
Measurement, Modeling, and Analysis of TCP in

High-Speed Mobility Scenarios

Qingfang Liu∗†, Ke Xu∗†, Haiyang Wang‡, Meng Shen§, Li Li∗† and Qingyang Xiao∗†

∗Department of Computer Science and Technology, Tsinghua University, Beijing, P.R.China
†Tsinghua National Laboratory for Information Science and Technology, Beijing, P.R.China

‡University of Minnesota, Duluth, America
§Beijing Institute of Technology, Beijing, P.R.China

Abstract—The rapid growth of high-speed transit systems,
such as High Speed Rail (HSR), is putting considerable pressure
on TCP-based data transmission. It is well known that TCP
is suffering from severe throughput degradation in high-speed
mobility scenarios. The root cause at the transport layer however
remains unclear and largely undetermined to date.

In this paper, we aim to pinpoint the throughput bottle-
necks and develop a throughput model to understand TCP
in high-speed mobility environments. Based on the analysis of
real-world HSR traces, we find that high-speed mobility will
introduce significant challenges to the packet retransmission
process after timeouts. And ACKs are more likely to trigger
spurious retransmission timeouts in TCP flows in high-speed
mobile environments. Such problems are not yet considered in
the existing TCP models because classic timeouts can easily be
recovered by retransmission in stationary scenarios. We therefore
propose an enhanced TCP throughput model to integrate the
above features. Our model analysis indicates that the optimization
of TCP ACK latency is critical to obtain better throughput.
Moreover, reliable retransmission mechanisms, e.g., multi-path
TCP (MPTCP), can also bring notable benefits in high-speed
mobility environments.

Index Terms—modeling TCP throughput; high-speed mobility
scenarios; measurement;

I. INTRODUCTION

It is known that the high-speed transit system has dramat-

ically revolutionized people’s lives across the globe. Many

countries have developed High Speed Rails (HSRs) to connect

major cities, making traveling a more comfortable and conve-

nient experience. For example, the European Union (EU) is

constructing four HSR lines with the speed of 300 km/h [1].

The United States is currently building a dedicated high-speed

rail line between Washington D.C. and Boston, allowing for

peak speeds over 354 km/h [2]. China is also upgrading its

existing huge rail systems and planning to provide 30, 000 km

HSR service by 2020 [3]. These high-speed transit systems

also introduce significant challenges to a traveler’s network ac-

cess. Existing studies have confirmed that high-speed mobility

will significantly reduce TCP throughput [4]–[8]. However, its

root cause at the transport layer remains largely undetermined.

In this paper, we aim to pinpoint the problem and develop

an enhanced throughput model. Our analysis is based on

real-world TCP traces captured on Beijing-Tianjin Intercity

Railway (BTR). The steady speed of this train is over 300

km/h. To avoid bias in data collection, our dataset covers

three major tier-1 ISPs in China, China Mobile [9], China

Telecom [10] and China Unicom [11], over both 3G and LTE

(Long-Term Evolution) networks. As a result, we captured

40.47 GB packet traces and 255 TCP flows in January and

October 2015. The observations are summarized as follows:

• Long recovery time: Packet retransmission after timeout-

s is more challenging in high-speed mobile environments.

In our dataset, the timeouts can easily be recovered within

0.65s on average in stationary scenarios. The time will

be elevated to over 5.05s during high-speed movements.

It means that during the timeout recovery phase, the loss

rate of the retransmitted packets is extremely high.

• Spurious retransmission timeouts: If one packet is not

lost and a timeout for this packet still happens, the

timeout can be regarded as a spurious timeout. In our

dataset, 49.24% timeouts are spurious. So ACKs are more

likely to trigger spurious retransmission timeouts in high-

speed mobility scenarios. The ACK loss rate in high-

speed scenarios is about 0.66%. These missing ACKs will

further increase the number of timeouts to some degree.

The above issues do not exist in stationary scenarios. The

related features are also not captured by the existing TCP

throughput models. To address this problem, we propose

an enhanced TCP throughput model to take into account

these two special features. In particular, we introduce a new

parameter to represent the probability when all ACKs are lost

in the transmission round. Moreover, we also consider the loss

rate of the retransmitted packets during the timeout recovery

phase. Following the classic Padhye model [12], our enhanced

model consists of three parts: congestion avoidance phase, the

timeout recovery phase and the influence of window limitation.

The evaluation result indicates that our model can improve

the precision of the Padhye model by 16.3% in high-speed

mobility scenarios.

Based on the proposed model, we further find that the

traditional delayed acknowledgment technique [13] may fur-

ther increase the number of spurious retransmissions in high-

speed mobility scenarios. Some reliable packet retransmission

mechanisms, e.g., through an alternative path, can therefore

achieve significantly higher throughput in this environment.

2016 IEEE 36th International Conference on Distributed Computing Systems

1063-6927/16 $31.00 © 2016 IEEE

DOI 10.1109/ICDCS.2016.43

629



The rest of this paper is structured as follows. Section II re-

views the related work. Section III presents our measurement-

based motivation. Section IV proposes an enhanced throughput

model. Section V presents further discussions about methods

to improve a user’s experience in high-speed mobility scenar-

ios. Finally, section VI concludes the paper.

II. RELATED WORK

TCP performance in high-speed mobility environments at-

tracts growing interest from both industry and academia.

Studies in [14] and [15] present the simulation results, showing

large handover delay leads to poor TCP performance in mobile

scenarios. Two cross-layer schemes were proposed to improve

TCP throughput during vertical handoffs between satellite and

WiFi networks [16], [17]. Study in [18] found four root causes

of the TCP performance bottlenecks: receiver limited, network

limited, packet loss and anomaly. The methodology for iden-

tifying the causes was also provided in [18]. Three solutions

were proposed to improve the TCP performance during the

intra-LTE handovers in [4]. A fast adaptive congestion control

algorithm can reduce the influence of handoff between WLAN

(Wireless Local Area Networks) and 3G networks in [19].

Other than theoretical analysis based on the simulation re-

sults, a number of studies on measurements also exist. Through

measurements on LTE networks, Hang et al. [20] found that

RTT remains stable at a speed under 120 km/h, with small

variations. Tso et al. [6] carried out extensive measurements

on the HSPA network performance in Hong Kong, covering

nearly all the possible mobile scenarios in urban areas. Jang et

al. [7] found the degradation of TCP and UDP performance in

3G and 3.5G networks in 300 km/h high-speed trains. Large-

scale measurements in [5] focused on the adaptability of TCP

over HSPA+ networks in high-speed mobility scenarios. The

authors found that TCP does not adapt well in almost all

aspects including its establishment, transmission, congestion

control and termination. A fast handover mechanism using

cross-layer collaboration in a high-speed mobility scenarios

was proposed in [21]. Study in [8] focused on the influence of

wireless channels and handoffs on TCP throughput and Round

Trip Time (RTT) in driving and high-speed mobility scenarios.

The influence of driving (100 km/h) on TCP throughput is

limited, however, TCP throughput is worse and has a large

variance in high-speed mobility scenarios [8]. Different from

the prior work, we focus on the direct reason for TCP

throughput reduction at the transport layer.

In this paper, we try to give an enhanced throughput model

applied to high-speed mobility scenarios. The closed-form

throughput model (the Padhye model) in [12] can precisely

predict the TCP Reno throughput in stationary scenarios.

Studies in [22] and [23] present the detailed modeling process

of TCP Veno and TCP NewReno, respectively. As a first

step towards modeling TCP throughput in high-speed mobility

scenarios, our modeling process is based on the Padhye model

since the TCP Reno is the basis of the other TCP versions.

TABLE I
DATASET

Date Number Cellphone Provider Number Trace Size

of Trips Model of Flows (GB)

January 8 Samsung China Mobile 52 7.73

2015 Note 3

October 24

Samsung China Mobile 73 18.9

Note 3

2015 Samsung China Unicom 65 9.63

Galaxy S4

Samsung China Telecom 65 4.21

Galaxy S4

III. PINPOINTING TCP THROUGHPUT BOTTLENECKS IN

HIGH-SPEED MOBILITY SCENARIOS

In this section, we will apply a measurement-based analysis

to explore why TCP is suffering from low throughput issues

in high-speed mobility environments.

A. Measurement Configuration

As shown in Table I, our dataset was captured in January

and October 2015 on Beijing-Tianjin Intercity Railway (BTR).

The total length of BTR is about 120 km. The high-speed train

only needs 33 minutes for one-way trip. In January, we tested

the LTE networks of China Mobile. In October, we further

tested the 3G networks of China Unicom and China Telecom.

The design of this high-speed railway system follows the facto

standard of China Railway High-speed (CRH) with the steady

peak speed of 300 km/h 1.

In this BTR environment, we use smartphones to commu-

nicate with a dedicated server directly via a TCP connection.

The server is rented from Alibaba’s Aliyun Elastic Compute

Service (ECS) [24] and running TCP Reno in the kernel.

To avoid possible server-side bottlenecks, this server has the

uploading/downloading capacity of 100 Mbps. Our testers

carried three Android smartphones (one Samsung Galaxy

Note3 and two Samsung Galaxy S4) on the train and used

wireshark [25] and shark [26] to capture TCP traces. As a

result, we successfully obtained 40.47 GB packet traces.

B. Analysis of Throughput Bottlenecks

In this part, we aim to find the direct reasons for TCP

throughput reduction in high-speed mobile environments. We

focus on the detailed packet transmission process between the

sender and the receiver at the transport layer. It has been

discussed intensively in prior work that TCP low throughput is

due to mobility issues (i.e., handoff) as well as high wireless

bit error rates [7], [8], [27]. But how these physical layer

changes result in TCP throughput reduction in high-speed

mobility scenarios is still unclear.

1) Long recovery after timeouts: Fig. 1 shows the time

spent by one packet to arrive at the destination in a TCP

flow. The flow is captured when the train is running at a

constant speed around 300 km/h. The points in the upper

and lower parts of Fig. 1 represent the ACK packets and the

1In this paper, we use the term “high-speed mobility scenarios” to represent
the mobility environments at the speed around 300 km/h.

630



0

2

4

6

8

0 10 20 30 40 50 60 70 80 90 100 110 120

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Successfully arrived ACK packet

Lost ACK packet

T
im

e
to

ar
ri

v
e

at
th

e
d
es

ti
n

at
io

n
(s

ec
o

n
d

)

Time (second)

Successfully arrived data packet

Lost data packet

Fig. 1. The time for ACKs or data packets to arrive at the destination.

data packets, respectively. The horizontal axis represents the

time when the packet is sent, while the vertical axis represents

the time spent by the packet to arrive at its destination. The

time spent by most data packets or ACKs is around 30 ms,

close to 0 as shown in Fig. 1. It is interesting that the upper

and lower parts in Fig. 1 are the two main parts of RTT. To

better show the ACKs and data packets that are lost during

the transmission whose time duration should be infinite in Fig.

1, we set their time duration to be −1. The lost ACKs and

data packets are also colored red in Fig. 1, so readers can

conveniently distinguish them from those successfully arrived

packets. There are totally 10 timeout sequences in this TCP

flow’s lifetime. We mark these timeouts by numbers in Fig. 1.

As shown in Fig. 1, we can find that the transmission was

quickly recovered after the 9th timeout event. However, the

sender spent long time recovering the transmission after the

other timeouts, corresponding to the large blanks in Fig. 1.

Fig. 2 shows the detailed retransmission process after timeouts.

When the timeout event occurs, the network is considered to

be extremely congested. So TCP takes cautious retransmission

strategies to avoid injecting more packets to the congested

network. As shown in Fig. 2, only one packet is retransmitted

after the 1st timeout event. But the retransmitted packet is

also lost, so the 2nd timeout event will occur. The exponential

backoff mechanism is used in computing the retransmission

timer. We use T to denote the retransmission timer for the 1st

timeout event, and then the timer for the 2nd timeout event is

2T . This doubling will continue until the timer reaches 64T .

The sender will enter a slow start phase after recovering from

timeouts. As shown in Fig. 2, the timeout recovery phase is

from the end of a congestion avoidance phase to the start of a

slow start phase. During the timeout recovery phase, the sender

only retransmits the lost packet. Therefore, long duration of

a timeout recovery phase can really hurt the average TCP

throughput. In our dataset, the average time duration of a

timeout recover phase in high-speed mobility scenarios is 5.05
s. As a comparison, the average time duration of a timeout

Window

size

A timeout recovery phase 

TimeT 2T 4T

1st timeout 2nd timeout 3rd timeout

  

Lost data

Received data

Lost data

Received data

Fig. 2. The retransmission process in a timeout recovery phase.

recover phase in stationary scenarios is only 0.65 s.

As we can see in Fig. 2, the sender totally retransmitted

three packets in the timeout recovery phase. Only one packet

successfully arrived at the receiver, so the date loss rate in this

timeout recovery phase is about 66.6%. There will be many

timeout recovery phases in a TCP flow’s lifetime, so we figure

out the average data loss rate in the timeout recovery phase.

Then we compare it with the average data loss rate during a

TCP flow’s lifetime in Fig. 3. The difference between these

two data loss rates is obvious. The average data loss rate during

the timeout recovery phase in our TCP traces is about 27.26%,

while the average data loss rate during a TCP flow’s lifetime

is only 0.7526%. The high data loss rate during the timeout

recovery phase will result in a long recovery process, hurting

the average TCP throughput a lot.

2) Relationship between timeouts and ACK loss: When

a packet is sent from the sender, the sender will start a

retransmission timer for this packet. If the sender does not

receive any acknowledgments for this packet till the timer

expires, a timeout event will occur. Successive loss of data

may lead to a timeout event in stationary environments. But

in our dataset, we find that even if the packet can normally

arrive at the receiver, the timeout event might still occur.

According to whether the packet is lost or not, we can divide

timeouts into two types: spurious retransmission timeouts and

631



0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Data loss rate

During a TCP flow's lifetime

During a timeout recovery phase

Fig. 3. The CDF of two kinds of loss rates.

0.00 0.04 0.08 0.12 0.16 0.20
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

T
im

eo
u
t

ra
te

ACK loss rate

Fig. 4. The relationship between ACK loss rate and timeout events.

the timeouts due to data loss. If the timeout event is spurious,

the receiver will receive two packets with the same payload,

i.e., the original packet and the retransmitted packet. If the

timeout event is caused by successive loss of data packets, the

receiver will only receive the retransmitted packet. Therefore,

we can differentiate these two types of timeouts. In our dataset,

about 49.24% timeouts are spurious. So the assumption that

only data loss can lead to a timeout event in the Padhye

model is inappropriate in high-speed mobility scenarios. In

other words, ACKs in high-speed mobility scenarios are more

likely to trigger timeouts compared with stationary scenarios.

Then we focus on the relationship between timeouts and

ACK loss. As shown in Fig. 4, we can observe a clear positive

correlation between ACK loss rate and the probability of

timeout events. Each point in Fig. 4, represents a TCP flow in

our dataset and all of them are in the grey area between two

oblique lines. Although the correlation is not strong, we can

still find the tendency that the probability of timeouts grows

with the ACK loss rate. This positive correlation is reasonable

since successive loss of ACKs may also trigger timeouts even

if there is no data loss.

Due to TCP’s build-in cumulative acknowledgement mech-

anism, the loss of one ACK packet will not lead to the data

retransmission process. This is different from data loss, as even

single loss of a data packet will trigger the retransmission

Received data

Received ACK Lost ACK

Sequence

number

Time
Timeout occurs

the kth round

rtx

rtx Retransmission

Largest 

ACKed

Largest 

sent

(a) Case one

Received data

Received ACK Lost ACK

Sequence

number

Time
Timeout occurs

the kth round

rtx

rtx Retransmission

Largest 

ACKed

Largest 

sent

the (k+1)th round

(b) Case two

Fig. 5. Two cases where ACK loss triggers a timeout event.

process. As shown in Fig. 5(a), there are 6 packets arriving at

the receiver in the kth round. If the delayed acknowledgement

technique is not used by the receiver, there will be 6 ACKs

returning to the sender. In Fig. 5(a), all these 6 ACKs are

lost, so the sender mistakes ACK loss for data loss. The

mistake will lead to a spurious retransmission after the timer

T expires. In Fig. 5(b), not all of these 6 ACKs are lost in the

(k+ 1)th round, so the sender will update its sliding window

and send one more packet. Then one ACK will be returned

in the next round, and the loss of this single ACK may also

result in a timeout event. Under the precondition of no data

loss, we figure out that a timeout event will occur only if all

the ACKs are lost in one round. This is the reason why a

positive correlation exists between timeouts and ACK loss.

3) Characteristics of ACK Loss in High-speed Mobility

Scenarios: Based on the the above analysis, we find a positive

correlation between ACK loss and timeouts. Even worse, we

find that the high-speed mobility will introduce significant

ACK loss to TCP communications. Fig. 6 depicts the CDF of

ACK loss rates in stationary scenarios and high-speed mobility

scenarios, respectively. The average ACK loss rate in high-

speed mobility scenarios is about 0.661%, while in stationary

scenarios the average ACK loss rate is only 0.0718%. As a

comparison, the average data loss rate in high-speed mobility

scenarios is 0.7526%. So the ACK loss should not be ignored

in the modeling process.

632



0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

ACK loss rate

Stationary scenarios

High-speed mobility scenarios

Fig. 6. The CDF of ACK loss rate.

C. Modeling Considerations

We observed the following two features at the transport

layer in high-speed mobility scenarios. First, different from the

stationary scenarios, the time duration of the timeout recovery

phase is much longer in high-speed mobility scenarios. More-

over, the ACK loss rate in high-speed mobility scenarios is

relatively high, increasing the probability of spurious timeouts

to some degree. These two special characteristics are the direct

reasons for TCP throughput reduction. The underlying reason

for these two features may be the high wireless bit error rates

or long handoff delays. But it is beyond the scope of this

paper as described in the beginning of this section. Since these

two special features are ignored in the Padhye model, errors

will be introduced when applying Padhye model to high-speed

mobility scenarios. In order to get an accurate throughput

model, we must take into account these two characteristics

in our modeling process.

IV. DETAILED THROUGHPUT MODELING PROCESS

It is easy to see that the above ACK missing and timeout

issues do not exist in stationary scenarios or to a much lower

degree. In this section, we aim to enhance the classic Padhye

model to better capture these features. In particular, subsection

IV-A will give all the preliminaries of the modeling process.

After that, the detailed modeling process will be presented

step by step from the congestion avoidance (CA) phase (in

subsection IV-B), the timeout sequence (in subsection IV-C)

to the discussion of window limitation (in subsection IV-D).

The entire model is then evaluated in subsection IV-E.

A. Preliminaries

We introduce two parameters Pa and q to quantitatively

model the influence of the above two features in our modeling

process. Pa denotes the probability of timeout events due to

the loss of ACKs. In the rest of this paper, we use the term

“ACK burst loss” to denote the event where all ACKs in one

round are lost. So Pa also denotes the probability of ACK

burst loss. In other words, under the precondition of no data

loss in a round, the ACK burst loss can still finish a CA phase

with the probability of Pa. Otherwise the sender will enter the

next round normally with the probability of 1−Pa. After the

first timeout event, the sender will retransmit one data packet.

TABLE II
PARAMETERS USED IN THE PROPOSED MODEL

Symbol Meaning

RTT average round trip time

A time duration

Y number of packets received

W window size at the end of CA phase

X number of rounds in a CA phase

b number of data packets acknowledged by one ACK

Q probability of timeout event

R number of timeouts in a timeout sequence

Wm window limitation advertised by the receiver

TP expected value of throughput

If the retransmitted packet is also lost, the next timeout event

will occur. So there will be a sequence of timeouts before the

transmission is recovered. We use q to denote the loss rate of

these retransmitted packets during the timeout recovery phase.

pd represents the data loss rate during a TCP flow’s lifetime.

q is obviously larger than pd in high-speed mobility scenarios,

leading to a much longer timeout recovery phase.

Pa represents the probability that all ACKs in one round

are lost instead of the loss rate of one ACK. The ACK loss

rate pa and the data loss rate pd can be easily captured as link

state. But Pa cannot be easily captured by probing directly. In

fact, it can be approximately derived using the ACK loss rate

pa and window size w. If we assume that the loss of ACKs

are independent, we can get Pa = pwa . As for the value of

q, we recommend a value between 0.25 to 0.4 based on the

analysis of our real-world traces.

For the sake of clarity, we list the important notations in

Table II. It is worth noting that the specific meaning of the

symbol also depends on its superscript and subscript. For

example, the time duration of the ith CA phase is denoted

by Ai, while the time duration of the ith timeout sequence is

denoted by ATO
i .

We also list all the assumptions used in modeling process

of this paper. Most of the assumptions are the same as the

Padhye model. We assume that the packet loss is correlated

in one round. It means that after the first packet loss, the

subsequent packets in that round are also lost. The data loss

is independent between different rounds. Since the steady-

state throughput is our major concern, we assume that the

sender has an infinite amount of data to transmit and all data

packets have a fixed size of one MSS (Maximum Segment

Size). These assumptions are the same as the Padhye model

[12]. But the assumption of no ACK loss is unreasonable in

high-speed mobility scenarios, so we remove this assumption

in our modeling process.

633



Window

size

 b 

The ith CA phase

1 2 3 4      

     

     

No. of rounds

Wi

XP

Wi �1

2

Acknowledged data

Lost  data

(a) No ACK burst loss occurs before data loss

Window

size

No. of rounds
 b 

the ith CA phase

1 2 3 4      

     

     

ACK burst loss

Acknowledged data

Corresponding ACK is lost

Wi

Xi

Wi �1

2

C

(b) ACK burst loss occurs before data loss

Fig. 7. The evolution of window size in a CA phase.

B. The Modeling of the Congestion Avoidance Phase

The Padhye model assumes that ACKs are never lost in a

TCP flow’s lifetime. This assumption is reasonable in both

stationary and slow moving scenarios. Under this assumption,

the ith CA phase will not end until data loss occurs. We use

XP to denote the expected round where data loss first occurs

in a CA phase. The value of XP derived in the Padhye model

is shown in (1). Different from the Padhye model, we use

Xi to denote the number of rounds in the ith CA phase, not

the round where loss occurs. The assumption of no ACK loss

is unreasonable for high-speed mobility scenarios. So in this

section, we remove the assumption and model the influence

of ACK burst loss.

XP =
2 + b

6
+

√
2b(1− pd)

3pd
+ (

2 + b

6
)2 (1)

In order to simplify the modeling process, we assume that

the ACK loss is independent of data loss. As shown in Fig.

7(a), the data loss will finish a CA phase under the condition

that no ACK burst loss occurs in the first XP rounds. So the

TABLE III
NUMBER OF ROUNDS IN A CA PHASE AND CORRESPONDING PROBABILITY

Probability Pa (1−Pa)Pa ... (1− Pa)
XP−1Pa (1−Pa)

XP

X 1 2 ... XP XP + 1

probability of this case is (1−Pa)
XP . In this case, the number

of rounds in this CA phase should be XP + 1. As shown in

Fig. 7(b), before data loss occurs, the ACK burst loss may

finish the current CA phase. In this case, we can find that the

number of rounds in a CA phase just equals to the round where

ACK burst loss occurs. For example, if the ACK burst loss first

occurs in the kth round with the probability of (1−Pa)
k−1Pa,

the number of rounds in this CA phase should be k. So we

can get the relationship between the number of rounds in a CA

phase and its corresponding probability, as shown in Table III.

From Table III, we can find that the number of rounds in a

CA phase (X) does not follow a geometric distribution. This

is because the range of values for X is finite. But similar to

the solving the expectation of geometric distribution, we can

get the expected number of rounds in a CA phase (E[X]) in

(2). Using L’Hopital’s rule, we find that when Pa approaches

to 0, E[X] will approach to XP + 1. And XP + 1 is exactly

the number of rounds in a CA phase under the assumption of

no ACK loss. It means that when there is no ACK burst loss,

our model will return to the Padhye model.

E[X] =
1− (1− Pa)

XP+1

Pa

(2)

Then we aim to further derive the expected window size at

the end of a CA phase (E[W ]). Using the delayed acknowl-

edgement technique, several data packets are acknowledged by

only one ACK. In this case, we use b to denote the number

of data packets acknowledged by one ACK. In a CA phase,

the window size will increase by 1 in unit of packet every b
rounds. In the ith CA phase, the window size increases from

Wi−1/2 to Wi, so we can get (3) in equilibrium.

Wi =
Wi−1

2
+

X

b
− 1 (3)

From the above equation, we can get the expected conges-

tion window size at the end of a CA phase (E[W ]) as follows:

E[W ] =
b

2
E[X]− 2

=
2(1− (1− Pa)

XP+1)

bPa

− 2

(4)

In this paper, we focus on the modeling of TCP throughput,

i.e., the number of packets received by the receiver per unit

time. The difference between throughput and sending rate

lies in the packets dropped during the transmission. So the

lost packets must be removed when deriving the throughput.

Observing the last round in a CA phase in Fig. 7, we find that

the number of packets received in the last round is always less

than W . It should depend on where the ACK loss or data loss

occurs in the prior round. We assume that both ACK loss and

634



Window

size

the ith Cycle 

Time

Wi1

Wi2

Wi3

Ai1 Ai2 Ai3 T 2T 4T

Ai
TO

Ai
CA

Fig. 8. The evolution of window size considering two types of loss indications.

data loss randomly occur in a round. Then only a half window

of packets are received in the last round in equilibrium. So in

the ith CA phase, we can get

Yi =

k=
Xi
b∑

k=0

(
Wi−1

2
+ k)−

Wi

2

=
XiWi−1

2
+

Xi

2
(
Xi

b
− 1)−

Wi

2

=
Xi

2
(
Wi−1

2
+Wi)−

Wi

2

(5)

From the above equation, we can get the expected number

of packets received by the receiver in a CA phase as follows:

E[Y ] =
E[X]

2
(
E[W ]

2
+E[W ])−

E[W ]

2
=

E[W ]

2
(
3E[X]

2
−1)

(6)

After getting the expression E[X], E[W ] and E[Y ], we can

get the expected throughput of a CA phase (E[TP ]) in (7),

where E[X] is given in (2).

E[TP ] =
E[Y ]

E[A]
=

1

RTT
(
3b

8
E[X]−

1

E[X]
−

6 + b

4
) (7)

C. The Modeling of the Timeout Sequence

Data loss can be detected by two types of loss indications:

triple duplicate ACKs and timeouts. When the loss indication

is due to triple duplicated ACKs, the sender will halve the

current congestion window size and finish the current CA

phase. After recovering from the loss, the sender will enter

the next CA phase. However, when the loss indication is due

to timeouts, the sender will enter a slow start phase after

recovering from the loss. Consecutive timeouts will occur if

the packet retransmission fails. So there will be a sequence of

timeouts before recovering from the loss. Since the congestion

window size grows exponentially in the slow start phase, the

time duration of the phase is short. We ignore this phase

likewise in the Padhye model. When considering both of these

loss indications, the cycle in a TCP flow’s lifetime should

include a sequence of CA phases and a sequence of timeouts,

as shown in Fig. 8.

We use n to denote the number of CA phases in a CA

sequence. Y To
i denotes the number of received packets and

ATO
i denotes the time duration of the timeout sequence in the

ith cycle. Let Q denote the probability that a loss indication

is a timeout event. Then Q should equal to 1/n. So we can

get E[TP ] by (8).

E[TP ] =
nE[Y ] + E[Y TO]

nE[A] + E[ATO]
=

E[Y ] +QE[Y TO]

E[A] +QE[ATO]
(8)

In the Padhye model, it is assumed that no ACK is lost, so

the timeout event is only triggered by data loss. We use QP to

denote the value of Q derived in the Padhye model as follows:

QP = min(1,
3

E[W ]
) (9)

In our modeling process, both data loss and ACK loss may

finish the current CA phase. The probability that data loss

ends a CA phase is (1 − Pa)
XP , because it equals to the

probability that no ACK burst loss occurs before data loss. In

this case, the timeout event will occur with the probability of

QP . Still, a CA phase may end due to the ACK burst loss with

the probability of 1 − (1 − Pa)
XP . In this case, the timeout

event must occur, since the sender does not receive any ACK

before the retransmission timer T expires. Thus we can get

the expected value of Q as follows:

Q = QP ∗ (1− Pa)
XP + 1 ∗ (1− (1− Pa)

XP )

= 1− (1−QP ) ∗ (1− Pa)
XP

(10)

Next, we try to derive E[Y TO] and E[ATO] in (8). An-

alyzing the TCP traces, we find that the loss rate of the

retransmitted packets during the timeout recovery phase q is

obviously high. So q must be distinguished from the data loss

rate pd. Since only one data packet is retransmitted after a

timeout event, the retransmission will be successful only if

the packet and its corresponding ACK are not lost. So the

consecutive timeout event will occur with the probability of

p = 1− (1− q) ∗ (1−Pa), or the retransmission is successful

with the probability of (1 − q) ∗ (1 − Pa). The number of

timeouts in a timeout sequence has a geometric distribution

with the expectation shown as follows:

E[R] =
1

1− p
(11)

After each timeout event, one data packet will be retransmit-

ted to the data-receiver. The data packet has the probability of

1− q to successfully arrive at the data-receiver. So we can get

the expected number of data packets received by the receiver

in a timeout sequence as shown in (12).

E[Y TO] = (1− q)E[R] (12)

The retransmission timer T for consecutive timeouts obeys

the exponential backoff mechanism. Like the Padhye model,

the expected time duration of a timeout sequence (E[ATO])
should be as follows:

E[ATO] = T ∗
f(p)

1− p
(13)

where

f(p) = 1 + p+ 2p2 + 4p3 + 8p4 + 16p5 + 32p6 (14)

635



Window

size

the ith CA phase 

Time

Fig. 9. The evolution of window size under the impact of window limitation.

Substituting the expressions Q, E[Y TO] and E[ATO] into

(8), we can get the expected throughput when taking into

account the loss indications due to triple duplicate ACKs and

timeouts as shown in (15).

E[TP ] =
3b
8 E

2[X]− 6+b
4 E[X]− 1 +Q ∗ (1− q)

1

1−p

RTT ∗ E[X] +Q ∗ T ∗ f(p)
1−p

(15)

D. Impact of Window Limitation

As observed in our TCP traces, the receiver will advertise

a window limitation at the beginning of the establishment

phase of the TCP connection. It is the maximum value of

the congestion window size. We use Wm to denote the value

of window limitation. When the expected window size at

the end of a CA phase E[W ] (4) is smaller than Wm, the

impact of window limitation is negligible on the steady-state

throughput. The throughput can still be derived from (15) in

this case. However, when E[W ] derived from (4) is larger than

Wm, things are different. In this section, we try to model this

common case and give an integrated throughput model.

As shown in Fig. 9, the number of rounds for window size

growing from Wm/2 to Wm in the ith CA phase is denoted

by Ui. The increase of the congestion window size is linear,

so the expected value of Ui should be as follows:

E[U ] =
bWm

2
(16)

In the ith CA phase, after the window size reaches Wm, it

will remain unchanged for Vi rounds until the sender detects a

loss indication and finishes the current CA phase. We use VP

to denote the expected value of Vi in the Padhye model, as

shown in (17). Here, we take into account the loss of ACKs

and the expected value of Vi should also be renewed.

VP =
1− pd
pdWm

+ 1−
3bWm

8
(17)

If no ACK burst loss occurs before data loss, the value of

V should be VP . The probability of this case is (1−Pa)
VP−1.

Otherwise, the value of V should depend on the round where

the ACK burst loss occurs. Similar to the derivation of X , we

can get the expected of V as shown in (18).

E[V ] =
1− (1− Pa)

VP

Pa

(18)

Then we can get the expected number of packets received

by the receiver in a CA phase E[Y ] and the expected number

of rounds in a CA phase E[X] as follows:

E[Y ] =
3

4
WmE[U ] +WmE[V ]−

Wm

2

=
3bW 2

m

8
+Wm(

1− (1− Pa)
VP

Pa

−
1

2
)

(19)

E[X] = E[U ] + E[V ] =
bWm

2
+

1− (1− Pa)
VP

Pa

(20)

In conclusion, the complete model of TCP throughput TP
in high-speed mobility scenarios is shown as follows:

E[TP ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3b
8 E

2[X]− 6+b
4 E[X]− 1 +Q ∗ (1− q)

1

1−p

RTT ∗ E[X] +Q ∗ T ∗ f(p)
1−p

,

E[W ] < Wm

3bW 2

m

8 +Wm( 1−(1−Pa)
V

Pa
− 1

2 ) +Q ∗ (1− q)
1

1−p

bWm

2 + 1−(1−Pa)VP

Pa
+Q ∗ T ∗ f(p)

1−p

,

E[W ] >= Wm

(21)

E. The Evaluation of the Proposed Model

Equation. (21) shows our enhanced throughput model for

TCP. The model takes into account two special features in

high-speed mobility scenarios. In this section, we evaluate

whether the proposed model can precisely predict the TCP

throughput in high-speed mobility scenarios. Let D (22)

denote the absolute deviation rate between the value derived

from the proposed model and the real throughput. A smaller

value of D means that the model is more suitable for high-

speed mobility scenarios.

D =
|TPmodel − TPtrace|

TPtrace

∗ 100% (22)

Fig. 10 shows the accuracy comparison between our model

and the baseline model, i.e., the Padhye model. We show the

results for different providers in our dataset separately in the

x-axis. In Fig. 10, sometimes the Padhye model can precisely

predict TCP throughput with the value of D below 5%. In

these cases, our model can obtain smaller values of D below

3%. The proportion of these cases is only 9.8% in our dataset,

and the special characteristics in high-speed mobility scenarios

are not so distinct in these flows. There are outliers for the

Padhye model with the value of D close to 1.0. In these flows,

the ACK burst loss rate is as high as 10%. Our model performs

well even with these flows. The average value of D for the

Padhye model is 21.96% for all flows in our dataset, while the

average value of D for our model is just 5.66%. Compared

with the Padhye model, our model can improve the accuracy

by 16.3% in high-speed mobility scenarios.

636



0.0

0.2

0.4

0.6

0.8

1.0
The Padhye model

The proposed model

A
b

so
lu

te
d

ev
ia

ti
o

n
ra

te

China Mobile China Unicom China Telecom

Fig. 10. Comparison between our model and the Padhye model.

V. FURTHER DISCUSSIONS

A. Traditional delayed acknowledgement technique

Based on the analysis in section III-B, we can find that even

if there is no data loss, the current CA phase may also end due

to spurious retransmission timeouts. So methods to optimize

TCP throughput in high-speed mobility scenarios may aim at

reducing the rate of ACK burst loss Pa. In fact, as long as

one ACK in a round successfully arrives at the data-sender,

the timeout event will not be triggered due to the cumulative

acknowledgement mechanism. In Fig. 11, the ACK marked a
informs the sender that all data packets are received. The ACK

marked a helps to avoid the spurious packet retransmission,

so ACKs are “precious” in high-speed mobility scenarios.

Nowadays the delayed acknowledgement technique is wide-

ly used to improve the host efficiency and reduce the network

load. Using this technique in the TCP implementation, several

data packets are acknowledged by only one ACK. So the

traditional delayed acknowledgement technique reduces the

number of ACKs in one round to some degree. The delayed

window represents the number of in-order packets to be waited

for before generating an ACK. So it is important how to find a

proper delayed window for TCP according to different network

environments. Existing work has made efforts to mitigate the

influence of ACK loss in mobility scenarios. For example,

Chen et al. [28] proposed TCP-DCA (Delayed Cumulative

Acknowledgement) with adaptive delayed window. Simula-

tions in [28] indicate that fewer ACKs are generated and

more timeouts are likely to happen in traditional TCP. TCP-

DCA has less idle time over each routing scheme in stationary

scenarios. However, the performance of TCP-DCA in high-

speed mobility scenarios has not been well evaluated, and

many optimization chances are left to our future work.

B. Multi-path TCP

Based on the analysis of (20), we can find that few data

packets will be received during a timeout sequence. What is

worse, the time duration of a timeout sequence is relatively

long in high-speed mobility scenarios. The main reason lies

in the high loss rate of the retransmitted packets during the

Received data

Received ACK

Lost ACK

Sequence

number

Timethe kth round the (k+1)th round

a

Fig. 11. The arrival of one ACK helps to avoid the timeout event.

timeout recovery phase, i.e., the large value of q. So methods

able to reduce the value of q can also improve TCP throughput

obviously.

It is known that Multi-Path TCP (MPTCP) [29] can split

a single TCP flow into multiple paths, bringing higher end-

to-end throughput. MPTCP has two modes to meet different

demands. In the duplex mode, the sender transmits packets

simultaneously on all of its subflows. In the backup mode,

the sender transmits packets on one subflow and uses other

subflows for backups. Even in the backup mode, MPTCP can

help to reduce the value of q. This is because when timeout

occurs, MPTCP retransmits the lost packet on both the original

subflow and another subflow. No matter on which subflow the

retransmitted packet is acknowledged, the sender will recover

from the loss. If one subflow fails and causes a timeout

event, the double-retransmission mechanism in MPTCP can

obviously improve a user’s experience.

Raiciu et al. [30] compared the performance achieved

using standard TCP, optimal TCP, WiFi-First (using WiFi if

available, otherwise using 3G) and MPTCP in the duplex

mode. Compared with standard TCP and WiFi-First, MPTCP

increases the throughput by 50% to 100% depending on

different WiFi coverage. Besides MPTCP also outperforms the

optimal TCP, typically by 10% to 15%.

We compare the throughput of one large TCP flow with two

small flows in our dataset. The total size of these two small

flows is the same as the large flow. No bottleneck links are

shared by these two flows, so they can be regarded as two

independent subflows of MPTCP. Then the total throughput

getting by these two flows can also be regarded as MPTCP

throughput. In Fig. 12, we compare the MPTCP throughput

with the corresponding TCP throughput. The first 83 flows

are from China Mobile, of which MPTCP can improve the

throughput by 42.15%. The next 63 flows are from China

Unicom, of which MPTCP can improve the throughput by

95.64%. The last 64 flows in Fig. 12 are from China Telecom,

of which MPTCP can improve the throughput by 283.33%.

The backbone network of China Telecom mainly covers the

southern part of China. So the areas around Beijing and

637



0 50 100 150 200
0

100

200

300

400

500

T
h

ro
u

g
h

p
u

t
(k

B
/s

)

Flow ID

MPTCP

TCP

Fig. 12. Comparison of MPTCP throughput and TCP throughput.

Tianjin are not well covered by the 3G networks of China

Telecom. This explains why there is a vast improvement when

comparing MPTCP with TCP flows from China Telecom.

VI. CONCLUSION

In this paper, we for the first time pinpoint the through-

put bottlenecks of TCP at the transport layer in high-speed

mobility scenarios. Our real-world measurement indicates that

the problem is due to the challenging packet retransmission

process after timeouts. Even worse, the high ACK loss rate

further increases the number of spurious timeouts to some

degree. To better capture these unique features, we carefully

modified the classic Padhye model and successfully increased

the precision by 16.3% on average.

Our study represents an initial attempt toward understand-

ing TCP in high-speed mobility scenarios. There are many

possible future directions to explore. We are particularly inter-

ested in optimizing the traditional delayed acknowledgement

technique as well as applying multi-path TCP to high-speed

mobility scenarios.

VII. ACKNOWLEDGMENT

This work was supported by the National Natural Founda-

tion of China (61472212), National Science and Technology

Major Project of China (2015ZX03003004), the National High

Technology Research and Development Program of China

(863 Program) (2015AA015601), EU Marie Curie Action-

s CROWN (FP7-PEOPLE-2013-IRSES-610524). H. Wang’s

work was supported by Chancellors Small Grant and Grant-

in-aid programs from the University of Minnesota.

REFERENCES

[1] “High-speed rail in European,” http://en.wikipedia.org/wiki/High-speed
rail in Europe.

[2] “High-speed rail in the United States,” https://en.wikipedia.org/wiki/
High-speed rail in the United States.

[3] “High-speed rail in China,” http://www.chinahighlights.com/travelguide/
transportation/china-high-speed-rail.htm.

[4] D. Pacifico, M. Pacifico, C. Fischione, H. Hjalrmasson, and K. H. Jo-
hansson, “Improving TCP performance during the intra LTE handover,”
in IEEE GLOBECOM. IEEE, 2009, pp. 1–8.

[5] L. Li, K. Xu, D. Wang, C. Peng, Q. Xiao, and R. Mijumbi, “A
measurement study on the TCP behaviors in HSPA+ networks on high-
speed rails,” in IEEE INFOCOM. IEEE, 2015.

[6] F. Tso, J. Teng, W. Jia, and D. Xuan, “Mobility: a double-edged sword
for HSPA networks: a large-scale test on Hong Kong mobile HSPA
networks,” in IEEE Transactions on Parallel and Distributed Systems

(TPDS). ACM, 2010, pp. 81–90.
[7] K. Jang, M. Han, S. Cho, H.-K. Ryu, J. Lee, Y. Lee, and S. B. Moon,

“3G and 3.5G wireless network performance measured from moving cars
and high-speed trains,” in ACM workshop on Mobile Internet through

Cellular Networks (MICNET). ACM, 2009, pp. 19–24.
[8] Q. Xiao, K. Xu, D. Wang, L. Li, and Y. Zhong, “TCP performance

over mobile networks in high-speed mobility scenarios,” in International

Conference on Network Protocols (ICNP). IEEE, 2014, pp. 281–286.
[9] “China Mobile,” http://www.chinamobileltd.com/en/global/home.php.

[10] “China Telecom,” http://en.chinatelecom.com.cn.
[11] “China Unicom,” http://eng.chinaunicom.com.
[12] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling

TCP Reno performance: a simple model and its empirical validation,”
IEEE/ACM Transactions on Networking (ToN), vol. 8, no. 2, pp. 133–
145, 2000.

[13] R. Braden, “Requirements for internet hosts – communication layers,”
Internet Engineering Task Force, RFC1122, 1989.

[14] K. Aho, J. Äijänen, and T. Ristaniemi, “Impact of mobility to the
VoIP over HSUPA system level performance,” in Vehicular Technology

Conference (VTC). IEEE, 2008, pp. 2091–2095.
[15] P. Lunden, J. Aijanen, K. Aho, and T. Ristaniemi, “Performance of VoIP

over HSDPA in mobility scenarios,” in Vehicular Technology Conference

(VTC). IEEE, 2008, pp. 2046–2050.
[16] G. Giambene, S. Marchi1, and S. Kota, “TCP performance issues

in satellite and WiFi hybrid networks for high-speed trains,” ICST

Transactions on Ubiquitous Environments, vol. 15, pp. 116–130, 2011.
[17] G. Giambene, S. Marchi, and S. Kota, “Cross-layer schemes for TCP

performance improvement in HetNets for high-speed trains,” in IEEE

Global Telecommunications Conference, 2011, pp. 1–6.
[18] A. Bak, P. Gajowniczek, and M. Zagozdzon, “Measurement method-

ology of TCP performance bottlenecks,” in Computer Science and

Information Systems, 2015.
[19] N. Wang, Y. Wang, and S. Chang, “A fast adaptive congestion control

scheme for improving TCP performance during soft vertical handoff,” in
Wireless Communications and Networking Conference (WCNC). IEEE,
2007, pp. 3641–3646.

[20] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, “A
close examination of performance and power characteristics of 4G LTE
networks,” in International Conference on Mobile Systems, Applications,

and Services (MobiSys). ACM, 2012, pp. 225–238.
[21] T. Arita and F. Teraoka, “A fast handoff mechanism using cross-layer

collaboration for mobile networks in high-speed trains,” in Asia future

internet forum, Winter school, 2010.
[22] C. Fu, B. Zhou, and J. Zhang, “Modeling TCP Veno throughput over

wired/wireless networks,” IEEE communications letters, vol. 11, no. 9,
pp. 723–725, 2007.

[23] N. Parvez, A. Mahanti, and C. Williamson, “An analytic throughput
model for TCP NewReno,” IEEE/ACM Transactions on Networking

(TON), vol. 18, no. 2, pp. 448–461, 2010.
[24] “Aliyun Elastic Compute Service (Aliyun ECS),” https://www.aliyun.

com/?lang=en.
[25] “Wireshark,” https://www.wireshark.org.
[26] “Shark,” https://play.google.com/store/apps/details?id=lv.n3o.shark.
[27] A. Schulman, V. Navda, R. Ramjee, N. Spring, P. Deshpande,

C. Grunewald, K. Jain, and V. N. Padmanabhan, “Bartendr: a practical
approach to energy-aware cellular data scheduling,” in Proceedings of

the sixteenth annual international conference on Mobile computing and

networking. ACM, 2010, pp. 85–96.
[28] J. Chen, M. Gerla, Y. Z. Lee, and M. Sanadidi, “TCP with delayed ACK

for wireless networks,” Ad Hoc Networks, vol. 6, no. 7, pp. 1098–1116,
2008.

[29] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural
guidelines for multipath TCP development,” Internet Engineering Task

Force, RFC6182, March, 2011.
[30] C. Raiciu, D. Niculescu, M. Bagnulo, and M. J. Handley, “Opportunistic

mobility with multipath TCP,” in Proceedings of the sixth international

workshop on MobiArch. ACM, 2011, pp. 7–12.

638


