
Modeling Multi-path TCP Throughput with Coupled
Congestion Control and Flow Control

Qingfang Liu, Ke Xu
TNLIST,Tsinghua University

Beijing, P.R.China
liuqf13@gmail.com

xuke@mail.tsinghua.edu.cn

Haiyang Wang
University of Minnesota

Duluth, America
haiyang@d.umn.edu

Lei Xu
Tsinghua University
Beijing, P.R.China
xl_7@sina.com

ABSTRACT
Multi-Path Transmission Control Protocol (MPTCP) is e-
merging as a dominant paradigm that enables users to u-
tilize multiple Network Interface Controllers (NICs) simul-
taneously. Due to the complexity of its protocol design,
the steady-state performance of MPTCP still remains large-
ly unclear through model analysis. This introduces severe
challenges to quantitatively study the efficiency, fairness and
stability of existing MPTCP implementations. In this pa-
per, we for the first time investigate the modeling of coupled
congestion control and flow control algorithms in MPTCP.
By proposing a closed-form throughput model, we reveal
the relationship between MPTCP throughput and subflow
characters, such as Round Trip Time (RTT), packet loss rate
and receive buffer size. The extensive NS2-based evaluation
indicates that the proposed model can be applied to under-
stand the throughput of MPTCP in various situations. In
particular, when MPTCP subflows have similar RTTs, the
average Error Rate (ER) of the proposed model is less than
8%. Even in the situation where huge RTT difference ex-
ists between subflows, the model can still behave well with
average ER less than 10%.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

Keywords
Throughput Modeling; Multi-path TCP; Coupled Conges-
tion Control; Flow Control;

1. INTRODUCTION
Recent advances in mobile computing have turned the

idea of multi-homing into a reality. To better utilize multi-
ple Network Interface Controllers (NICs), Multi-path TCP
(MPTCP) extension [2] has been widely suggested in recent
years. This design enables the simultaneous use of several
interfaces by a modification of TCP and presents a regular

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MSWiM’15, November 02–06, 2015, Cancun, Mexico.
c© 2015 ACM. ISBN 978-1-4503-3762-5/15/11 ...$15.00.

DOI: http://dx.doi.org/10.1145/2811587.2811590.

TCP interface to the application layer, while in fact trans-
mitting data across several subflows. MPTCP brings better
end-to-end throughput, higher connection reliability and s-
moother failure recovery. The MPTCP implementation in
Linux Kernel [6] has recently broke the record of the fastest
TCP connection with a speed of 51.8 Gbit/second. On the
other hand, MPTCP is not only compatible with regular
TCP but also transparent to application layer and various
middlewares in network. Enticed by these salient features of
MPTCP, industry leaders such as Apple and Samsung are
implementing this revolutionary protocol into their latest
iOS and Android systems. For example, the MPTCP im-
plementation in Apple’s iOS7 has been adopted in Septem-
ber 2013 to optimize the delay-sensitive traffic generated by
Siri. MPTCP implementations on Amazon’s EC2, different
Android-based handsets (i.e., Samsung Galaxy S2/S3), the
largest multi-homing experimental platform NorNet [4] and
Citrix’s Netscaler are also available to end users.

Despite its increasing popularity, the development of MP-
TCP throughput models is still in the premature stage, which
introduces severe challenges to quantitatively study the ef-
ficiency and fairness of existing MPTCP implementation-
s. And the performance of its most important components,
such as the congestion control and flow control algorithms,
is still hard to understand through theoretical analysis. In
order not to unfairly take up too much bandwidth resource
when coexisting with regular TCP on bottlenecks, MPTCP
uses coupled congestion control algorithm to control its ag-
gregate aggressiveness. The coupling between MPTCP sub-
flows’ congestion control unavoidably introduces significant
challenges to model its aggregate throughput. Moreover,
a connection-level receive buffer must be used in MPTCP
to accommodate out-of-order packets, i.e., all MPTCP sub-
flows share one receive buffer. Thus the subflow with large
delay may block the transmission on other subflows due to
the limit of available receive buffer size. So the influence
of flow control also cannot be ignored in the modeling of
MPTCP throughput.

In this paper, we take our first step towards the model-
ing of MPTCP steady-state throughput by addressing the
above two big challenges. Our end-point objective is to de-
rive a model to precisely predict the aggregate throughput
of MPTCP in terms of packet loss rate, RTT and receive
buffer size. Since math is just a tool rather than a lan-
guage, this paper provides a step-by-step modeling process
to reduce the complexity of the analysis. First, we only
focus on the modeling of coupled congestion control algo-
rithm. In this case, we try to find the average increase rate

of the congestion window size in order to get one subflow’s
throughput. Then, based on the simple model derived in
this case, we further analyse the influence of receive buffer
size by computing the time proportion one subflow blocked
by other subflows under the influence of flow control. Fi-
nally, MPTCP integrated throughput model is derived and
carefully fitted by extensive NS2-based simulations. The re-
sults indicate that the proposed model can precisely predict
the throughput of MPTCP connections in various situation-
s. In particular, when MPTCP subflows have similar RTTs,
the average Error Rate (ER) of the proposed model is less
than 8%. Even in the situation where huge RTT difference
exists between subflows, the model can still get an average
ER less than 10%.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the related work. Section 3 presents the back-
ground of MPTCP. Section 4 and 5 describe the detailed
modeling process of congestion control and flow control, re-
spectively. Section 6 validates the accuracy of our model.
Finally, Section 7 concludes the paper.

2. RELATED WORK
TCP plays an important role in today’s Internet protocol

suite. In the late 90s, Mathis et al. [5] proposed a simple yet
efficient model to understand the throughput of long-lived
TCP connections. Following this pioneer study, Padhye et
al. [7] developed an enhanced approach to capture the be-
havior of fast retransmit mechanism and the timeout mech-
anism. Dunaytsev et al. [1] extended this model with a
more accurate examination of fast retransmit/fast recovery
dynamics and slow start phases after timeout.

To better utilize the multiple NICs simultaneously, one
TCP-based approach, most notably MPTCP [2], has been
widely suggested in the past few years. The IETF working
group has proposed a series of MPTCP standards such as
architectural design [2], detailed operation design [3], con-
gestion control [9], performance effect on applications and
API [12]. As a drop-in replacement for TCP, tradeoffs be-
tween the aggressiveness of a MPTCP flow and the fairness
compared to regular TCP flows must be considered when
designing and implementing MPTCP congestion control al-
gorithm. Four congestion control algorithms with differen-
t coupling degrees are proposed by Raiciu and Wischik et
al. in [10] in 2009. Then they validate these algorithm-
s for multi-homed servers, data centers and mobile clients
in [13]. The result shows that the algorithm compensating
for dissimilar RTTs behaves well and finally is standardized
by IETF in [9]. In this paper, we only focus on the con-
gestion control algorithm standardized in [9], which will be
described in detail in Section 3.

The delay performance of MPTCP is thoroughly stud-
ied in [8], however, the development of MPTCP throughput
models is still in the premature stage. A discrete packet
throughput model based on Markov processes is presented
in [14], but a explicit formula of throughput is not included.
A simple throughput formula (1) for MPTCP is proposed
in [13], which introduces deviation as our simulation results
indicate. pj and RTTj in (1) represent the packet loss rate
and RTT of subflow j, respectively. Different from these
existing studies, we for the first time provide a comprehen-
sive analysis of MPTCP coupled congestion control and flow
control algorithms. Our end-point objective is to precisely
predict the aggregate throughput of MPTCP in terms of

packet loss rate, RTT and receive buffer size.

TP = max(
1

RTTj
∗

√
2

pj
) (1)

3. BACKGROUND
MPTCP splits a single TCP connection into multiple sub-

flows and transmits data simultaneously on these subflows.
Considering the reality that MPTCP subflows may coexist
with regular TCPs on bottlenecks, MPTCP should have a
new congestion control algorithm so that it won’t unfairly
take up too much bandwidth resource. We call the algo-
rithm standardized in RFC 6356 [9] as coupled congestion
control algorithm, because the evolution of CWND on d-
ifferent subflows are correlated with each other as we will
show.

Each subflow in MPTCP maintains a congestion control
state (e.g., CWND and ssthresh) of itself and runs coupled
congestion control algorithm. This algorithm mainly makes
some modifications of congestion avoidance phase in regular
TCP: when subflow j receives an ACK, the increase of its
CWND is shown in (2) in unit of packet.

min(
α

cwtotal
,

1

cwj
) (2)

Here, cwtotal represents the total CWND of all MPTCP
subflows at that time and cwj denotes the current CWND on
subflow j. The increase shown in (2) ensures any MPTCP
subflow can not be more aggressive than a regular TCP flow
in the same condition. α in (2) represents the aggressiveness
of the MPTCP flow and the value of α is shown in (3). From
(2) and (3), we can find that the evolution of CWND on one
subflow depends on the states of all subflows.

α = cwtotal ∗
max(cwi

RTT2
i

)

(
∑ cwi

RTTi
)2

(3)

The fast recovery phase in MPTCP is the same as regular
TCP. But when timeout events occur, things are different.
The packet causing this timeout event will be retransmitted
both on original subflow j and another subflow k. The latter
packet arrived at the receiver will be ignored by the receiver.
No matter on which subflow the sender receives the ACK
for the retransmitted packet, subflow j will recover from the
timeout event and enter slow start phase.

Flow control is another important part in MPTCP. In
order to ensure in-order delivery, MPTCP must use the
connection-level receive buffer [2]. Packets from all sub-
flows are placed in the common receive buffer until they
are in-order and can be read by the up-layer application.
All subflows in MPTCP share common receive buffer, so
the packets transmitted on high-delay paths may block the
transmissions on other subflows, which makes flow control
important in this paper.

4. MODELING MPTCP COUPLED CONGES-
TION CONTROL ALGORITHM

In this section, we only focus on the modeling of MPTCP
congestion control algorithm, so we assume that the receive
buffer is infinite in order to clear the influence of flow con-
trol. The influence of flow control will be analysed in Section
5. Section 4.1 lists all assumptions. Then we try to derive

the model in three steps, including the modeling of one con-
gestion avoidance in Section 4.2, the modeling of timeouts
in Section 4.3 and the integrated model in Section 4.4.

4.1 Assumptions
Here, we summarize all assumptions used in modeling

MPTCP congestion control algorithm, regarding the end
points and networks. Most of our assumptions are similar
to a prior TCP modeling work [7].

4.1.1 Assumptions of sender and receiver
We assume that both the sender and the receiver enable

MPTCP defined by RFC 6182 [2] at the transport layer. As
our model focuses on MPTCP steady-state throughput, we
assume that the application has an infinite amount of data
to transmit. For simplicity, the sender will send fixed-sized
packets as long as the sliding window allows (i.e., one MSS
in most cases). Similar to other bulk data transfer model
[1, 7, 11], the three-way handshakes will be ignored because
it makes little difference for long-term MPTCP throughput.

4.1.2 Assumptions of networks
Moreover, we model MPTCP behavior in terms of“round”,

as proposed in [7]. A round starts with the transmission of
a window of packets and ends with receiving the first ACK
for one of these packets. The length of a round equals to the
RTT of that subflow. The same as [7], we also assume that
packet loss is correlated within a round, i.e., if one packet is
lost then the subsequent packets in that round are also lost.
But the packet losses in different rounds are independent.
This assumption seems awkward, however it is an effort to
capture the influence of loss burst. We assume that ACKs
are never lost as the size of ACK packets is small relatively
to data packets.

4.2 Modeling Triple Duplicate ACKs
In this subsection, we assume that all losses are detected

by triple duplicate ACKs, i.e., timeout events never occur
in this subsection. Under this assumption, one congestion
avoidance phase can be seen as a cycle during a MPTCP
subflow’s lifetime. The expected throughput in a cycle can
be used to express MPTCP steady-state throughput.

Because of the difference of MPTCP implementations in
different end systems, the receiver may send one cumulative
ACK for different number of data packets. Let b denote
the number of packets acknowledged by one ACK packet.
On subflow j, in a round without packet loss, the sender
will receive cwj/b ACKs. As the increase of CWND when
receiving an ACK is shown in (2), the increase of subflow
j’s CWND after a round without packet loss will be

cwj

b
∗min(

α

cwtotal
,

1

cwj
) =

1

b
∗min(

α ∗ cwj

cwtotal
, 1) (4)

Let mj denote the number of rounds when the increase
of subflow j’s CWND cumulated to one in unit of packet.
Obviously, mj is the reciprocal of (4) as shown in (5).

mj = b ∗max(
cwtotal

α ∗ cwj
, 1) (5)

The increase of CWND when receiving an ACK and the
decrease of CWND when detecting a packet loss must be
balanced out in equilibrium. It means the ACK-receiving
rate multiplying the increase of CWND per ACK equals to

Figure 1: the ith congestion avoidance phase.

the packet-loss detection rate multiplying the decrease of
CWND per loss, so we have:

(
cwj

RTTj
(1−pj))∗min(

α

cwtotal
,

1

cwj
) = (

cwj

RTTj
pj)∗

cwj

2
(6)

From (6), we can get the mathematical expectation of mj

in (7). One main difference between a TCP flow and an
MPTCP subflow lies in the increase rate of CWND in con-
gestion avoidance phase. In regular TCP, in a round without
packet loss, the increase of CWND is 1/b, which is a constant
number. But as shown in (4), the value in an MPTCP sub-
flow depends on all MPTCP subflows’ states. However, as
we focus on long-term MPTCP performance, the CWND in
the congestion avoidance phase can be regarded as smoothly
increasing one in unit of packet every E[mj] rounds.

E[mj] =
2 ∗ b ∗ (1− pj)
pj ∗ E[cwj]2

(7)

Fig. 1 shows the packet transmission process in the ith
congestion avoidance phase on subflow j. A bare square
represents one successful packet transmission while the X-
marked square represents the lost packet. A column in Fig.
1 represents the packets sent during one round. As assumed,
after the first packet numbered aij lost, the subsequent pack-
ets in that round are also lost. Then in the last round, before
detecting the packet loss by triple duplicate ACKs , βi

j pack-
ets are sent. We denote the value of CWND at the end of
the ith congestion avoidance phase by W i

j . Let ZCA
j repre-

sent the time length of a congestion avoidance phase, and
Y CA
j represent the number of packets sent during ZCA

j . The
expected throughput TPj can be derived from (8). Then we
focus on the derivation of Y CA

j and ZCA
j .

TPj =
E[Y CA

j]

E[ZCA
j]

(8)

For packet loss rate pj , the number of packets successfully
transmitted between two losses is roughly 1/pj , i.e., E[aj] =
1/pj . From Fig. 1, we can find that after the first lost
packet aij , W

i
j−1 more packets are sent in the ith congestion

avoidance phase. We can get the expected number of packets
sent E[Y CA

j] in (9).

E[Y CA
j] = E[aj] + E[Wj]− 1 =

1− pj
pj

+ E[Wj] (9)

Table 1: Y CA2
j and ZCA2

j in different cases

First loss in
which round

Value of Y CA2
j Value of ZCA2

j

h− 1
E[Wj]

2
RTTj

h E[Wj] +
E[Wj]

2
2 ∗RTTj

...

h+E[mj]−2 (E[mj]− 1)E[Wj] +
E[Wj]

2
E[mj] ∗RTTj

Observing Fig. 1, we can find that the expected number
of rounds whose CWND is W i

j is not E[mj] in equilibrium,

while the expected number of rounds whose CWND is W i
j −

1 should be E[mj]. So we split the congestion avoidance
phase into two portions: the first portion whose CWND
from W i−1

j /2 changing to W i
j − 1 is denoted by CA1; and

the rest portion is denoted by CA2. In portion CA1, CWND
of subflow j increases one every E[mj] rounds, so the number

of packets sent (Y CA1
j) and time length (ZCA1

j) of CA1 can
be easily derived as follows:

Y CA1
j = (

W i−1
j

2
+W i

j−1)(W i
j−1−

W i−1
j

2
+1)

1

2
∗E[mj] (10)

ZCA1
j = (W i

j − 1−
W i−1

j

2
+ 1) ∗ E[mj] ∗RTTj (11)

As for the CA2 portion, we also let the number of pack-
ets been sent in the last round in a congestion avoidance
phase be uniformly distributed from 0 to W i

j , i.e., E[βj] =
E[Wj]/2, the same process as in [7]. For the convenience of
description, let the first round whose CWND is W i

j to be
the hth round. Then the number of packets sent in CA2

(Y CA2
j) and the time length of CA2 (ZCA2

j) are shown in
Table 1. There are totally E[mj] cases. The first packet loss
occurs randomly in a round, so these E[mj] cases should
have the same probability to occur. Thus we can easily get
the expected value of Y CA2

j and ZCA2
j as follows:

E[Y CA2
j] =

E[Wj] ∗ E[mj]

2
(12)

E[ZCA2
j] =

(E[mj] + 1) ∗RTTj

2
(13)

Plus (10) and (12), (11) and (13), we can get E[Y CA
j] and

E[ZCA
j] as follows:

E[Y CA
j] = (

3 ∗ E[Wj]
2

4
+
E[Wj]

2
) ∗ E[mj]

2
(14)

E[ZCA
j] =

[(E[Wj] + 1) ∗ E[mj] + 1] ∗RTTj

2
(15)

E[cwj] in (7) represents the average congestion window
size on subflow j, while E[Wj] represents the expected con-
gestion window size at the end of a congestion avoidance
phase. Let t present the ratio of E[cwj] to E[Wj], i.e.,
E[cwj] = t ∗ E[Wj]. To get the value of parameter t, we
consider the scenario that only one path is available in the
MPTCP connection. In this case, the value of α in (3) should

be 1, and the increase of CWND after one round without
packet loss as shown in (4) should be 1/b. This is exactly
the same as the regular TCP. That is, when there is only
one path available in an MPTCP connection, MPTCP will
turn back to regular TCP. So we try to find the value of t
in the scenario of regular TCP. At equilibrium, the increase
and decrease of CWND must be balanced out in TCP, so
we have (16). Thus, we can get E[cw] =

√
2 ∗ (1− p)/p in

regular TCP.

(1− p) ∗ 1

cw
= p ∗ cw

2
(16)

Based on [7], the expected value of CWND at the end of
a congestion avoidance phase is shown in (17). Hence the
ratio t defined above in regular TCP approximately equals
to

√
3 ∗ b/4. The difference of congestion avoidance phase

between MPTCP and TCP in equilibrium mainly lies in the
growing rate of CWND, which makes no difference to t. So
we can assign

√
3 ∗ b/4 to t on subflow j.

E[W] =

√
8

3bp
+ o(1/

√
p) (17)

Then based on (7), (9) and (14), we can get the expression
of E[Wj] as follow:

E[Wj] =
1

2
∗ [− (4t2 − 3b) ∗ (1− pj)

4t2pj

+

√
[
(4t2 − 3b) ∗ (1− pj)

4t2pj
]2 +

2b ∗ (1− pj)
t2pj

]

(18)

Then we can get the expected throughput of subflow j in
(19) when only considering the packet loss detected by triple
duplicate ACKs events, where E[Wj] is shown in (18).

E[TPj] =
E[Y CA

j]

E[ZCA
j]

=

1−pj
pj

+ E[Wj]

(E[Wj]+1)∗E[mj]+1

2
∗RTTj

(19)

4.3 Modeling Timeout Event
When one packet is lost but there are insufficient ACK-

s to trigger a triple duplicate ACKs event, the sender will
wait for a timeout event and then retransmit the lost pack-
et. MPTCP specifications in RFC 6182 [2] and RFC 6824 [3]
suggest that the lost packet should be retransmitted both on
the original subflow j and a different subflow k. If a path
fails and causes this timeout event, retransmitting the lost
packet on a different subflow k can obviously improve the
user experience. The original subflow j still need to retrans-
mit the lost packet in order to preserve the subflow integrity.
The latter packet arrived at the receiver will be ignored as
suggested in RFC 6824. No matter on which subflow the
retransmitted packet is acknowledged, the original subflow
j will recover from the lost and enter the slow start phase.
Taking timeout event into consideration, a cycle during a
MPTCP subflow’s lifetime should include a timeout phase,
a slow start phase and a sequence of congestion avoidance
phase. In this subsection, we focus on the modeling of time-
out phase and slow start phase.

The time, when the receiver successfully receives the lost
packet, depends on the arriving of the retransmitted packets
both on these two subflows. So there are two cases shown in
Fig. 2. Let Tdetect denote the time from the end of the round
in which the lost packet first sent to the expiring of RTO

(a) The retransmitted packet first arrives on the
original subflow

(b) The retransmitted packet first arrives on a
different subflow

Figure 2: Detailed representations of timeout phase.

timer on subflow j. Thus, Tdetect = RTOj − RTTj . After
Tdetect, the sender realized that the packet is lost and then
try to retransmit the lost packet. The packet retransmitted
on the original subflow j can be retransmitted right now
(i.e., the yellow line in Fig. 2), but on subflow k, it may
wait some time until the sliding window of subflow k allows
one packet to be sent. We denote the time by Twait. The
packet transmission state on subflow k is independent with
subflow j, so Twait should be uniformly distributed from 0
to RTTk, i.e., E[Twait] = RTTk/2. Fig. 2(a) represents the
case where the lost packet retransmitted on subflow j first
arrives at the receiver. In this case, the time length of a
timeout phase should be Tdetect +RTTj . While in Fig. 2(b)
where the lost packet retransmitted on subflow k first arrives
at the receiver, the time should be Tdetect+E[Twait]+RTTk.
As a result, we use (20) to model the average time of a
timeout phase (i.e., E[ZTO

j]).

E[ZTO
j] = min(Tdetect +RTTj , Tdetect + E[Twait] +RTTk)

= min(RTOj , RTOj −RTTj +
3 ∗ E[RTTk]

2
)

(20)
In the timeout phase, the original subflow j needs to re-

transmit the lost packet although the packet may be ignored
at the receiver, so only one packet is sent in a timeout phase,
i.e., Y TO

j = 1. The packet retransmitted on subflow k is con-
tained in the number of packet sent on subflow k. As for the
choice of subflow k, we use a simple strategy that the subflow
with the smallest packet loss rate has the biggest possibility

to be chosen. So we have

E[RTTk] =

k=N∑
k=1,k 6=j

1/pk∑l=N
l=1,l 6=j 1/pl

∗RTTk (21)

After the timeout phase, subflow j enters slow start phase,
which is exactly the same as regular TCP. The CWND will
grow exponentially in slow start phase until it reaches slow
start threshold (i.e., ssthresh). Using the simple mathemat-
ical analysis, we can get the number of packets sent (Y SS

j)

and time length of slow start phase (ZSS
j) as follows:

Y SS
j =

log2 ssthresh+1∑
i=1

2i−1 = 2 ∗ ssthresh− 1 (22)

ZSS
j = (log2 ssthresh+ 1) ∗RTTj (23)

4.4 Integrated Throughput Model
Now we try to derive the integrated throughput model for

MPTCP considering the packet loss detected by triple du-
plicate ACKs and by timeout events. Considering these two
events, the ith cycle on subflow j (Si

j) should include a time-
out phase, a slow start phase and a sequence of congestion
avoidance phase. Let Qj be the probability that one con-
gestion avoidance phase ends with a timeout event. That is,
one congestion avoidance phase is followed by timeout phase
with the probability of Qj . Then the expected throughput
on subflow j can be modeled as follows:

E[TPj] =
Qj ∗ (E[Y TO

j] + E[Y SS
j]) + E[Y CA

j]

Qj ∗ (E[ZTO
j] + E[ZSS

j]) + E[ZCA
j]

(24)

Only Qj is unknown in (24). In order to get Qj , we find
that packet loss first occurs in the penultimate round in a
congestion avoidance phase (see Fig. 1). And if in the penul-
timate round, the congestion window is less than three and
one of the packet is lost, even though the packets sent in
the last round all successfully arrive at receiver, there are
less than three duplicate ACKs the sender will receive, so
timeout event will occur. If in the penultimate round, the
CWND is no less than three, only less than three packet-
s arrived at the receiver in the last round will trigger the
timeout event. So the same as illustrated in [7], we can also
get the value of Qj in (25) with E[Wj] expressed in (18).

Qj = min(1,
3

E[Wj]
) (25)

So considering packet loss detected both by triple dupli-
cate ACKs and timeout events, the expected throughput of
subflow j should be as follows:

E[TPj] =
Qj∗2∗ssthresh+

1−pj
pj

+E[Wj]

Qj∗((log2 ssthresh+1)∗RTTj+E[ZTO
j])+E[ZCA

j]
(26)

where E[ZCA
j], E[Wj], E[ZTO

j], E[RTTk] and Qj are shown
in (15), (18), (20), (21), (25), respectively.

Taking no account of flow control, MPTCP aggregate
throughput can be expressed as in (27). Here MPTCP has
N subflows and TPj is shown in (26).

E[TP] =

j=N∑
j=1

E[TPj] (27)

5. MODELING MPTCP FLOW CONTROL
ALGORITHM

In this section, we try to capture the influence of receive
buffer size (denoted by LBuf) to MPTCP throughput. To
simplify the derivation process, we only consider the events
when transmission stops due to the available receive buffer
size decreasing to zero. Let P (j, i) denote the time propor-
tion when traffic on subflow j is not blocked by the packets
transmitted on subflow i, and P (j, ∗) denote the time pro-
portion subflow j is not blocked by all other subflows. Then
MPTCP aggregate throughput should be (28) with E[TPj]
in (26). We first study a simple situation where there are
only two subflows in MPTCP and then extend the model to
adapt to multiple subflows.

E[TP] =

j=N∑
j=1

P (j, ∗) ∗ E[TPj] (28)

5.1 Two subflows
Without loss of generality, let l = RTT1

RTT2
≥ 1, i.e, subflow 1

has larger RTT. After the packet D1 transmitted on subflow
1 and before it arrives at the receiver, there are n2 packets
arriving at the receiver on subflow 2. If n2 ≥ LBuf , subflow
2 will stop its transmission due to limit of receive buffer. Let
r denote the number of rounds that subflow 2 can fill up the
receive buffer, which can be derived from (29). If the time
length for packet D1 to successfully arrive at the receiver is
larger than r ∗RTT2, the transmission on subflow 2 will be
blocked.

r ∗ E[cw2] = LBuf (29)

There are three cases happened to one packet transmitted
on subflow 1: successfully transmitted to the receiver with
probability 1 − p1, dropping and causing a triple duplicate
ACKs event with probability p1 ∗(1−Q1) or causing a time-
out event with probability p1 ∗Q1. Depending on the value
of l, transmission stopping on subflow 2 may occur in each
of these three cases.

• With probability 1 − p1, packet D1 can successfully
arrive at the receiver after RTT1

2
. If RTT1

2
≥ r ∗RTT2,

even though the packet successfully arrives at the re-
ceiver, it will still cause subflow 2 to stop its transmis-
sion. We define (a)+ = a when a < 1 and (a)+ = 1
when a ≥ 1. So we can get (30).

Pcase1(2, 1) = (1− p1)(
r ∗RTT2

RTT1
2

)+ = (1− p1)(
2r

l
)+

(30)

• If l < 2r, then the transmission of not-lost packet on
subflow 1 will not cause subflow 2 to stop its transmis-
sion. But if the packet is lost when it is first trans-
mitted, then a triple duplicate ACKs event may occur
with probability p1 ∗ (1 − Q1). The time length from
the lost packet first transmitted to the retransmitted
packet successfully arrives at the receiver is around
3∗RTT1

2
: RTT1 to get triple duplicate ACKs and RTT1

2
for the retransmitted packet to reach the receiver. If
the time is large than r ∗RTT2, subflow 2 still can be
blocked. So we can get (31).

Pcase2(2, 1) = p1 ∗ (1−Q1) ∗ (
2r

3l
)+ (31)

• If l < 2r
3

, triple duplicate ACKs can’t block trans-
mission on subflow 2, but timeout event can make it
possible. The time length to successfully transmit the
timeout packet is around RTO1 +E[RTTk]. So we can
get (32).

Pcase3(2, 1) = p1 ∗Q1 ∗ (
r ∗RTT2

RTO1 + E[RTTk]
)+ (32)

Then we can get the value of P (2, ∗) which equals to P (2, 1)
here in (33). P (1, 2) can be derived in the same manner,
thus we can get MPTCP throughput from (28).

P (2, 1) = Pcase1(2, 1) + Pcase2(2, 1) + Pcase3(2, 1) (33)

5.2 Multiple Subflows
When MPTCP has N subflows and their RTTs satisfy

(34), we can get the throughput model by extending the
above two paths model.

RTT1 : RTT2 : ... : RTTN = l1 : l2 : ... : lN (34)

When deriving P (j, i), we first redefine the value of r in (35)
for the reason that the receive buffer is filled up with the
effort of all subflows except subflow i. Let l = RTTi

RTTj
= li

lj
.

Then extending the formula (33), P (j, i) should be (36).

r ∗ (

k=N∑
k=1,k 6=i

lj
lk
∗ E[cwj]) = LBuf (35)

P (j, i) =(1− pi) ∗ (
2r

l
)+ + pi ∗ (1−Qi) ∗ (

2r

3l
)+

+ pi ∗Qi ∗ (
r ∗RTTj

RTOi + E[RTTk]
)+

(36)

Then we can get P (j, ∗) by (37) and substituting it into
(28) we can get the throughput of a MPTCP connection
considering the receive buffer restriction. When the RTT
difference between MPTCP subflows is small enough that
one subflow never blocked by others, (28) will return back
to (27).

P (j, ∗) = 1−
i=N∑

i=1,i 6=j

[(1− P (j, i)) ∗
∏

k 6=i,k 6=j

P (j, k)] (37)

The throughput model (28) is non-trivial: First, (28) help-
s to quantitatively study the efficiency and TCP-friendliness
of MPTCP implementations; Second, (28) quantizes the in-
fluence of large-delay paths, from which MPTCP can make
a optimization to provide best performance to users. For
example, using a slowest path to transfer data may reduce
the integrated throughput, so it is prudent for MPTCP to
use this path only for backup rather than data transmission.

6. SIMULATION
In this section, we try to validate the precision of our mod-

el and compare it with the simple model (1). We perform
MPTCP bulk data transfer simulations on NS2 simulator.
To quantify the accuracy of the proposed model, we define a
metric named Error Rate (ER) in (38) to reveal the degree
of absolute deviation between the model and the simulation
results. Here, TPmodel represents throughput value deriving
from the model and TPsimulation represents the simulation

TCP

TCP

TCP

MPTCP

TCP

20 Mbps

20Mbps

Bottleneck link B1

Bottleneck link B2

MPTCP

(a) Each of two subflows shares bottlenecks with
one TCP flow

TCP

MPTCP

TCP

20 Mbps

20Mbps

Bottleneck link B1

Bottleneck link B2

MPTCP

(b) Two of three subflows share bottlenecks with
a TCP flow

Figure 3: Two typical network topologies.

results. The smaller value of ER means the better through-
put model.

ER =
|TPmodel − TPsimulation|

TPsimulation
∗ 100% (38)

6.1 Network Topologies and Basic Setup
Before discussing the simulation results, we first present

two network topologies and the basic setup used in our N-
S2 simulations. Specifically, Fig. 3 shows two simple but
typical network topologies used in our simulations. We use
a pair of MPTCP-capable sources (colored gray in Fig. 3)
to transfer data through two or three paths simultaneously.
These MPTCP subflows coexists with regular TCP flows in
two different topologies. In each topology, there exists two
bottleneck link B1 and B2. In topology 4-(a), MPTCP has
two subflows and each subflow shares bottleneck capacity
with a TCP flow respectively. In topology 4-(b), there are
three MPTCP subflows with two of the three sharing bot-
tlenecks with a TCP flow. We refer to the tcp traffic as
“background” flows while MPTCP traffic being monitored
as “foreground” flows.

We set the capacity of bottleneck link B1 and B2 fixed at
20 Mbps while the other links (omitted from Fig. 3) have a
high bandwidth of 100 Mbps. The queue size at bottleneck-
s is fixed at 100 packets and DropTail queue management
policy is used when buffer overflows at the bottlenecks. The
packet drop rate and propagation delays of the access link
are varied to simulate the desired RTT and packet loss rate
between the sources. To get a steady state of MPTCP per-
formance, both the foreground and background flows have a
long duration of 300 seconds. We set the receive buffer for
the MPTCP flow to be 100 packets with a fixed packet size
of 592 bytes. The Round-Robin packet scheduling policy is
used in the MPTCP implementation code. We test the per-
formance of our model when MPTCP subflows have similar
or dissimilar properties with each other.

6.2 Similar Properties Simulation Results
In this section, we change the properties of all MPTCP

subflows simultaneously, i.e., in each experiment, all sub-

flows have similar properties. First, we keep the packet loss
rate of all MPTCP subflows unchanged at 4%, and vary
RTT from 12ms to 80ms. We compare the precision of our
model with (1). Fig. 4(a) and 4(b) show the results for the
above two topologies with the average ER of our model to
be 2.99% and 1.6%, respectively. The formula (1) over pre-
dicts the MPTCP performance especially when the RTT is
small. The average ERs of (1) are 45.46% and 30.02% for
these two topologies, respectively. Our model behaves well
over a wider range of RTTs in this scenario. Specially, our
model can improve the precision for an order of magnitude
compared to (1).

Then we keep the RTT unchanged at 20ms, and vary the
packet loss rate for all subflows from 0.5% to 15%. The
results are shown in Fig. 5. The average ER of our model
for these two topologies are 7.62% and 7.96%, respectively.
But the (1) introduces high average ER of 1.43 and 92.17%,
respectively. Particularly, when packet loss rate grows, the
ER of (1) also increases obviously. From Fig. 4 and 5, we
can find that (1) applies to network conditions with small
packet loss rate and relatively large RTT, while our model
behaves well over a wide range of RTT and packet loss rate.

6.3 Dissimilar Properties Simulation Results
In this section, we try to validate the proposed model

when the RTTs are different between MPTCP subflows, and
show the influence of receive buffer size. Here, we fix the
packet loss rate for all subflows at 4%, and only change the
propagation delays of the bottleneck link B1 to get the de-
sired RTT changing from 20ms to 2s. To better see the
influence of receive buffer size, we set the receive buffer size
to be 100 and 50 packets in different experiments. The re-
sults are shown in Fig. 6(a) and 6(b). In topology 4-(a),
the average ERs of our model for receive buffer of 100 and
50 packets are 7.41% and 7.05%, respectively. In topology
4-(b), the average ERs are 9.65% and 9.15%, respectively.
Though a little performance degradation, our model can stil-
l give a satisfactory prediction, even in the situation where
the RTT of slow path larger than 100x of the fast path.

From the comparisons above, we can find that our through-
put model of MPTCP can precisely predict the through-
put of MPTCP in several different scenarios. With similar
properties of MPTCP subflows, the average ER of our pro-
posed model is smaller than 8%. If differences exist between
MPTCP subflows, our model can still predict the through-
put with the average ER of 10%. Using WiFi and 3G in-
terfaces simultaneously on smart phones or tablets, the dif-
ferences of RTT always exist on MPTCP subflows. As the
simulation result shows, our model can behave well with
satisfactory small ER.

7. CONCLUSION
This paper presents a detailed model for MPTCP steady-

state throughput in terms of packet loss rate, RTT and re-
ceive buffer size. The proposed model takes into account
not only the behavior of MPTCP coupled congestion con-
trol algorithm in the presence of triple duplicate ACKs and
timeout events, but also the influence of flow control. T-
wo challenges in deriving the model are addressed in this
paper, including the dependence between subflows and the
influence of flow control. We validate the proposed model
through extensive NS2-based simulations. The results indi-
cate that our model can precisely predict MPTCP through-

(a) For Topology 4-(a)

(b) For Topology 4-(b)

Figure 4: RTT for all subflows syn-
chronously changes.

(a) For Topology 4-(a)

(b) For Topology 4-(b)

Figure 5: Packet loss rate for all
subflows synchronously changes.

(a) For Topology 4-(a)

(b) For Topology 4-(b)

Figure 6: RTT differs between sub-
flows.

put over a wide range of packet loss rate and RTT. Even
in the situations where the RTT difference exists between
MPTCP subflows, our model can still behave well.

8. ACKNOWLEDGEMENT
This work has been supported in part by NSFC Project

(61170292, 61472212), National Science and Technology Ma-
jor Project (2015ZX03003004), 973 Project of China (2012C-
B315803), 863 Project of China (2013AA013302, 2015AA01-
5601), EU MARIE CURIE ACTIONS EVANS (PIRSES-
GA-2013-610524) and multidisciplinary fund of Tsinghua
National Laboratory for Information Science and Technolo-
gy.

9. REFERENCES
[1] R. Dunaytsev, Y. Koucheryavy, and J. Harju. The

pftk-model revised. Computer communications,
29(13):2671–2679, 2006.

[2] A. Ford, C. Raiciu, M. Handley, S. Barre, and
J. Iyengar. Architectural guidelines for multipath tcp
development. Internet Engineering Task Force,
RFC6182, March, 2011.

[3] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure.
Tcp extensions for multipath operation with multiple
addresses. Internet Engineering Task Force,
RFC6824,January, 2013.

[4] E. G. Gran, T. Dreibholz, and A. Kvalbein. Nornet
core–a multi-homed research testbed. Computer
Networks, 61:75–87, 2014.

[5] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The
macroscopic behavior of the tcp congestion avoidance
algorithm. ACM SIGCOMM Computer
Communication Review, 27(3):67–82, 1997.

[6] C. Paasch, S. Barŕl ↪e, et al. Multipath tcp in the linux
kernel. http:www.multipath-tcp.org.

[7] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose.
Modeling tcp reno performance: a simple model and
its empirical validation. IEEE/ACM Transactions on
Networking (ToN), 8(2):133–145, 2000.

[8] S.-Y. Park, C. Joo, Y. Park, and S. Bank. Impact of
traffic splitting on the delay performance of mptcp. In
Communications (ICC), 2014 IEEE International
Conference on, pages 1204–1209. IEEE, 2014.

[9] C. Raiciu, M. Handley, and D. Wischik. Coupled
congestion control for multipath transport protocols.
Internet Engineering Task Force, RFC6356, October,
2011.

[10] C. Raiciu, D. Wischik, and M. Handley. Practical
congestion control for multipath transport protocols.
University College London, London/United Kingdom,
Tech. Rep, 2009.

[11] C. B. Samios and M. K. Vernon. Modeling the
throughput of tcp vegas. In ACM SIGMETRICS
Performance Evaluation Review, volume 31, pages
71–81. ACM, 2003.

[12] M. Scharf and A. Ford. Multipath tcp (mptcp)
application interface considerations. Internet
Engineering Task Force, RFC6897, March, 2013.

[13] D. Wischik, C. Raiciu, A. Greenhalgh, and
M. Handley. Design, implementation and evaluation of
congestion control for multipath tcp. In NSDI,
volume 11, pages 8–18, 2011.

[14] M. Xu and Z. Zhang. Markov modeling of mptcp’s
coupled congestion control. Journal of Tsinghua
University Science and Technology, 52(9):1281–1285,
2012.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20150902062455
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150902062455
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 8
 7
 8

 1

 HistoryList_V1
 qi2base

