
CoDAG: An efficient and compacted DAG-based
blockchain protocol

Shu Yang1, Ziteng Chen1, Laizhong Cui1*, Mingwei Xu2, Zhongxing Ming2, Ke Xu2

1 College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, PR.China
2 Department of Computer Science and Technology, Tsinghua University, Beijing, PR.China

Emails: yang.shu@szu.edu.cn, chenziteng1996@gmail.com, cuilz@szu.edu.cn

xmw@cernet.edu.cn, mzx@mail.tsinghua.edu.cn, xuke@tsinghua.edu.cn

Abstract—Blockchain is seen as a promising technology to
provide reliable and secure services due to its decentralized
characteristic. However, because of the limited throughput,
current blockchain platforms can not meet the transaction
demand in practical use. Though researchers proposed many
new solutions, they suffered either decentralization or security
issues. In this paper, using Directed Acyclic Graph (DAG) struc-
ture, we improve the linear structure of traditional blockchain
protocol. In the new structure, blocks are organized in levels
and width, which will generate into a compacted DAG structure
(CoDAG). To make CoDAG more efficient and secure, we design
algorithms and protocols to place the new-generated blocks
appropriately. Compared with traditional blockchain protocols,
CoDAG improves the security and transaction verification
time, and enjoys the consistency and liveness properties of
blockchain. Taking adversary parties into consideration, two
possible attack strategies are presented in this paper, and we
further prove that CoDAG is a secure and robust protocol
to resist them. The experimental results show that CoDAG
can achieve 394 transactions per second, which is 56 times of
Bitcoin’s throughput and 26 times of Ethereum’s.

Index Terms—Blockchain, Compacted Directed Acyclic
Graph

I. INTRODUCTION

Recently, blockchain has attracted attention from industry

and academia. Participants in the network share the same

ledger, making it a trustworthy and secure system without any

centralized authority in distributed environment. Bitcoin [1]

is the first blockchain protocol, where blocks are organized

in a linear chain. To maintain the chain, miners in Bitcoin

will try their best to solve random cryptographical puzzles,

which is called proof-of-work, or PoW [2].

However, throughput of traditional blockchain protocols is

relatively low [3], and researcher proposed different schemes

to improve it. Among them, solutions (e.g., IOTA [4]) based

on Directed Acyclic Graph (also DAG) allow multiple blocks

to append the tail of the graph concurrently, thus they strike

a balance between asynchronization and speed. However, as

blocks append the network, security of IOTA will decrease,

and transaction confirmation time will be non-deterministic.

Although solutions including Phantom [5] and Spectre [6] try

to improve performance and security, their data structures

are complicated, and blockchain users prefer simple and

deterministic structures.

This work is supported by the National Natural Science Foundation of
China (Grant No. 61772345) and National Engineering Laboratory for Big
Data System Computing Technology.

In this paper, we propose a Compacted DAG-based

blockchain protocol CoDAG. Different from IOTA, we de-

sign a compacted DAG structure, where blocks in the network

are organized in levels. Each level has fixed width which

means the maximun number of blocks in the level. When a

new-generated block joins the network, rather than placing it

randomly, CoDAG will use algorithms to place it at an ap-

propriate level. CoDAG improves the confirmation time and

keeps a simple data structure at the same time. Meanwhile,

we illustrate two attack strategies, and prove that CoDAG can

resist them. Furthermore, we implement a CoDAG prototype,

and simulation results show that CoDAG can achieve 394

transactions per second, which is 56× Bitcoin’s throughput

and 26× Ethererum’s respectively.

II. RELATED WORK

To achieve consensus, many ledger structures have ap-

peared recently, which can be divided into permissioned

protocol, permissionless protocol (also public blockchain and

private blockchain) and hybrid protocol [7]. In permissioned

protocol (e.g., PBFT [8]), only nodes with permission can

join the network, and they will achieve fast consensus. While

in permissionless protocol, nodes can freely join or leave the

network. Nakamoto consensus [1] is the first permissionless

protocol, but it has very limited throughput, e.g., 7 transac-

tions per second.

To improve the throughput of permissionless protocol,

many schemes are proposed, including off-chain model
[9], [10] and on-chain model [4]–[6]. Among on-chain

models, DAG-based solutions [4]–[6] are considered efficient

approaches to address the throughput problem, which allow

multiple blocks to join the network concurrently. IOTA [4] is

famous for its fast, feeless and minerless characteristics, but

it will cause non-deterministic confirmation time. Spectre [6]

enjoys a high throughput and fast confirmation process, but it

can not support full linear ordering over all blocks. Phantom

[5] keeps a full ordering, but at the cost of non-deterministic

confirmation process.

Moreover, hybrid consensus protocol combines the advan-

tages of permissioned and permissionless protocols. How-

ever, they still rely on permissionless protocol as the back-

bone consensus.

314

2019 IEEE International Conference on Blockchain (Blockchain)

978-1-7281-4693-5/19/$31.00 ©2019 IEEE
DOI 10.1109/Blockchain.2019.00049

Fig. 1: A simple example for CoDAG

III. BASIC IDEA OF CODAG

In this document, we design a new ledger structure called

CoDAG (Compacted Directed Acyclic Graph). Transactions

are enveloped in blocks, which is organized as directed

acyclic graph (DAG). The DAG is a gossip-like structure that

fits well in asynchronous operations. Unlike previous DAG-

based structures, the new graph is well connected between

the honest blocks, and it has a limited width.

In the new ledger, let G = (V,E) be a DAG, where V
is the set of nodes or blocks (in the following text, we use

node and block interchangeably), and E is the set of directed

edges. In the graph, we use lv to denote the level of a node

in the graph, which is the length of the longest path from

the genesis node to the current node. Each level has a width,

which is the number of nodes in the level. For example,

there are 3 nodes in level 3, and we use wl to denote the

width of level l. For a DAG, we call its width is constrained

by a constant K, if ∀l, wl < K, e.g., the DAG in Fig. 1 is

constrained by 3. The width represents the maximum number

of blocks the system can generate in a round. It could also

be adjusted (or self-adaptive) according to the transaction

generation rate in the network. In the worst case, the structure

degenerates into Bitcoin’s linear blockchain structure if the

width equals 1.

In the graph, each node points to K nodes in the previous

level, and we call the number of paths between a node v and

another node w the connectivity between v and w, and use

Cv,w to denote it. The connectivity from a node to itself is set

to be 1, i.e., Cv,v = 1. For each node v, we call the number

of paths from genesis to it connectivity of the node, and use

Cv for brevity. For example, in Fig.1, the connectivity of

node 8 is 9.

We call the leaf nodes tips, and the tip that has the largest

connectivity number is called the navigator of the graph. If

there exist multiple tips with equal connectivity, then all of

them are considered to be navigators. For example, node 13,

14, 15 have the same connectivity, and they are all selected as

navigators. We call the number of paths from the navigators

to the a node reverse connectivity of the node, and use Rv

to express it. For example, the reverse connectivity of node

8 is 9.

IV. PROTOCOL OF CODAG

A. Overview

Like Nakamoto consensus, each miner in CoDAG will

generate blocks through solving puzzles, despite its much

faster generation rate in CoDAG. Every new generated block

is appended to CoDAG as a tip and validates multiple blocks

in the previous level, i.e., points to multiple previous blocks

in the graph.

Moreover, we set an upper limit K on the width of the

graph. However, due to network delay or adversarial nodes,

there may exist forks, i.e., more than K nodes in some level.

In this case, nodes with higher reverse connectivity will have

higher priority. The top K priority nodes in the same level

are considered candidates. We use Cl to denote the candidate

set of level l. The miner that generates a stable block will be

rewarded by the system. A special case is that several nodes

with the same priority belong to the borderline candidates.

Under the circumstances, all these nodes will be regarded

candidates and share the rewards.

B. Algorithms of CoDAG

Block Generation Algorithm: We use L to denote the

maximum level of the graph G, and 〈v, w〉 to denote a

directed edge that points from v to w. We design algorithm

Generate() (shown in Algorithm 2) to compute where a new

generated block x is to be appended. Algorithm Generate()
first computes the connectivity number of each node, and

points to those with largest connectivity in the previous level.

315

In Generate(), we use algorithm Connectivity() (shown in

Algorithm 1) as an intermediate function, which takes a DAG

and a node as the input, and computes the connectivity from

all nodes (behind it) to it.

Candidate Selection Algorithm: We design algorithm

Select() (shown in Algorithm 3) to select the candidate for

some level in the DAG. Select() computes the candidate

node for a level in the DAG. It first computes the connectivity

of each node, and the node with the largest connectivity is set

to be the navigator. Secondly, for a specific level l, Select()
computes the reverse connectivity for each node in the level.

At last, the nodes that have top K largest reverse connectivity

are selected as the candidates.

V. WELL CONNECTED CHANNEL OF CODAG

Different from chain-like structure, CoDAG adopts a flex-

ible structure that is more suitable for asynchronous op-

erations. The structure is compacted, and nodes are more

well connected. Intuitively, CoDAG is more like a well

connected channel, and the width of the channel can be

adjusted according to user demands.

We consider the scenario where an adversary tries to gen-

erate an alternate channel with higher connectivity than the

honest channel, and takes control of the navigator node. Like

Bitcoin whitepaper [1], we define the following notations:

• p = the proportion of computing power that the honest

party controls

• q = the proportion of computing power that the adver-

sary party controls

• qz = probability that the adversary will ever catch up

from z levels behind

Lemma 1.

qz =

{
1, if p ≤ q.

(q/p)z, otherwise.
(1)

Basically, to control the navigator, the adversary needs to

produce more nodes in the alternate channel than the channel

produced by the honest miners. In each level, if both parties

start simultaneously, the probability that the honest party first

finds the next w block is p, and the probability that the

adversary party first finds the next w block is q. Thus, the

left proof is the same as [1].

Next, we consider how long a transaction will be con-

firmed. A node in some level selected as the candidate could

be taken over by another node in the same level.

(a) Adversary starts an alternate channel

(b) Adversary competes in the same channel

Fig. 2: Two attacking strategies on CoDAG

Lemma 2. If node v locates z levels away from the largest
level, then the possibility that its candidate identity could be

overtaken is: 1−
z∑

k=0

λke−λ

k! (1− (q/p)z−k), where λ = z q
p .

316

Proof. In level l, we suppose there exist an honest node a
and an adversarial node b, where Ra > Rb and L− l ≤ z.

Firstly, we will prove that ∀k > l, for two honest nodes

vi and vj , then Cvi,a = Cvj ,a and Cvi,b = Cvj ,b; similarly,

for two adversary nodes wi and wj , Cwi,a = Cwj ,a and

Cwi,b = Cwj ,b. Suppose in level k, we have P honest nodes

and Q adversary nodes, where the honest node vk satisfies

Cvk,a = X and Cvk,b = Y , and the adversarial node wk

satisfies Cwk,a = X ′ and Cwk,b = Y ′. Then in level k + 1,

honest node vk+1 will satisfy Cvk+1,a = X∗P+X ′∗(K−P)
and Cvk+1,b = Y ∗ P + Y ′ ∗ (K − P), and adversary node

wk+1 will satisfy Cwk+1,a = X ′ ∗ Q + X ∗ (K − Q) and

Cwk+1,b = Y ′ ∗Q+ Y ∗ (K −Q).
Secondly, we will prove the lemma. For a level k > l,

let R(k) be the total honest reverse connectivity, and let

R̂(k) be the total adversary reverse connectivity. Then in

level k + 1, R(k) = R(k + 1) ∗ P + R̂(k + 1) ∗ (K − Q)
and R̂(k) = R̂(k + 1) ∗ Q + R(k + 1) ∗ (K − P).

Therefore, we get
R̂(k+1)
R(k+1) ≥ ε∗P+P−K

Q+Q∗ε−ε∗K . Since P and

Q are subject to independent poisson distributions, then

E(R̂(k+1)
R(k+1)) ≥ ε∗E(P)+E(P)−K

E(Q)+E(Q)∗ε−ε∗K ≥ ε∗E(PQ) = ε∗ p
q , where

E(PQ) is the ratio of honest computing power to adversary

computing power.

There are two strategies in the channel-based scenario.

The first strategy is that, the adversary will start an alternate

channel, as shown in Fig. 2(a). The model then is the same as

Bitcoin. The second strategy is that, the adversary competes

in the same channel with the honest miners, as shown in

Fig.2(b). The adversary will first point to adversary nodes,

and honest nodes will first point to honest nodes. We note

that if the honest party owns more computing power, most

votes will be given to the honest nodes, and honest votes will

get accumulated with the level growing.

VI. IMPLEMENTATION AND EVALUATION RESULTS

A. Implementation

We implemented the CoDAG based on the open source

code of official Go implementation of the Ethererum. Frame-

work of our implementation is depicted in Fig. 3, which is

divided into data layer, chain layer, RPC/Console layer and

Dapp layer. And the chain layer can be further divided into

Network, CoDAG, Miner, and Consensus Algorithm modules

as follows:

• Network Module: Synchronize the chain between

different nodes using P2P protocols.

• CoDAG Module: Define the basic data structure and

maintain the state of the DAG-based chain.

• Miner Module: Mine new blocks based on PoW mech-

anism and adjust the difficulties.

• Consensus Algorithm Module: Maintain the autho-

rized chain based on CoDAG’s algorithms.

B. Evaluation Results

1) Throughput in Different Blocksizes and Widths: Fig.4

shows the relationship between throughput and different

Fig. 3: Implementation Framework

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

100

150

200

250

300

350

400

450

width

tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

blocksize=10kb
blocksize=20kb
blocksize=30kb
Bitcoin
Ethererum

Fig. 4: Throughput of CoDAG in different blocksizes and

widths

blocksizes and widths. We can observe that throughput of

CoDAG scales in blocksize and width. For example, provided

blocksize is 30kb, when width is 20, throughput achieves

394 tx/s, twice as much as that when width is 1. Moreover,

provided width is 20, when blocksize is 30kb, throughput is

2.6 times of that when blocksize is 10kb, and 1.9 times of

that when blocksize is 20kb. We also notice CoDAG always

outperforms the Bitcoin and Ethererum. When blocksize

is 30kb and width is 20, CoDAG achieves 56× Bitcoin’s

throughput and 26× Ethererum’s throughput respectively.

At the same time, we note there exists some fluctuations

as width grows. The reasons of fluctuations are twofolds:

1) larger width means more block information, which will

cause longer propagation time and degrade the throughput

performance; 2) the transaction generation rate and amount

are instable, which needs further improvement in our future

work.

2) Throughput in Different Level Formation Time: Fig.5

illustrates the relationship between throughput and different

level formation time when blocksize is 20kb. We can observe

that when blocksize is 20kb and level formation time is 18s,

throughput is lower than that when formation time is 8s and

13s. Meanwhile, there is no obvious throughput deviation

when level formation time is 8s and 13s. For example,

when width is 10, throughput shares the same value when

317

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

100

150

200

250

300

width

tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

level formation time=8s
level formation time=13s
level formation time=18s
Bitcoin
Ethererum

Fig. 5: Throughput of CoDAG in different level formation

time when blocksize=20kb

level formation time is 8s and 13s. Theoretically, the less

level formation time is, the more block information will

be packaged in a unit time, thus throughput will increase.

However, when formation time decreases to a small value,

due to the limited capacity, nodes can not handle so many

computational tasks, and those extensive transactions can not

be verified in time, thus the throughput shows no obvious

deviation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a compacted DAG-based

blockchain protocol CoDAG that greatly improves the

throughput and performance of blockchain. We design a

compacted DAG structure, where blocks are organized in

levels and connected well within a channel. CoDAG ad-

dresses the confirmation time problem existed in previous

DAG-based schemes, and it is secure enough to resist two

attacks we demostrate. We implement a CoDAG prototype,

and simulation results show that CoDAG’s throughput is

much better than Bitcoin and Ethererum.

Although CoDAG achieves a better throughput than other

pure on-chain solutions, it still can not match the speed that

many applications need. In the future, we will try to improve

it, such as: 1) tune the parameters for better performance, 2)

combine with hybrid consensus to improve the throughput

further.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone proto-

col: Analysis and applications,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer,
2015, pp. 281–310.

[3] F. R. Yu, J. Liu, Y. He, P. Si, and Y. Zhang, “Virtualization for
distributed ledger technology (vdlt),” IEEE Access, vol. 6, pp. 25 019–
25 028, 2018.

[4] S. Popov, “The tangle,” https://iota.org/IOTA_Whitepaper.pdf.
[5] Y. Sompolinsky and A. Zohar, “Phantom: A scalable blockdag proto-

col,” https://eprint.iacr.org/2018/104.pdf.
[6] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “Spectre: Serialization of

proof-of-work events: Confirming transactions via recursive elections,”
https://eprint.iacr.org/2016/1159.pdf.

[7] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and J. Wang, “Un-
tangling blockchain: A data processing view of blockchain systems,”
IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 7,
pp. 1366–1385, 2018.

[8] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, 1999, pp. 173–186.

[9] J. Poon and V. Buterin, “Plasma: Scalable autonomous smart con-
tracts,” White paper, pp. 1–47, 2017.

[10] J. Lind, I. Eyal, P. Pietzuch, and E. G. Sirer, “Teechan: Pay-
ment channels using trusted execution environments,” arXiv preprint
arXiv:1612.07766, 2016.

318

