2020 16th International Conference on Mobility, Sensing and Networking (MSN) | 978-1-7281-9916-0/20/$31.00 ©2020 IEEE | DOI: 10.1109/MSN50589.2020.00095

2020 16th International Conference on Mobility, Sensing and Networking (MSN)

NoPTPeer:Protecting Android Devices from Stealthy
Spoofing and Stealing in WLANSs without Privilege

Shuying Wei Xiaoliang Wang Ke Xu
Institute for Network Sciences and Information Engineering College 1Department of Computer Science and
Cyberspace Capital Normal University Technologyy

Tsinghua University
Beijing, China
wei-sy18@mails.tsinghua.edu.cn

Abstract—Android devices are prone to spoofing attacks in
Wireless Local Area Networks (WLANs), and many of them
access numerous unknown networks in daily use. Moreover,
because of the weak authentication between Android smartphones,
attackers can steal data in a stealthier way based on Address
Resolution Protocol (ARP) spoofing. These facts bring a gap in the
study of device-side spoofing defense for Android devices. So in
this paper a framework is proposed which requires No Privilege
but can guarantee the True identity of Peers (NoPTPeer), to
protect Android’s device-to-device communication in WLANsS. Its
main features include realizing strong authentication between
Android devices, controlling dangerous outgoing connections, and
monitoring suspicious incoming connections. These features are
realized by an Identity-Based-Signature (IBS) scheme, an Android
base class VpnService, and information read from Android system
files, which all require no root privilege and are independent of
network infrastructures. We implement this framework as an
Android smartphone application. The experiments show its
effectiveness in detecting spoofing and monitoring stealing, as well
as acceptable overhead in memory, Central Processing Unit (CPU)
usage and communication latency.

Keywords—Android, Wireless Local Area Network, ARP
Spoofing, Identity Based Signature

1. INTRODUCTION

In a Wireless Local Area Network (WLAN), one node can
be identified using an Internet Protocol (IP) address or a Media
Access Control (MAC) address, while identity spoofing is an
easy-to-launch attack. In theory, any attacker capable of
programming raw packets can send fabricated packets with fake
source IP or MAC addresses and spoof other users in the same
WLAN [1]. As the vulnerability lies in the nature of weak
authentication in protocol design, this kind of attack is difficult
to defend, especially when WLANs and smartphones have
formed an indispensable part in people’s daily life. Compared to
the traditional computer environment, smartphones’ defense
against attacks is backward while private information is more
abundant. And the portability of smartphones makes the
situation even worse. They are more likely to access a variety of
unpredictable or dangerous WLANSs with their careless users.
Taking Address Resolution Protocol (ARP) spoofing as

Beijing, China
wangxiaoliang@cnu.edu.cn

2Beijing National Research Center for
Information Science and Technology
1,2Tsinghua University
3Peng Cheng Laboratory
Beijing, China
xuke@tsinghua.edu.cn

example, it aims to attack ARP cache to modify the actual IP and
MAC address mapping and is considered one of the easiest
attacks. Many smartphones are vulnerable to it nowadays. When
a smartphone user accesses the Internet or transfers files locally
using the WLAN in a restaurant, a café or even their homes,
anyone in the same network equipped with a computer or a
rooted phone can send fabricated ARP Reply packets to force
the phone’s ARP cache to change and then kick the phone out
of the network or monitor its communication and steal
information in a further Man-in-the-Middle (MITM) attack.

Android as the most prevailing mobile OS claims a market
share of over 80% in smartphones. But unfortunately, many
Android devices do not perform any check to detect possible
spoofing attacks. In addition, it turns out that if without enough
security considerations, some Android applications’ seemingly
admirable features will provide a broader attack surface in
WLAN:S. For example, the open ports contained in applications
can make the device act as a server and listen to incoming
connections from other devices. After establishing device-to-
device communication in local networks, they can transfer big
files without access to the Internet. But in practice, many open
ports with weak or no authentication have become a door for
attackers [2]. Attackers conducting simple ARP spoofing can
exploit open ports with weak authentication to steal files from
victims more easily and stealthily. More detailed discussion will
be given in Section III.

Although there have been continuous efforts in detecting and
mitigating ARP spoofing [3], [4], [5], [6], the defense on
Android devices remains a neglected area. The few studies about
defending spoofing attacks in Android systems suffer from their
special requirements for networks or devices [7], [8], because
any privilege required, including the root privilege of an
Android device and the administrative privilege of a network,
will prevent an approach from functioning in daily use or in
unknown networks. So our goal is to implement an effective
framework against spoofing attacks among Android devices
which requires no privilege and is independent of the
networking configurations. The main contributions of this paper
are as follows:

978-1-7281-9916-0/20/$31.00 ©2020 IEEE 576
DOI 10.1109/MSN50589.2020.00095
Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:11:46 UTC from IEEE Xplore. Restrictions apply.

We propose a threat model in which an attacker can steal
files from a victim’s open ports based on a simple ARP
Spoofing attack and prove this attack is easy to launch
and difficult to notice;

We introduce a framework NoPTPeer to defend spoofing
attacks among devices in WLANs, which mainly
contains three features, i.e., stronger authentication
between devices, control of outgoing connections and
check for suspicious incoming connections to open ports;

We implement the framework in Android devices as an
application, and the experiments show its effectiveness
with acceptable overhead,

Finally, our framework maintains mappings among
MAC address, IP address, identity and outgoing traffic
of Android devices, which can be further analyzed to
make Android environment more secure and trusted.

The rest of this paper is organized as follows: Section II
discusses the gap in related work on Android devices’ defense
against spoofing attacks. Section III introduces the details of our
threat model. Section IV describes the design of our framework,
including the necessary features and the corresponding methods.
Then the implementation details are provided in Section V.
Section VI proves our implementation’s effectiveness through
experiments and evaluation.

II. RELATED WORK

The detection and mitigation of spoofing attacks has always
been an important issue for the safety and trust in cyberspace.
But finding a perfect solution to address them is difficult.

Despite years of research, ARP spoofing is still one of the
easiest-to-launch attacks in WLANS. Traditional ARP spoofing
detection and mitigation techniques analyzed in [3], [4] focus
on the computer environment and a substantial portion of them
is network-side solutions, i.e., introduce custom network
protocols or infrastructure, such as the Secure ARP Protocol (S-
ARP) which signs all the ARP messages with the public key [9],
or the ARP Central Server (ACS) which validates ARP entries
of all the hosts within a network [10]. As for the host-based
methods, they may be difficult to be transplanted to the Android
system. Taking the Internet Control Message Protocol (ICMP)
probe packets based technique as example, it sends ICMP
packets to validate ARP update packets before updating ARP
cache [11]. But for common Android users, the update of ARP
cache is out of control.

Some prevention methods for the Internet of Things (IoT)
take Android phones into consideration as IoT nodes [5], [6].
But they actually work on the router/switch, thus they can also
be seen as network-side approaches.

Besides, a series of studies about source address validation
based on IPv6 in China’s Next Generation Internet (CNGI) have
proposed mature mechanisms to enhance trustworthiness and
accountability of the identity in networks [12] — [16]. Generally
they bind a link-layer property which is called the trust anchor
and is often the MAC address, to the IP address and the identity
based on trusted infrastructure, and prevent IP, MAC, as well as
identity spoofing attacks. But firstly, they are network side

577

—~

‘e
e
.

N
Sniff

2 Request =3
~ €—— 4 De-Spoof

Connect 5 2

-~
Try to steal

e ———— -
T ————

Fig. 1. An example of the attack scenario.

approaches and cannot be promoted widely in the short term.
Secondly, the study on Android environment is always one step
behind that on the computer environment.

To our best knowledge, there is little work about defending
ARP spoofing attacks on Android devices. The strategy
presented in [7] uses a tcpdump based application at the device
side to capture and verify Dynamic Host Control Protocol
(DHCP) and ARP packets. After verification, they run “arp -s”
in BusyBox to store the gateway’s IP and MAC address mapping
in a static way. In [8], an Access Point (AP) collects IP and
MAC address mappings of all the connected devices and
broadcasts them to devices. Devices save the mappings in the
application memory and check periodically against their real
ARP cache to detect spoofing.

As far as we are concerned, they both need privileges to
make their schemes work, i.e., either root privilege of an
Android device (tcpdump and BusyBox) or the administrative
privilege of the network (DHCP server and AP). The root
privilege will incur great difficulties in promoting as rooting an
Android device is complex and may affect its normal use. The
administrative privilege means dependence on the network
infrastructure or configurations, and thus it may disagree with
the portability of Android devices .

III. THREAT MODEL

A. Scenario Description

As Fig. 1 shows, we assume a WLAN allows intra-network
connectivity. A legitimate Android device can start device-
device communication with the other device by connecting to
the other’s open ports. We define devices that trust each other as
peers, the connections devices start as outgoing connections,
and the connections from other devices as incoming connections.

In this threat model, the attacker’s objective is to steal
information from a victim’s legitimate device whose open ports
perform weak or no authentication when transmitting
information, and the attacker’s ability is to send fabricated ARP
packets and sniff on its own device. While the legitimate
Android devices’ objective is to always make outgoing
connections to a trustworthy peer, detect and block the traffic to
a peer that may be under attack, and alert when there are
suspicious incoming connections. What these devices have is
only user privileges and information shared among peers.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:11:46 UTC from IEEE Xplore. Restrictions apply.

B. Attack Process

The attack process is presented in Fig.1. Firstly, the attacker
sends ARP spoofing packets to legitimate devices to make them
mistaken the attacker’s MAC address for other peers’. Then
when one victim device starts an outgoing connection to its peer,
it will send requests to the attacker wrongly. Once the attacker
sniffs a request, it will send de-spoofing packets to recover peers
normal connection and use information in the request to access
the open port and try to steal data.

k)

C. Feasibility Analysis

From our experiment, this attack mode makes sense. We test
features Book Transferring in WLAN of a system application
iReader in Android, and Visiting from PC of a popular file
management application, ES File Explorer. When their file
transferring feature is on, they will open a fixed port and others
can access files using a link, i.e., http:/IP:10123/ and
ftp://TP:3721/, respectively. It seems that they barely
authenticate and the only “protection” is the port’s open status
is unknown to others. So sniffing the request is enough for the
attacker to steal files directly from victim devices.

We also test common MITM attacks launched between a
device and a gateway or two devices using hacking tools. The
result shows this threat model is easier to launch and more
difficult to notice for either users or network administrators.

IV. NOPTPEER

In this section, we propose our framework, NoPTPeer,
which requires No Privilege but guarantees the True identity of
Peers on Android side. We will first describe our design
principles and then introduce main features which are necessary
to reach an efficient defense. At last, we will talk about the
challenges in realizing them and the countermeasures.

A. Design Principles

1) No need for root: Root user has the highest permission
in Android OS, but to get it is so complex that the need for root
often simply means impossible to promote in practice. So our
framework must operate with ordinary user permissions. We
can neither capture all connections nor configure static ARP.

2) Independent of network: As discussed before, an
important fact making Android’s denfense more difficult is that
Android phones are likely to access more unfamiliar WLANS.
Therefore, no network administrative privilege should be
assumed in our method. Moreover, our framework focus on the
authentication between two devices but not the device and the
gateway, as we cannot get enough and verifiable information
about the gateway from the device side.

3) Transparent for other applications and low resource
overhead: Our framework should not affect the devices’ daily
use. It neither requires other applications to be specially
configured nor generates considerable resource consumption.

B. Necessary Features

Firstly, the basic function of our framework is to detect ARP
spoofing timely, which means there must be ways to verify if
one peer’s true MAC address is the same as that in the ARP
cache. Our framework will periodically check the ARP cache

578

User Interface

Background

NoPTPeer

Android Device

4 Raw packet programming

Root

Coq{mumcate <«»| Socket
Non-Root -

System
Files

Read <

<» Read & Write

I

Information |
shared |
between |
peers

Networks

Fig. 2. The three principles in the design of NoPTPeer.

IDENTITY m MAC

=
=5

Fig. 3. The two methods for identity authentication in our framework.

MAC

ARP

MAC

and authenticate the mappings between IP and MAC address.
Thus the authentication methods are essential.

And further, as our threat model shows, only detecting and
warning is not enough, because once the victim starts a
connection using the spoofed MAC address, the peer’s open port
information will leak immediately. So to avoid information theft,
the outgoing and incoming connections must be managed in a
device’s best effort. The minimum is to stop the outgoing
connection to an attacker address.

C. Challenges and Countermeasures

1) How to achieve strong authentication: As Fig.3 depicts,
we propose 2 methods to authenticate the mapping between IP
and MAC address in the ARP cache.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:11:46 UTC from IEEE Xplore. Restrictions apply.

APP

[ompeaton |

Forwarder

. LIMOOS Pa123310Id |

= = = = =)
Outgoing connections

e
Incoming connections

Fig. 4. Outgoing and Incoming connections in an Android device after an APP
starts the VpnService.

The first method is direct, i.e., every device in our
framework uploads its MAC address and the current IP address
to our central server. We store these reords and provide query
service to get peers’ IP and MAC address mappings in the same
WLAN. Then the device can check if the queried mappings
match its own ARP cache. But this method requires access to
the Internet. In a closed network environment, which is a main
scenario for file transferring among devices in WLAN:S, it may
not work well.

So in our second method, we use Identity-Based-Signature
(IBS) to achieve stronger authentication. IBS is a type of
public-key cryptography in which one’s identity is also its
public key. The others can use one’s identity to verify its
signature conveniently. Our scheme is to generate an
IDENTITY from the MAC address. When a signature on an IP
address is verified using the IDENTITY, the mapping between
the IDENTITY and the IP address is confirmed. At this point,
once the mapping between IDENTITY and the MAC address is

verified, the [P and MAC address mapping is also authentiacted.

So our method’s key falls to design an algorithm to generate
and verify the mapping between the MAC address and
IDENTITY. We will introduce an algorithm meeting the
requirements in details in Section IV.

2) How to manage outgoing and incoming connections:
The most powerful and non-root means we find to manage
traffic is an Android base class, VpnService [17], [18]. As
shown in Fig.4, when an application starts a VpnService, a
virtual interface, TUN, is created and returned as a file
descriptor. Then traffic will be routed to it. The application can
write the incoming packets to or read the outgoing packets from
the file descriptor. By implementing a Forwarder to excahnge
and handle packets between TUN and its tunnel socket, the
application has a control over the outgoing connections. So
when we add our filter logic in the forwarding process and
block the outgoing connection to a suspicious address, we can
realize the minimum necessary feature.

However, to avoid a loop connection, the application has to
protect its tnnuel socket, which means the socket is outside of
the VPN and will not route to TUN. Therefore, the incoming
connections are out of VpnService’s reach.

Inspired by [2] which identifies all the TCP open ports
through reading files under the /proc/net/ directory, we devise

579

TrueClient TrueClient
v Out e J M 09

AUTH2

] & (<]

Logs P u

]

Peers

fae]
[sle}

8 B ®

Fig. 5. User interfaces in our application showing the log of outgoing
connections, current state of incoming connections, and peers in the same
WLAN.

a simple scheme to warn users about suspicious incoming links
to open ports, making the attacker’s access non-stealthy. Firstly,
we maintain a real-time list of open TCP ports through the
/proc/net directory, and then we periodically query the
established connections number of every open port. Thus we
can monitor if there comes any new connection to open ports
and notify the users. We believe this can protect users from
stealthy information theft, as in practice open ports are usually
started and closed manually by users, and they are often clear
about how many connections are to come in.

V. IMPLEMENTATION DETAILS

We have implemented this framework in an Android
application and a central server. In this section, we will discuss
what algorithms need to be realized, how to implement them in
an Android environment and what service or commands we use
to realize our schemes.

A. Algorithm to Generate ID from a MAC address

Since exposure, revocation and regeneration of keys is
essential for a public-key cryptography, instead of using a MAC
address as an ID or public key directly, an algorithm that has the
following features is needed: (1) able to generate many IDs from
one MAC address, (2) able to verify if an ID is generated from
the MAC address, and (3) difficult to generate the same ID from
two different MAC addresses. We find the Cryptographically
Generated Address (CGA) algorithm [19] meets these features
well. It is used in the SEND protocol to generate the IPv6’s 64-
bit Interface Identifier from a public key, and the binding
between the public key and the IPv6 address can be verified. So
we can just consider our MAC address and ID as the public key
and Interface Identifier in the algorithm. The modified
algorithm’s details are as follows:

1) Generation: Input the MAC address and a 3-bit Sec(i.e.,
0-7).
a) Set the modifier to a pseudo-random 128-bit value.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:11:46 UTC from IEEE Xplore. Restrictions apply.

b) Concatenate the modifier, 9 zero octets and the MAC
address. Execute the SHA-1 on the concatentation. Take the
112 leftmost bits of SHA-1 hash value as Hash2

¢) Compare the 16*Sec leftmost bits of Hash2 with Zero.
If they are all zero, continue with Step d. Otherwise, increment
the modifier by one and go back to Step b.

d) Set the 8-bit collision count to zero.

e) Concatenate the final modifier, the collision count and
the MAC address. Execute SHA-1 on the concatentation. Take
the 64 leftmost bits of SHA-1 hash value as Hash1.

f) Form an ID from Hashl by writing the value of Sec
into the three leftmost bits and setting bits 6 and 7 to zero.

g) Check if there is a duplicate ID, increment the
collision count by one and go back to Step e. After 3 collisions,
stop and report the error.

2) Verification: Input ID, the modifier and the collision
count. The detailed steps are omitted here. In short, it first
computes HASH1 and compares it with ID before computing
HASH2. Compare 16*Sec leftmost bits of Hash2 with Zero.

We test the time needed to generate a valid ID from a given
MAC address on an Android device, Vivo NEX S. First of all,
the Sec value 0 actually makes no sense in verification and thus
we do not consider it. When the Sec is set to 1, it takes several
seconds to generate a valid ID, while for the value 2, the time
may range from tens of seconds to more than 10 minutes. As
for greater Sec values, the time required is totally unacceptable
for common users. Therefore, we set the Sec to 1 in our
implementation of NoPTPeer.

B. Pairing-based IBS in Android

We focus on how to implement IBS in an Android device
but not the comparison or selection of algorithm designs. We
have implemented a lightweight IBS scheme proposed by [20],
which is a mainstream pairing-based IBS.

In the general framework of IBS schemes, the core is the
Private Key Generator (PKG), which is responsible for keeping
a master secret key, publishing public system parameters, and
generating private keys [21]. More specifically, in our chosen
pairing-based IBS scheme, the PKG first chooses a pairing
according to the given security parameters when setting up an
new IBS system. Then it chooses a master key which will always
be kept secret randomly and computes public parameters which
are open to all [20]. Every time there comes a request to register
an ID, we check for ID collisions and verify the binding between
the ID and the MAC address. After the check and verification,
the PKG generates the corresponding private key for the verified
ID and return it together with public system parameters to the
device, which then stores them in permanent files. The process
is partially shown in Fig.6.

In addition, to use pairing correctly in Android and set up an
unified IBS system among the server and devices, we must
generate a same pairing using the same initialization parameters,
which can be exported into a file pairing. properties. It should be
noticed that using the same security parameters rbits and kbits
can generate different pairings. So we run the server using the
desired security parameters first and get its pairing.properties.

580

.properties

-
/assets/pairing PKG
(Master secret key)

1
_[F 1. Generate ID

2. Register

(phone, password, ID,
MAC, modifier, cc)

LOG SERVER

! The central server

3. Verify parameters
(1D, MAC, modifier, cc)

4. Register

1
1
1
1
1
1
1
1
1
1
1
1
|
1
(phone, password, ID, MAC)" |
1
1
5. Generate private key |
1
1
1
1
1
1
1
!
I
1
1

6. Register success

(private key, public para-
] meters)

Periodic Jobs

7. Login (phone, password

L

-

T
1 .
1 8. Login success

9. Update IP (ID, MAC, Global IP, Local IP)

10. Query Peers

11. Return Peers

Fig. 6. The interactions between an Android device and the central server.

Then we put the file in Android project’s assets directory, which
will be contained into an Android application package (APK)
and installed on devices. With the same pairing, public system
parameters and a private key, every device can sign and verify
independently.

In our implementation of NoPTPeer, we set rbits to 160 and
kbits to 1024 according to [20], and store all the keys, parameters
and signatures in hex format. We test the performance of IBS in
aspects of processing time and storage size on the Android
device, Vivo NEX S. As the IBS scheme [20] splits the signature
into two phases, OffSign which preloads heavy computations
without the knowledge of the message to sign and OnSign which
only performs light computations on the message, the signature
time can be reduced to 1 milliseconds with the OffSign taking
about 80 milliseconds. The verification time is about 100ms no
matter the length of the signed message. Besides, the length of
a signature is fixed to 296 bytes and the total length of all the
parameters and the private key is less than 4 KB, which is
negligible for an Android device.

C. Commands Users can Access

To make up for the lack of powerful means to manage
incoming connections, we must try to get as much as possible
information about them. Android provides many channels to
get information about connections, and it allows users to
execute commands in the code. We find the “netsta”” command
that provides very admirable information. It can show active
TCP connections, ports on which device is listening, and
statistics for IP, ICMP and so on.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:11:46 UTC from IEEE Xplore. Restrictions apply.

Time
(second)

pr— >

L

Fig. 7. Two cases about the ARP spoofing attack and an outgoing
connection’s happening time.

So even with common users permission, we can construct a
command as below for every found TCP open port to get the
number of its established connections:

netstat -nat | grep -i port | grep ESTABLISHED | wc -1

D. JobService to do Periodic Work

There are many operations in our framework that need to be
launched every a short period, for example, to detect the ARP
spoofing immediately, we must check ARP cache frequently.
Android provides a base class, JobService, that can handle tasks
previously scheduled. Or to say, using JobService we can set a
task that should be done in a given time. JobService can also set
periodic tasks, but Android has forced the minimum periodic
interval to be 15 minutes which is too long to detect attacks.

So we reschedule a same job to be handled in the given
interval every time the current job is to end to set periodic tasks
with any interval. Using this method, we can realize almost real-
time detection by setting a short interval to conduct those check
tasks.

E. VpnService to Check and Block Suspicious Address

NetGuard Project [22] implements its VpnService which can
block individual address per application, and log all the outgoing
traffic. So we use its code in our application and add our
detection logic to block the connections to suspicious addresses.
As shown in Fig. 7, the ARP spoofing attack and one outgoing
connection may happen in a same interval between two spoofing
checks. Therefore every time we detect an outgoing connection
to peers in VpnService, we must invoke a check immediately.
Only after passing this check, the outgoing connection is
allowed.

In addition, we decide to record all the TCP outgoing
connections and DNS responses in detail with the help of
VpnService. We believe these records have richer semantics and
can be further used to detect more complex malicious behaviors
in Android [23], [24], [25].

VI. EXPERIMENT AND EVALUATION

In this section, we experiment on Android smartphones to
show basic features of NoPTPeer. Then we will analyze the
possibility of a replay or a MITM attack during the IBS-based
authentication in a closed network. Finally, we evaluate the
performance overhead in CPU wusage, memory and
communication delay NoPTPeer may incur.

A. Experiments when the Internet is accessible

We set up our experiments with two Android phones, Vivo
NEX S and OPPO PCHM 10 as peers, and an Ubuntu VMware
as an attacker.

581

@ Truecient - @ TrueClient

1 new connection(s) to Port 3721
Now 2 connections in total

IP 192.168.137.198may be under atta-
We have blocked the address

oS

Fig. 8. Notifications made by NoPTPeer.

5 ip_log.txt
[igeniy | MAC | LocallP | Giobal P | start [end |

E] DNS_log.txt
[tme | opcoe | A4 [7C | RO | RA [roode | qoourt | acount [aype | aclass | grame |

1598942438552, 0, 0, 0, 256, 256, 0, 1, 1, 1, 1, www. google. com
=] TCP_log.txt
[ime | sorce | et | spor | aport | tage || o

1598948875229, 10. 1. 10. 1, 43570, 58. 205. 212. 21, 80, AP, 647, -1
1598948875234, 58. 205. 212. 21, 20480, 10. 1. 10. 1, 14506, 1, 9960, com. sina. w91b4

Fig. 9. Logs recorded by NoPTPeer.

For NoPTPeer, we mainly set 3 periodic tasks: (1) get peers
information in the same WLAN from the server every 5 minutes,
(2) read the file /proc/net/arp (where the ARP cache stores) and
check against local peer information every 5 seconds, (3) get the
list of TCP open ports and the number of established
connections for per open port every 5 seconds. As for the
VpnService’s block logic, we check every new session, and if it
is going to one of peers, we invoke the job (2) once to check the
destination’s MAC address. If the MAC address in ARP cache
is inconsistent with that in local peer information, we block the
connection immediately and notify the user.

In Ubuntu VMware , we use scapy to fabricate spoofing
ARP Reply packets and bettercap to sniff the traffic. The
attack’s process has been introduced in Section I1I. We first keep
sending spoofing packets to two victims, and both phones can
detect the attack in 5 seconds. Then we control the spoofing and
the request of Book Transferring in WLAN from Vivo to OPPO
in a same check interval. NoPTPeer detects the connection to a
peer, invokes an ARP cache check, and blocks this connection
directly. We also run NoPTPeer in the background on OPPO.
When the feature Visit from PC of ES File Explorer is on, we
visit its link from two computers, and it can notify these new
connections in the foreground in 5 seconds.

We also record the IP history, DNS responses and TCP
connections of the device shown in Fig.9. Using VpnService, we
can identify by which application every flow is generated. This
semantics is difficult to get from networks.

B. Possibility of destroying authentication in closed networks

The strong authentication between peers in a closed network
is based on the signature verification of an IP address and the
binding between ID and the MAC address. If an attacker wants
to destroy the authentication and achieve ARP spoofing
successfully, he must get a signature of the victim IP address
signed with certain ID, and parameters to verify the binding
between his own MAC address and the certain ID.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:11:46 UTC from IEEE Xplore. Restrictions apply.

<Modifier,, count, MACg, ID, >
SIGN<IP,>p,

Msn count, MAC,, ID,>
SIGN<IP> 08

<IDA,IPA, MAC,>

Fig. 10. When an attacker tries to spoof the IP A’s MAC address.

Obviously, if the attacker is one of the IBS system and has a
pair of legitimate ID and private key, he can generate signatures
of any IP address and should not be verified as invalid. But we
consider this as a real-name attack which can be traced easily.

For attackers out of the IBS system, although the signature
and parameters used to verify are not kept secret for them in the
same WLAN, we believe it is still difficult to conduct a replay
or a MITM attack in the authentication process. Taking the
signature as example, if an attacker wants to replay a signature
from other peers to claim an ownership of the victim IP address,
he has to compute the required parameters to pass the
verification on his own MAC address and the victim ID.
Recalling our Verification algorithm, the attacker first needs to
find a 128-bit modifier and a collision count so that the hash
value, SHA-1(modifier|| MAC address||collision count), can be
compared with the victim ID. This is quite time and computation
consuming.

But it is still possible. And once an attacker computes
successfully the verification parameters on his own MAC
address and the victim ID, he can launch replay or MITM attacks
against the victim. So a regular ID-updating scheme may make
our framework’s authentication stronger.

C. Evaluation of performance overhead
We test the performance overhead of NoPTPeer in

communication delay, memory and CPU usage on OPPO
PCHM10 which is equipped with an 8-core processor.

1) Communication Delay: As VpnService handles every
packet and checks every connection, our framework do
introduce additional delay. Firstly, we measure an
application’s time spent to connect to a peer in the same WLAN.
The result shows VpnService causes 3 to 5 more milliseconds
every connection. Then we see the sum of bytes sent and
received (provided by file /proc/net/dev) every second as
network speed of the phone and compute it for 3 minutes
separately when NoPTPeer is on and off. Through comparing
results shown in Fig.11, we hold that the delay introduced by
NoPTPeer is not quite noticeable.

2) Memory: We run QQ music in the background and
browse Taobao in the foreground. Then we record the total
memory used by phone (Fig.12) and respective memory used by

582

6000

— on
—]
5000

8
8

3000

Network Speed/KB/s

2000

1000

25 50

time/s

Fi

=

g. 11. Network speed of phone when NoPTPeer is on and off.

5575

5550

5525

5500

Memory/MB

5475

5450

5425

75 100

time/s

125

Fi

=

g. 12. Total memory used by phone when NoPTPeer is on and off.

700

600

500

— Taobao
— QQmusic
—— NoPTPeer

Memory/MB
2
&
S

75 100
time/s

150

Fig. 13. Memory used by 3 applications when NoPTPeer is on.

Taobao
— QQmusic
—— NoPTPeer

time/s

Fig. 14. CPU usage of 3 applications when NoPTPeer is on.

3 applications (Fig.13) for 3 minutes when NoPTPeer is on and
off. We find NoPTPeer does not introduce significant memory
usage. Maybe this is because VpnService mainly needs limited
memory for buffering traffic when forwarding and will not
increase the total memory.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:11:46 UTC from IEEE Xplore. Restrictions apply.

3) CPU Usage: In the same test in 2), we also measure the
individual CPU usage of 3 applications. As shown in Fig.14,
although NoPTPeer’s CPU usage may rise sharply when doing
heavy network activities, it keeps around 60% and is roughly
consistent with QQ music. Thus we believe the performance
overhead is acceptable when NoPTPeer works as a background
application in daily use.

VII. CONCLUSION

In this paper, we demonstrate a threat of being spoofed and
stolen stealthily which most Android phones may be prone to in
WLAN:S. To defend it, we propose and implement a framework,
NoPTPeer, to help guarantee the true identity of peers in
WLANS requiring no privilege. We use IBS to realize stronger
authentication among Android devices that can work even
in a closed network. We also detect and block all the
dangerous outgoing connections with the help of
VpnService. Moreover, a method to monitor open ports and
their connections is proposed to fill the lack of means to
manage the incoming connections. The experiments prove the
great effectiveness and small performance overhead of the
framework.

In fact, the threats faced by Android devices in WLANS are
far more than ARP spoofing. In the future, we plan to analyze
traffic logs generated by VpnService to detect other more
complex malicious network activities.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program
of China with No0.2018YFB1800402, National Science
Foundation for Distinguished Young Scholars of China with
No.61825204, National Natural Science Foundation of China
with No.61932016, 61572278 and U1736209, Beijing
Outstanding Young Scientist Program with No.BJJWZYJH-
01201910003011, and the project "PCL Future Greater-Bay
Area Network Facilities for Largescale Experiments and
Applications (LZC0019)". Ke Xu is the corresponding author of
this paper.

REFERENCES

S. Bhirud and V. Katkar, "Light weight approach for IP-ARP spoofing
detection and prevention," 2011 2nd Asian Himalayas International
Conference on Internet (AH-ICI), Kathmandu, Nepal, 2011, pp. 1-5.

D. Wu, D. Gao, R. Chang, E. He, E. Cheng, and R. Deng, "Understanding
open ports in Android applications: Discovery, diagnosis, and security
assessment," 2019 26th Network and Distributed System Security
Symposium (NDSS), San Diego, USA, 2019, Proceedings 1-14.

N. Tripathi and B. Mehtre, "Analysis of various ARP poisoning
mitigation techniques: A comparison," 2014 International Conference on
Control, Instrumentation, ~Communication —and Computational
Technologies (ICCICCT), Kanyakumari, India, 2014, pp. 125-132.

J. Meghana, T. Subashri and K. Vimal, "A survey on ARP cache
poisoning and techniques for detection and mitigation," 2017 Fourth
International Conference on Signal Processing, Communication and
Networking (ICSCN), Chennai, India, 2017, pp. 1-6.

A. Dua, V. Tyagi, N. Patel and B. Mehtre, "IISR: A secure router for [oT
networks," 2019 4th International Conference on Information Systems
and Computer Networks (ISCON), Mathura, India, 2019, pp. 636-643.
M. Al-Shaboti, I. Welch, A. Chen and M. Mahmood, "Towards secure
smart home IoT: Manufacturer and user network access control
framework," 2018 IEEE 32nd International Conference on Advanced

(1

(2]

(31

(4]

(5]

(6]

583

(7

(8]

[

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

Information Networking and Applications (AINA), Krakow, Poland, 2018,
pp. 892-899.

Y. Zhao, Y. Lei, T. Yang and Y. Cui, "A new strategy to defense against
SSLStrip for Android," 2013 15th IEEE International Conference on
Communication Technology, Guilin, China, 2013, pp. 70-74.

P. Phetchai, J. David Ndibwile, D. Fall, S. Kashihara and S. Tuarob,
"Securing low-computational-power devices against ARP spoofing
attacks through a lightweight Android Application," 2017 2Ist
International Computer Science and Engineering Conference (ICSEC),
Bangkok, Thailand, 2017, pp. 1-6.

D. Bruschi, A. Ornaghi and E. Rosti, "S-ARP: a secure address resolution
protocol," 2003 19th Annual Computer Security Applications Conference,
Las Vegas, USA, 2003, pp. 66-74.

S. Kumar and S. Tapaswi, "A centralized detection and prevention
technique against ARP poisoning," 2012 International Conference on
Cyber Security, Cyber Warfare and Digital Forensic (CyberSec), Kuala
Lumpur, Malaysia, 2012, pp. 259-264.

P. Pandey, "Prevention of ARP spoofing: A probe packet based
technique," 2013 3rd IEEE International Advance Computing Conference
(IACC), Ghaziabad, India, 2013, pp. 147-153.

G. Hu, K. Xu, J. Wu, Y. Cui and F. Shi, "A general framework of source
address validation and traceback for IPv4/IPv6 transition scenarios," in
IEEE Network, vol. 27, no. 6, pp. 66-73, November-December 2013.

D. Zhou, J. Bi, G. Yao, et al., "Trustworthy identity system based on IPv6
source address validation, " in Journal on Communications, vol. 35, no.
Z1, pp. 20-26, October 2014.

G. Hu, W. Chen, Q. Li, Y. Jiang and K. Xu, "TruelID: A practical solution
to enhance Internet accountability by assigning packets with creditable
user identity code," in Future Generation Computer Systems, vol. 72, pp.
219-226, September 2016.

B. Wu, H. Li and Q. Wu, "Extending authentication mechanism to
cooperate with accountable address assignment," 2019 [EEE Wireless
Communications and Networking Conference (WCNC), Marrakesh,
Morocco, 2019, pp. 1-7.

X. Wang, K. Xu, W. Chen, Q. Li, M. Shen and B. Wu, "ID-Based SDN
for the Internet of Things," in /EEE Network, vol. 34, no. 4, pp. 76-83,
July/August 2020.

Y. Song and U. Hengartner. "PrivacyGuard: A VPN-based platform to
detect information leakage on Android devices," 2015 5th Annual ACM
CCS Workshop on Security and Privacy in Smartphones and Mobile
Devices (SPSM), Colorado, USA, 2015, pp.15-26.

A. Le, J. Varmarken, S. Langhoff, A. Shuba, M. Gjoka, and A.
Markopoulou, "Antmonitor: Asystem for monitoring from mobile
devices," 2015 SIGCOMM Workshop on Crowdsourcing and
Crowdsharing of Big Internet Data (C2BID), London, UK, 2015, pp.1-15.

T. Aura, " Cryptographically Generated Addresses (CGA), " RFC 3972,
DOI 10.17487/RFC3972, March 2005.

F. Li, D. Zhong and T. Takagi, "Practical identity-based signature for
wireless sensor networks," in IEEE Wireless Communications Letters, vol.
1, no. 6, pp. 637-640, December 2012.

R. Wan, B. Da, R. Li, C. Wang and H. Li, "Identity based security for
authentication and mobility in future ID oriented networks," 2018
International Conference on Information Networking (ICOIN), Chiang
Mai, Thailand, 2018, pp. 402-407.

M66B. NetGuard, https:/github.com/M66B/NetGuard, 2020.

M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V.
v. d. Veen and C. Platzer, "ANDRUBIS -- 1,000,000 Apps later: A view
on current Android malware behaviors," 2014 Third International
Workshop on Building Analysis Datasets and Gathering Experience
Returns for Security (BADGERS), Wroclaw, Poland, 2014, pp. 3-17.

G. Zhao, K. Xu, L. Xu and B. Wu, "Detecting APT malware infections
based on malicious DNS and traffic Analysis," in IEEE Access, vol. 3, pp.
1132-1142, July 2015.

F.A. Narudin, A. Feizollah, N.B. Anuar et al., " Evaluation of machine

learning classifiers for mobile malware detection," in Soft Comput, vol.
20, no. 1, pp. 343-357, November 2014.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 19:11:46 UTC from IEEE Xplore. Restrictions apply.

