
IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 5, OCTOBER 2025 2507

Revisiting Random Early Detection Tuning for
High-Performance Datacenter Networks

Tong Li , Member, IEEE, Xinle Du, Xiangyu Gao , Guangmeng Zhou, Hanlin Huang , Zhuotao Liu ,
Mowei Wang, Kun Tan, Senior Member, IEEE, and Ke Xu , Fellow, IEEE

Abstract—Random Early Detection (RED) has been inte-
grated into datacenter switches as a fundamental Active Queue
Management (AQM) for decades. The accurate configuration
of RED parameters is crucial to achieving high throughput
and low latency. However, due to the highly dynamic nature
of workloads in datacenter networks, maintaining consistently
high performance with statically configured RED thresholds
poses a challenge. Prior work applies reinforcement learning
to predict proper thresholds, but their real-world deployment
has been hindered by poor tail performance caused by insta-
bility. In this paper, we propose PRED, a novel system that
enables automatic and stable RED parameter adjustment in
response to traffic dynamics. Specifically, the system employs
a Multiplicative-Increase Multiplicative-Decrease (MIMD) strat-
egy to dynamically adapt to flow concurrency while utilizing
an Additive-Increase Additive-Decrease (AIAD) mechanism to
adapt to flow distribution. We perform extensive evaluations
on our physical testbed and large-scale simulations. The results
demonstrate that PRED can keep up with the real-time net-
work dynamics generated by realistic workloads. For instance,
compared with the static-threshold-based methods, PRED keeps
66% shorter switch queue length and obtains up to 80% lower
Flow Completion Time (FCT). Compared with the state-of-the-
art learning-based method, PRED reduces the tail FCT by 34%.

Index Terms—RED, dynamic ECN, datacenter network.

I. INTRODUCTION

DATACENTERS host a variety of services with distinct
networking preferences. For example, storage [1] and

data mining [2] require high throughput, while web search [3]

Received 14 November 2024; revised 17 April 2025; accepted 21 April
2025; approved by IEEE TRANSACTIONS ON NETWORKING Editor C. Wu.
Date of publication 2 June 2025; date of current version 17 October 2025.
This work was supported in part by China National Funds for Distinguished
Young Scientists under Grant 62425201; and in part by NSFC Projects under
Grant 62202473, Grant 61932016, Grant 62132011, Grant 62221003, Grant
62472247, and Grant 62441230. (Corresponding author: Ke Xu.)

Tong Li is with the Key Laboratory of Data Engineering and Knowledge
Engineering and the School of Information, Renmin University of China,
Beijing 100872, China (e-mail: tong.li@ruc.edu.cn).

Xinle Du, Guangmeng Zhou, Mowei Wang, and Kun Tan
are with Huawei Technologies Company Ltd., Shenzhen 518129,
China (e-mail: duxinle1@huawei.com; zhouguangmeng@huawei.com;
wangmowei@huawei.com; kun.tan@huawei.com).

Xiangyu Gao is with the Institute for Network Sciences and Cyberspace,
Tsinghua University, Beijing 100084, China (e-mail: gaoxy21@mails.
tsinghua.edu.cn).

Hanlin Huang is with the Department of Computer Science and Tech-
nology, Tsinghua University, Beijing 100084, China (e-mail: hhl21@mails.
tsinghua.edu.cn).

Zhuotao Liu is with the Institute for Network Sciences and Cyberspace,
Tsinghua University, Beijing 100084, China, and also with the Zhongguancun
Laboratory, Beijing 100094, China (e-mail: zhuotaoliu@tsinghua.edu.cn).

Ke Xu is with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China, and also with the Zhongguancun
Laboratory, Beijing 100094, China (e-mail: xuke@tsinghua.edu.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TON.2025.3572145, provided by the authors.

Digital Object Identifier 10.1109/TON.2025.3572145

and machine learning [4] services require low latency. To meet
these application requirements, a lot of innovative congestion
control algorithms (e.g., DCTCP [3], DCQCN [5], TIMELY
[6], HPCC [7], Swift [8], BFC [9]) have been proposed to
reduce the delay caused by in-network queuing.

These new congestion controls demonstrate tremendous
improvements; however, deployment is a challenging issue.
For instance, it takes Google a year to release a new kernel
to support new network functions [8], [10]. Many congestion
controls need to be deployed on hardware Network Interface
Cards (NICs) (e.g., HPCC [7]) or require new switches to
support them (e.g., BFC [9]), which cannot be deployed in
heterogeneous datacenters made up of legacy devices [11].
In some particular scenarios, such as multi-tenant datacenter
networks, it is also difficult to modify the network protocol
stack at the end host [12], [13].

To compensate for the host-based new congestion con-
trol protocols, the community also explores more accurate
in-network congestion signals [14], [15], [16], [17], [18].
For instance, Explicit Congestion Notification (ECN) [19] is
widely deployed in datacenter networks as the new congestion
signal besides packet losses. Random Early Detection (RED)
[20], the algorithm that controls how to discard packets or
how to mark packets for ECN, has also been integrated
into switches as a basic Active Queue Management (AQM)
function. Many production datacenter transport protocols rely
on ECN and RED [21], [22], [23], such as DCTCP and
DCQCN.

Broadly speaking, the prior work on addressing RED/ECN’s
shortcomings can be classified as either new AQMs (e.g., TCD
[14]), case-based RED/ECN (e.g., ECNsharp [15], BCC [16]),
or learning-based RED/ECN (e.g., ACC [17]). The new AQM
relies on a new switch design, thus requiring a long product
release cycle [17]. The case-based arts (e.g., ECNsharp, BCC)
realize that RED/ECN with a fixed threshold is ineffective in
datacenters and therefore propose to consider multiple cases
during threshold adjustment. However, they only recognize a
limited number of cases and still use fixed thresholds for each
case (see details in § VI-C.2). Prediction model-based ACC
[17] leverages the deep reinforcement learning (DRL) [24]
to adjust the RED settings dynamically in reaction to network
congestion. However, it might make the adjustment of the RED
unstable, resulting in sharp changes in queue length and poor
tail performance (see details in § VI-C.3).

Thus from a philosophical standpoint, it is worth asking:
Why can’t static RED adapt to dynamic traffic? Can the
problem be solved simply by dynamically adjusting the thresh-
old of the already widely used RED without modifying the
algorithm itself? Is there a stable way to adjust the RED
threshold? In this paper, we seek to answer these questions
with a new scheme PRED (Performance-oriented RED).

2998-4157 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on October 18,2025 at 16:17:33 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6805-9565
https://orcid.org/0009-0000-9373-6516
https://orcid.org/0000-0002-1972-2156
https://orcid.org/0000-0002-7532-0434
https://orcid.org/0000-0003-2587-8517


2508 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 5, OCTOBER 2025

Fig. 1. Design space in Datacenters.

Figure 1 surveys the design space for congestion control
and places PRED in context by following the thick red lines
through the design tree. At the highest level, PRED is an AQM
implemented on the switches to provide a better congestion
signal. Next, instead of designing a new AQM that needs
an entirely new switch design, PRED dynamically adjusts
the parameters of the widely commercially proven RED in
datacenters. As shown in the lowest branch of the design tree,
PRED falls into the category of explicit modeling and A/B
testing approach that is more adaptive and stable.

Through experiments, we have discovered that the per-
formance of RED is mainly influenced by the concurrency
and distribution of traffic. Prediction model-based ACC [17]
initially employed a traffic-aware approach to proactively
adjust the RED threshold; However, it failed to provide stable
adjustment due to two reasons: the impact of rapid changes
in concurrent flow numbers and inaccurate predictions.
Different concurrency levels require different settings, but
because there is a mismatch between the delay of DRL
and the delay of estimating concurrency, ACC cannot make
adjustments based on concurrency levels. Moreover, due to
inherent error rates in machine learning predictions, the
design principle of ACC fails to achieve consistently stable
performance.

PRED employs two loosely coupled systems, namely the
Flow Concurrent Stabilizer (FCS) and Queue Length Adjuster
(QLA), to address the difficulties associated with unstable
adjustments in dynamically adjusting RED parameters. In
order to keep the queue length stable under different concur-
rency levels, FCS uses modeling to adjust RED parameters
by counting the number of concurrent flows on a switch port.
In order to achieve stable real-time adjustment of the queue
length to accommodate varying traffic, QLA employs a step-
by-step approach, utilizing testing and verification methods,
to gradually modify the RED parameters. With FCS and
QLA, PRED can achieve consistently high performance under
dynamic traffic in a more stable way without modifying the
RED logic.

We implement a prototype of PRED using the barefoot
Tofino switch [25] as the programmable data plane and eval-
uate PRED extensively using various use cases. Our testbed
experiments show that PRED can keep queues stable under
various flow-concurrent conditions. Based on real network
workloads, we demonstrate that PRED can properly adjust the
RED parameters to a more workload-friendly state to keep up
with traffic dynamics.

Fig. 2. Two Forms of RED parameter configuration.

We further perform larger-scale simulations to evaluate
PRED. Our quantitative results confirm that PRED advances
state-of-the-art in various aspects. For example, compared
with the algorithms with static thresholds, PRED can achieve
up to 80% lower Flow Completion Time (FCT) for short
flows. From the microscopic view of switch queues, PRED
effectively mitigates queue buildups by keeping the switch
queue length 66% lower than that of the static threshold
algorithms (from 25 to 15 packets). We further demonstrate
that PRED reduces the 99th FCT by 34% compared to ACC,
the state-of-the-art DRL-based RED configuration approach,
whose uncertainty results in suboptimal parameter selections
in extreme cases.

The rest of the paper is organized as follows. We introduce
the background in § II and the motivation of the PRED in
§ III. § IV illustrates the design of our solution. In § V, we
address the implementation of PRED on P4 [26]. In § VI, we
evaluate PRED in NS-3 [27] and a small-scale testbed. § VII
surveys the related work. Finally, § VIII concludes this paper.

This paper is an extension of our previous conference
paper [28]. In this paper, we give more details on how
to implement PRED on the control plane and data plane.
In addition, we implement the FCS and QLA modules of
PRED on Tofino 2 and compared it with our previous version
that implemented the QLA module in the control plane,
demonstrating that PRED can achieve improved performance
through implementation on a more advanced programmable
switch. Finally, we supplement the experimental section with
simulation performance tests under different workloads and
scenarios, as well as additional simulation performance tests
for PRED under varying parameters to guide the choice of
hyperparameters.

II. BACKGROUND

A. The Form of Red Setting: Two-Point Turns to Point-Slope
RED [20] is the most widely applied AQM scheme and is

commonly supported by commodity switches.1 The state-of-
the-art congestion control mechanisms have widely adopted
RED in datacenter networks. For example, DCTCP [3] and
DCQCN [5] adopt RED with the standard ECN on switches
and use the marked-packet-aware rate control on end hosts.
First of all, to facilitate the design of PRED in this paper, we
revisit the RED parameter configuration by explaining why we
replace the two-point form with the point-slope form.

Two-Point Form. RED works on switches and makes
decisions about marking packets based on the output queue

1We note that if not otherwise specified, RED adopts packet marking ECN
instead of packet discarding in this paper.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 18,2025 at 16:17:33 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: REVISITING RANDOM EARLY DETECTION TUNING 2509

length (denoted by q). The decision-making is driven by
three parameters, including the maximum marking probability
(maxP), and two queue thresholds (minK and maxK). When
the queue length is lower than minK, no action is taken.
When the queue length exceeds maxK, every arrived packet is
marked. When the queue length is between minK and maxK,
RED calculates a probability p that the packet should be
marked. In production networks, linear interpolation is the
common practice to calculate p as p = maxP · q−minK

maxK−minK .
As plotted in Figure 2(a), the resulting curve of p is in the
two-point form: point (minK, 0) and point (maxK, maxP).

Point-Slope Form. In this paper, we argue that applying
the equivalent point-slope form makes the design of the RED
parameter configuration more interpretable (see § II-B). As
shown in Figure 2(b), we define λ (λ ∈ (0,+∞)) as the slope
of the line. λ is computed as λ = maxP

maxK−minK , and thus we
have p = λ · (q −minK). For example, given minK = 0.005
MB, maxK = 0.2 MB, maxP = 0.1, we have λ ≈ 0.5.

B. The Essence of Red Setting: Controlling the Steady-State
Queue Length

RED is a tool for congestion control convergence, so
adjusting the RED threshold is essentially adjusting the steady-
state queue length as it converges. To explain why we replace
the two-point form with the point-slope form and the essence
of the RED setup, we first take DCTCP as an example of the
RED parameter breakdown based on a fluid model [3], [5].
Considering N long-lived flows traversing a single bottleneck
link with capacity C and propagation delay d (RTT without
queueing), the relationship between the steady-state queue
length (denoted by q̇) and the RED setting is derived as
follows2 (see Appendix in the Supplementary Material for
detailed derivations):

(q̇ −minK)2(q̇ + Cd) =
2N(

maxP
maxK−minK

)2 =
2N

λ2
(1)

λ can monotonically influence q̇: The first thing we infer
from Equation (1) is that λ can monotonically influence q̇. This
reveals that the point-slope form expresses a more clear physi-
cal meaning than the two-point one. If we adjust minK, maxK
and maxP, different settings may lead to the same result, for
example, (minK,maxK,maxP) and (minK,maxK’,maxP’) in
Figure 2(a). It is easier for the operator to adjust the parameters
if there is only one variable and the linear adjustment will
result in a linear result. Therefore, the point-slope is better
than the two-point because the monotone change in the λ in the
two-point form results in a linear change in the steady-state q̇.
In the latter, we use (minK,λ) to replace (minK,maxK,maxP).

Key factors affecting the q̇: From Equation (1), we can
see that the steady-state q̇ is only related to three key factors.
(a) The network-specific factor, including the bottleneck link
C and propagation delay d. Once the network topology is
built, this factor will be fixed. (b) The flow concurrency
level N. The larger N is, the larger q̇ is. If the network

2Similar conclusions are reached by other ECN-based congestion controls,
as demonstrated in studies [29]. Additional sources, including DCQCN and
TCP [29], [30], also uphold consistent conclusions. For brevity, we skip the
detailed discussion. The assumption of N long-lived flows is for simplicity in
understanding the congestion model, but it is not a strict requirement.

experiences drastically changing N, the steady-state q̇ will
change accordingly.3 (c) The setting of RED parameters (the
only one that the network operator typically controls), i.e., λ
and minK. By setting the RED parameters, we can properly
adjust the steady-state queue length.

III. MOTIVATION

A. Red Requires Traffic Awareness

We define the flow concurrency level on a switch as the
number of flows whose packets are buffered in the switch’s
output queue at a certain time, define the flow distribution
as the distribution of flow sizes and define steady-state queue
length (denoted by q̇) as the average queue length of the switch
output queue at the stable state. Based on the measurement
studies on datacenter network workloads with varying flow
concurrency levels and flow distributions, we observe two
interesting observations in RED parameter configurations.

Observation 1 (Flow Concurrency): Steady-state queue
length grows with the number of flows. From Equation (1)
in § II, we conclude that the larger N is, the larger q̇ is. In this
section, we also verify this observation through experiments.
In these experiments, we run many-to-one (incast) tests with
different flow concurrency levels through both testbed evalua-
tion and NS-3 simulation (see setup details in § VI). ECN acts
as the baseline, which represents the legacy way of marking
packets using a single threshold [3], i.e., minK = maxK.
RED (λ = 1.65) represents a more aggressive RED parameter
setting with higher ECN marking probabilities, and RED
(λ = 0.65) represents a more conservative RED.

Figure 3(a) shows the testbed results of total throughput and
queue length on the switch. Through experiments, we again
verify that the queue length of both RED (λ = 0.65, 1.65)
increases with the increase of N. This conclusion holds even in
the case of multiple bottlenecks, where several hops before the
last hop are also congested (see § VI). Datacenter network traf-
fic can be very bursty, but the static RED algorithm increases
q̇ as the flow concurrency level increases. The tail FCT of
short flows will increase with the increase of concurrency,
which seriously affects the application performance. A large
number of concurrent flows can also suffer from the TCP
incast throughput collapse because the queue length is not
bounded at the bottleneck switch. A high queue length may
trigger back pressure mechanisms (e.g., ECN in DCTCP and
priority-based flow control (PFC) in DCQCN) that restrain
pushing more packets into the network.

We can also find that different concurrency levels require
different λ. RED (λ = 1.65) suffers from under-bandwidth
utilization when the flow concurrency level is low, and RED
(λ = 0.65) suffers from high queuing delay (queue length)
when the flow concurrency level is high. We further zoom
into the run-time queue length via simulations for the case
of N = 2 and N = 20. As shown in Figure 3(b), a larger
λ (e.g., λ = 1.65) achieves better performance (i.e., high
bandwidth and low latency) when the concurrency level is
large (e.g., N = 20), and vice versa. Although ECN achieves
acceptable bandwidth utilization and overall low latency, its
amplitude of the steady-state queue length increases with the

3The RED capacity of queue adjustment is limited. When N becomes too
large, Equation (1) becomes ineffective. The detailed discussion is in § IV-C.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 18,2025 at 16:17:33 UTC from IEEE Xplore.  Restrictions apply. 



2510 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 5, OCTOBER 2025

Fig. 3. RED performance with different flow concurrency levels (N).

Fig. 4. RED performance with different workloads.

flow concurrency level. This indicates that applying the single
threshold is insufficient to achieve consistent low latency. To
sum up, static RED is not suitable for dynamic flow
concurrency.

Observation 2 (Flow Distribution): Small flows require a
large steady-state queue length, while large flows require
a small steady-state queue length. In this experiment, we
examine RED performance given different flow distributions.
We created two different workloads to represent pure small
flows and large flows: workload 1 has a flow distribution
of size from 3 KB to 6 KB, and workload 2 has a flow
distribution of size from 30 KB to 600 KB. In the many-to-one
scenario, the number of concurrent senders is fixed at 18 (see
setup details in § VI). Figure 4(a) plots the normalized 99th-
percentile FCT of flows. The x-axis denotes different settings
of λ. It is clear that under workload 1, FCT increases with λ,
while under workload 2, FCT decreases with λ. This illustrates
that the proper RED parameter configuration highly depends
on the flow distributions in the workload.

For flow distribution such as workload 1, where small flows
are dominant, the bottleneck queue is only occupied for a short
time. The changes in queue length are spikes one by one in
Figure 4(b). Link utilization is not full all the time. Therefore,
in this case, increasing the ECN marking probability (increas-
ing λ) will further reduce the link utilization, resulting in a
larger FCT of the small flows. To achieve low FCT, the steady-
state queue length is expected to be large enough (decrease λ)
to avoid triggering packet marking at the bottleneck switch. On
the other hand, for flow distribution such as workload 2, where
larger flows are dominant, the high link utilization and high
bottleneck queue occupancy will last for a long period. This
queue occupancy is unnecessary and significantly impacts the
latency of small flows. Thus, the steady-state queue length is
expected to be small enough to achieve low FCT performance.
In conclusion, static RED is also unsuitable for dynamic
flow distribution.

B. Our Goals: Traffic Awareness and Stability
Since the influence of flow concurrency and flow distri-

bution makes the static RED unsuitable for dynamic flows,

Fig. 5. The design comparison of ACC and PRED.

a natural question is: Can we make the RED parameters
configuration traffic-aware?

ACC [17] and PRED share a common high-level approach
of dynamically adjusting RED parameters. In the following
sections, we will highlight the limitations of ACC and explain
how PRED overcomes these limitations by achieving stable
queue length adjustments.

Limitations of ACC. ACC was the first to use deep
reinforcement learning (DRL) to adjust RED parameters to
make RED traffic-aware. As shown in Figure 5, ACC takes
the following four features as the input state: The current
queuing length, the output data rate for each link, the output
rate of ECN marked packets for each link, and the current
ECN setting. The output action is the next ECN setting. Then,
high throughput and short queues are used as reward functions
to continuously train the neural network to learn historical
data, so as to make predictions for future scenarios. DRL is
a valuable approach for adapting to dynamic environments.
However, as discussed in § VI-C.3, ACC tends to induce high
instability in the queue, resulting in prolonged tail FCT and
substantial degradation of the overall user experience.

There are two reasons for the instability of ACC adjust-
ment: (a) The impact of rapid changes in concurrent
flow numbers: ACC struggles to promptly adjust to varying
concurrency levels because of the swift fluctuations in N,
resulting in instability. Given that the delay in DRL falls within
the millisecond range, while the calculation of concurrency
level N operates at the microsecond scale, achieving real-time
matching of N is infeasible. Even if ACC can match N in
real-time, it also has the following problem. (b) Inaccurate
predictions: ACC operates on a prediction model derived

Authorized licensed use limited to: Tsinghua University. Downloaded on October 18,2025 at 16:17:33 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: REVISITING RANDOM EARLY DETECTION TUNING 2511

Fig. 6. The design rationale of PRED.

from observed and learned historical data to make decisions.
However, incorporating additional network conditions does
not ensure accurate predictions matching 100% real-world
scenarios. Predictions inherently carry an error rate, and when
an inaccurate prediction is made, the network’s performance
becomes unstable, ultimately leading to a degradation in tail
FCT. Next, we will explain how PRED can be stabilized
through the following two problems.

How to bound queue according to flow concurrency?
Our answer is to count N directly in the switch and adjust
the RED λ according to the flow concurrency. In Equation
(1), we analyzed the relationship between q̇ and N and λ.
The left-hand term (q̇ − minK)2(q̇ + Cd) of Equation (1)
contains the steady-state queue q̇, and if we want q̇ to remain
constant, then the right-hand term 2N

λ2 of Equation (1) needs
to remain constant. N changes dynamically, but if the switch
can calculate the current value of N and then increase/decrease
the corresponding λ, then the steady-state queue length q̇ will
not change with N. We design the Flow Concurrent Stabilizer
(FCS) to count the N and change the λ to the concurrency
level. As shown in Figure 5, the input to the FCS is a five-
tuple of each packet. It outputs the multiplier factor of the
change in the RED parameter by calculating the number of
flows over a period of time. In Figure 6, FCS works in
the form of Multiplicative-Increase Multiplicative-Decrease
(MIMD) because it can calculate the corresponding λ directly
from N.

How can queue length adjustment be traffic-aware in
a stable manner? Our answer to this question is that we
test and then verify in small steps. The traffic is uneven and
time-varying in datacenters. In order to achieve stable high
performance, some workloads demand a smaller steady-state
queue length to operate at the optimized point [31], while
others demand a larger steady-state queue length to avoid
inefficient link utilization. It is difficult for the switch to know
the needed steady-state queue length. But the switch knows the
queue length and throughput. If the switch can always maintain
a high throughput and a low queue length, this queue length
must be close to the needed steady-state queue length.

We design the Queue Length Adjuster (QLA) to achieve
traffic awareness at run time. In Figure 5, QLA takes through-
put and queue length as input and outputs a corresponding
linear factor λQLA through the A/B test. First, it sets a utility
function in terms of goodput and queue length to judge the
performance of the current RED setting. And then, as shown
in Figure 6, it applies a direct small modification to λQLA
to adapt λ to the traffic. To reduce the impact of noise,
it is tested twice and adjusted only when the results are

Fig. 7. The design of PRED.

consistent. Note that any measurement behavior will affect
the network performance itself, so the detection step of FCS
should be small. Using any of the more aggressive detection
algorithms here leads to instability in the network, such
as Additive-Increase Multiplicative-Decrease (AIMD), binary
search, and prediction-based machine learning algorithms.
The QLA works in the form of Additive-Increase Additive-
Decrease (AIAD) because it needs stable but fast convergence.
AIAD is a heuristic process that relies on A/B testing. Unlike
other methods, it demonstrates a clear convergence direction
with incremental testing steps. However, it tends to operate
at a slower pace compared to other algorithms, which may
prioritize speed over stability.

IV. DESIGN

In this paper, we propose PRED to answer the question of
how to set RED settings dynamically. Figure 7 illustrates the
design of PRED, primarily focused on adjusting λ to maintain
an optimized q̇. The FCS determines N using the flow counter
and flow estimator. Subsequently, it applies f(N), a mono-
tonically increasing function of N, to dynamically adjust λ
according to the concurrency level. The QLA directly modifies
λQLA to achieve traffic-awareness at runtime. In the following
sections, we will delve into each module, covering topics
such as N estimation, utility function design, noise reduction
through two controlled trials, and dynamic adjustments of
minK.

A. Flow Concurrent Stabilizer

As shown in Figure 7, the FCS comprises three modules:
Flow Counter, Flow Estimator and f(N). (1) Within each
TFCS period, the Flow Counter computes the number of
flows (denoted by n) traversing a port and resets n = 0 at
the period’s onset. (2) Simultaneously, the Flow Estimator
calculates the updated value of N based on the accumulated n.
(3) Subsequently, the FCS module adjusts λ by multiplying it
with f(N). In the following, we explain how the Flow Counter
and Flow Estimator work and discuss the selections of f(N).

Flow Counter (to count new flows). A flow can be identi-
fied by the hash of the five-tuple: <source ip, destination ip,
source port, destination port, protocol>. We define the start

Authorized licensed use limited to: Tsinghua University. Downloaded on October 18,2025 at 16:17:33 UTC from IEEE Xplore.  Restrictions apply. 



2512 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 5, OCTOBER 2025

Fig. 8. Examples of how the modules work in FCS.

Fig. 9. The closed-loop decision-making of QLA.

of the flow as the first time a packet with a particular five-
tuple appears at a switch and count the number of flows that
send a packet within each timeout-sized interval TFCS . This
new-arrival count way helps to avoid biases in cases when the
start of flows or the end of flows are missed [32]. The logic is
straightforward, as in Figure 8(a), the Flow Counter checks if
it is a new flow arrival by looking up the bitmap maintained
for each port. If yes, the flow counter increases n by 1. For
every period of TFCS , bitmap and n are reset and recalculated.

Flow Estimator (to estimates N). Flow Estimator estimates
N by taking into account both the current period n and
the last-period nlast output by the Flow Counter, which is
N = max{nlast, n}. Since Flow Counter always starts at
0, we can’t treat n as the current N. Figure 8(b) shows an
example. ‘Ground Truth’ represents the actual value of flow
concurrency. At T2, the Flow Counter outputs n = 0, while
the last-period estimate nlast = 1. If FCS uses n instead of
N, FCS will get a bad flow estimate of 0. In this paper, we
estimate N at T2 as N = max{n, nlast} = 1.

Selection of f(N). In order to bound the steady-state
queue length regardless of flow concurrency, according to
Equation (1), f(N) should meet f(N) ≥

√
N . Through

experiments, we find that using f(N) =
√
N cannot com-

pletely bound the length of the steady-state queue because
Equation (1) assumes N synchronous traffic, which is difficult
to meet when N becomes large. We test with the choice of
f(N) through experiments and choose f(N) = N . We have
further given the reason why N is feasible in § VI.

B. Queue Length Adjuster

As shown in Figure 7, the QLA comprises three modules:
Utility Function, Decision Maker and minK Adjuster. (1) The
Utility Function calculates utility values based on the goodput
(denoted by R) and the average queue length (denoted by q̄)
within each period TQLA. (2) The Decision Maker employs the
A/B testing and two controlled trials (TCTs) to adjust PRED
in AIAD. (3) If deemed necessary (e.g., when λ approaches
0), it further adjusts minK using a similar approach.

Fig. 10. Design details of QLA.

The QLA module applies a closed-loop decision-making
structure to set λ according to the demand of the traffic pattern.
The efficiency of this performance-oriented learning approach
is also validated in prior works (e.g., PCC [33], [34], [35]).
As illustrated in Figure 9, the control action of QLA is its
choice of PRED setting. The decision-making is based on the
A/B testing of two actions, e.g., λ = λ1 and λ = λ2.These
performance metrics are combined with the numerical utility
values, say U1 and U2, respectively, via the utility function.
The decision-making of λ is then based on comparing U1 and
U2. However, the dynamic nature of the network can produce
a lot of noise, which leads to inaccurate results in the A/B
testing. To reduce the impact of noise, TCTs adjusts only when
the results are consistent.

Utility Function (to decide trade-offs). From the network
operator’s point of view, we usually select the critical network
performance metrics of latency and throughput as the reward
function [17]. We define the utility function as a trade-off
between latency and throughput (i.e., the trade-off between
high utilization and low queue):

U(λt) = β × Rt
C

+ (1− β)× Φ(q̄t)

R represents the average throughput of one egress queue,
i.e., the amount of data delivered to the link during the time
interval TQLA. We normalize the R by the link bandwidth C to
represent the link utilization. The latency is represented by the
average queue length q̄ to indicate the impact of queuing delay.
β is a weight factor. We select the average value instead of the
instantaneous queue length because the instant queue length
varies in a large range, which can make utility unstable. Φ()
is a mapping function as shown in Figure 10(a). Generally,
the lower the queue length, the better. Note that when the
queue goes short (e.g., q̄ ≤ qleft), the marginal benefit of
further reducing the queue length goes to zero. This avoids
the situation where the utility function becomes unstable when
the queue is too short.

Decision Maker (to reduce noise impact). A simple A/B
test will be disturbed by network noise. To decide which direc-
tion and amount to change its value, QLA uses TCTs to reduce
the noise impact. Assume QLA is currently at setting λQLA.
As shown in Figure 10(b), QLA takes four consecutive TQLA
and divides them into two pairs. For each pair, QLA attempts
a slightly higher λQLA + ∆λ and slightly lower λQLA −∆λ,
each for one TQLA. After the four consecutive trials, QLA
needs to judge the next adjustment based on the four utility
values (Ui, i = 1, 2, 3, 4) obtained four times. If the higher
λQLA consistently has higher utility (U1 > U2 and U4 > U3),

Authorized licensed use limited to: Tsinghua University. Downloaded on October 18,2025 at 16:17:33 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: REVISITING RANDOM EARLY DETECTION TUNING 2513

then FCS adjusts its λQLA to newλQLA = λQLA+∆λ; and if
the lower λQLA consistently has higher utility then QLA picks
newλQLA = λQLA−∆λ; But, if the results are inconclusive,
e.g., U1 > U2 but U4 < U3, QLA stays at its current λQLA.

Adjustment of minK. Besides λ, the other important value
in the RED parameter is minK. The initial value of minK
can be set very small so that λ can make the steady-state
queue adjusted over a wide range ([minK,+∞)) theoretically.
However, in the design, we cannot use λ = 0 to get a large
steady-state queue q̇ because the FCS module fails. So when
λ < λmin, QLA no longer adjusts λ and adjusts minK instead.
Let minK change ∆minK each time and λ always stays λmin
for FCS. For example, in § III-A, workload 1’s burst flow does
not occupy the buffer. In this case, minK should be bigger, and
the steady-state queue q̇ is further increased to avoid the burst
being marked with ECN.

C. Discussion
Some notable design details of PRED are essential for

reasoning about the differences from legacy RED. We briefly
discuss these considerations below.

Range of PRED adjustment capabilities. The RED
parameter adjustment has limitations, particularly when N
surpasses a certain value. Through experiments, we test the
adjustment range of PRED and observe that when the number
of concurrent long flow N exceeds 32, PRED is unable
to maintain queue stability (see § VI-B). Fortunately, the
occurrence of concurrent long flows is rare [3], indicating
that the range of PRED is generally adequate in practice.
Moreover, to address high-concurrency short-flow bursts, FCS
can rapidly notify the end nodes by adjusting λ to ensure fast
convergence.

About the maxK. In PRED, we utilize the point-
slope form (minK,λ) instead of the the two-point form
(minK,maxK,maxP). This means that in the point-slope form,
the maxK is implicitly incorporated within the parameter
λ. However, we acknowledge that maxK is still necessary
for final protection in practical implementation because the
point-slope is still implemented on a two-point basis. To
accommodate extreme scenarios, we set a larger fixed value
for maxK (far below buffer size). In our measurements, maxK
is set to 500 KB.

Selection of TFCS . The TFCS should be carefully set as
its accuracy significantly affects the performance. First of all,
TFCS must be greater than RTT because the estimate will be
small because at least one RTT is required for all flows to pass
through the switch. TFCS should not be too big because when
the flow number decreases, the update of N will be delayed. As
shown in Figure 8(b), N remains 3 from time T4 to time T5,
while the ground truth is only 2. Considering the queuing delay
during congestion, we find that setting TFCS = 1.25 RTT
is applicable. We have also verified the parameter sensitivity
analysis in § VI-C.6.

Selection of TQLA. Note that TFCS is independent of TQLA
because the two modules are separate modules. The setting
of TQLA is a tradeoff. The smaller TQLA, the faster the
convergence, but the more unstable. Vice versa. In addition,
it is also limited by the location where the QLA module is
deployed. If the QLA module is deployed on the control plane,
the interaction delay between the control plane and the data

Fig. 11. Hardware architecture of PRED on Tofino.

plane should be considered. In our implementation, reading the
register in the control plane takes 5 to 12 ms, and updating
the RED table takes 80 to 110 ms. Therefore TQLA is at least
200 ms due to hardware limitations. We discuss the details
in § V-A. In this paper, it is recommended TQLA = 5RTT
in simulation (on the data plane) and TQLA = 400 ms in
the testbed (on the control plane due to hardware limitation).
We have also verified the parameter sensitivity analysis in
§ VI-C.6.

PFC with PRED. The input-queue-oriented PFC and
the output-queue-oriented ECN are two relatively orthogonal
mechanisms, currently, we have no clear evidence that PFC
thresholds affect PRED.

Selection of other parameters. PRED also has some
parameter settings that are trade-offs. In QLA, β is the weight
that represents the bandwidth-delay tradeoff. The network
operator can easily set the parameters based on the requirement
of running applications. For example, our measurements are
based on β = 0.4. The initial minK needs a relatively small
value to ensure that the adjustment range of the λ can be
larger. The initial minK is 10 packets. qleft is the parameter
that QLA uses to ensure that the value of the utility function
remains stable when the queue is small. The larger the qleft,
the more stable the utility value, but the longer the queue
length. qleft is set to 15 packets in this paper. λmin is the
dividing point between the adjusting λ and the adjusting minK
in QLA, we use λmin = 0.05. For the trial step parameter
setting, the bigger the trial step, the faster the adjustment
speed, but the worse the stability. We use ∆λ = 0.025, and
∆minK = 5 packets in this paper. PRED tunes the RED
parameters because they are sensitive to traffic dynamics.
The parameters introduced by PRED are traffic-insensitive.
However, fine-tuning these parameters remains essential, and
enhancing the parameter selection process is a key focus of
our future work.

V. IMPLEMENTATION

We implement the prototype of PRED on both the Barefoot
Tofino 1 and Tofino 2 switches. The Barefoot Tofino 1 switch
chip contains 12 MAU stages, 120 Mbit of SRAM, and
6.2 Mbit of TCAM per pipeline. The Barefoot Tofino 2

Authorized licensed use limited to: Tsinghua University. Downloaded on October 18,2025 at 16:17:33 UTC from IEEE Xplore.  Restrictions apply. 



2514 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 5, OCTOBER 2025

switch chip includes 20 MAU stages, 200 Mbit of SRAM,
and 10.3 Mbit of TCAM per pipeline. The FCS module needs
to quickly recognize N, so it is deployed on the data plane.
Theoretically, the QLA can be deployed on either the data
plane or the control plane. Deployment on the control plane
has low resource overhead but high latency, and vice versa.
Our implementation on Tofino 1 (T1 Version) is limited by
MAU stages, placing QLA on the control plane, while on
Tofino 2 (T2 Version), QLA is implemented on the data plane.
The T1 Version uses 11 stages, with 350 lines of P4 code for
the data plane and 300 lines of Python for the control plane.
The T2 Version consumes 17 stages, with 900 lines of P4
code and 200 lines of Python. Figure 11 shows the hardware
architecture of PRED implemented in the T1 Version and T2
Version on the Tofino switch. In practical systems, developers
should determine whether to implement QLA in the data plane
or the control plane based on the resource capacity of their
switches.

A. Control Plane Modification

In T1 Version, we deploy the QLA module on the control
plane. The Monitor Module subscribes raw data from the
Register for features analysis, including the total bytes sent and
egress queue depth. In detail, at each time interval TQLA, the
Monitor Module achieves the subscribed data from forwarding
chips’s registers. Then, the utility function calculates the
current utility value and passes it to the Decision Maker.
The control module makes a judgment every 4 TQLA and sets
the new RED setting to the data plane. The RED configuration
updates the ECN table entries, which are set with ECN
marking probabilities based on different queue lengths and
numbers of concurrent flows. These probabilities are adjusted
by the Decision Maker.

Discussion. There is a problem with implementing the QLA
module in the control plane. Reading the register in the control
plane takes 5 to 12 ms, and updating the RED table takes 80
to 110 ms. Therefore TQLA is at least 200 ms due to hardware
limitations. We discuss the setting of TQLA in § VI-C.6. The
larger TQLA is, the slower convergence will be. Therefore,
if the implementation is upon Tofino 1, PRED has a slower
convergence rate. Next, we introduce the QLA implementation
on the data plane as the T2 Version.

B. Data Plane Modification

Counter & Estimator Module. PRED needs to know how
many flows are passing through the port of the switch at a time
interval. As described in § IV-A, switches only need a simple
bitmap and counters to implement this module. However, each
stage of the switch can operate on only one register, not an
array of bitmap registers. Thus, the switch cannot bulk reset
the bitmap registers periodically on the data plane. The control
plane can reset the registers of the data plane, but it cannot be
used because of the high API delay (>1 ms).

To solve this problem, PRED uses a time interval sequence
counter and a write-after hashing operation to calculate the
number of concurrent flows. Algorithm 1 shows the FCS data
plane processing logic. When a packet P arrives, the switch
first checks whether the current time now has been more than
an interval TFCS since the last update Tstart(line 1). If the

Algorithm 1 Data Plane Processing Logic
1: if now − Tstart > TFCS then
2: UpdateRegTstart

(now).Next time interval
3: UpdateRegnlast

(nnow).Record the last interval flow
number

4: UpdateRegnnow
(0).Reset the current interval flow

number
5: UpdateRegIntervalseq (+1).Update the interval

sequence
6: else
7: Hnew ← Hash(Packet5Tuple, Intervalseq). Derive

flow hash from packet 5-tuple and interval sequence
8: Sid ← Hnew[IndexSize : 0] . Derive storage index
9: Hold ← Read&UpdateRegBitmap(Sid, Hnew).Get

the old hash value from the bitmap and set the new
value

10: if Hnew! = Hold then .New flow is detected
11: UpdateRegnnow

(+1)
12: end if
13: end if
14: FNum ←MAX(nlast, nnow)
15: Prob← ReadTablePRED(q, FNum)
16: if Prob > Random() then
17: MarkECN(P)
18: end if

time is over this interval, some registers need to be updated
and reset (lines 2-5). If not, the packet P needs to be checked
to see whether it belongs to a new flow (lines 7-11).

We first analyze the reset process after the timeout (lines
2-5). Tstart, nlast, nnow, Intervalseq and Bitmap are all
Registers. Tstart is the beginning of the interval (line 2) and
needs to be set to the current time now after the timeout
occurs. nlast is the flow number collected in the last interval
(line 3), which should be set to nnow after the timeout. nnow
is the flow number collected in the current interval (line 4),
which needs to be set to 0 after the timeout. Intervalseq is
the serial number of the time interval (line 5), which is used
to distinguish different time intervals. Bitmap is a hash table
of length 2IndexSize.

Next, when there’s no timeout (lines 7-11), we analyze the
most critical process of counting flow numbers. The packet
P’s flow hash Hnew is computed by hashing over the packet’s
5-tuple and interval sequence number Intervalseq (line 7).
Then the last IndexSize bits of the hash value is used as the
storage index Sid (line 8). The most crucial step is to read
the stored flow hash Hold in the Sid position in the hash table
bitmap and overwrite the Hnew in the corresponding position
(line 9). Then PRED checks whether the values of Hnew

and Hold are equal and if they are not, then the new flow is
detected (lines 10-11). The reason for using interval sequence
number Intervalseq for packet hashing is that we want flows
across different time intervals to be recounted at different time
intervals. To this end, the same flow must have different hash
values at different time intervals. With the above steps, PRED
does not need to bulk reset the value in the bitmap register
periodically on the data plane because the new hash value
is overwritten each time. Two conflicts may affect the flow

Authorized licensed use limited to: Tsinghua University. Downloaded on October 18,2025 at 16:17:33 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: REVISITING RANDOM EARLY DETECTION TUNING 2515

Fig. 12. Partial P4 code for utility function and decision maker.

count, i.e., hash conflict (different hash parameters but same
hash value) and position conflict (different hash value but same
Sid). The hash conflict causes conflicting flows to be viewed
as one flow, and the position conflict causes conflicting flows
to alternately overwrite the same register, bringing unusually
high flow counts. However, the chances of the two conflicts
are low, and thus they have little effect on the performance.

RED Setting Module. Because the P4 switch has no direct
division to use for the RED Setting Module, here PRED
programs the RED algorithm into the PRED table (line 13).
The table’s key is the queue length and the flow number, and
the table’s value is the marking probability. After obtaining
the marking probability, PRED compares it with the random
value. If the marking probability is greater than the random
value, ECN labeling will be tagged (lines 14-15).

Utility Function. The partial key source code of the Utility
Function is shown in Figure 12. Lines 14 to 18 demonstrate
how the Utility Function is executed in the data plane. Since
the data plane does not support division operations, PRED
makes decisions in the QLA by summing the remaining
queue length and the number of packets sent within the
current TQLA. Specifically, when the remaining queue length
exceeds 5000, it is capped at 6000, the maximum queue
length. After calculating the current reward_now, the values
in the relevant registers are updated based on the current
window_index.

Decision Maker. Lines 7 to 12 in Figure 12 show
the implementation of the Decision Maker in the data
plane. Since meta.reward is a 32-bit variable and can-
not be directly compared during the apply phase, we use
the Read_reward_table() process to compare the val-
ues in the registers. By doing so, meta.reward1 and
meta.reward3 are assigned values of 0 or 1, allowing the
necessary comparisons to be made during the apply phase.

Packet Buffer Module. The packet buffer module provides
some queue information to the control plane, including q̄
and R. R can be obtained directly from switch statistics.
The instantaneous queue length cannot match the performance
of the switch. Therefore, PRED samples the queue length
multiple times, sum it and saves it in the register. The control
plane can read the register to get the sum value and the
sampling times to infer the average queue length.

Discussion. The computing and storage requirements are
minimal. FCS is designed to be pipelined on the data plane,
allowing all steps to execute in parallel, regardless of the
size of the topology or the number and types of present
flows. QLA involves a simple comparison of several values,
imposing small computational overhead. In terms of storage
requirements, each port requires only a few registers to cache
the traffic count N and a corresponding bitmap. For example,
each port uses 128 bits, N uses 8 bits, and the remaining
120 bits are used as bitmap.

VI. EVALUATION

In this section, we conduct both testbed experiments and
NS-3 simulations4 to answer the following questions:
• How does PRED perform in practice and scale to large

datacenters?
• Why does PRED achieve high performance?
• What are the advantages of PRED compared to Deep

Reinforce Learning methods?
• How do we decide the key parameters in PRED itself?

A. Methodology
Transport Protocol. We are using DCTCP [3] as the

default congestion control mechanism at the end host. In
our testbed experiments, DCTCP is implemented using Linux
kernel 4.15.0 [36], and the NS-3 simulation [27] follows
the official DCTCP implementation [37]. The parameters for
DCTCP are configured as recommended in [3].

Schemes Compared. We compare PRED against the fol-
lowing 7 schemes:

(a) RED [testbed, simulation]: RED’s implementation is
based on instantaneous ECN marking rather than weighted
average queues, as in the DCTCP [3]. For the testbed, we
implement it on the Barefoot Tofino switch. For simulation,
we start from the NS-3’s RED implementation and add instan-
taneous ECN marking.

(b) ECN [testbed, simulation]: Here we refer to the
single-valued RED algorithm as ECN, i.e., instantaneous ECN
marking based on a single threshold minK = maxK = K.

(c) ECNsharp [simulation]: ECNsharp [15] marks packets
based on both instantaneous and persistent congestion.

(d) CoDel [simulation]: CoDel [38] tracks minimal queue-
ing over an interval to mark packets based on persistent
queueing.

(e) ACC [simulation]: ACC [17] is a practical approach that
allows automatic adjustment of ECN parameters at switches
by utilizing deep reinforcement learning (DRL). We refer to
the original design in paper [17] and re-implement ACC in
the NS-3 simulation.

(f) Only FCS [testbed, simulation]: The particular PRED
which contains only the Flow Concurrent Stabilizer.

(g) Only QLA [testbed, simulation]: The particular PRED
which contains only the Queue Length Adjuster.

Workloads. We generate traffic based on two realistic
workloads in production: WebSearch [3] and DataMining [39].
Both workloads are heavy-tailed. In testbed experiments, we
use an open-source traffic generator [40], [41] to generate

4The implementation in NS3 is identical to that of the programmable switch,
yet the languages differ; NS3 is C++, and the testbed is P4.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 18,2025 at 16:17:33 UTC from IEEE Xplore.  Restrictions apply. 



2516 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 5, OCTOBER 2025

Fig. 13. [Testbed] PRED performance with different flow concurrency
levels (N).

benchmark traffic. Similarly to previous work [14], [17], flows
arrive according to a Poisson process to achieve the desired
network utilization. We also use the same approach to generate
traffic in simulations.

Metrics. We use the Flow Completion Time (FCT) as the
primary metric. Besides the overall average FCT, we also
break down FCT results across small flows (< 100 KB)
and large flows (> 1 MB). All are normalized to the results
achieved by PRED. We also show a queue length timing dia-
gram for a fine-grained comparison of the various algorithms.

B. Testbed Experiments
In this section, we analyze the performance of PRED. Our

assessment aims to confirm the stability of traffic concur-
rency (FCS), assess the effectiveness of dynamically adjusting
queues in response to traffic dynamics (QLA), and determine
the importance of integrating both modules. We implement
PRED based on both Tofino 1 and Tofino 2, where the two
versions respectively implement QLA in the control plane
and the data plane. This demonstrates that PRED can be
flexibly deployed on platforms with different resources while
ensuring baseline performance. We also explore the range of
PRED’s adjustment capabilities on the testbed, demonstrating
that PRED is capable of handling most real-world scenarios
in datacenters.

Flow Concurrent Stabilizer. We first tested PRED’s sta-
bility of traffic concurrency, as well as different design options.
We use the testbed in § III-A with 3 servers, conducting
experiments separately with a Barefoot Tofino 1 switch and
a Tofino 2 switch with PRED’s implementation. There are 2
senders and 1 receiver. We used iperf3 [42] for sending traffic
and measured the throughput and queue length by varying the
concurrent flows sent by each sender. Using only two senders
is to verify that concurrency problems still exist in the case of
multiple bottlenecks (one at the sender and one at the switch).
We use RED as a comparison. We pick initial λ whose effect
is approximately equal when N=2. λ in FCS(N) and PRED is
0.1 (2× 0.1 = 0.2), λ in FCS(N2) is 0.05 (22 × 0.05 = 0.2),
and λ in FCS(

√
N ) is 0.2 (

√
2× 0.2 = 0.28).

Figure 13 shows the performance of PRED and only
FCS with different design choices. We can see from the
Figure 13(a) that all algorithms except FCS(N2) and RED
can maintain a relatively high throughput of about 9.4 Gbps.
FCS(N2) sacrificed about 0.4 Gbps throughput due to low
queue length. From Figure 13(b), the queue length of PRED
and FCS(N) remained stable with the increase of N. The

Fig. 14. [Testbed] FCT statistics.

queue length of FCS(
√
N ) was still growing, but the queue

length of FCS(N2) was decreasing with the increase of N. The
reason for the noise when N = 2 is that there is not enough
concurrency. Figure 13(c) shows the λ as N changes.

The above analysis shows that it is most appropriate for
PRED to select the N for the FCS module. In § IV-A, we
analyze that f(N) =

√
N can eliminate the influence of N

on queue length. However, the modeling assumes concurrent
traffic, so when N < 5, the FCS module can still maintain
a stable queue, but when N > 5, the concurrent traffic
assumption fails so that the queue will grow. We also tested
f(N) = N and f(N) = N2, N2 turns out to be too
aggressive, while N is more feasible.

In addition, Figures 13(a) and 13(b) show that the through-
put and queue lengths of PRED T1 and PRED T2 are similar.
This indicates that PRED performs consistently well across
different hardware platforms. In Figure 13(c), we observe that,
under the same number of concurrent flows, PRED T1’s λ is
slightly lower than PRED T2’s, which can be attributed to the
faster convergence of λ in PRED T2.

Finally, we compared PRED and only FCS (N) separately.
As can be seen from Figure 13(b), when N > 15, PRED
will make the queue length lower without losing throughput.
Compared with only FCS, PRED can further adjust the queue
length by adjusting λ according to the network condition.

Queue Length Adjuster. We then test PRED’s ability to
tune parameters dynamically. We have 7 servers, connected
respectively to the Tofino 1 and Tofino 2 switches. There are 6
senders and 1 receiver. Each sender uses an open-source traffic
generator [40], [41] to generate benchmark traffic. Network
load is 60%. K in ECN is 70 packets. Traffic is generated
based on realistic WebSearch workloads [3].

Figure 14 shows the FCT for different flow sizes. From
the results, we observe that the 99th percentile FCT and the
average FCT of RED (λ = 0.1) are the smallest, while the
FCT of RED (λ = 1) is the largest. With the same workload,
PRED initially does not have a suitable λ, leading to an
FCT for PRED (<1s) that is close to RED (λ = 1). After
running for approximately 10 seconds, PRED converges to
the appropriate λ, making the FCT of PRED (>10s) converge
to RED (λ = 0.1). In the initial implementation of PRED on
Tofino 1, QLA is placed on the control plane, resulting in
TQLA = 0.4 s. As discussed in § V, a larger TQLA leads to
a slower convergence rate, but the deterministic direction of
adjustment remains stable.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 18,2025 at 16:17:33 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: REVISITING RANDOM EARLY DETECTION TUNING 2517

Fig. 15. [Testbed] Range of adjustment capabilities.

In addition, we have implemented PRED on Tofino 2,
referred to as PRED T2, where the TQLA = 0.08s. This
reduction significantly improves the convergence speed. As
a result, PRED T2 exhibits a faster convergence compared
to PRED T1, while maintaining stability in the adjustment
direction. This improvement demonstrates the advantage of
implementing QLA in the data plane, thereby improving the
performance of PRED.

Based on the above analysis, we know that PRED can
bound steady-state queue length with dynamic flow concur-
rency and can make queue length adjustment traffic-aware in
a stable manner to maximize the network effect.

What is the range of PRED’s adjustment capabilities?
We tested the range of PRED adjustment capabilities using
Testbed. As shown in Figure 15, the throughput and queue
length change with the number of concurrent N. The blue line
indicates the parameter setting with the minimum λ and the
lowest ECN probability, and we can see that its queue length
is large and its throughput is high.

The red line indicates the parameter setting with the max-
imum λ and the maximum ECN marking probability. It can
be seen that when N < 32, there is a loss in throughput
and the queue length is small. When N > 32, the parameter
settings in the adjustment range cannot limit the stability of the
queue. This means that PRED limits the number of concurrent
requests to no more than 32 within the range of optional
parameters. However, in practice, there are not that many
concurrent long flows in the datacenter [3], and the range of
PRED is sufficient.

The black line represents per-packet ECN, that is, every
packet that enters the switch is marked with an ECN. It can
be seen that the adjustment range of the black line is very
large. However, the adjustment granularity is too large, and the
change of very small parameters will lead to drastic changes in
the queue and throughput, so the adjustment range of PRED
is only between the red line and the blue line.

C. Simulation Experiments
In this section, we will use simulation to analyze the perfor-

mance of PRED. At the same time, we will fine-grain compare
the differences between different algorithms and answer why
PRED can have a good performance. First, the performance
of PRED in real datacenters is evaluuated through large-scale
NS-3 simulation. Then we analyze why FCS and QLA should
cooperate with each other through the sequence diagram of
queue length and analyze why the performance of different
algorithms is not optimal. Then we compared the differences
between DRL-enable ACC and PRED. Additionally, we per-
formed 100 Gbps link simulations to assess performance under
high-throughput conditions. Finally, we analyze the PRED
related parameter settings in detail.

1) Large Scale Simulations: To complement our testbed
experiments, we evaluate PRED on a larger-scale spine-leaf
topology with realistic workloads.

Setup: We simulate a 128-host leaf-spine topology with
8 spine and 8 leaf switches. Each leaf is connected to 16
servers via 10 Gbps links. The spine and leaf switches are
also connected via 10 Gbps links. The latency of the link is
10 µs. We use ECMP for load balancing. We generate traffic
based on two realistic workloads in production: WebSearch
[3] and DataMining [39]. Each sender sends messages in a
Poisson flow, and the target loads for the fixed receiver range
from 10% to 90%. K in ECN is 70 packets. The instantaneous
marking threshold for ECNSharp is 80 µs, the persistent target
threshold is 10 µs and the persistent interval is 150 µs. For
CoDel, we set the interval to be 150 µs and the target to be
10 µs. The results are shown in Figure 16, 17 and 18. All
results have been normalized to FCT achieved by PRED.

Results: As shown in Figures 16 and 17, PRED demon-
strates significant improvements in real-workload scenarios.
Under the WebSearch workload, PRED’s small flow 99th FCT
(1.4 ms) shows a reduction ranging from 68% (ECNSharp,
4.34 ms) to 80% (CODEL, 6.68 ms) compared to ECN
algorithms at 90% load, while for large flows, there is only
a negligible increase in FCT (96.8 ms), ranging from 4.6%
(CODEL, 92.5 ms) to 12.5% (ECNSharp, 86 ms). Similarly,
in the DataMining scenario, PRED achieves a reduction in the
99th FCT for small flows (0.76 ms) from 58% (ECNSharp,
1.83 ms) to 86% (CODEL, 5.28 ms) compared to ECN
algorithms at 90% load, with a minimal increase in FCT for
large flows (44 ms) ranging from 6.3% (ECN, 41.36 ms) to 8%
(ECNsharp, 40 ms). These results demonstrate that PRED’s
adaptation to flow concurrency and distribution can outperform
other ECN algorithms under various real-workload scenarios.

In Figure 18, PRED and FCS perform better than the static
threshold RED. QLA alone does not improve performance.
FCS alone is not optimal at high concurrency, and QLA should
be combined to further reduce the FCT of small flows.

2) Pred Microscopic View: We want to know why PRED
is better, so we conduct a comparative analysis through time
sequence diagrams.

Setup: We use a simple 16-to-1 topology with 10 Gbps
links, 16 servers are senders and 1 receiver. Other settings are
similar to § VI-C.1. To provide a clearer illustration of how
different schemes handle their queues, we sample the queue
length of the bottleneck link every 10 µs. The number of
concurrent flows is constantly changing.

Results: Figure 19 shows the queue changes of different
algorithms at the bottleneck port. PRED effectively eliminates
queue buildups by keeping the switch queue length 66% lower
than that of the static threshold algorithms (from 25 packets to
15 packets). As can be seen in Figure 19(a), PRED gradually
adjusts the queue length over time, making the queue length
lower than other algorithms. And since it is essentially a RED
algorithm, probabilistic marking makes the queue more stable,
and the vibration amplitude will be smaller. ECNsharp uses
two ECN thresholds, but fixed adjustment makes the queue
unstable as shown in Figure 19(a). In addition, PRED can
converge faster when burst is encountered, resulting in less
queue fluctuation.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 18,2025 at 16:17:33 UTC from IEEE Xplore.  Restrictions apply. 



2518 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 5, OCTOBER 2025

Fig. 16. [Simulation] FCT statistics with different ECN algorithm. (WebSearch Workload).

Fig. 17. [Simulation] FCT statistics with different ECN algorithm. (DataMining Workload).

Fig. 18. [Simulation] FCT statistics with different RED algorithm.

Fig. 19. [Simulation] Queue Length.

Figure 19(b) compares FCS and QLA. From Figure 19(b),
FCS can converge rapidly but will keep the queue length stable
at about 23 packets, while PRED will further reduce the queue
length. Because QLA cannot adjust λ MIMD according to
N, the convergence process is turbulent. Therefore, we can

conclude that FCS and QLA need to cooperate with each other
so that PRED can achieve the best performance.

If the true N exceeds the capacity of the estimator, then
N will be underestimated; If a lot of bursts come, then N
will be overestimated. In this case, the FCS flow estimate
will be biased, but the noisy N will still be better than
the static threshold. As can be seen in Figure 19, PRED
can quickly respond to changes in N, resulting in faster
congestion adjustment and feedback even if inaccurate. In
addition, QLA can also compensate for long-term estimation
inaccuracies, so that PRED still keeps the switch statistically
high performance.

3) Compared With ACC: ACC uses DRL to automatically
adjust the RED parameter. DRL requires a lot of data and
training to use. We compare PRED and ACC with a simple
many-to-one incast scenario. The RED part of ACC uses NS3
simulation and the Learning part of ACC uses NS3-GYM [43].
We use only one agent to learn the traffic conditions in the
congested port, reducing the amount of data to learn. We use
Double DQN [24] to implement ACC. The State is 6 nor-
malized values (q̄, R,Rm,minK,maxK,maxP). They are the
queue length (q̄), the port speed (R), the speed of marking ECN
(Rm), and the current RED setting (minK,maxK,maxP).
Action space dimension is 4×3×21, i.e., minK(2, 4, 8, 16)×
maxK(20, 50, 100)×maxP({1%, j× 5%},∀j ∈ [1, 20]). The
Reward function is consistent with PRED’s utility function.
We train ACC for 200,000 epochs using the same trace for

Authorized licensed use limited to: Tsinghua University. Downloaded on October 18,2025 at 16:17:33 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: REVISITING RANDOM EARLY DETECTION TUNING 2519

Fig. 20. [Simulation] CDF of FCT and Queue length.

Fig. 21. [Simulation] Qlength of ACC and PRED.

both training and testing. It’s important to note that in our
current testing, ACC encounters the same trace as during
training. Even if we aim for deep reinforcement learning to
over-fit the results, the stability of the outcomes cannot be
guaranteed.

Setup: We use a simple 18-to-1 topology with 10 Gbps
links, 18 servers are senders, and 1 receiver. Other settings
are similar to § VI-C.1. We send flows from 18 senders
to the receiver. The size of both large and small flows are
generated based on two artificial workloads mentioned in
§ III-A (workload 1 (3-6 KB) for small flows and workload
2 (30-600 KB) for large flows). Both kinds of traffic are
sent synchronously, and we measure the FCT of small flows
(<100 KB).

Results: Figure 20 shows the FCT and queue length of ACC
and PRED in this particular scenario. As can be seen from
Figure 20(a), FCT is similar at 50th, but PRED reduced 99th
FCT by 34% compared to ACC (from 0.63 ms to 0.47 ms).
From Figure 20(b), the tail of the queue length in ACC is
also larger. The 95th percentile in the ACC is 37 packets, and
the PRED is 25 packets; The 99th queue length ACC is 105
packets, while the PRED is 54 packets.

According to the above analysis, PRED was better than
ACC in tail FCT and tail queue length. To further understand
why PRED is better than ACC, we selected a time slice
of the ACC runtime, shown in Figure 21. From the Figure,
the queue length convergence of PRED and ACC is similar
because they share the same objective function. However, at
around 110 ms, the ACC queue length significantly increases.
The reason is that even after ACC is deployed, it still needs
to have a random exploration probability from learning new
network condition changes. Some bad RED Settings will be
selected (around 110 ms in Figure 21), resulting in large queue
lengths and high tail latency. In conclusion, the use of machine
learning methods needs to be carefully set up in the exploration
scheme, The unreadable and untunable model will affect the
tail latency. A interpretable PRED can ensure that the queue
converges to the appropriate position.

Fig. 22. [Simulation] Small Flow FCT statistics with WebSearch workload.

Fig. 23. [Simulation] Small Flow FCT statistics with DataMining workload.

4) 100 Gbps With 1000s Concurrent Flows: We also eval-
uate PRED on 100 Gbps networks and with thousands of
concurrent flows.

Setup: The topology is the same as the one used in § VI-C.1
with a 128-host leaf-spine topology and 100 Gbps links. The
latency of the link is 1 µs. On 128 hosts, randomly select 1000
senders, with an average of 7 senders started per host, and
choose a fixed receiver. Each sender sends messages in a Pois-
son flow, and the target loads for the fixed receiver are 50%
and 80% respectively. The results under WebSearch workload
and DataMining workload [39] are shown in Figure 22 and 23.

Results: As shown in Figures 22 and 23, PRED demon-
strates significant improvements in the 99th percentile and
average FCT for small flows at 80% load. In Figure 22,
PRED’s 99th percentile FCT (142 µs) shows a reduction
ranging from 27% (RED, 171 µs) to 59% (CODEL, 350 µs),
and its average FCT (29 µs) shows a reduction ranging from
52% (RED, 61 µs) to 75% (CODEL, 117 µs). Similarly, in
Figure 23, PRED’s 99th percentile FCT (240 µs) achieves a
reduction ranging from 48% (RED, 468 µs) to 66% (CODEL,
713 µs), while its average FCT (42 µs) shows a reduction
ranging from 52% (RED, 88 µs) to 75% (CODEL, 174 µs).
These results consistently prove that PRED’s adaptation to
flow concurrency and distribution outperforms other ECN
algorithms in a 100 Gbps environment with 1000 concurrent
flows.

5) Pred With DCQCN: Setup: We use a simple 20-to-1
topology with 40 Gbps links, 20 servers are senders, and 1
receiver. The latency of the link is 2 µs. The parameters are set
as suggested in [5], [29]. The NS-3 simulation implementation
of DCQCN refers to the implementation in [29].

Results: Figure 24(a) shows the average queue length and
99th queue length as N increases. The queue length for both
RED (0.2) and RED (2) increases with N, and PRED avoids
this problem. Figure 24(b) shows the time sequence diagram
when N=2 and N=20. PRED at low concurrency (N=2), queue
length changes close to RED (0.2) to ensure throughput. At

Authorized licensed use limited to: Tsinghua University. Downloaded on October 18,2025 at 16:17:33 UTC from IEEE Xplore.  Restrictions apply. 



2520 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 5, OCTOBER 2025

Fig. 24. [Simulation] PRED performance with DCQCN.

Fig. 25. [Simulation] N Estimator of Different TFCS (RTT is 0.08 ms).

Fig. 26. [Simulation] λQLA of different TQLA.

high concurrency (N=20), PRED is close to RED (2) to ensure
low latency. To sum up, PRED cooperates well with DCQCN.

6) Parameter Design Choice: We focus here on the two
most important time parameters TFCS and TQLA in PRED,
and we will discuss the other parameters in future work. We
analyzed how to set these in § IV, and we verified these by
experiment in this section.

Setup: The topology, parameter settings, and traffic patterns
are all similar to the previous subsection.

Results: Figure 25 shows the estimation of flow number
under different TFCS . The burst and stationary states of the
large flows have 18 flows. When burst flows and large flows
are concurrent, there should be 36 flows. From Figure 25,
when TFCS < RTT , PRED cannot accurately estimate the
correct N. Because all the traffic does not pass through the
port completely. When TFCS > RTT , PRED can estimate
the correct N, but with the increase of TFCS , the reset time of
N is also increasing. So TFCS should be slightly larger than
RTT, and our rule of thumb is 1.25 RTT.

Figure 26 shows the convergence of λQLA for different
TQLA. The workload 1 (3-6 KB) ranges from 0 to 1,000 ms
and from 2,000 to 3,000 ms. Workload 2 (30-600 KB) is
1,000-2,000 ms. In workload 1, all flows are small, so the
smaller the λ, the smaller the FCT. Therefore, it can be seen
that PRED can rapidly reduce λ when 0-500 ms, while it can
rapidly increase λ when 1,000 ms. And the smaller TQLA is,
the faster it converges, but the more unstable it is. Therefore,
TQLA is recommended to be 5 RTT.

VII. RELATED WORK

The most relevant work for PRED is ACC [17], which has
been discussed in detail in this paper. Next, we will introduce
some other related work.

Dynamically Adjust the RED Threshold. Since the RED
algorithm was initially proposed, many proposals studied
how to adjust the RED parameters dynamically [44], [45],
[46], [47], [48]. Feng’s ARED [44], [45] adjusts the mark-
ing/dropping probability, maxP, in RED to keep the average
queue size stable between minK and maxK, in the form
of MIMD. Floyd’s ARED [46] adjusts maxP in AIMD
way to make the queue length fluctuate around a certain
value. STAQM [48] adjusts AQM parameters by modeling
and parameterizing the RED algorithm and PI algorithm [49]
to estimate network state according to network measurement
and estimation. These art demonstrate the benefits of dynamic
RED parameters. However, they only assure convergence of
queue length, while the exact converged queue length must
be manually set. As a result, their applicability in datacenter
networks is limited.

Recently, there also exist some new algorithms [14], [15],
[16] for ECN proposed in datacenters. BCC [16] dynamically
adjusts the RED algorithm based on the global shared buffer
usage. Port-level RED is used when utilization is low, and
the shared buffer RED is used when the utilization is high.
TCD [14] finds that in lossless networks, the queue has an
undetermined state between congestion and non-congestion. It
is critical to identify the undetermined state and notify the end
host. These art found that ECN with a fixed threshold would
be ineffective in datacenters and therefore set more than one
state during threshold adjustment. However, they still use fixed
thresholds that cannot automatically adjust based on traffic
dynamics.

Buffer Sizing and AQM in Internet. The most well-known
rule of buffer sizing showed that the minimum buffer size
should be C × RTT/

√
N when there are a large number of

N long-lived TCP Reno flows [50]. Existing new congestion
controls such as BBR [31] also require new theories to
set buffer sizes [51], [52]. Bruce et al. [32] also discussed
how to estimate the number of N on a router. The above
studies inspired PRED’s motivation to dynamically adjust
RED Settings by counting traffic numbers in datacenters.

Most ECN-based datacenter congestion control algorithms
[3], [53], [54] set the two thresholds of RED to the same value,
minK = maxK = K. The ideal ECN marking threshold K
is given as K = λ × C × RTT [3], [41], [54], [55], [56].
Different congestion controls have different λ, TCP is 1 [54],
DCTCP is 0.17 [55]. Through experiments in § III-B, we found
that the relationship between single-value RED and N is that

Authorized licensed use limited to: Tsinghua University. Downloaded on October 18,2025 at 16:17:33 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: REVISITING RANDOM EARLY DETECTION TUNING 2521

the amplitude of the queue increases with the increase of N.
Therefore, PRED does not regulate based on single values.

MQ-ECN [41] first pointed out the drawbacks of existing
ECN/RED implementations in the packet scheduling context.
To adapt to the varying queue capacity caused by packet
schedulers, TCN [56] proposed to use instantaneous sojourn
time to mark packets. ECNsharp [15] inherits the merit of
TCN but further tracks the persistent congestion state to reduce
long-term queue buildups. DiffECN [57] marks only the data
flows that cause congestion with ECN, effectively enhancing
the performance of small flows and regulating congested
streams in congestion scenarios.

PRED can make the steady-state queue consistent for
different priorities/queues so that it can be well adapted to
different packet schedulers.

Congestion Control for Datacenters. Most of the network
congestion problems are solved by proposing new congestion
control solutions. HULL [58] sacrifice throughput in exchange
for low latency. It marks the ECN by calculating link uti-
lization rather than queue length. PRED can use a scheme
similar to the HULL, but the difficulty is that it requires
the endpoint to use the packet pacing function to ensure
throughput utilization. pFabric [59], BFC [9], and HPCC [7]
rely on precise in-network state information of switches and
update transmission rate for each flow. pFabric achieves near-
optimal FCT by using (infinite) priority queues on switches.
The BFC enables the switch queue to reach one-hop BDP
through the backpressure rate control of per-flow and per-hop.
HPCC adjusts the speed MIMD through the INT information
of the switch. PCN [60], Homa [61] rely on the receiver to
send credit packets to determine the sending rate of each flow.
TIMELY [6] and Swift [8] are RTT-based schemes to adjust
the flow rate at end host. These approaches achieve remarkable
performance. However, they require changes to the network
stack that are not easy to implement on older hardware devices.

VIII. CONCLUSION

This paper revisits the RED parameter configuration and
proposes the design of PRED by capturing the key features
of datacenter traffic dynamics in terms of flow concurrency and
flow distributions. Adaptively and effectively, PRED achieves
automatic adjustment of RED parameters stably. Through eval-
uations, we demonstrate that PRED is more stable than ACC
[17], the state-of-the-art learning-based approach. Without any
modifications at the end host, and with a more stable RED
parameter configuration that adapts well to traffic dynamics,
as the future work, we believe PRED has good potential to
be deployed in modern production datacenters.

REFERENCES

[1] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in Proc. IEEE 26th Symp. Mass Storage Syst.
Technol. (MSST), May 2010, pp. 1–10.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[3] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. ACM
SIGCOMM Conf., Aug. 2010, pp. 63–74.

[4] T. Chen et al., “MXNet: A flexible and efficient machine learning library
for heterogeneous distributed systems,” 2015, arXiv:1512.01274.

[5] Y. Zhu et al., “Congestion control for large-scale RDMA deployments,”
ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 523–536,
Aug. 2015.

[6] R. Mittal et al., “TIMELY: RTT-based congestion control for the
datacenter,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4,
pp. 537–550, 2015.

[7] Y. Li et al., “HPCC: High precision congestion control,” in Proc. ACM
Special Interest Group Data Commun., Aug. 2019, pp. 44–58.

[8] G. Kumar et al., “Swift: Delay is simple and effective for congestion
control in the datacenter,” in Proc. ACM SIGCOMM Conf. Appl. Technol.
Archit. Protocols Comput. Commun. (SIGCOMM), 2020, pp. 514–528.

[9] P. Goyal, P. Shah, K. Zhao, G. Nikolaidis, M. Alizadeh, and T. E. Ander-
son, “Backpressure flow control,” in Proc. 19th USENIX Symp. Netw.
Syst. Design Implement. (NSDI), 2022, pp. 779–805.

[10] M. Marty et al., “Snap: A microkernel approach to host networking,” in
Proc. 27th ACM Symp. Operating Syst. Princ., Oct. 2019, pp. 399–413.

[11] A. Dhamija et al., “A large-scale deployment of DCTCP,” in Proc.
USENIX NSDI, 2024, pp. 239–252.

[12] B. Cronkite-Ratcliff et al., “Virtualized congestion control,” in Proc.
ACM SIGCOMM, 2016, pp. 230–243.

[13] K. He et al., “AC/DC TCP: Virtual congestion control enforcement
for Datacenter networks,” in Proc. ACM SIGCOMM Conf., 2016,
pp. 244–257.

[14] Y. Zhang, Y. Liu, Q. Meng, and F. Ren, “Congestion detection in lossless
networks,” in Proc. ACM SIGCOMM Conf., Aug. 2021, pp. 370–383.

[15] J. Zhang, W. Bai, and K. Chen, “Enabling ECN for datacenter networks
with RTT variations,” in Proc. 15th Int. Conf. Emerg. Netw. Exp.
Technol., Dec. 2019, pp. 233–245.

[16] W. Bai, S. Hu, K. Chen, K. Tan, and Y. Xiong, “One more config
is enough: Saving (DC)TCP for high-speed extremely shallow-buffered
datacenters,” IEEE/ACM Trans. Netw., vol. 29, no. 2, pp. 489–502, Apr.
2021.

[17] S. Yan, X. Wang, X. Zheng, Y. Xia, D. Liu, and W. Deng, “ACC: Auto-
matic ECN tuning for high-speed datacenter networks,” in Proc. ACM
SIGCOMM Conf. Appl. Technol. Archit. Protocols Comput. Commun.
(SIGCOMM), 2021, pp. 384–397.

[18] H. Huang et al., “Re-architecting buffer management in lossless
Ethernet,” IEEE/ACM Trans. Netw., vol. 32, no. 6, pp. 4749–4764, Dec.
2024.

[19] K. Ramakrishnan, S. Floyd, and D. Black, “RFC3168: The addition of
explicit congestion notification (ECN) to IP,” RFC Editor, USA, Tech.
Rep. 1, 2001.

[20] S. Floyd and V. Jacobson, “Random early detection gateways for con-
gestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397–413,
Aug. 1993.

[21] A. Singh et al., “Jupiter rising: A decade of CLOS topologies and
centralized control in Google’s datacenter network,” ACM SIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 183–197, 2015.

[22] G. Judd, “Attaining the promise and avoiding the pitfalls of TCP in the
datacenter,” in Proc. USENIX NSDI, May 2015, pp. 145–157.

[23] L. Poutievski et al., “Jupiter evolving: Transforming Google’s datacenter
network via optical circuit switches and software-defined networking,”
in Proc. ACM SIGCOMM Conf., Aug. 2022, pp. 66–85.

[24] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in AAAI, vol. 30, 2016, pp. 1–12.

[25] (2022). Tofino Product Family Brochure. [Online]. Available:
https://www.intel.com/content/dam/www/central-libraries/us/en/
documents/tofino-product-family-brochure.pdf

[26] p4 16 Language Specification Version 1.0.0, T. P. L. Consortium,
Stanford, CA, USA, 2016.

[27] (2019). Network Simulator. [Online]. Available: https://www.nsnam.org/
[28] X. Du et al., “Pred: Performance-oriented random early detection for

consistently stable performance in datacenters,” in Proc. USENIX NSDI,
2025, pp. 1–12.

[29] Y. Zhu, M. Ghobadi, V. Misra, and J. Padhye, “ECN or delay: Lessons
learnt from analysis of DCQCN and TIMELY,” in Proc. 12th Int. Conf.
Emerg. Netw. Exp. Technol., Dec. 2016, pp. 313–327.

[30] S. Floyd, “TCP and explicit congestion notification,” ACM SIGCOMM
Comput. Commun. Rev., vol. 24, no. 5, pp. 8–23, Oct. 1994.

[31] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacob-
son, “BBR: Congestion-based congestion control: Measuring bottleneck
bandwidth and round-trip propagation time,” Queue, vol. 14, no. 5,
pp. 20–53, Oct. 2016.

[32] B. Spang and N. McKeown, “On estimating the number of flows,” in
Proc. Stanford Workshop Buffer Sizing, 2019, pp. 1–18.

[33] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “PCC:
Re-architecting congestion control for consistent high performance,” in
Proc. 12th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2015,
pp. 395–408.v.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 18,2025 at 16:17:33 UTC from IEEE Xplore.  Restrictions apply. 



2522 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 5, OCTOBER 2025

[34] M. Don et al., “PCC Vivace: Online-learning congestion control,” in
Proc. 15th USENIX Symp. Networked Syst. Design Implement., Renton,
WA, USA, 2018, pp. 343–356.

[35] T. Meng, N. R. Schiff, P. B. Godfrey, and M. Schapira, “PCC proteus:
Scavenger transport and beyond,” in Proc. Annu. Conf. ACM Special
Interest Group Data Commun. Appl., Technol., Archit., Protocols Com-
put. Commun., Jul. 2020, pp. 615–631.

[36] (2022). Dctcp in Linux Kernel. [Online]. Available: https://
www.kernel.org/doc/html/latest/networking/dctcp.html

[37] (2022). Dctcp in Ns3 Simulation. [Online]. Available:
https://www.nsnam.org/docs/release/3.36/models/html/
tcp.html?highlight=dctcp

[38] K. Nichols and V. Jacobson, “Controlling queue delay,” Commun. ACM,
vol. 55, no. 7, pp. 42–50, 2012.

[39] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
in Proc. ACM SIGCOMM Conf. Data Commun., Aug. 2009, pp. 51–62.

[40] (2022). Traffic Generator. [Online]. Available: https://github.com/
HKUST-SING/TrafficGenerator

[41] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ECN in multi-service
multi-queue data centers,” in Proc. 13th USENIX Symp. Networked Syst.
Design Implement., 2016, pp. 537–549.

[42] (2022). Iperf-the Ultimate Speed Test Tool for TCP, UDP and SCTP.
[Online]. Available: https://iperf.fr/

[43] P. Gawł owicz and A. Zubow, “Ns-3 meets OpenAI gym: The play-
ground for machine learning in networking research,” in Proc. 22nd
Int. ACM Conf. Model., Anal. Simul. Wireless Mobile Syst., Nov. 2019,
pp. 113–120.

[44] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Techniques for eliminating
packet loss in congested TCP/IP networks,” Citeseer, USA, Tech. Rep.
UM CSE-TR-349, 1997.

[45] W.-C. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “A self-configuring
RED gateway,” in Proc. IEEE INFOCOM. Conf. Comput. Commun.,
18th Annu. Joint Conf. IEEE Comput. Commun. Societies. Future Now,
vol. 3, Mar. 1999, pp. 1320–1328.

[46] S. Floyd et al., “Adaptive red: An algorithm for increasing the robustness
of red’s active queue management,” ACIRI, USA, Tech. Rep. 1, 2001.

[47] S. Kunniyur and R. Srikant, “Analysis and design of an adaptive
virtual queue (AVQ) algorithm for active queue management,” ACM
SIGCOMM Comput. Commun. Rev., vol. 31, no. 4, pp. 123–134, Oct.
2001.

[48] H. Zhang, D. Towsley, C. V. Hollot, and V. Misra, “A self-tuning
structure for adaptation in TCP/AQM networks,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 31, no. 1, pp. 302–303, Jun. 2003.

[49] C. V. Hollot, V. Misra, D. Towsley, and W.-B. Gong, “On designing
improved controllers for AQM routers supporting TCP flows,” in Proc.
IEEE INFOCOM. Conf. Comput. Communications. 20th Annu. Joint
Conf. IEEE Comput. Commun. Soc., vol. 3, Mar. 2001, pp. 1726–1734.

[50] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
SIGCOMM Comput. Commun. Rev., vol. 34, no. 4, pp. 281–292,
Aug. 2004.

[51] B. Spang, S. Arslan, and N. McKeown, “Updating the theory of buffer
sizing,” Perform. Eval., vol. 151, Nov. 2021, Art. no. 102232.

[52] T. Li et al., “TACK: Improving wireless transport performance by taming
acknowledgments,” in Proc. ACM SIGCOMM, Jul. 2020, pp. 15–30.

[53] B. Vamanan, J. Hasan, and T. N. Vijaykumar, “Deadline-aware datacen-
ter TCP (D2TCP),” ACM SIGCOMM Comput. Commun. Rev., vol. 42,
no. 4, pp. 115–126, 2012.

[54] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang, “Tuning ECN for
data center networks,” in Proc. 8th Int. Conf. Emerg. Netw. Experiments
Technol., Dec. 2012, pp. 25–36.

[55] M. Alizadeh, A. Javanmard, and B. Prabhakar, “Analysis of DCTCP:
Stability, convergence, and fairness,” ACM SIGMETRICS Perform. Eval.
Rev., vol. 39, no. 1, pp. 73–84, 2011.

[56] W. Bai, K. Chen, L. Chen, C. Kim, and H. Wu, “Enabling ECN over
generic packet scheduling,” in Proc. 12th Int. Conf. Emerg. Netw. Exp.
Technol., Dec. 2016, pp. 191–204.

[57] H. Huang, K. Xu, T. Li, Z. Liu, X. Du, and X. Gao, “DiffECN:
Differential ECN marking for datacenter networks,” IEEE Trans. Netw.,
vol. 33, no. 1, pp. 210–225, Feb. 2025.

[58] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is more: Trading a little bandwidth for ultra-low
latency in the data center,” in Proc. 9th USENIX Symp. Networked Syst.
Design Implement. (NSDI), 2012, pp. 253–266.

[59] M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter transport,”
in Proc. ACM SIGCOMM Conf. SIGCOMM, 2013, pp. 435–446.

[60] W. Cheng, K. Qian, W. Jiang, T. Zhang, and F. Ren, “Re-architecting
congestion management in lossless Ethernet,” in Proc. 17th USENIX
Symp. Networked Syst. Design Implement., 2020, pp. 19–36.

[61] B. Montazeri, Y. Li, M. Alizadeh, and J. K. Ousterhout, “Homa: A
receiver-driven low-latency transport protocol using network priorities,”
in Proc. ACM SIGCOMM Conf. Appl. Technol. Archit. Protocols Com-
put. Commun. (SIGCOMM), 2018, pp. 221–235.

Tong Li (Member, IEEE) received the Ph.D. degree from the Department of
Computer Science and Technology, Tsinghua University, China, in 2017. He
was a Chief Engineer with Huawei in 2022. Currently, he is an Associate
Professor with the Renmin University of China. His research interests include
networking, distributed systems, and big data.

Xinle Du received the B.E. degree from the Department of Computer Science
and Technology, Xidian University, Xi’an, China, in 2018, and the Ph.D.
degree from the Department of Computer Science and Technology, Tsinghua
University, Beijing, China, in 2023. He has been a Chief Engineer with
the Computer Network and Protocol Laboratory, Huawei Technologies, since
2023. His research interests include networking and LLM systems.

Xiangyu Gao received the B.S. degree from Taishan College, Shandong
University, Qingdao, China, in 2021. He is currently pursuing the Ph.D. degree
with Tsinghua University, Beijing, China. His research interests include data
center networking and programmable data plane.

Guangmeng Zhou received the Ph.D. degree from the Department of
Computer Science and Technology, Tsinghua University, China, in 2024. He is
currently a Researcher with Huawei Technologies. His main research interests
include network security and programmable switches.

Hanlin Huang received the B.E. degree from the Software College, Nankai
University, Tianjin, China, in 2021. He is currently pursuing the Ph.D. degree
with Tsinghua University. His research interests include datacenter networks
and AQM.

Zhuotao Liu received the Ph.D. degree from the University of Illinois
at Urbana-Champaign, USA. He is currently an Associate Professor with
Tsinghua University. Before joining Tsinghua University, he was a Technical
Lead with Google, managing one of the world’s largest software-defined data
center networks. His research interests include data/AI security and privacy,
blockchain and applied cryptography, and secure internet architecture.

Mowei Wang received the B.E. degree in communication engineering from
Beijing University of Posts and Telecommunications, Beijing, China, in
2017, and the Ph.D. degree from the Department of Computer Science and
Technology, Tsinghua University, Beijing, in 2022. He has been a Chief
Engineer with Huawei Datacom Production Line since 2022. His research
interests include networking and artificial intelligence.

Kun Tan (Senior Member, IEEE) is currently the Vice President of the Central
Software Institute, heading the Distributed and Parallel Software Laboratory,
Huawei. In the past, he has been working on various aspects of networking and
networked systems, AI/serverless frameworks and cloud computing. Before
joining Huawei, he was a Senior Researcher/Research Manager with Microsoft
Research Asia. He has published over 100 papers in top conferences and
journals. He received the USENIX Test-of-Time Award in 2019.

Ke Xu (Fellow, IEEE) received the Ph.D. degree from Tsinghua University,
Beijing, China. He is currently a Full Professor with the Department of
Computer Science and Technology, Tsinghua University. He has published
more than 200 technical articles in the research areas of next-generation
internet, blockchain systems, and network security. He won the IWQoS 24
Best Paper Award and the Distinguished Paper Award at USENIX Security
23/24 and NDSS 25.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 18,2025 at 16:17:33 UTC from IEEE Xplore.  Restrictions apply. 


