
Try before You Buy: Privacy-preserving Data Evaluation on
Cloud-based Machine Learning Data Marketplace

Qiyang Song
1
, Jiahao Cao

2,3
, Kun Sun

1
, Qi Li

2,3
, and Ke Xu

2,3

1
Center for Secure Information Systems, George Mason University, Fairfax, VA, United States

2
Department of Computer Science and Technology, Tsinghua University, Beijing, China

3
Institute for Network Sciences and Cyberspace & BNRist, Tsinghua University, Beijing, China

qsong4@gmu.edu,caojh15@gmail.com,ksun3@gmu.edu,{qli01,xuke}@tsinghua.edu.cn

ABSTRACT

A cloud-based data marketplace provides a service to match data

shoppers with appropriate data sellers, so that data shoppers can

augment their internal data sets with external data to improve their

machine learning (ML) models. Since data may contain diverse

values, it is critical for a shopper to evaluate the most valuable data

before making the final trade. However, evaluating ML data typi-

cally requires the cloud to access a shopper’s ML model and sellers’

data, which are both sensitive. None of the existing cloud-based

data marketplaces enable ML data evaluation while preserving both

model privacy and data privacy. In this paper, we develop a privacy-

preserving ML data evaluation framework on a cloud-based data

marketplace to protect shoppers’ ML models and sellers’ data. First,

we provide a privacy-preserving framework that allows shoppers

and sellers to encrypt their models and data, respectively, while

preserving data functionality and model functionality in the cloud.

We then develop a privacy-preserving data selection protocol that

enables the cloud to help shoppers select the most valuable ML data.

Also, we develop a privacy-preserving data validation protocol that

allows shoppers to further check the quality of the selected data.

Compared to random data selection, the experimental results show

that our solution can reduce 60% prediction errors.

CCS CONCEPTS

• Security and privacy → Cryptography; Privacy-preserving
protocols.

KEYWORDS

Data Market, Neural Networks, Privacy-preserving

ACM Reference Format:

Qiyang Song
1
, Jiahao Cao

2,3
, Kun Sun

1
, Qi Li

2,3
, and Ke Xu

2,3
. 2021. Try

before You Buy: Privacy-preserving Data Evaluation on Cloud-based Ma-

chine Learning Data Marketplace. In Annual Computer Security Applications
Conference (ACSAC ’21), December 6–10, 2021, Virtual Event, USA.ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3485832.3485921

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ACSAC ’21, December 6–10, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8579-4/21/12. . . $15.00

https://doi.org/10.1145/3485832.3485921

1 INTRODUCTION

Nowadays, the advent of deep learning techniques significantly

improves the performance of traditional machine learning (ML) in a

number of fields, such as image recognition [36], speech recognition

[15], and natural language processing [29]. The data-driven deep

learning algorithms heavily rely on a large amount of good-quality

data to train a well-performing learning model, and there is a need

for customers to augment or enrich their internal data sets with

external data. To enable large-scale data acquisition, the industry

gradually develops a number of data marketplaces [3, 9, 18], which

use the Data-as-a-Service mode [41] to build a data exchanging

platform for both enterprises and individuals.

A data marketplace usually offers data of different values for

training a ML model, where the valuable data may significantly

improve the model performance and the less valuable data have

minor contribution. Therefore, it is crucial for a cloud-based data

marketplace to assist data shoppers in evaluating and purchasing

the most valuable data. Typically, evaluating ML data for a data

shopper may require the cloud to access the shopper’s model and

sellers’ data. However, sellers are not willing to expose their data

before the final payment is settled, in fear of their data being leaked

and thus losing values. Meanwhile, shoppers are reluctant to dis-

close their proprietary models since the models are their digital

assets. Therefore, it is necessary to design a privacy-preserving ML

data evaluation framework on a cloud-based data marketplace.

Existing cloud-based data marketplaces [17, 21, 23] provide flex-

ible data search and evaluation. However, they do not support data

evaluation for ML models. Some semi-supervised machine learning

techniques [1, 2] can be used to evaluate valuable training data from

a data pool according to model functionality. However, these tech-

niques do not provide privacy protection on models and data in the

cloud. Existing ML encryption frameworks [7, 14, 16, 19, 27, 31, 32]

can be applied to preserve model privacy and data privacy in the

cloud; however, since they are built on either homomorphic encryp-

tion (HE) [7, 14, 16, 19] or secure multi-party computation (MPC)

schemes [27, 31, 32], they incur prohibitively expensive computa-

tion or communication overhead when executing model functions.

Furthermore, as these frameworks are not specially designed to

evaluate data, we cannot rely on them to provide privacy-preserving

data evaluation.

In this paper, we propose Primal, a privacy-preserving and effi-

cient machine learning data evaluation framework on a cloud-based

data marketplace. It not only enables data sellers to sell ML data

in the cloud without exposing data, but also allows data shoppers

to evaluate and purchase valuable ML data without leaking their

models. Primal is powered by three designs, namely, an efficient

260

https://doi.org/10.1145/3485832.3485921
https://doi.org/10.1145/3485832.3485921
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3485832.3485921&domain=pdf&date_stamp=2021-12-06

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Qiyang Song1 , Jiahao Cao2,3 , Kun Sun1 , Qi Li2,3 , and Ke Xu2,3

ML encryption protocol, a privacy-preserving data selection proto-

col, and a privacy-preserving data validation protocol. Specifically,

the ML encryption protocol enables shoppers and sellers to en-

crypt their models and data in the cloud. The privacy-preserving

data selection and data validation protocol allow the cloud to help

shoppers screen out valuable data from sellers’ encrypted data.

Our ML encryption protocol allows shoppers and sellers to en-

crypt their models and data without depriving the functionality of

models and data in the cloud. Particularly, the functionality means

that the cloud can perform training and prediction operations with

encrypted models and data. For a neural network model, the first

step in training and prediction operations is matrix or convolution

computation. As the two types of computation can be transformed

to inner product operations, we utilize inner product functional

encryption (IFE) [1, 2] to encrypt input data and the parameters of

the first hidden layer. For the parameters of the remaining layers,

we apply matrix transformation to convert these parameters with

random numbers. Since IFE and matrix transformation are light-

weight, we achieve higher efficiency than HE-based andMPC-based

ML encryption.

Note that the cloud cannot directly evaluate valuable data for a

data shopper since sellers’ data are encrypted in the cloud. There-

fore, we design a privacy-preserving data selection protocol that

allows the cloud and a shopper jointly to select valuable data. For a

shopper’s model, valuable data refer to some informative data that

can significantly improve its model performance. As active learning

[5, 13, 20] can estimate data informativeness with prediction values,

the cloud and shopper can utilize this technique to select valuable

data without seeing the original data. To provide prediction values

for evaluation, our data selection protocol offers a prediction ap-

proach that allows the cloud to use a shopper’s encrypted model

to predict sellers’ encrypted data. Then, the shopper can retrieve

some prediction values from the cloud to evaluate sellers’ data.

Although the data selection protocol can select informative data

for a shopper, the selected data may contain irrelevant or falsely

labeled data, which may poison the shopper’s model. Therefore, we

design a privacy-preserving data validation protocol that allows the

shopper to further examine the quality of the selected data. Note

that the shopper cannot access the original data before the final

payment. Thus, it cannot directly estimate data quality. Fortunately,

another possible approach is to use the selected data to retrain the

shopper’s model and observe the change of model performance to

estimate data quality. More specifically, the shopper first requires

the cloud to retrain its encrypted model with the selected data, and

it then collects some prediction values to estimate data quality.

We conduct a security analysis of Primal and prove its security

in the untrusted cloud. Additionally, we carry out experiments to

demonstrate the effectiveness and efficiency of Primal. Experimen-

tal results show Primal can effectively select valuable ML data that

significantly improves model performance. Compared to random

data selection, Primal can reduce 60% prediction errors. Even if the

selected data contain irrelevant and falsely labeled data, Primal can

detect such data with more than 99% accuracy. Furthermore, the

results show that Primal achieves high efficiency on encryption

and machine learning operations. For example, Primal can provide

17× faster prediction operations compared to a popular HE-based

ML encryption framework.

In summary, we make the following contributions:

• We propose a privacy-preserving and efficient ML data evalua-

tion framework on a cloud-based data marketplace.

• We provide an efficient ML encryption protocol that can pre-

serve both the privacy and functionality of sellers’ models and

shoppers’ data in the cloud.

• We design a privacy-preserving data selection protocol and

data validation protocol that allow the cloud to help a shopper

select and refine valuable data.

• We conduct a security analysis and experiments to demonstrate

the security, effectiveness, and efficiency of Primal.

2 BACKGROUND

In this section, we provide the necessary background on neural

networks, active learning, and inner product functional encryption.

Neural Networks. Typical neural networks, e.g., CNNs and MLPs,

consist of an input layer, hidden layers, and an output layer. Par-

ticularly, the input layer receives high dimensional input data, the

output layer outputs the corresponding prediction values
1
, and

the hidden layers learn the relationship between input data and

prediction values. In this section, we briefly introduce two fun-

damental types of hidden layers, i.e., fully-connected layers and

convolution layers. A fully-connected layer receives the input data

from the previous layers and perform computation as f (W®x + b),
where W is a parameter matrix, ®x is the input data, b is a bias, and

f is an activation function. Note that b can be embedded into the

matrix W. A convolution layer performs convolution computation

between convolution kernels and input data (a two-dimensional

matrix), runs activation functions, and then outputs a feature map

(activation values) to the next layer. Here, we provide a brief review

of some technical terms as follows.

• Convolution computation: maps a two-dimension matrix to a

new matrix with convolution kernels. It consists of multiple

convolution strides. In each stride, it executes inner product

operations between a subarea of the input matrix and kernels.

• Activation function: is a non-linear function. Prior work has

proposed a variety of activation functions, such as Relu, Sig-

moid, and Squared Function [10, 26].

• Cost function: computes the prediction errors between predic-

tion values and labels, which can reveal prediction performance.

• Feed forward: is a process that data flows from the input layer

to the output layer. It finally outputs prediction values.

• Back propagation: is a part of model training. It computes pa-

rameter gradients ∇W according to a cost function and then

updates parameters W. To be precise, the parameters are up-

dated as W − α ∗ ∇W, where α is a learning rate.

Active Learning. Active learning is a semi-supervised machine

learning approach, enabling a trainer to select informative training

data from an unlabeled data pool. Compared with random data

selection, active learning can select informative data to significantly

change the decision boundary of models. In the field of active

learning, uncertainty selection [5, 13, 20] is a popular data selection

algorithm, which can select informative data with prediction values

instead of accessing original data.

1
Prediction values refer to the confidence values on multiple classes.

261

Try before You Buy ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Inner Product Functional Encryption (IFE). As a new genera-

tion of public-key encryption, inner-product functional encryption

allows an untrusted party to efficiently compute inner products over

ciphertexts with restricted decryption keys. It works as follows:

• Setup(1
k
): takes a security parameter 1

k
as input, and outputs

a master key pair (msk,mpk).
• KeyGen(®x ,msk): takes a vector ®x and a master secret keymsk
as input, and outputs a secret functional key skx .
• Encrypt(®y,mpk): takes a vector ®y and a master secret keympk

as input, and outputs a vector of ciphertexts ®Cy .

• Decrypt(®Cy , skx): takes a ciphertext ®Cy and a secret functional

key skx as input, and outputs the original inner product ®x · ®y.

• MDec(®Cy ,msk): takes a ciphertext ®Cy and a master secret key

msk as input, and outputs the original vector ®y.

3 SYSTEM OVERVIEW

In this section, we first describe our threat model and assumptions.

We then present the Primal architecture.

3.1 Threat Model and Assumptions

In this paper, we consider a typical cloud-based data marketplace

consisting of a data shopper, a group of data sellers, and an untrusted

cloud. To gain benefits from their data, sellers tend to upload their

data to the cloud for sale. The shopper tries to purchase valuable

sellers’ data from the cloud to improve its ML model. Rather than

access the original sellers’ data, the shopper retrieves auxiliary

information (i.e., prediction values) from the cloud to evaluate

sellers’ data. We assume the cloud is honest-but-curious [8, 28, 33].
In other words, the cloud follows the predefined protocol faithfully,

but it may exploit the shopper’s model and sellers’ data to make

profits or derive some personal information.

We do not particularly consider the adversarial relationship be-

tween the shopper and sellers. Although model inversion attacks

[12, 39] may facilitate the shopper to derive original data from pre-

diction values, these attacks are difficult to be launched since they

require enormous data to model the relationship between predic-

tion values and the original data; however, the shopper who intend

to purchase data often have a small amount of data. Additionally,

we assume sellers desire to profit fully from their data. Therefore,

they do not launch data poisoning attacks [35] since most of them

often degrade the shopper’s model performance, and thus they can

be easily detected. In this paper, we only consider that sellers may

unintentionally hold a small set of irrelevant or mislabeled data.

3.2 System Architecture

Figure 1 illustrates the architecture of Primal, a privacy-preserving

and efficient ML data evaluation framework on a cloud-based data

marketplace. Overall, Primal contains three components: (i) a group
of data sellers, who encrypt their data and upload them to the cloud

for sale; (ii) a data shopper, who encrypts its model parameters and

uploads them to the cloud for evaluation; (iii) a cloud server, which
can help the shopper evaluate sellers’ encrypted data.

Primal is powered by three designs: an efficient machine learning

encryption protocol, a data selection protocol, and a data valida-

tion protocol. Our encryption protocol applies lightweight inner

Model
Encryption

….

Data Sellers Data Shopper

Public Keys

Cloud

Encrypted
Prediction values

Setup

Data
Selection

Data
Validation

Machine Learning Encryption
Data

Encryption

Figure 1: Primal Architecture

product functional encryption (IFE) and matrix transformation to

encrypt ML models and data. Additionally, it also allows the cloud

to perform prediction or training operations with the encrypted

model and data. By collecting prediction values from the cloud, the

data selection protocol utilizes active learning to select potentially

valuable data. As the selected data may contain irrelevant or falsely

labeled data, the data validation protocol further examines data

quality to screen out high-quality data.

Overall, Primal consists of five phases: Setup, Data encryption,
Model enryption, Data selection, and Data validation, where the first
three phases are included in our ML encryption protocol. Here, we

go through the five phases to provide a brief view of our framework.

Setup. The data shopper chooses a security parameter and initial-

izes a set of random numbers, a master public key, and a master

secret key. Then, the master public key is broadcast to data sellers

for data encryption, and the master secret key and random numbers

are used to encrypt model parameters.

Data Encryption. Sellers utilize IFE to preserve both data privacy

and data functionality in the cloud. Particularly, the functionality

means that the cloud can perform training and prediction opera-

tions with the shopper’s encrypted model and sellers’ encrypted

data. In training and prediction operations, there are two types of

computation related to sellers’ data: matrix and convolution com-

putation. As the two types of computation can be transformed into

inner product operations, it is natural for sellers to transform their

data into vectors and encrypt them using IFE.

Model Encryption. There are mainly two types of computation

in the first hidden layer of a seller’s model, i.e., matrix or convolu-

tion computation. Note that the two types of computation can be

converted to inner product operations. Therefore, the shopper can

transform the parameters of the first hidden layer to vectors and

utilize IFE to encrypt them. As a result, the privacy and function-

ality of the first hidden layer can be preserved. Nevertheless, IFE

cannot be applied to encrypt an entire multi-layer model since it

only supports simple inner product operations. Therefore, the shop-

per also utilizes matrix transformation to encrypt the parameters

of the remaining layers.

Data Selection. For an ML model, valuable data contain much

informativeness and can significantly improve model performance.

Particularly, data informativeness can be revealed by the prediction

262

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Qiyang Song1 , Jiahao Cao2,3 , Kun Sun1 , Qi Li2,3 , and Ke Xu2,3

values of data. Therefore, it seems possible for the shopper to per-

form some prediction operations and then collect prediction values

to estimate data informativeness. However, the shopper cannot ac-

cess sellers’ data before the final payment. Therefore, it relies on the

cloud to perform prediction operations with its encrypted model

and sellers’ encrypted data. Then, it decrypts prediction values and

adopts active learning to select informative data.

Data Validation. Although informative data may significantly

improve model performance, they could contain irrelevant data or

falsely labeled data, which may mislead the classification of models.

Therefore, the shopper needs to examine the quality of the selected

data. However, the shopper cannot directly access sellers’ data to

estimate data quality before the final payment. Fortunately, for a

specific ML model, the prediction values of some data can reveal

the quality of previously training data. Therefore, the shopper can

inform the cloud to retrain its model with the selected data and then

use the retrained model to output some encrypted prediction values.

Next, the shopper retrieves these prediction values and decrypts

them to estimate data quality.

4 EFFICIENT MACHINE LEARNING

ENCRYPTION PROTOCOL

In this section, we first utilize inner product functional encryption

(IFE) and matrix transformation to propose an efficient ML encryp-

tion protocol, providing encryption approaches for input data and

the parameters of neural networks. Then, we illustrate how to en-

crypt a typical CNN model and input data using our ML encryption

protocol. Although we only display the encryption approach for a

CNN model, our ML encryption protocol can also be generalized to

encrypt other neural network models.

4.1 Setup

Our ML encryption protocol provides a setup approach for a data

shopper. It runs IFE’s setup algorithm to initialize a master key pair

(mpk ,msk) and chooses a set of randomnumbersR from a finite field

Zq . After initialization, the shopper sendsmpk to data sellers for

data encryption, and storesmsk and R to encrypt model parameters.

Particularly, msk is used to encrypt the parameters of the first

hidden layer with IFE, and R is used to transform parameters. To

be precise, ®Ri ∈ R is an ni -dimension vector of random numbers

used to transform the parameters of the i-th fully-connected hidden
layer, and Ri ∈ R is anmi × ni matrix of random numbers used to

transform the parameters of the i-th convolution hidden layer.

Algorithm 1: Data Encryption for Matrix Computation

Input: data ®x , a master public keympk ;

Output: encrypted data ®Cx ;

1
®Cx →IFE.encrypt(®x ,mpk);

2 return ®Cx ;

4.2 Data Encryption

Our ML encryption protocol allows data sellers to protect data and

also retain data functionality in the cloud. Particularly, the func-

tionality means that data can be used for training and prediction. In

training and prediction, there are two types of computation related

to input data, i.e., matrix and convolution computation. Therefore,

we provide two data encryption approaches for matrix and convo-

lution computation, respectively.

Algorithm 2: Data Encryption for Conv. Computation

Input: data X (a two-dimension matrix), a convolution

kernel width Kw , a stride length s , a master public

keympk ;
Output: encrypted data CX;

1 t ← (X.width − Kw + 1)/Lstr ;
2 initiate a (t × t × (Kw)

2
) matrix CtX ;

3 for i ∈ {0, · · · , t} do
4 for j ∈ {0, · · · , t} do
5 xs ← i ∗ s , ys ← j ∗ s;

6 convert X[xs : xs + Kw][ys : ys + Kw] to ®X ′;
7 CX [i][j][:] ← IFE.encrypt(®X ′,mpk);

Algorithm 1 shows the data encryption approach for matrix

computation. As Figure 2 shows, the computation between input

data ®x and a parameter matrix can be naturally divided to inner

product operations between ®x and multiple vectors. Thus, we can

directly use IFE to encrypt ®x , which preserves both data privacy

and its functionality of matrix computation. Algorithm 2 shows the

data encryption approach for convolution computation. As Figure 4

shows, the convolution computation between two-dimension input

data X and a kernel can be decomposed to inner product operations

between a subarea of X and a (transformed) kernel. Therefore, we

first split X to multiple subareas and transform them to a set of

vectors {
®X ′
11
,
®X ′
22
, · · · }. Then, we utilize IFE to encrypt { ®X ′

11
,
®X ′
22
, · · · }.

As a result, both data privacy and the functionality of convolution

computation can be preserved.

4.3 Model Encryption

OurML encryption protocol provides model encryption approaches

that allow a data shopper to preserve the privacy and functionality

of its model in the cloud. Note that neural network models mainly

consist of fully-connected and convolution layers, and there are

two different types of computation, i.e., matrix and convolution

computation, in a fully-connected and a convolution layer. As the

two types of computation can be decomposed into inner product op-

erations, and IFE enables inner product operations over ciphertexts,

we can utilize IFE to encrypt the parameters of a hidden layer.

Although applying IFE can protect the parameters of a hidden

layer, it is not sufficiently secure since it reveals computation results

in plaintexts. Additionally, since it only supports simple inner prod-

uct operations, it can only be applied to encrypt the first hidden

layers. Therefore, we also apply matrix transformation to encrypt

entire model parameters. To support matrix transformation across

layers, we set the activation function to the squared function. Prior

work [10, 26] has proved squared activation functions are as ex-

pressive as common activation functions, e.g. Relu and Sigmoid.

Encrypting a Fully-connected Layer.Algorithm 3 shows the en-

cryption approach for a fully-connected layer. If this fully-connected

263

Try before You Buy ACSAC ’21, December 6–10, 2021, Virtual Event, USA

w21 w22 w23

w11 w13w12

x3

x2

x1

Parameter Matrix W1

x3

x2

x1

c3

c2

c1 sk2

Input data x

sk1

x

r1w13r1w12r1w11

C

z1
2

Z2
2

IFE-basd Data Enc IFE-basd Model Enc

ski = IFE.KeyGen(riW1[i][:] ,msk)

r2w23r2w22r2w21

C= IFE.KeyGen(x, mpk)

r1y1

r2y2

zi = IFE.Decrypt(C, ski)

IFE can reveal the result of mat computation over ciphertexts

output encrypted activation values

Send to next layer Square Activation

IFE-based Mat
Computation

Z1 = (R1 ✕ Y1)

Z1
2 = (R1 ✕ Y1)2

Y1[i]= Mat(W1, x)[i]
CW

Vectorize &
Mat Transformation

Using R1
R1[2] *W1[2][:]

R1[1]* W1[1][:]

Figure 2: IFE-based Data Encryption, Model Encryption, and

Matrix Computation in a Fully-connected Layer (First Hid-

den Layer).

Algorithm 3: Encrypting a Fully-connected Layer (the i-th
Hidden Layer)

Input: a parameter matrixWi , a master secret keymsk , a

vector of random numbers ®Ri chosen for the i-th
layer, and a vector of random numbers ®Ri−1 chosen
for the (i − 1)-th layer (if i > 0) ;

Output: encrypted parameters CWi ;

1 ∅ → CWi or ®CW i ;

2 if i == 1 then

3 for j ∈ {0, · · · ,Wi .row_num} do
4

®CW i [j] ←IFE.KeyGen(®R1[j] ∗W[j][:],msk);

5 return ®CWi ;

6 else

7 for j ∈ {0, · · · ,Wi .row_num} do
8 for k ∈ {0, · · · ,Wi .col_num} do
9 CWi [j][k] ←Wi [j][k] ∗ ®Ri [j]/(®Ri−1[k])

2
;

10 return CWi ;

layer is the first hidden layer, it is natural to convert a parameter

matrix W1 to row vectors and apply IFE to encrypt them. How-

ever, only applying IFE to encrypt parameters is not sufficiently

secure since IFE can reveal computation results in plaintexts. The

original parameters and data may be derived from the plaintexts

through matrix decomposition. Therefore, we also apply matrix

transformation to convert W1.
As Figure 2 shows, we first decomposeW1 to row vectors and

apply matrix transformation to convert them. To be precise, we

choose a vector of random numbers ®R1 = {r1, r2, · · · } and transform

each row vector W1[j][:] to a vector ®R1[i]W1[j][:]. Then, we use
IFE to encrypt the transformed vectors. By combining IFE with

matrix transformation, the result ®Z of matrix computation can be

fully protected. Particularly, the result revealed by IFE is a random

vector ®Z1 = ®R1 × ®Y1. Therefore, attackers cannot learn the original

computation result ®Y1 without knowing ®R1. By executing the square

activation function with the result ®Z1, this layer will output random

activation values ®Z 2 = ®R1
2

× ®Y1
2

to the next layer.

z
1

2

Z
2

2

w
22

w
11

w
12

w
21w’

22

w’
11

w’
12

w’
21

z’
1

z’
2

CW
i
= C

i
 ✕ W

i

previous (i-1)-th hidden Layer

Mat Computation

Square activationSend to next Layer

z
1

2

Z
2

2

W
i

Input data

CW
i
 Z

(i-1)

2

Direct matrix computation over ciphertexts

Output encrypted activation values

Z
i
 = R

i
 ✕ Y

i

Y
i
=Mat(W

i
, Y

(i-1)

2
)

Z
i

2
= R

i

2
 ✕ Y

i

2

 , C
i
 [k][v] = R

i
[k]/R

(i-1)

2
 [v]

Model Enc

(Mat Transformation

Using R
i
 and R

(i-1)
)

Z
(i-1)

2
 = R

(i-1)

2
 ✕ Y

(i-1)

2

Figure 3: Model Encryption and Matrix Computation in a

Fully-connected Layer (i-th Hidden Layer).

If a fully-connected layer is the i-th hidden layer (i > 1), we

choose a vector of random numbers and utilize matrix transforma-

tion to protect the parameters of this layer. As Figure 3 shows, this

layer receives the output (activation values) from the previous layer

as input data. Particularly, the input data from the previous layer

can be presented as ®Z 2

i−1 =
®R2i−1 ×

®Y 2

i−1. For instance, the input

from the first fully-connected hidden layer are ®Z 2

1
= ®R2

1
× ®Y 2

1
. As

the original input ®Y 2

i−1 is encrypted by a vector of random numbers

®R2i−1, we cannot perform correct matrix computation between ®Y 2

i−1
and the parameters of this layer. To guarantee correct matrix com-

putation, we also need to eliminate the effect of random numbers

®R2i−1 in matrix transformation.

As Figure 3 shows, we choose a vector of random numbers ®Ri
and transforms the parameters Wi to W′i = Ci ×Wi, where Ci is a

matrix whose element is ®Ri [k]/®R
2

i−1[v]. As a result, each element

Wi[k][v] of the parameters is randomized by a different random

number ®Ri [k]/®R
2

i−1[v]. Therefore, the privacy of parameters are

fully preserved. Additionally, we multiply each row vectorWi[k][:]

of parameters with a vector 1/®R2i−1. This eliminates the effect of

random numbers ®R2i−1 from the input data in matrix computation,

which guarantees the correct execution of matrix computation. In

264

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Qiyang Song1 , Jiahao Cao2,3 , Kun Sun1 , Qi Li2,3 , and Ke Xu2,3

this way, this layer can perform correct matrix computation be-

tween the transformed parameters and input data, and then output

the result as ®Zi = ®Ri × ®Yi . As ®Ri is a random vector, the original

result ®Yi cannot be derived from ®Zi . By executing the square acti-

vation function with ®Zi , this layer will output random activation

values ®Z 2

i =
®R2i ×

®Y 2

i to the next layer.

Encrypting a Convolution Layer. Algorithm 4 shows the en-

cryption approach for a convolution layer. For simplicity, we only

consider a convolution kernel in this layer. This algorithm can be

generalized to support multiple kernels. If a convolution layer is the

first hidden layer, we convert a kernel into vectors and apply IFE

to encrypt kernel parameters. Particularly, as convolution compu-

tation in this layer can be decomposed to inner product operations,

we can utilize IFE to retain the convolution functionality of this

layer. However, only applying IFE to encrypt the kernel is not secure

since IFE can reveal computation results in plaintexts. Therefore,

we also apply matrix transformation to convert the kernel.

k1 k2

k4k3
r11k4r11k3r11k2r11k1

……

……

r11K

r12K

Kernel K

Data X

x22x21x12x11

x24x23x14x13

x42 x43 x44x41

x33x31 x32 x34

x21 x23 x24x22

x14x13x12x11

c22c21c12c11

c24c23c14c13

sk11

sk12

C11

r12k4r12k3r12k2r12k1

X’11

X’12

C12

z23

z31

z21

z33

z11 z12

z31

z13

z22

……

……

Z1 = (R1 ✕ Y1)
……

Z1
2 = (R1

2 ✕ Y1
2)

Vectorize &
Mat Transformation

Using R1

IFE-basd Data Enc
IFE-based Model

(Kernel) Enc

IFE-based Conv.
Computation

zij = IFE.Decrypt(Cij, skij)

Cij = IFE.Encrypt(X’ij ,mpk) skij = IFE.KeyGen(rijK, msk)

z32z31 z33

z13

z23z22

z12

z21

z11

2

22

2

2

2

222

IFE can reveal convolution results over ciphertexts

Send to next layer Square Activation

output encrypted activation values

Y1 = Conv(K, X)

Figure 4: IFE-based Data Encryption, Model Encryption, and

Convolution Computation in a Convolution Layer (First

Hidden Layer). Here, the convolution stride is 1.

As Figure 4 shows, we first convert the parameters of a kernel

to a vector ®K and apply matrix transformation to convert it. To be

precise, we first choose a matrix of random numbers R1, whose
each element is ri j . Then, we transform ®K to a set of random vectors

{r11 ®K , r12 ®K , · · · } and utilize IFE to encrypt these vectors. By com-

bining IFE with matrix computation, the result Z of convolution

computation can be fully protected. As Figure 4 shows, the result

Z1 revealed by IFE is a random matrix Z1 = R1 ×Y1. Therefore, the
original result Y1 cannot be derived without R1. By executing the

square activation function with Z1, this layer will output random
activation values Z12 = R12 × Y12 to the next layer.

If a convolution layer is the i-th hidden layer (i > 1), we choose

a matrix of random numbers and utilize matrix transformation

Algorithm 4: Encrypting a Conv. Layer (the i-th Hidden

Layer)

Input: the width of input Iw , a kernel Ki , a stride length s , a
master secret keymsk , a matrix of random numbers

Ri−1 chosen for the (i − 1)-th layer (if i > 1), and Ri
chosen for the (i − 1)-th layer;

Output: encrypted parameters CKi ;
1 t ← (Iw − |Ki | + 1)/s;

2 if i == 1 then

3 initiate a t × t matrix CKi ;
4 for k ∈ {0, · · · , t} do
5 for v ∈ {0, · · · , t} do
6 CKi [k][v] ← IFE.KeyGen(Ri[k][v] ∗ Ki ,msk);

7 else

8 initiate a (t × t × |Ki | × |Ki |)matrix CKi ;
9 for k ∈ {0, · · · , t} do
10 for v ∈ {0, · · · , t} do
11 CKi [k][v][:][:] = Ri[k][v]/R2i−1[k ∗ s :

k ∗ s + |Ki |][v ∗ s : v ∗ s + |Ki |] × Ki;

12 return CKi ;

to protect the kernel of this layer. As Figure 5 shows, this layer

receives the output (activation values) from the previous layer as

input data. Particularly, the input data from the previous layer can

be presented as Zi2 = Ri−12 × Yi−12. For instance, the input from
the first convolution hidden layer is Z12 = R12 × Y12. As Zi−12 is
encrypted by a matrix of random numbers Ri−12, we cannot directly
perform convolution computation between Zi−12 and the (trans-

formed) kernel. To guarantee correct convolution functionality, we

also need to eliminate the effect of random numbers Ri−1 in matrix

transformation.

As Figure 5 shows, we choose a matrix of random number Ri and
transform the kernel Ki to a set of random kernel matrices {CK00,
CK01, · · · }, according to the convolution stride length s and kernel
width |Ki |. As line 11 of Algorithm 4 shows, each matrix CKkv is
randomized by different random matrices. Thus, the privacy of the

kernel is fully preserved. Furthermore, matrix transformation elim-

inates the effect of random numbers in the subarea and guarantees

the convolution functionality of this layer. Specifically, the input

data Zi−12 used in the (k ×v)-th stride of convolution is multiplied

by a random matrix R2i−1[k ∗ s : k ∗ s + |Ki |][v ∗ s : v ∗ s + |Ki |].

As the corresponding kernel matrix CKkv is divided by R2i−1[k ∗ s :
k ∗ s + |Ki |][v ∗ s : v ∗ s + |Ki |], the effect of random numbers

are eliminated and thus the inner product operation between the

subarea and CKkv can be executed correctly.

In this way, after performing a series of inner product operations

between multiple subareas and {CK00, CK01, · · · }, we can obtain

the result of entire convolution computation Zi = Ri × Yi . As Ri
is a random matrix, the original convolution result Yi cannot be
derived. After running the square activation function, this layer

will output random activation values Zi2 = R2i × Y
2

i .

265

Try before You Buy ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Model Enc

(Mat Transformation

Using R
i
 and R

(i-1)
)

previous (i-1)-th hidden Layer

Transformed Conv. Computation

Square activationSend to next Layer

z
’

1

2

Z
’

2

2

K
i

Input data

Direct matrix computation over ciphertexts

Output encrypted activation values

Y
i

= Conv(K
i
, Z

(i-1)

2
)

Z
(i-1)

2
 = (R

(i-1)

2
 ✕ Y

(i-1)

2
)

CK
00

k
1

k
2

k
4

k
3

CK
01

CK
kv

= R
i
[k][v]/R

(i-1)
[k:k+2][v:v+2]

2 ✕ K
i

k
1
’ k

2
’

k
4
’k

3
’

k
1
’’ k

2
’’

k
4
’’k

3
’’

CK
00

✕Z
(i-1)

2 [0:2][0:2], CK
01

✕Z
(i-1)

2
[1:3][0:2]

CK
10

✕Z
(i-1)

2
[0:2][1:3], CK

11
✕Z

(i-1)

2 [1:3][1:3]

CK
10 CK

11

z
’

11
z
’

12

z
’

11
z
’

12

z
23

z
31

z
21

z
33

z
11

z
12

z
31

z
13

z
22

Z
i
 = (R

i
 ✕ Y

i
)

Z
i

2
 = (R

i

2
 ✕ Y

i

2
)

Figure 5: Model Encryption and Convolution Computation

in a Convolution Layer (i-th Hidden Layer). Here, the convo-

lution stride is 1.

4.4 Case Study: Encrypting a CNN Model and

Data

A typical CNN model, e.g., LeNet-5 [22], consists of convolution

layers, pooling layers, and followed by fully-connected layers. We

do not provide a special encryption approach for pooling layers in

our ML encryption protocol since they are essentially convolution

layers. Here, we show how to encrypt a CNN model and input data

using our ML encryption protocol.

Model and Data Encryption. In CNN tasks, data are first input

into a convolution layer. Therefore, we utilize Algorithm 2 to en-

crypt data, which retains the functionality of convolution in ci-

phertexts. For a typical CNN model, we firstly utilize Algorithm 4

to encrypt the parameters of convolution layers and then utilize

Algorithm 3 to encrypt the parameters of fully-connected layers.

We notice that only the parameters of the first hidden layer are

encrypted by the IFE cryptographic scheme. Therefore, the encryp-

tion time and execution time of a privacy-preserving CNN model

are determined by the first hidden layer.

Packing Optimization. When using a typical CNN model to pre-

dict images, adjacent image subareas are often mapped to an el-

ement of feature map (intermediate output) by convolution and

pooling layers. Therefore, we can pack these subareas into a cipher-

text to reduce the encryption time and execution time. Here, we

consider a typical pooling layer, i.e., mean pooling layer. Let Fpoo be
the output feature map of this pooling layer, Z be the output feature

map of the previous convolution layer,wp be the pooling size. The

feature map Fpoo output by convolution and pooling layers can be

represented as follows:

Fpoo [i][j] =
x=i∗wp+wp,y=j∗wp+wp∑

x=i∗wp,y=j∗wp

Z[x][y]/w2

p , (1)

Let K be the convolution kernel and X be the convoluted data.

Considering Z[x][y] = K × Xx,y , where Xx,y = [x ∗ s : x ∗ s +
wk][y ∗ s : y ∗ s +wk], we can extend Equation 1 as follows:

Fpoo [i][j] =
x=i∗wp+wp,y=j∗wp+wp∑

x=i∗wp,y=j∗wp

(K × Xx,y)/w
2

p

= (

x=i∗wp+wp,y=j∗wp+wp∑
x=i∗wp,y=j∗wp

Xx,y/w
2

p) × K

= AVG(Xx,y) × K

(2)

According to Equation 2, we can pack multiple image subareas

Xx,y using AVG(Xx,y). As a result, the convolution and pooling

computation can be executed in one step. Therefore, the image size,

the execution time, and the encryption time of the CNN model can

be reducedw2

p times.

5 PRIVACY-PRESERVING DATA SELECTION

We first present a privacy-preserving data prediction approach that

allows the cloud to perform prediction operations with a shop-

per’s encrypted model and sellers’ encrypted data. Based on this

prediction approach, we offer a privacy-preserving data selection

protocol.

5.1 Privacy-preserving Data Prediction

Algorithm 5: Feed Forward in a Fully-connected Layer

(the i-th Hidden Layer)

Input: encrypted parameters CWi or ®CW i , the encrypted

input from the (i − 1)-th layer (if i > 1, the input is

®Z 2

i−1; else if i == 1, the input is ®Cx);

Output: the output ®Zi of the i-th layer;

1 if i == 1 then

2 for j ∈ {0, · · · , | ®CW i |} do
3

®Zi ← IFE.Decryt(®Z 2

i−1,
®CW i [j]);

4 else

5
®Zi ← CWi ®Z

2

i−1;

6 return (®Zi)
2
;

Fully-connected Layers. Algorithm 5 shows the feed forward

process in fully-connected layers. If a fully-connected layer is the

first hidden layer, it applies IFE’s functional decryption to perform

matrix computation and output ®Z1 = ®R1 × ®Y1, where ®Y1 is the origi-

nal result and ®R1 is a random number vector. If a fully-connected

layer is the i-th hidden layer (i > 1), it directly performs matrix

computation as follows.

266

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Qiyang Song1 , Jiahao Cao2,3 , Kun Sun1 , Qi Li2,3 , and Ke Xu2,3

Algorithm 6: Feed forward in a Convolution Layer (the

i-th Hidden Layer)

Input: encrypted kernel parameters CKi , the encrypted
input from the (i − 1)-th layer (if i > 1, the input is

Z2i−1; else if i == 1, the input is CX), the kernel
width Kw and stride length s;

Output: the output Z2i of the i-th layer;

1 if i == 1 then

2 for k,v ∈ {0, · · · , |CKi |} do
3 Zi [k][v] ← IFE.Decryt(CX[k][v][:],CKi [k][v]);

4 else

5 for k,v ∈ {0, · · · , |CKi |} do
6 Zi = Z2i−1[k ∗ s : k ∗ s + Kw][v ∗ s :

v ∗ s + Kw] × CKi [k][v][:][:];

7 return (Zi)2;

®Zi = CWi ®Z
2

i−1 = (Ci ×Wi)(®R
2

i−1 ×
®Z 2

i−1)

= (Ci ®R
2

i−1) × (Wi ®Z
2

i−1)

= ®Ri × ®Yi

(3)

where ®Yi is the original result and ®Ri is a random vector. After

running the square activation function, this layer outputs random

activation values ®Z 2

i =
®R2i ×

®Y 2

i , where
®Y 2

i is the original output of

the i-th layer.

Convolution Layers.Algorithm 6 shows the feed forward process

in convolution layers. If a convolution layer is the first hidden layer,

it transforms convolution computation to inner product operations

between the encrypted kernel parameters and subareas of input

data, and then utilizes IFE’s functional decryption to reveal the

convolution result Z1 = R1 × Y1, where R1 is a random number

matrix, and Y1 is the original result. If a convolution layer is the

i-th hidden layer (i > 1), it also converts convolution computation

to inner product operations between the subareas Z2i−1,kv of input

data and random kernel matrices CKi = {CK11, · · · }. Let Kw be

the kernel width and s be the stride length. The (k ∗ v)-th inner

product operation is as follows.

Zi [k][v] =CKi [k][v][:][:] · Z2i−1,kv
=Ri [k][v](K · Z2i−1,kv)

=Ri [k][v]Yi [k][v],

(4)

where Z2i−1,kv = Z2i−1,kv [s ∗ k : s ∗ k + Kw][s ∗v : s ∗v + Kw]. By

performing multiple inner product productions, this layer outputs

the convolution resultZi = Ri×Yi , whereRi is a randommatrix and

Yi is the original result. Finally, this layer runs the square activation
function to output random activation values Z2i = R2i × Y

2

i .

5.2 Data Selection

As valuable data contain much informativeness and can signifi-

cantly improve model performance, a shopper can evaluate data

informativeness to screen out potentially valuable data. Note that

data informativeness for a specific model can be revealed by predic-

tion performance. Therefore, the shopper can collect the prediction

values of sellers’ data to estimate data informativeness. As the shop-

per cannot access sellers’ data before the final payment, it relies on

the cloud to output the prediction values of sellers’ data. To protect

model privacy and data privacy as well as enabling prediction oper-

ations in the cloud, we leverage privacy-preserving data prediction

to propose a data selection protocol. It works as follows.

Step 1: prediction operation. First, this protocol requires the

shopper and sellers to upload their encrypted model and data into

the cloud. Second, the cloud uses the shopper’s encrypted model

to predict sellers’ encrypted data (see Section 5.1). It then sends

encrypted prediction values back to the shopper.

Step 2: data section based on prediction values. In a prediction

operation, as aforementioned, each fully-connected layer outputs a

random vector ®Zi
2

= ®Ri
2

× ®Yi
2

, and each convolution layer outputs

a random matrix Z2i = Ri2 ×Yi2. Therefore, if the prediction values

®Zn
2

are from a fully-connected layer, the shopper decrypts them

by multiplying with 1/ ®Ri
2

. If the prediction values Zn2 are from a

convolution layer, the shopper decrypts them by multiplying with

1/Ri2. After obtaining the original prediction values, the shopper

then applies active learning to evaluate data informativeness.

We choose an uncertainty sampling algorithm as our active

learning algorithm. Most existing uncertainty sampling algorithms

[37] use the entropy score of prediction values to select informative

data for binary classification; however, the entropy score cannot

accurately reflect the uncertainty degree for multi-class learning

since the score is always affected by unimportant classes. Hence,

we adopt Best-vs-Second-Best (BvSB) selection algorithm [20] that

considers the difference between the best and the second guess.

Avoiding selecting duplicates or near-duplicates that seem to

be valuable, our data selection protocol does not choose a large

dataset at one time. Instead, it selects valuable data in multiple

steps. In each step, the shopper selects and purchases a small set

of samples to train their ML models. As a result, the features of

these samples will be learned by the shopper’s model, and thus the

informativeness of the corrsponding duplicates and near-duplicates

will decrease. Subsequently, the duplicates and near-duplicates are

not likely to be evaluated as valuable.

6 PRIVACY-PRESERVING DATA VALIDATION

We first present a privacy-preserving data training approach that

allows the cloud to perform training operations with a shopper’s

encrypted model and sellers’ encrypted data. Based on this train-

ing approach, we then offer a privacy-preserving data validation

protocol.

6.1 Privacy-preserving Model Training

There are multiple epochs in model training, each of which con-

sists of a feed forward process and a back propagation process. We

only present back propagation here since we have described feed

forward in Section 5.1. Considering the feature of our Primal frame-

work, back propagation is designed to the multi-party computation

involving an untrusted cloud, a data shopper (model owner), and

multiple data sellers (data owners).

267

Try before You Buy ACSAC ’21, December 6–10, 2021, Virtual Event, USA

In a training epoch, the cloud first performs a feed forward pro-

cess and sends encrypted prediction values to the shopper. Then,

the shopper decrypts them and executes a cost function to output

the prediction cost between the original prediction values ®Z 2

n and

labels ®L. Here, for simplicity but without loss of generality, we as-

sume the cost function is the mean square error function. Therefore,

the gradients of the output layer can be presented as δ = ®Z 2

n − ®L.
For back propagation, the shopper needs to send the gradients

to the cloud. As the cloud may infer ®Zn
2

from the gradients, the

shopper chooses a random vector ®Rc = {r1, r2, · · · } to randomize

the gradients as δ ′ = (®Rc × (®Z
2

n − ®L)) and then sends them to the

cloud. Subsequently, the cloud can compute the gradients of each

hidden layer and update all parameters. Since the parameters of the

first hidden layer and back layers are encrypted by two methods,

respectively, the cloud updates parameters in two forms.

Back Hidden layers. For the i-th hidden layer (i > 1), the cloud

can compute the following gradients according to the chain rule.

∂δ ′

∂CWi
= TiG ×

∂δ

∂Wi
, (5)

where TiG is a random matrix, which can be presented as follows.

TiG [k][v] = (®Rc × ®Rn) ∗ ®R
2

i−1[v]/
®Ri [k], (6)

where ®Ri is a random vector chosen for the i-th hidden layer, and

®Rn is a random vector chosen for the last hidden layer.

Recall that the parameters of the i-th hidden layer (i > 1) are

CWi = Ci ×Wi , where Ci [k][v] = ®Ri [k]/®R2i−1[v]. Accordingly,
the shopper can generate an update matrix UPi = Ci/TiG and send

it to the cloud. Then, the cloud can update parameters as follows.

CWi
′ = CWi − α ∗ UPi ×

∂δ ′

∂CWi

= Ci × (Wi − α ∗
∂δ

∂Wi
),

(7)

where α is the learning rate. In this way, the encrypted parameters

are homomorphically updated to the new parameters.

First Hidden Layer. As input data and the parameters of the first

hidden layer are encrypted by IFE, the cloud cannot directly com-

pute the corresponding gradients. Instead, the cloud sends the gra-

dients
∂δ ′

∂ ®Z1

to the sellerCx who owns the training data ®x . Then,Cx

can compute the following gradients.

∂δ ′

∂CW1
= (®x

∂δ ′

∂ ®Z1
)T = T1G ×

∂δ

∂W1
. (8)

As the original parametersW1 of the first hidden layer are trans-

formed to CW1 = C1 ×W1, the shopper should generate an update

parameter matrix UP1 = C1/T1G to homomorphically update the

parameters. To be precise, the shopper send it to Cx , and Cx can

generate the following gradients to update CW1.

∇CW1 = UP1 ×
∂δ ′

∂CW1
= C1 ×

∂δ

∂W1
. (9)

Note that the parameters CW1 are encrypted by IFE. It seems

that the gradients ∇CW1 cannot be directly used to update CW1.
However, we notice that training operations do not need to mod-

ify CW1, provided that the output ®Z 2

1
of the first hidden layer is

correctly updated. Therefore, Cx shares ∇CW1 with other sellers.

Then, all sellers can compute the following output gradients with

data ®x ′.

∇ ®Z 2

1
= (α ∗ ∇CW1

®x ′)2, (10)

where α is the learning rate. With ∇ ®Z 2

1
, the cloud can update the

output ®Z 2

1
and start a new feed forward process.

6.2 Data Validation

As informative data may contain irrelevant or falsely labeled data

that degrade a shopper’s model performance, we design a data

validation protocol to help the shopper validate the quality of the

selected data. The key observation behind our data validation proto-

col is that the prediction performance of a model reveals the quality

of previously training data. Therefore, the shopper requires the

cloud to retrain its model with the selected data. Then, it can ob-

serve the prediction performance of the retrained model to estimate

the quality of the selected data.

The prediction performance of a specific model can be revealed

by prediction values. Thus, the shopper first requires the cloud to

choose some sellers’ data and use its retrained model to output the

prediction values of these data. To not bias prediction values, the

sellers’ data should be chosen uniformly in this process. Then, the

shopper collects and decrypts prediction values to estimate data

quality. Particularly, the shopper can set a variable threshold Tq to

screen out the data of different qualities. If the prediction errors

are lower than Tq , the shopper will send the corresponding data

IDs to the cloud and make a payment. To gain high validation accu-

racy, the shopper can perform fine-grained validation operations.

Namely, the shopper can split validation data into smaller subsets

and validate the subsets one by one.

7 SECURITY ANALYSIS

As our ML encryption protocol underlies the security of our frame-

work Primal, we conduct a security analysis towards our ML en-

cryption protocol to demonstrate the security of Primal. Here, we

utilize the universal composition (UC) security framework [6] to

define the security of our ML encryption protocol. In the security

framework, there exists an environmentZ, which generates the

input to all parties, reads all outputs, and in addition interacts with

an adversary in an arbitrary way throughout the computation. The

UC security is captured by the real world versus ideal world game.

In the real world, we consider an adversary A who interacts with

the real protocol ΠP . In the ideal world, we consider an adversary S
(called a simulator) who runs the dummy protocol in the presence

of the ideal functionality FP (see Figure 6).

Definition 1 (ML Encryption Security). We can say that
our ML encryption protocol securely realizes a given functionality FP
if for any real-world A, there exists an ideal adversary S such that

|Pr (Realk (Z,A,ΠP)) − Pr (Idealk (Z,S,FP))| ≤ neдl(k) (11)

Now, we give the following security theorem. (security proof

can be found in Appendix A)

Theorem 1. OurML encryption protocol securely realizes a given
functionality FP if the random numbers chosen for each layer are
pseudo-random, and the inner-product functional encryption scheme
IFE is secure.

268

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Qiyang Song1 , Jiahao Cao2,3 , Kun Sun1 , Qi Li2,3 , and Ke Xu2,3

Parameters: a cloud P , a shopper S , and sellers C1, · · · , Cm .

Setup: On input a security parameter from S , outputsmpk to

C1, · · · , Cm , and storemsk and random numbers internally.

Data encryption: On input data ®x or X from Ci , outputs ®Cx
or CX to P .
Model Encryption for a Layer: On input a parameter

matrixWi or a kernel Ki from S , outputs CWi or CKi to P .

Figure 6: Ideal Function FP

8 SYSTEM EVALUATION

We implement the prototype of Primal, where IFE is implemented by

a simple IFE scheme [1], and the matrix transformation mechanism

is implemented by GMP [24], PBC [25], and Tensorflow [11]. We

conduct experiments to evaluate the benefits of our data selection

protocol, the accuracy of our data validation protocol, and the sys-

tem overhead. Our experiments are performed on a PC containing

four Intel Core-i5 2.3 GHz processors. We consider 100 sellers and

one shopper to simulate a real-world data marketplace. Particularly,

we randomly divide the training samples of MNIST [30] into 100

subsets and distribute them to each seller.

8.1 Benefits of Data Selection

To demonstrate Primal can provide valuable data to significantly

improve model performance, we compare our data selection with

random data selection. Particularly, we utilize the two methods to

select data and then use the data to retrain two models of different

scales. To be precise, the two models are trained with 5500 samples

55000 samples, respectively. Figure 7 shows the performance of

the two models after retraining. We can see our data selection can

reduce about 60% prediction errors compared to random selection

when the number of selected samples is between 400 and 2000.

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

 400 800 1200 1600 2000

P
re

di
ct

io
n

E
rr

or

of Selected Samples

our data selection
random data selection

(a) Model 1

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

 400 800 1200 1600 2000

P
re

di
ct

io
n

E
rr

or

of Selected Samples

 our data selection
random data selection

(b) Model 2

Figure 7: The benefit of data selection. Here, Model 1 and 2

are trained with 5500 and 55000 samples, respectively.

8.2 Accuracy of Data Validation

In this experiment, we use our data validation protocol to detect

some low-quality samples. To better demonstrate the effectiveness

of this protocol, we simulate specific low-quality samples that are

most likely to evade this protocol. Recall that our validation protocol

can easily detect the low-quality samples that deviate from the

original distribution since these samples degrade the shopper’s

model performance. Therefore, our simulation policy should replace

each sample’s original label li with another label that does not

deviate far away from the shopper’s model distribution. Thus, the

replacement label should be the label lh or the label ls , on which

the shopper’s model has the highest or second-highest prediction

confidence. Specifically, if the original label li is lh , we replace it
with ls . Otherwise, we replace it with lh .

To gain high detection accuracy, we do not perform our valida-

tion protocol on whole low-quality samples at one time. Instead,

we split these low-quality samples into subsets and then apply

the validation protocol to detect each subset one by one. Figure 8

shows the accuracy of two different validation strategies, which

are conducted at 10 granularity and 50 granularity. Here, granular-

ity refers to the size of split subsets. Overall, the accuracy of the

two validation strategies exceeds 80%. Particularly, the validation

strategy of 10 granularity achieves much higher accuracy than the

validation strategy of 50 granularity. We also notice that the strat-

egy of smaller granularity consumes more computation sources

since it needs to perform more validation operations. Therefore, the

shopper should make a trade-off between security and efficiency.

 0

0.2

0.4

0.6

0.8

 1.0

 200 400 600 800 1000
of Validation Samples

granularity = 10
granularity = 50V

al
id

at
io

n
A

cc
ur

ac
y

Figure 8: Accuracy of Data Validation

8.3 System Overhead

Here, we mainly measure the overhead of our ML encryption proto-

col since it determines system overhead, and extra overhead can be

ignored. First, we show the overhead of IFE computation, which is

the key component of our ML encryption protocol. Second, we ap-

ply this protocol to encrypt a specific CNN model and measure the

execution time of relevant operations to demonstrate the efficiency

of our system.

 0

 0.5

 1.0

 1.5

 2.0

2.5

100 300 500 700 900

E
xe

cu
ti

on
 T

im
e

(s
)

Column Number

Matrix Computation
Model Encryption

(a) Row Number=1

 0

 10

 20

 30

 40

50

 100 300 700 900

E
xe

cu
ti

on
 T

im
e

(s
)

500
Column Number

Matrix Encryption
Matrix Computation

(b) Row Number=20

Figure 9: IFE-basedModel Encryption andMatrix Com-

putation

IFE-based Encryption and Computation. Figure 9 shows the

execution time of IFE-based model encryption and matrix computa-

tion. Since convolution computation can be transformed to matrix

computation, we only measure the time of matrix computation. We

can see the execution time of model encryption and matrix com-

putation is proportional to row and column numbers. Particularly,

the execution time can be significantly reduced by GPU computing

since a matrix can be divided into parallel vectors.

269

Try before You Buy ACSAC ’21, December 6–10, 2021, Virtual Event, USA

APrivacy-preservingCNNmodel.To demonstrate the efficiency

of our ML encryption protocol, we compare it with E2DM [19], one

of the most efficient ML homomorphic encryption approaches. We

utilize our ML encryption protocol and E2DM to encrypt two CNN

models with the same typology, respectively. The model typology

consists of six layers: (i) input layer: a 28 × 28 input matrix; (ii)

convolution layer: four 5 × 5 convolution kernels with the stride of

2; (iii) pooling layer: four 2 × 2 convolution kernels with the stride

of 2; (iv) convolution layer: four 2 × 2 convolution kernels with the

stride of 1; (v) fully-connected layer (FC): a 100 × 10 parameter ma-

trix; (vi) output layer: a 10 × 1 prediction vector. Table 1 shows the

execution time of the operations related to the two models. Our ML

encryption protocol provides 17× faster feed forward than E2DM.

As E2DM does not support back propagation, we only measure the

back propagation for our ML encryption protocol. We notice that

back propagation is much faster than feed forward since it does not

involve any cryptographic computation (see Sec 6.1).

Table 1: Execution Time of CNN models

Operations

Execution Time (second)

E2DM Ours

Data Encryption 0.40 0.48

Model Encryption 0.14 0.20

Feed Forward 35.88 2.59

Back Propagation N/A 0.05

Specifically, the overheads of model and data encryption are the

shopper-side and seller-side overhead, respectively. The overhead

of feed forward is essentially the cloud-side prediction overhead

in the process of data selection. Additionally, the total overhead of

feed forward and back propagation represents the overhead of a

cloud-side training epoch in the process of data validation.

9 RELATEDWORK

Data Marketplaces. A cloud-based data marketplace [3, 9, 18, 21,

23] offers a platform where enterprises or individuals can sell their

digital asset or purchase a dataset. Researchers have proposed a

number of cloud-based data marketplace frameworks that provide

flexible data search and evaluation. For instance, Koutris et al. [21]

propose a back-end for data market, providing various query oper-

ations. Li et al. [23] present a correlation-driven data marketplace

where shoppers can find the most correlated data for correlation

analysis. Although these data marketplaces support shoppers to

purchase expected data for a variety of interests, they fail to con-

sider data privacy in the cloud. Hynes et al. [17] envision the first

privacy-preserving data marketplace that leverages the Trusted

Execution Environment (TEE) to protect data. However, some sen-

sitive information may still be inferred from TEE [4, 34, 40], and

TEE has some memory limits. Additionally, none of the existing

data marketplaces support valuable data evaluation for ML tasks.

Machine Learning Encryption. Prior work has proposed a num-

ber of ML encryption frameworks [7, 14, 16, 19, 27], which are

built on either homomorphic encryption (HE) or secure multiple-

party computation (MPC). Although SIMD [38] can be applied to

optimize HE-based ML frameworks, they still suffer from computa-

tional resource limitations, and the size of ciphertexts explosively

grows with calculation numbers. Moreover, existing HE-based ML

frameworks do not support flexible training operations. Therefore,

data shoppers cannot utilize training operations to examine data

quality. Compared to HE-based ML frameworks, MPC-based ML

frameworks support training operations, and they aremore efficient.

However, they incur expensive communication overhead.

10 DISCUSSION

Generalizability. Our machine learning encryption protocol pro-

vides the encryption approaches for fully-connected/convolution

layers and the corresponding input data. As pooling is essentially

convolution, this encryption protocol can also protect pooling lay-

ers. Therefore, our Primal framework can protect various shopper’s

models in the process of data selection and validation, provided

that the models consist of convolution, fully-connected, and pool-

ing layers. Amongst these models, the representative models are

CNN models, which have been widely adopted in various areas,

especially computer vision.

11 CONCLUSION

In this paper, we propose a privacy-preserving and efficient ML

data evaluation framework on a data marketplace, called Primal. It

allows enterprises and individuals to sell their data and purchase

valuable ML data without leaking their data and ML models. To

preserve data privacy and model privacy in the cloud, we present

a privacy-preserving ML protocol based on inner product func-

tional encryption and matrix transformation. With this protocol,

we design a privacy-preserving data selection protocol and data

validation protocol that can provide valuable data for shoppers.

Our security analysis and experiments demonstrate the security,

efficiency, and effectiveness of Primal.

ACKNOWLEDGMENTS

This work was supported in part by the Office of Naval Research

grants N00014-16-1-3214 and N00014-18-2893; in party by the Na-

tional Science Foundation grant CNS-1815650; in part by NSFC

under Grant 62132011 and 61825204; in part by BNRist under Grant

BNR2020RC01013; in part by Beijing Outstanding Young Scientist

Program under grant BJJWZYJH01201910003011; and in part by

the Shuimu Tsinghua Scholar Program. Qi Li and Jiahao Cao are

the corresponding authors.

REFERENCES

[1] Abdalla, Michel et al. 2015. Simple functional encryption schemes for inner

products. In IACR International Workshop on Public Key Cryptography. Springer,
733–751.

[2] Agrawal, Shashank et al. 2015. On the practical security of inner product func-

tional encryption. In IACR International Workshop on Public Key Cryptography.
Springer, 777–798.

[3] Bdex. 2018. First-ever Data Exchange Platform. https://www.bdex.com/

[4] Brasser, Ferdinand et al. 2017. Software Grand Exposure:SGX Cache Attacks Are

Practical. In 11th USENIX Workshop on Offensive Technologies.
[5] Campbell, Colin et al. 2000. Query learning with large margin classifiers. In

ICML, Vol. 20. 0.
[6] Ran Canetti. 2001. Universally composable security: A new paradigm for crypto-

graphic protocols. In Proceedings 2001 IEEE International Conference on Cluster
Computing. IEEE, 136–145.

[7] Chabanne, Hervé et al. 2017. Privacy-preserving classification on deep neural

network. IACR Cryptology ePrint Archive 2017 (2017), 35.

270

https://www.bdex.com/

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Qiyang Song1 , Jiahao Cao2,3 , Kun Sun1 , Qi Li2,3 , and Ke Xu2,3

[8] David Cash et al. 2015. Leakage-Abuse Attacks Against Searchable Encryption. In

Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security. ACM, 668–679.

[9] Dawex. 2019. Orchestrate data circulation with Data Exchange technology.

https://www.dawex.com/

[10] Du, Simon S et al. 2018. On the power of over-parametrization in neural networks

with quadratic activation. arXiv preprint arXiv:1803.01206 (2018).
[11] An end-to-end open source machine learning platform. 2019. https://www.

tensorflow.org/

[12] Fredrikson, Matt et al. 2015. Model inversion attacks that exploit confidence

information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 1322–1333.

[13] Freund, Yoav et al. 1997. Selective sampling using the query by committee

algorithm. Machine learning 28, 2-3 (1997), 133–168.

[14] Gilad-Bachrach, Ran et al. 2016. Cryptonets: Applying neural networks to en-

crypted data with high throughput and accuracy. In International Conference on
Machine Learning. 201–210.

[15] Yifan Gong. 1995. Speech recognition in noisy environments: A survey. Speech
communication 16, 3 (1995), 261–291.

[16] Graepel, Thore et al. 2012. ML confidential: Machine learning on encrypted data.

In International Conference on Information Security and Cryptology. Springer.
[17] Hynes, Nick et al. 2018. A demonstration of sterling: a privacy-preserving data

marketplace. Proceedings of the VLDB Endowment 11, 12 (2018), 2086–2089.
[18] IOTA. 2018. making it possible to securely store and sell. https://data.iota.org/

[19] Jiang, Xiaoqian et al. 2018. Secure outsourced matrix computation and applica-

tion to neural networks. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 1209–1222.

[20] Joshi, Ajay J et al. 2009. Multi-class active learning for image classification. In 2009
IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2372–2379.

[21] Koutris, Paraschos et al. 2013. Toward practical query pricing with QueryMarket.

In proceedings of the 2013 ACM SIGMOD international conference on management
of data. ACM, 613–624.

[22] LeCun, Yann et al. 1998. Gradient-based learning applied to document recognition.

86, 11 (1998), 2278–2324.

[23] Li, Yanying et al. 2018. Cost-efficient data acquisition on online data marketplaces

for correlation analysis. Proceedings of the VLDB Endowment 12, 4 (2018), 362–375.
[24] The GNU Multiple Precision Arithmetic Library. 2018. https://gmplib.org/

[25] The Pairing-Based Cryptography Library. 2018. https://crypto.stanford.edu/pbc/

[26] Livni, Roi et al. 2014. On the computational efficiency of training neural networks.

In Advances in neural information processing systems. 855–863.
[27] Mohassel, Payman et al. 2017. Secureml: A system for scalable privacy-preserving

machine learning. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE,
19–38.

[28] Naveed, Muhammad et al. 2014. Dynamic searchable encryption via blind storage.

In 2014 IEEE Symposium on Security and Privacy. IEEE, 639–654.
[29] Nenkova, Ani et al. 2012. A survey of text summarization techniques. In Mining

text data. Springer, 43–76.
[30] THE MNIST DATABASE of handwritten digits. 2013. http://yann.lecun.com/

exdb/mnist/

[31] Riazi, M Sadegh and Samragh, Mohammad et al. 2019. XONN: XNOR-based

Oblivious Deep Neural Network Inference. IACR Cryptology ePrint Archive 2019
(2019), 171.

[32] Rouhani, Bita Darvish et al. 2018. Deepsecure: Scalable provably-secure deep

learning. In Proceedings of the 55th Annual Design Automation Conference. ACM.

[33] SABRINA DE CAPITANI DI VIMERCATI et al. 2010. Encryption Policies for

Regulating Access to Outsourced Data. ACM Transactions on Database Systems
35, 2 (2010), P.12.1–12.46.

[34] Schwarz, Michael et al. 2017. Malware guard extension: Using SGX to conceal

cache attacks. In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 3–24.

[35] Avi Schwarzschild, Micah Goldblum, Arjun Gupta, John P Dickerson, and Tom

Goldstein. 2021. Just how toxic is data poisoning? a unified benchmark for

backdoor and data poisoning attacks. In International Conference on Machine
Learning. PMLR, 9389–9398.

[36] Sebe, Nicu et al. 2005. Machine learning in computer vision. Vol. 29. Springer
Science & Business Media.

[37] Burr Settles. 2009. Active learning literature survey. Technical Report. University
of Wisconsin-Madison Department of Computer Sciences.

[38] Smart, Nigel P et al. 2014. Fully homomorphic SIMD operations. Designs, codes
and cryptography 71, 1 (2014), 57–81.

[39] Xi Wu, Matthew Fredrikson, Somesh Jha, and Jeffrey F Naughton. 2016. A

methodology for formalizing model-inversion attacks. In 2016 IEEE 29th Computer
Security Foundations Symposium (CSF). IEEE, 355–370.

[40] Xu, Yuanzhong et al. 2015. Controlled-channel attacks: Deterministic side chan-

nels for untrusted operating systems. In 2015 IEEE Symposium on Security and
Privacy. IEEE, 640–656.

[41] Zheng, Zibin et al. 2013. Service-generated big data and big data-as-a-service: an

overview. In 2013 IEEE international congress on Big Data. IEEE, 403–410.

A SECURITY PROOF

We repeat the security theorem for our efficient machine learning

encryption protocol here and provide a proof sketch.

Theorem 1. OurML encryption protocol securely realizes a given
functionality FP if the random numbers chosen for each layer are
pseudo-random, and the inner-product functional encryption scheme
IFE is secure.

Proof 1. According to Definition 1, the protocol ΠP is said

to securely realize a given functionality FP if for any real-world

adversary A, there exists an ideal-world adversary S such that no

environmentZ can tell whether it is interacting withA and parties

running the protocol, or with S and parties that interact with FP in

the ideal world. In our framework, the real-world adversary A can

corrupt the cloud. To prove the security, we describe an ideal-world

adversary S that simulates A. To be precise, S runs A internally

by playing the role of a seller and a shopper as follows.

Playing the role of a shopper inZ. Note that the functions of

Setup and Model Encryption involve a shopper. Here, the ideal-

world adversary S simulates the output of these functions. First,

S chooses a random number mpk∗ and sends it to sellers as a

master public key. In the real world, the master public keympk is

also randomly chosen, the environmentZ cannot distinguish the

simulatedmpk∗ from the realmpk .
Second, S simulates the encrypted parameters of the i-th hidden

layer as follows. If i = 1 and the layer is a fully-connected layer, S

fills random numbers in a vector ®CW
∗

1
as encrypted parameters. If

i > 1 and the layer is a fully-connected layer, or i = 1 and the layer

is a convolution layer, S fills random numbers in a two-dimension

matrix CW∗i (or CK∗1) as encrypted parameters. If i > 1 and the

layer is a convolution layer, S fills random numbers in a four-

dimension matrix CK∗i as encrypted parameters. Then, S sends the

encrypted parameters to A. Here, recall that the real encrypted

parameters ®CW 1 (or CK1) of the first hidden layer are encrypted by

IFE. Therefore, we can say the environmentZ cannot distinguish

the simulated ®CW
∗

1
(or CK∗1) from the real ®CW 1 (or CK1) if IFE is

secure. Additionally, recall that the real encrypted parameters of

the i-th (i > 1) hidden layer are transformed by random numbers.

If this layer is a fully-connected layer, and its encrypted parameters

CWi can be presented as follows.

CWi [x][y] =Wi[x][y] ∗ ®Ri [x]/(®Ri−1[y])
2, (12)

where ®Ri is the random numbers chosen for the i-th hidden layer,

and Wi is the original parameters. Note that each parameter is

randomized by a random number. Therefore, we can say the envi-

ronment Z cannot distinguish the simulated CW∗i from the real

CWi if ®Ri and ®Ri−1 are pseudo-random in a finite field. If this layer

is a convolution layer, and its encrypted parameters CKi can be

presented as follows.

CKi [k][v][:][:] = Ri[k][v]/

R2i−1[k ∗ s : k ∗ s + |Ki |][v ∗ s : v ∗ s + |Ki |] × Ki,
(13)

where Ri is the random numbers chosen for the i-th hidden layer,

Ki is the original kernel, s is the convolution stride. Note that each

parameter is randomized by a random number. Therefore, we can

271

https://www.dawex.com/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://data.iota.org/
https://gmplib.org/
https://crypto.stanford.edu/pbc/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Try before You Buy ACSAC ’21, December 6–10, 2021, Virtual Event, USA

say the environmentZ cannot distinguish the simulated CK∗i from
the real CKi if Ri and Ri−1 are pseudo-random in a finite field.

Playing the role of a seller inZ. Note that only the function of

Data Encryption involves a seller. Therefore, S only simulates the

output of Data Encryption. It works as follows. If data ®x is input in

a fully-connected layer, then S fills random numbers in a vector

®C∗x and sends it to A as the encrypted data. If data X is input in

a convolution layer, then S fills random numbers in a vector C∗X
and sends it to A as the encrypted data. Recall that both the real

encrypted data ®Cx and CX are encrypted by IFE. Therefore, we can

say thatZ cannot distinguish ®C∗x or C∗X from the real ®Cx or C∗X if

IFE is secure. □

272

	Abstract
	1 Introduction
	2 Background
	3 System Overview
	3.1 Threat Model and Assumptions
	3.2 System Architecture

	4 Efficient Machine Learning Encryption Protocol
	4.1 Setup
	4.2 Data Encryption
	4.3 Model Encryption
	4.4 Case Study: Encrypting a CNN Model and Data

	5 Privacy-preserving Data Selection
	5.1 Privacy-preserving Data Prediction
	5.2 Data Selection

	6 Privacy-preserving Data Validation
	6.1 Privacy-preserving Model Training
	6.2 Data Validation

	7 Security Analysis
	8 System Evaluation
	8.1 Benefits of Data Selection
	8.2 Accuracy of Data Validation
	8.3 System Overhead

	9 Related Work
	10 Discussion
	11 Conclusion
	Acknowledgments
	References
	A Security Proof

