-C) and reset the timer . When cw-queue is
empty, there are two possible reasons:
• the leader fails, indicating a legitimate suspicion;
• the predicted value ∆ is smaller than actual message

delay δ, which means the network is unstable, nodes will
increase the predicted value ∆ to accelerate consensus
recovery;

The other suspicion case is observing two conflict blocks
with a valid signature of the leader. This is definitive proof
that the leader is byzantine faulty.

Noted that replicas will proceed consensus process in view
v after broadcasting the suspect message. Besides, whenever
replica r receives a suspect message with an older view from
replica r′, r will send the latest new-view message to r′ to
bring it back to the latest view.

Status and New-view. The Status and New-view processes
are similar to traditional BFT consensus. The core difference
is that replicas will forward the received status message to
the new leader, and forward the new-view message to other
replicas. we will describe the details as follows.

Upon collecting q valid suspect messages for the same
view v from different replicas, a replica r will broadcast
them, enter view v + 1, and stop to propose any blocks in
view v. Then, replica r broadcasts a status message, which
includes the new view number v + 1, Blocked, view number
v′, signatures on H(v + 1, Blocked, v

′), and the certificate
for Blocked in view v′. Then it resets timer to 10∆, the
derived maximum latency for receiving the new-view message
(see details below). Considering that the new leader may not
be an anchor , all replicas will forward the received status
messages to it (note that the expected leader for each view is
predetermined based on its ID).
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Fig. 8. View change protocol.

When the expected leader L′ has received q status
messages for view v + 1 from different replicas, it finds the
newest block Bk′ in these messages, and gets Cv′(Bk′). Then
L′ constructs S, which includes the q status messages without
certificates, to prove that Bk′ is safe to be extended in the
next view. Besides, L′ will constructs a new block Bk′+1 that
extends Bk′ , and broadcasts new-view message.

For any replica r, upon receiving a new-view message,
it will verify that S includes q valid status messages and
C(Bk′) is valid for the newest block in these messages.
It further verifies that Bk′+1 indeed extends Bk′ . Upon
verification, replica r will forward the new-view message to
other replicas, and reset timer to 6∆, which is the predicted
maximum latency for accepting the next block.

We will prove in Appendix B that the newest block Bk′

from any f + 1 correct replicas (using their local Blocked) is
safe to be extended in the new view. Thus, after broadcasting
the valid new-view message, all replicas will enter steady-
state protocol and execute Learn(Bk′) and set Bpre to Bk′+1

to record the latest pre-proposed block.
Set the timer. Before entering the new view, replica r

should have broadcasted 2f +1 suspect messages. According
to Claim 4 (the proof is in Appendix A), it will take at most
4∆ for all correct replicas to receive these messages and enter
view v + 1. Further, it will take at most 2∆ for all correct
replicas to broadcast status messages and forward them to
the new leader. Finally, it will take at most another 4∆ for
all correct replicas to receive new-view messages. Therefore,
when entering view v + 1, replica r resets timer to 10∆, and
waits for the new-view message.

Claim 4: In anchor-based topology, when the correct
leader broadcasts a message, and all nodes help transmit it
directly, it takes at most 4∆ for all correct replicas to get the
message.

E. Efficiency

We analyze the message complexity, communication
complexity, and throughput for our consensus protocol in a
steady state. We use δ to denote the message delay, which is
smaller than a predicted value ∆.

Block Throughput. We consider the maximum block
throughput SBFT can achieve, i.e., the throughput when the
cw-queue of all correct replicas are nonempty. According to
Claim 2 (the proof is in Appendix A), SBFT needs average
at most 2 message latency to accept a new block. When
the network connectivity is high, i.e., all correct nodes can
collect 2f +1 propose messages from their neighbors, SBFT
only needs average 1 message latency to accept a new block
(According to Claim 5, which is proved in Appendix A).
In comparison, HotStuff needs an average 2 message latency
to accept a new block.

Communication Complexity. We can let all nodes send a
hash before relaying the pre − propose message. Therefore,
when a block has the size of O(|B|), SBFT can achieve
O(n|B| + n2) of communication complexity, the same as
PBFT, and higher than HotStuff of O(n|B|+ n).

Consensus latency. SBFT uses the two-chain commit rule,
and the consensus latency equals the latency for a block
transmitted to all correct replicas plus two block acceptance
intervals. Therefore, the consensus latency is three message
delays in a synchronous network, the same as in a PBFT.

Claim 5: In a synchronous network with fully connected
topology, when the cw-queue of all anchor nodes are non-
empty. Suppose all anchor nodes have accepted the same
block B at T ; they will accept at least k new blocks with
heights higher than B at T + k∆.

F. Security Analysis

We mainly prove the properties of safety and liveness in
Appendix B, and the three theorems are shown below.

Theorem 1 (Safety): Correct nodes can’t commit two dif-
ferent blocks at the same height.

Theorem 2 (Liveness): There exist two limited values Ts

and Td; all correct replicas will commit at least one new
command during a (Ts, Td)-anchor-based interval.

VI. EVALUATION ON LINK FAULT TOLERANCE

This section evaluates the link fault tolerance of SBFT with
many other BFT protocols.
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Experiment setup. We use a boolean matrix G to simulate
the topology of a replicated service. G[i][j] will be set to false
when the link between ri and rj is faulty and be set to true
when the link between ri and rj is correct. We use the faulty-
probability-determined (FPD) model [28] and assume that the
failures among different nodes and links are independent. The
first replica is the leader in the initial state, and we generate
the topology based on the preset node failure probability (pn)
and link failure probability (pl). Then, we decide the state of
the generated topology and three cases that could result in
leader failures:

• The leader is faulty.
• The leader is correct but fails because of link failures.
• The network topology does not meet the requirement of

the liveness condition.

When the leader fails, the consensus achieves liveness only
if another effective leader exists. We examine the nodes in
increasing order and use nvc to record the number of view
changes required to find an effective leader. Our evaluation
results only count cases where nvc is not infinity (i.e., the
leader fails while an effective leader exists).

Baselines. SBFT aims to relax the synchronous liveness
condition without sacrificing efficiency. Therefore, we mainly
consider the partial synchronous BFT protocols as the
baselines. There are two interaction modes in the existing
partial synchronous BFT protocols. One is BP-BFT, such as
PBFT [8], where all replicas broadcast propose messages.
The other CP-BFT, such as HotStuff [51], where all replicas
only communicate with the leader.

Probability of Leader Failure. We simulate a replicated
service consisting of 61 nodes and consider two scenarios with
different node failure probability, i.e., pn = 0 and pn = 0.2.
For each scenario, we vary the pl (link failure probability)
from 0 to 0.5 and plot the plf (probability of leader failure)
with respect to pl. The results are shown in Fig 9.

When pl = 0, all three consensuses have same plf (equal
to pn). When pn = 0, SBFT can ensure stability even when
pl = 0.4, while CP-BFT can be stable when pl = 0.2, BP-BFT
can only be stable when pl = 0.1. Considering that pn = 0.2,
SBFT can still ensure stability when pl = 0.15, while BP-BFT
and CP-BFT may trigger view change when there are any link
failure exists.

To further demonstrate the stability of SBFT, we study
the scenario where the leader is experiencing attacks by
only considering the link failures associated with the leader.
As shown in Fig 10, BP-BFT and CP-BFT are stable only
if pll is smaller than 0.2, while passive-SBFT and SBFT are
stable even when pll is 0.9.

Cost for recovering from leader failure. We further
evaluate the cost (i.e., the number of view changes E(nvc))
for recovering from leader failure. According to the results
shown in Fig 11, When the leader fails, about one view change
is needed for SBFT to find a new leader and recover, while
BP-BFT and CP-BFT all have a much higher E(nvc) to find
a new leader. The reason is that BP-BFT and CP-BFT fail to
relax the dependency on the leader and require the leader to
have higher network connectivity. Therefore, when cumulative

Fig. 9. The leader failure probability, i.e., plf with respect to pl under
varying pn.

Fig. 10. plf with respect to pll.

Fig. 11. Cost for recovering from leader failure, i.e., E(nvc) respect to pl

under varying pn.

faulty links trigger the view change, the probability of finding
an anchor as a new leader is low.

Influence of node size on stability. The node size will
usually affect the stability of consensus. We choose SBFT,
SBFT without adaptive consensus (i.e., passive-SBFT), BP-
BFT, and CP-BFT as the experimental objects and analyze the
leader failure probability plf with respect to the link failure
probability pl in different node sizes, and get the results shown
in Fig 12. We can find that for all four protocols, and there
exists a limit value plim, when pl < plim, the consensus
becomes more stable with the expansion of node size, and
the plf will eventually approach to 0. When pl > plim, with
the expansion of node scale, the plf will eventually approach
1. Therefore, higher plim is equivalent to higher link fault
tolerance when n →∞.

In the actual environment of BFT protocols, the node size
is limited. Therefore, according to the results in Fig 12, SBFT
can achieve the highest stability in the actual deployment
environment.

VII. EVALUATION ON PERFORMANCE

This section evaluates the performance of SBFT compared
to HotStuff.

Implementation Details. We implement SBFT based on the
HotStuff codebase. We rewrite the consensus and synchronizer
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Fig. 12. plf with respect to pl and node size given pn = 0.

package because SBFT has a different consensus and view-
change protocol from HotStuff. Besides, we add a relations
package to support the maintenance of set To and the
simulated fault network links. At the beginning of the program,
nodes establish communication channels through TLS sockets.
We will tag all communication links as correct or faulty
according to the preset probability of faulty links and fresh the
distribution of faulty links based on predefined fresh-duration.
When receiving messages from tagged faulty links, replicas
will ignore them. Overall, implementing the functionalities
described above required the addition/adaptation of about
3000 locs to the HotStuff codebase.

Experiment Setup. All the replicas and clients were
installed on ECS SA5.2XLARGE32 instances. Each instance
has 8vCPUs supported by AMD EPYC Bergamo(-/3.1GHz)
and has a maximum network bandwidth of 100Mbps. All the
instances were distributed across 4 regions, i.e., Silicon Valley,
Singapore, Frankfurt, São Paulo, and the RTTs between these
datacenters are tested and shown in Tab. II. We deploy 16
ECS instances evenly distributed on the four regions, and
each instance will run one or two replicas. Besides, we deploy
another 4 ECS instance that is evenly distributed in the four
regions, and each instance will run one client. When running
the experiments, all commands carry 20B payloads, making
the command size to be 32B.

When running the experiments, we set the ∆ to 180ms, i.e.,
RTT/2 between São Paulo and Singapore. Besides, we only
consider the transmission delay for broadcasting blocks and
new-view messages and add the computed transmission delay
when resetting the timer . The transmission delay is computed
using ∆td = CommunicationBits/Bandwidth. The
Bandwidth is the leader’s bandwidth; CommunicationBits
can be obtained by computing (N − 1)|m|, in which N is
the number of replicas and |m| is the size of the broadcasted
message m, i.e., block or new-view message.

Baselines. SBFT aims to relax the synchronous liveness
condition without sacrificing the efficiency of partial syn-
chronous BFT protocols. SBFT is implemented based on the

TABLE II
THE RTT BETWEEN DIFFERENT DATACENTERS (MS)

Fig. 13. Performance with respect to different batch sizes (small batch size).

TABLE III
THE ADDITIONAL OVERHEAD CAUSED BY

EACH BLOCK (SMALL BATCH SIZE)

HotStuff codebase and aims to optimize the throughput and
latency of pipelined BFT consensus, thus we use HotStuff [51]
as the baseline, including HotStuff-ecdsa which uses ecdsa as
the cryptographic algorithm and Hotstuff-bls which uses bls12
as the cryptographic algorithm.

A. Performance in a Fault-Free Environment

We study the performance of SBFT in a fault-free
environment, i.e., set the link failure probability as 0. All
experiments in this subsection are running 60 seconds, and
the results are obtained from the statistical data from the 11th
to 50th seconds.

Performance with small batch size. The throughput
and latency are shown in Fig.13; SBFT and Passive-SBFT
can achieve lower latency than HotStuff because of relaxed
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Fig. 14. Performance with respect to different batch sizes (large batch size).

dependency on the leader. Besides, SBFT can achieve the
optimal throughput without a large batch size because the
leader can propose blocks sequentially instead of waiting for
the consensus of the previous block to be finished. Thus, the
leader’s bandwidth can be fully used. While in HotStuff, the
leader’s bandwidth is wasted when waiting for the votes from
replicas. In addition, when the bandwidth usage of the leader
is high, we find that the performance of Hotstuff is easily
affected by the worst links, i.e., the link between São Paulo and
Singapore. This could be a potential drawback of collector-
based BFT consensus.

In addition, we study the additional cost introduced by
SBFT, i.e., the number of transmitted QC and retransmitted
blocks, we record related data during the experiment and
obtain the results shown in Tab. III. The baseline is calculated
when all replicas broadcast QC and transmit the blocks. When
we don’t pursue the ultimate throughput (which leads to a
meaningless increase in consensus delay), but instead choose
a batch size that can acquire throughput close to the optimal
throughput, i.e., the fourth line in Tab. III, the additional cost
can be negligible compared to the baseline.

Performance with large batch size. To further study the
impact of large batch size on the performance of SBFT
compared to HotStuff, we run the experiments in 16 nodes
scale and varying batch size from 12000 to 32000. As shown
in Fig. 14, using a large batch size will not improve the
throughput but improve the consensus latency of SBFT, thus
using a small batch size i.e., 3200, is optimal for SBFT.
HotStuff can acquire throughput similar to SBFT when using
a large batch size. For example, when batch size is 28000,
HotStuff can acquire the throughput of about 25000tx/s but
latency approach to 5s. While SBFT and Passive-SBFT can
acquire a throughput of about 25000tx/s and latency of about
0.8s when using a batch size of only 3200.

B. Performance With Simulated Faulty Links

All experiments in this subsection are running 160 seconds,
and the results are obtained from the statistical data from the
11th to 110th seconds. The batch size is 3200 for 16 replicas
and 1600 for 32 replicas. The distribution of faulty links is
refreshed every 20 seconds, and faulty links are generated
according to the “math/rand” Golang package. In ith link
refresh, we use i as the seed to rand to generate the random
numbers. For the kth link, if the kth random number is less
than the predefined link failure probability (pl), we tag the kth
link as faulty.

Fig. 15. Performance with low link failure probability.

Fig. 16. Performance with high link failure probability.

Performance with low link failure probability. We first
consider the more common scenarios, where the network
crash only causes a small percentage of faulty links between
consensus nodes. As shown in Fig 15, when varying the link
failure probability pl from 0 to 0.1, SBFT and Passive-SBFT
only reduced less than 30% of throughput while HotStuff
reduced more than 80% of throughput.

Performance with high link failure probability. We
further consider a relatively rare scenario where more than
10% of faulty links appear, which can be caused by network
attacks such as BGP hijacks. The study on such a scenario is
also meaningful because it can reflect the ability of consensus
to resist network attacks. As shown in Fig 16, the throughput
of HotStuff degrades to nearly 0 when pl = 0.2, while SBFT
maintains about 70% of the throughput and Passive-SBFT
maintains about 60% of the throughput. Considering a scenario
where the network is extremely terrible, where 40% of the
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communication links between consensus nodes crash, SBFT
still gets 40% of the throughput and gets a latency of no more
than 1.5s.

VIII. CONCLUSION

This paper presents SBFT, a new BFT consensus with high
link fault tolerance to be stable under network attack while
ensuring efficiency on a well-connected network. SBFT uses
1-anchor acceptance-rule and relaxes strong dependency on
the leader, achieving high link fault tolerance and optimal
block throughput of pipelined BFT protocols. Besides, SBFT
implements adaptive consensus to achieve communication
complexity of O(n2). Theoretical and simulation results show
that SBFT can simultaneously achieve efficiency and stability.
The results of experiments in real-world deployment further
demonstrate the feasibility and high link fault tolerance of
SBFT.

APPENDIX A
THEORETICAL PROOF FOR THE CLAIMS

Theorem 3 (Anchor distance): For any two anchor repli-
cas r1 and r2, then (i) r1 and r2 are neighbors and have at
least other f − 1 common correct neighbors, or (ii) r1 and
r2 have at least f + 1 common correct neighbors.

Proof 1: Based on the definition of anchor and the quorum
of the generalized BFT model, each anchor replica has at least
2f correct neighbors. Considering two anchor replicas r1 and
r2, we use V1 as the nodes set, which contains r1 and all
its correct neighbors, then |V1| ≥ 2f + 1. We use V2 as the
nodes set, which contains r2 and all its correct neighbors, then
|V2| ≥ 2f + 1. Considering that the total number of nodes is
3f + 1, the |V1

⋂
V2| must be no less than f + 1. Therefore,

the theorem is proved.
Corollary 1: In anchor-based topology, when the correct

leader broadcasts a message, and all nodes help transmit it
with the announcement mechanism, it takes at most 10∆ for
all correct replicas to get the message. When the correct leader
broadcasts a message, and all nodes help transmit it directly,
it takes at most 4∆ for all correct nodes to get the message.

Proof 2: According to theorem 3, the distance between any
two anchor nodes is no more than 2. Therefore, in anchor -
based topology, every correct node has at least one anchor
neighbor, and the distance between any two correct nodes is
no more than 4. When the correct leader broadcasts a message,
it takes at most 3 times of transmission for the message
to arrive at all correct nodes. When all nodes transmit the
received message directly, it takes at most ∆ + 3 ∗∆ for all
correct nodes to get the message. When all nodes transmit the
received message with the announcement mechanism, it takes
at most ∆+3∗3∆ for all correct replicas to get the message.
Therefore, the Corollary is proven.

Corollary 2: In a synchronous network with fully connected
topology, when the cw-queue of all anchor nodes are non-
empty. Suppose all anchor nodes have accepted the same
block B at T ; they will accept at least k new blocks with
heights higher than B at T + k∆.

Proof: Suppose that at T = 0, all anchor replicas have
accepted the block Bk; they will propose the block Bk+1 in

cw-queue immediately. Therefore, at T = ∆, all anchor
replicas will receive 2f + 1 propose message for Bk+1 and
accept it. Suppose that at T = m∆, where m > 1, all anchor
replicas have accepted block Bk+m, and proposed the block
Bk+m+1 in cw-queue. At T = (m+1)∆, all anchor replicas
will receive 2f +1 propose message for Bk+m+1 and accept
it. Therefore, the Corollary is proven. □

Corollary 3: In anchor-based topology and the cw-queue
of all correct replicas are non-empty, at most 5 rounds of
state notification can ensure that SBFT enters a stable state
and commits a new block.

Proof: Suppose the stable state is disrupted, and replica r
has the QC for the newest block Bk. According to theorem 3,
it requires at most 3 rounds of state notification for all anchor
nodes to get the QC. Then, another round of state notification
can ensure that these anchor nodes collect 2f + 1 votes for
the next block Bk+1, i.e., get the QC for a newer block Bk+1.
Therefore, in the fifth round of state notification, all non-
anchor replicas will get the QC of Bk+1, commit Bk, and
subscribe to QC from at least one anchor neighbor. Therefore,
the Corollary is proven. □

Corollary 4: When consensus is stable, and the cw-queue
of all correct nodes are non-empty. Suppose all correct nodes
have accepted the same block B at T ; these nodes accept at
least k new blocks with heights higher than B at T + 2k∆.

Proof: Suppose that at T = 0, all correct nodes have
accepted block Bk; they will propose the block Bk+1 in cw-
queue immediately. At T = ∆, all anchor nodes will receive
q propose message for Bk+1 and accept it, then propose Bk+2

and send the certificate for Bk+1 to all nodes in To. At T =
2∆, all correct nodes will accept Bk+1 by collecting f +
1 propose messages for Bk+2, or receiving a certificate for
Bk+1.

Suppose that at T = 2m∆, where m > 1, all correct nodes
have accepted block Bk+m, and proposed the block Bk+m+1.
At T = (2m + 1)∆, all anchor nodes will receive 2f + 1
propose message for Bk+m+1 and accept it, then propose
Bk+m+2 and send the certificate for Bk+m+1 to all nodes
in To. At T = 2(m + 1)∆, all correct nodes will accept
Bk+m+1 by collecting f +1 propose messages for Bk+m+2,
or receiving a certificate for Bk+m+1. Therefore, the Corollary
is proven. □

APPENDIX B
THEORETICAL PROOF FOR SECURITY OF SBFT

We prove that SBFT can achieve the properties of safety
(i.e., Theorem 4), and liveness (i.e., Theorem 5).

Proof of safety includes two parts: one is the safety in the
steady-state protocol under the same view, i.e., Lemma 1; The
other is that SBFT can ensure safety after the view changes,
i.e., Lemma 2.

Lemma 1: Correct nodes cannot commit two different
blocks in the same view v.

Proof: Suppose two correct replicas r and r′ exist and
commit two conflict blocks Bk and B′k in view v. r and
r′ must have accepted blocks Bk+1 and B′k+1, respectively.
Therefore, at least 2q propose messages are generated for
Bk+1 and B′k+1. In the steady-state protocol of SBFT, only
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Byzantine replicas may propose two conflict blocks, and N
nodes output at most N + f propose messages for the two
blocks. According to the assumptions N = 3f + 1 and
q = 2f + 1, we can get N + f < 2q, a contradiction occurs.
Therefore, correct nodes cannot commit two conflict blocks in
the same view v. □

Lemma 2: If a correct replica commits Bk, for any Bk′

(k′ > k) that accepted by correct replicas, Bk′ must be after
Bk.

Proof: Suppose a correct replica r commits Bk in view
v. Based on Lemma 1, when k′ > k, the Bk′ accepted by any
correct replica in view v is after Bk. Therefore, we assume
that Bk is the highest block that r commit in view v, and
Bk+1 is the highest block that r accept in view v, and block
Bk′ is the first block accepted by correct replicas after view
v, now we prove that Bk′ is after Bk.

Since r accept Bk+1 in view v, at least 2f +1 replicas have
proposed Bk+1. When view v ends, among these 2f+1 nodes,
there are at least f +1 correct replicas whose local Blocked is
set to Bk or Bk+1. Therefore, during the view change from v
to v+1, the newest block in any 2f +1 status messages must
be Bk or Bk+1, which will be decided in view v+1. Since no
new blocks are accepted from the end of v to entering view v′,
there are still at least f +1 correct replicas with local Blocked

set to Bk or Bk+1 at the end of view v′ − 1. Therefore, the
global safety block decided in view v′ must be either Bk or
Bk+1. Since the first new block Bk′ accepted in view v′ must
extend the decided block in new-view message, i.e., Bk or
Bk+1, Bk′ must be after Bk. Thus, Lemma 2 is proved. □

Theorem 4 (Safety): Correct nodes cannot commit two
different blocks at the same height.

Proof: Suppose there exist two correct replicas r and r′

who commit two different blocks Bk and B′k respectively
at the same height, according to the Lemma 1, these two
blocks must be committed in different views. Suppose Bk

is committed in view v and Bk′ is committed in view v′

and v′ > v. Then, there must exist a block Bk′+1 that
is accepted in view v′, and by Lemma 1, Bk′+1 must be
after Bk, contradiction appears. Therefore, Theorem 4 is
proved. □

For liveness, we first prove that byzantine nodes cannot lead
to the change of a correct leader in a anchor -based topology.

Lemma 3 (Leader safety): In the anchor-based topology,
byzantine replicas will not lead to the change of a correct
leader despite the network topology change.

Proof: According to the view-change protocol in Fig 8,
all correct replicas set timer to 2∆ when receiving a new-
view message in which a new block exists. Since the leader is
correct, it pre-proposes at least one new block in every interval
of ∆ at the beginning of the new view, and anchor replicas
can help relay them (despite the network topology change,
there is at least one anchor exists), thus control the cw-queue
to be non-empty. Therefore, correct replicas will not send
suspicion messages, though they fail to achieve consensus due
to the network topology change. Byzantine nodes can generate
no more than f suspect messages, and f < q = 2f + 1;
thus, byzantine nodes will not lead to the change of a correct
leader. □

Then, we prove another two lemma as follows.
Lemma 4: In the anchor-based topology, there exists a

limited value Td1, when the network topology changes at time
T and the current leader is faulty, SBFT will change the faulty
leader before T + Td1.

Proof: In the anchor -based topology, when the leader
is faulty and the network topology changes at T . Then,
at T + 10∆, without receiving a new-view message, all
correct replicas must have broadcast a suspect message.
At T + 11∆, an anchor will collect and broadcast 2f + 1
suspect messages. At T +12∆, all correct nodes will change
the faulty leader and enter a new view. Therefore, we can get
Td1 = 12∆ □

Lemma 5: In the anchor-based topology, there exists a
limited value Td2, when the network topology changes at time
T and the current leader is correct, SBFT will commit at least
one new block at GST + Td2.

Proof: According to the leader safety, i.e., in the anchor -
based topology, byzantine replicas will not lead to the change
of a correct leader despite the network topology change. Then,
based on the corollaries 4, after 4∆, at least 2 consecutive
blocks are accepted, and thus, at least one new block is
committed. Therefore, we can get Td2 = 4∆. □

Theorem 5 (Liveness): There exist two limited values Ts

and Td, all correct replicas will commit at least one new
command during a (Ts, Td)-anchor-based interval.

Proof: According to the above two lemmas, we can get
Td = max{Td1, Td2}, and f ∗ Td is enough to change f
consecutive faulty leaders. Based on the lemma of leader
safety, another Td2 is enough for all correct replicas to commit
a new block. Therefore, Td = max{Td1, Td2}, and Ts =
f ∗ Td + Td2 □
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