
PolyCC: Poly-Algorithmic Congestion Control
Shuaipeng Zhu, Tong Li∗
Renmin University of China

Xinyu Ma
Renmin University of China

Yinfeng Zhu, Taotao Zhang
ByteDance

Senzhen Liu
ByteDance

Haiyang Wang
University of Minnesota Duluth

Ke Xu
Tsinghua University

ABSTRACT
This paper demonstrates PolyCC, a general framework for simulta-
neous operation of poly-algorithmic congestion control. PolyCC
gains benefits from taking advantage of the complementary among
already existing congestion controllers.

CCS CONCEPTS
• Networks → Transport protocols.

KEYWORDS
QUIC, congestion control, complementary

ACM Reference Format:
Shuaipeng Zhu, Tong Li, Xinyu Ma, Yinfeng Zhu, Taotao Zhang, Senzhen
Liu, Haiyang Wang, and Ke Xu. 2023. PolyCC: Poly-Algorithmic Congestion
Control. InACM SIGCOMM 2023 Conference (ACM SIGCOMM ’23), September
10, 2023, New York, NY, USA. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3603269.3610846

1 INTRODUCTION
For over 40 years, many different congestion control algorithms
(CCAs) have been developed for specific environments, including
over 15 CCAs in the Linux kernel alone [1]. However, no single
CCA can adequately prevail across all environments [2, 3]. To sat-
isfy the increasingly diverse application requirements over highly
complex network conditions, learning-based CCAs have gained
much attraction recently [4–8]. However, their exploration-based
models may make mistakes or dangerous actions, resulting in poor
performance.

On the other hand, different CCAs complement each other in
achieving high throughput, low delay, or fast convergence (see §3).
Recent studies have shown that leveraging the complementarity
among existing CCAs holds the potential to consistently achieve
high performance across different environments [1, 9–13]. However,
their implementations concentrate on resolving specific problems
or rely on specific system capabilities, lacking a general framework
for the simultaneous operation of multiple CCAs.

In this paper, we present PolyCC, a collaborative framework that
combines multiple CCAs to leverage their complementary strengths
and overcome their limitations. Essentially, PolyCC brings dynamic

∗Tong Li is the corresponding author (tong.li@ruc.edu.cn).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0236-5/23/09.
https://doi.org/10.1145/3603269.3610846

CCA
Pool

Pilot-Copilot
Filter

Fusion
Controller

User-Customized
Policy

Send

Feedback

Receive

Feedback

Sender Receiver

Pilot
Logic

Copilot
Logic

Copilot
Logic…

Congestion Controller Agent

Figure 1: The PolyCC architecture.

cooperation among multiple CCAs, which forms a “jack-of-all-
trades” team, resulting in a robust solution that can handle different
environments. PolyCC follows three principles: (i) Reusing the
already existing CCAs in the protocol stack, (ii) allowing modular
extensions for newly proposed CCAs, and (iii) supporting user-
customized policy on how the filtered CCAs collaborate.

We implement PolyCC upon QUIC and showcase two representa-
tive scenarios: (i) Employing PolyCC to improve the goodput of BBR
in the case of high degrees of aggregation and RTT variance (see
§3.1), and (ii) employing PolyCC to accelerate the convergence of
BBR in the case of bandwidth change (see §3.2). For both scenarios,
PolyCC has significant improvements in network performance.

2 DESIGN
Figure 1 illustrates the architecture of PolyCC, which contains
sender-side components as we will describe below.
CCA Pool. PolyCC reuses the already existing implementations
of CCAs in the protocol stack to build the CCA Pool. Besides, a
newly proposed CCA, including the learning-based CCA, can also
be added to the CCA Pool. In a way, the arts [1, 11–13], adopting
a traditional CCA to cooperate with a learning-based CCA, have
offered typical instances of the PolyCC framework implementation.
User-Customized Policy. Users can customize the policy on how
CCAs collaborate. Accordingly, the Pilot-Copilot Filter answers the
question of which CCA should be selected as the pilot or copilot.
The policy also provides a fusion function for the Fusion Controller
to compute the calibrated window/rate for the pilot CCA.
Pilot-Copilot Filter. This component selects only one CCA as the
pilot and selects one or more CCAs as the copilots. The single-pilot-
multiple-copilots design ensures a sender’s deterministic action,
regardless of the number of CCAs running simultaneously.
Congestion Controller Agent. By default, the protocol stack (e.g.,
QUIC) can only run one CCA at a time. Acting as the middleware,
the Congestion Controller Agent enables the protocol stack to run
multiple CCAs simultaneously, each ofwhich reacts to the receiver’s

1129

https://doi.org/10.1145/3603269.3610846
https://doi.org/10.1145/3603269.3610846
https://doi.org/10.1145/3603269.3610846
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603269.3610846&domain=pdf&date_stamp=2023-09-01

ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA Zhu and Li et al.

CCA Pool

…
𝐶𝑈𝐵𝐼𝐶

𝐵𝐵𝑅

𝐶𝑜𝑝𝑎

𝑉𝑒𝑔𝑎𝑠

𝑃𝐶𝐶

Pilot
Filtering

Copilot
Filtering

Copilots

𝐵𝐵𝑅

𝐶𝑈𝐵𝐼𝐶

𝑐𝑤𝑛𝑑!

𝑐𝑤𝑛𝑑"

Pilot

f
Fusion
Control

%𝑐𝑤𝑛𝑑

𝑉𝑒𝑔𝑎𝑠

𝑐𝑤𝑛𝑑#	
… …

①

①

②

②

③

④

④

Figure 2: An example of the PolyCC workflow.

feedback (i.e., ACK) and computes the congestion window (𝑐𝑤𝑛𝑑)
or pacing rate (∝ 𝑐𝑤𝑛𝑑

𝑅𝑇𝑇
) independently according to its own logic.

Fusion Controller. Considering the computed windows/rates
of all copilots, the Fusion Controller computes a calibrated win-
dow/rate for the pilot CCA according to a fusion function defined by
the User-Customized Policy. Based on this calibrated window/rate,
the sender updates the windows/rates of all CCAs and then con-
ducts congestion control based on the logic of the pilot CCA.

We further give an example of the PolyCC workflow in Figure 2.
Step 1: Given the CCAPool containing CCAs such as BBR, Copa, Ve-
gas, PCC, and CUBIC, assume that according to the user-customized
policy, the Pilot-Copilot Filter selects BBR as the pilot, and selects
Vegas and CUBIC as the copilots. Step 2: The Congestion Controller
Agent runs BBR, Vegas, and CUBIC simultaneously and computes
their congestion windows (i.e., 𝑐𝑤𝑛𝑑1, 𝑐𝑤𝑛𝑑2, ..., 𝑐𝑤𝑛𝑑𝑛) indepen-
dently. Step 3: The Fusion Controller computes the �𝑐𝑤𝑛𝑑 according
to the fusion function (𝑓 ()), i.e., �𝑐𝑤𝑛𝑑 = 𝑓 (𝑐𝑤𝑛𝑑1, 𝑐𝑤𝑛𝑑2, ..., 𝑐𝑤𝑛𝑑𝑛).
Note that 𝑓 () is customizable, it can set asmax(),min(), or �𝑐𝑤𝑛𝑑 =

argmin |𝑐𝑤𝑛𝑑𝑖 −𝑐𝑤𝑛𝑑∗ |, 𝑖 ∈ [1, 𝑛], where 𝑐𝑤𝑛𝑑∗ is the target cwnd.
Step 4: The sender updates the windows of all CCAs with �𝑐𝑤𝑛𝑑 ,
and then conducts congestion control according to BBR.

3 DEMONSTRATION
A demo video is at https://youtu.be/eQ4llFq5xZs. We imple-
ment the PolyCC framework based on the ChromiumQUIC (gQUIC).
To verify the feasibility of PolyCC, we set up a testbed running
QUIC client/server on two hosts, with a network emulator forward-
ing. The CCA Pool currently contains some popular CCAs such as
Reno, CUBIC, BBRv1, BBRv2, PCC, and Copa.

3.1 Scenario 1: Goodput Improvement

Issues and challenges. Extremely common in shared media (e.g.,
WiFi, cellular, and cable modems), or in interrupt processing (e.g.,
TSO, GSO, LRO, GRO), aggregation effects result in high degrees
of RTT variance (jitter) in the Internet [14, 15]. For example, the
RTT samples can range from 4 ms to 80 ms over theWi-Fi links [16].
However, if ACKs are excessively delayed (i.e.,> 2𝑅𝑇𝑇) then BBRv1 [17]
stops sending after sending 2𝐵𝐷𝑃 , leaving the bottleneck idle for
potentially long periods. Note that window-based CCAs (e.g., CU-
BIC) do not have this issue because they continue increasing the
window after bursts of ACKs, growing the window until the buffer
is full. This greatly motivates the use of PolyCC.

±0 ±20 ±50 ±70 ±100
RTT Variance (ms)

0

2

4

6

8

10

Av
er

ag
e

Go
od

pu
t (

M
bp

s) BBRv1 BBRv2 PolyCC

(a) Scenario 1

20

40

60 PolyCC

20

40

60

In
fli

gh
 (

KB
)

BBRv2

4000 5000 6000 7000 8000 9000 10000
Time (ms)

0
20
40
60 BBRv1

1.88s

2.8s

4.1s

(b) Scenario 2

Figure 3: Testbed Results.
Results. In this demonstration, BBR acts as the pilot and CUBIC
acts as the copilot. The fusion function is set �𝑐𝑤𝑛𝑑 = max{𝑐𝑤𝑛𝑑𝑏𝑏𝑟 ,
𝑐𝑤𝑛𝑑𝑐𝑢𝑏𝑖𝑐 }. We vary the RTT deviation with a mean value of 100ms.
For example, an RTT deviation of ±70ms means the RTT variance
ranges from 30ms to 170ms. We compare PolyCC with BBRv1 and
BBRv2 (which has applied a heuristic way to deal with aggrega-
tion effects [16]). Figure 3 (a) shows the results. Simple but useful,
PolyCC outperforms the BBR variants by keeping consistent high
goodput even under fierce RTT variance. Specifically, PolyCC per-
forms similarly to the BBR variants under slight RTT variance
(e.g., ±20ms (𝑅𝑇𝑇 ∈ [80, 120]ms): ACK delays < 2𝑅𝑇𝑇𝑚𝑖𝑛). How-
ever, when the RTT variance becomes fierce (e.g., ±70ms, ±100ms),
PolyCC achieves 1.82 to 10.35 times of goodput than BBR variants.

3.2 Scenario 2: Convergence Improvement
Issues and challenges. It has been disclosed that BBR spends 2 to
4 seconds to converge when the available bandwidth halves. This is
because BBR estimates the maximum bandwidth using a windowed
max-filtered value of the delivery rates [17]. In contrast, Copa’s
rate control reacts to each arriving ACK and is able to converge
rapidly in less than 1 second. In this demonstration, we explore the
feasibility of the fusion between BBR and Copa via PolyCC.
Results. BBR acts as the pilot, and Copa acts as the copilot. The
fusion function is set �̂� = min{𝑟𝑏𝑏𝑟 , 𝑟𝑐𝑜𝑝𝑎}, where 𝑟 is the pacing
rate. At 𝑡 = 0s, we start a flow with 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 20Mbps and
𝑅𝑇𝑇 = 100ms. At 𝑡 = 5s, we halve the bandwidth to 10Mbps.
Figure 3 (b) shows the convergence procedure of inflight bytes. It
is demonstrated that by applying PolyCC, the convergence time
is reduced by 54.1% under bandwidth change than BBRv1, and
reduced by 32.8% than BBRv2.

4 CONCLUSION AND FUTUREWORK
PolyCC provides a general framework for enabling poly-algorithmic
congestion control. Future work will focus on (i) the reproduction
of the state-of-the-art CCAs [1, 11–13] based on the PolyCC frame-
work, (ii) providing open PolyCC APIs for augmenting the CCA
Pool, (iii) building a community evaluation platform for in-depth
research on fusion policies, and (iv) exploring the possibility of
zero-configuration PolyCC.

ACKNOWLEDGMENTS
This work is supported by the fund from ByteDance, the fund for
building world-class universities (disciplines) of Renmin Univer-
sity of China, the NSFC Projects (No. 62202473 and No. 61932016),
the China National Funds for Distinguished Young Scientists (No.
61825204), and the Beijing Outstanding Young Scientist Program
(No. BJJWZYJH01201910003011).

1130

https://youtu.be/eQ4llFq5xZs

PolyCC: Poly-Algorithmic Congestion Control ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

REFERENCES
[1] Soheil Abbasloo, Chenyu Yen, and H Jonathan Chao. Classic meets modern: A

pragmatic learning-based congestion control for the internet. In SIGCOMM, 2020.
[2] Michael Schapira and Keith Winstein. Congestion-control throwdown. In ACM

Hotnets, pages 122–128, 2017.
[3] Bo Wu, Tong Li, Cheng Luo, Changkui Ouyang, Xinle Du, and Fuyu Wang.

Autoplex: inter-session multiplexing congestion control for large-scale live video
services. In SIGCOMM Workshop (NAI), pages 1–6, 2022.

[4] Keith Winstein and Hari Balakrishnan. Tcp ex machina: Computer-generated
congestion control. ACM SIGCOMM Computer Communication Review, 43(4):123–
134, 2013.

[5] Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey, and Michael Schapira.
PCC: Re-architecting congestion control for consistent high performance. In
USENIX NSDI, pages 395–408, 2015.

[6] MoDong, TongMeng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey,
and Michael Schapira. {PCC} vivace: Online-learning congestion control. In
USENIX NSDI, pages 343–356, 2018.

[7] Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Raghavan, Riad S Wahby, Philip
Levis, and Keith Winstein. Pantheon: the training ground for internet congestion-
control research. In USENIX ATC, pages 731–743, 2018.

[8] Zhiren Zhong, Wei Wang, Yiyang Shao, Zhenyu Li, Heng Pan, Hongtao Guan,
Gareth Tyson, Gaogang Xie, and Kai Zheng. Muses: Enabling lightweight
learning-based congestion control for mobile devices. In INFOCOM, page
2208–2217, 2022.

[9] Jianer Zhou, Xinyi Qiu, Zhenyu Li, Gareth Tyson, Qing Li, Jingpu Duan, and
Yi Wang. Antelope: A framework for dynamic selection of congestion control
algorithms. In ICNP, pages 1–11, 2021.

[10] Jia Zhang, Enhuan Dong, Zili Meng, Yuan Yang, Mingwei Xu, Sijie Yang, Miao
Zhang, and Yang Yue. Wisetrans: Adaptive transport protocol selection for mobile
web service. InWWW, pages 284–294, 2021.

[11] Zhuoxuan Du, Jiaqi Zheng, Hebin Yu, Lingtao Kong, and Guihai Chen. A unified
congestion control framework for diverse application preferences and network
conditions. In CoNext, pages 282–296, 2021.

[12] Zhiyuan Pan, Jianer Zhou, Xinyi Qie, Weichao Li, Heng Pan, and Wei Zhang.
Marten: A built-in security drl-based congestion control framework by polishing
the expert. In INFOCOM, pages 1–10, 2023.

[13] Wenzheng Yang, Yan Liu, Chen Tian, Junchen Jiang, and Lingfeng Guo. Gemini:
Divide-and-conquer for practical learning-based internet congestion control. In
INFOCOM, pages 1–10, 2023.

[14] Tong Li, Kai Zheng, Ke Xu, Rahul Arvind Jadhav, Tao Xiong, Keith Winstein, and
Kun Tan. Tack: Improving wireless transport performance by taming acknowl-
edgments. In ACM SIGCOMM, pages 15–30, 2020.

[15] Tong Li, Kai Zheng, and Ke Xu. Acknowledgment on demand for transport
control. IEEE Internet Computing, 25(2):109–115, 2021.

[16] BBR IETF 101. https://datatracker.ietf.org/meeting/101/materials/slides-101-
iccrg-an-update-on-bbr-work-at/-google-00, 2018.

[17] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. BBR: Congestion-based congestion control. Queue, 14(5):20–53,
2016.

1131

https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at/-google-00
https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at/-google-00

	Abstract
	1 Introduction
	2 Design
	3 Demonstration
	3.1 Scenario 1: Goodput Improvement
	3.2 Scenario 2: Convergence Improvement

	4 Conclusion and Future Work
	Acknowledgments
	References

