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Expediting Federated Learning on Non-IID Data by
Maximizing Communication Channel Utilizationlg
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Abstract—Federated learning (FL) is at the core of intelligent
Internet architecture. It allows clients to jointly train a model
without direct data sharing. In such a process, clients and
the central server share information through communication
channels formed by parameters. However, the non-iid training
data in clients significantly impacts global model convergence and
brings difficulties for the evaluation of local contributions. Most
of existing studies try to expand the communication channel by
improving consistency with variance reduction or regularization,
but such methods neglect an important factor, i.e., channel
utilization, hence their capability for sharing information is
under-utilized. Moreover, the issue of contribution evaluation
is still unsolved. In this paper, we simultaneously solve the
former two challenges (i.e., model convergence and contribution
evaluation) by modeling the indirect data sharing of FL as
a problem of information communication. We prove that FL
with non-iid data forms noisy communication channels, which
have limited capability for information transmission, i.e., limited
channel capacity. The main factor in deciding the channel
capacity is the Gradient Signal to Noise Ratio (GSNR). Through
analyzing GSNR, we further prove that channel capacity can
be reached by optimal local updates and propose a method
FedGSNR to calculate it, which allows us to maximize channel
utilization in FL, leading to faster model convergence. Moreover,
as the contribution of the local dataset depends on the amount
of provided information, the derived GSNR allows the server to
accurately evaluate the contributions of different clients (i.e., the
quality of local datasets).

Index Terms—Federated learning, information communication,
gradient signal to noise ratio, channel utilization.

I. INTRODUCTION

FEDERATED learning (FL) [25] is at the core of intelligent
Internet architecture [37], [40]. It focuses on the practical
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Fig. 1. Overview of GSNR. Different local gradients (g1 and g2) can be
decomposed into two components: signal and noise, the former parallels to
the global gradient (gglobal), and the latter orthogonal to it. GSNR is defined
as the ratio between the norm of these components.

scenario with multiple clients to collaboratively train a model
without direct data sharing. Typically, FL sends the global
model to different clients, then all clients optimize the global
model with their own datasets, which always follow non-iid
distributions in reality. Finally, optimization results bring back
the information of local datasets for server aggregation. In a
nutshell, the server and all clients share information through
transmitting gradients, i.e., the model gradients form a logical
communication channel. Particularly, FL algorithms such as
FedAvg [25] typically accelerate global model convergence
through multiple local updates, which load more information
from local datasets onto the shared gradients.

Although it achieves great performance in various practical
applications, FL on non-iid data still has unknown territories.
Previous studies [6], [9], [16], [17], [22], [38] devote to
analyze the convergence of FL with different conditions.
Meanwhile, [1], [15], [27], [34], [35] utilize variance reduction
or regularization to improve the consistency among all clients,
which alleviates the impact of non-iid distributed data. Most
of these investigations deal with identical local updates, and
the improving consistency makes the communication channel
wider, which can hold more information. Whereas, as an
important factor for FL, the issue of channel utilization has
not been well studied. For instance, if the channel utilization
is sufficiently low, we cannot get the expected information
even if we have a wider channel.

To bridge the gap, we model the indirect data sharing of
FL as a problem of information communication. Based on
this insight, multiple local updates increase the amount of
information loaded on the gradients, which means we can
get more information within fewer communication rounds
and it possibly leads to the faster convergence. Moreover,
as illustrated in Fig. 1, if data are non-iid distributed among
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all clients, the local gradients are different from the global
gradient (the ideal gradients calculated by global data distri-
bution), which means the communication channels are noisy.
Inspired by information theory, the transmission capability
of a noisy channel is limited, and the achievable channel
capacity (the maximum capability for information transmis-
sion) is decided by the Signal to Noise Ratio (SNR), i.e.,
Shannon’s formula: C = W · log(1 + SNR) [5], where C and
W represent the channel capacity and the bandwidth of the
channel respectively, SNR is the signal-to-noise ratio. Hence,
both superabundant local updates and insufficient local updates
lead to low channel utilization, which under-utilizes existing
channels. The optimal strategy is to calculate the optimal
number of local updates to reach the channel capacity.

To formalize SNR in FL scenario, i.e., the Gradient Signal
to Noise Ratio (GSNR), we first define the signal components
and the noise components. As illustrated in Fig. 1, in the
non-iid scenario, we can decompose the local gradient (g1
or g2 in Fig. 1) into mutually orthogonal signal component
and noise component, the signal component is parallel to the
global gradient, while the noise component is orthogonal to it.
GSNR is defined as the ratio between the norm of the signal
component and the noise component. Based on these ideas,
we prove that GSNR can be calculated by the optimal number
of local updates, which is consistent with the intuition that uti-
lizing optimal local updates reaches the channel capacity, and
the maximal channel utilization accelerates the convergence
of FL. Using this insight, we propose FedGSNR, a practical
method to calculate the optimal number of local updates for
different clients. Moreover, we also develop a specific method
to calculate GSNR for each client, which allows the server to
evaluate the contribution of each client.

Particularly, the newly proposed GSNR strategy FedGSNR
is orthogonal to existing methods, which mostly devote to
improving the consistency in order to expand channels, it can
help these methods to further improve the performance by
maximizing channel utilization.

In summary, our contributions in this paper are as follows:
• We first propose to model FL as a problem of information

communication and prove that the communication chan-
nel formed by the gradients converges to the Gaussian
channel.

• We prove GSNR can be calculated by the optimal local
updates, which decides the maximum capability of the
communication channel for information transmission, and
the optimal local updates maximizes channel utilization,
leading to faster convergence.

• We propose FedGSNR, a practical algorithm that can
be combined with various FL algorithms (e.g., FedAvg,
FedProx, Scaffold, etc) to calculate their optimal local
updates, which maximizes their channel utilization to
further accelerate convergence.

• We derive a function r(w) to calculate GSNR, which can
be used to evaluate the local contributions of different
clients.

• We validate our theoretical results on CIFAR-10 and
CIFAR-100 datasets, and the experiments indicate that
FedGSNR with different FL algorithms achieve on aver-
age a 1.69× speedup over their original version, and r(w)
is an accurate metric for local contributions.

The rest of this paper is organized as follows: Section II
presents the related work. Section III provides the prelim-
inaries for the following analysis. Section IV explores the

correlations between GSNR and optimal local updates, derives
the method to calculate the optimal local updates, and provides
the method to calculate corresponding GSNR. Section V
provides a practical algorithm FedGSNR to maximize the
channel utilization. Then we provide the convergence analysis
of FedGSNR in Section VI and analyze the concepts of GSNR
in detail in Section VII. Section VIII validates our theoretical
results with real-world datasets. Finally, Section IX concludes
the paper.

II. RELATED WORK

There has been a lot of literatures devoted to improving
FL, including the convergence [15], [22], [31], [34], the
robustness [7], [20], [28], and the data privacy [2], [4], [26],
[41]. Regarding GSNR, [23] and [30] try to analyze the
generalization and variational bounds with such a concept.
In this work, we focus on the relationship between GSNR
and the optimal local updates in FL scenarios. To control the
noise component (client drift), SCAFFOLD [15] proposes a
specific gradient calculating method based on variance reduc-
tion. FedProx [21] indicates that under non-iid FL conditions, a
large number of local updates lead to divergence or instability.
Moreover, FedNova [35] tries to stabilize the training process
with a new average strategy. Additionally, [36] proposes a
practical optimization problem with the resource constraints,
and it determines the number of local updates for each client
according to the resource constraints.

A similar work [17] derives an upper bound of local updates
by the total iterations T and the number of clients M, which
provides a theoretical analysis of local updates. However, they
treat each client equally, and fail to propose a method to
calculate the optimal number of local updates directly from
the heterogeneous data.

So far, we have explained the difference between the cor-
related literature and our work. To understand the concepts of
GSNR more comprehensively, we will discuss more researches
in FL, which are correlated to GSNR.

A. Gradient Diversity
Gradient diversity is a key ingredient of FL, which captures

the differences between the datasets possessed by different
clients. Reference [38] employs gradient diversity to investi-
gate the relationship between batch size and the convergence
rate in parallel SGD. Reference [39] analyzes why periodical
model averaging is suitable for deep learning, and provides a
deep understanding of model averaging. Reference [8] tries to
mitigate the gradient diversity through sharing a small batch
of data among all clients, but it also introduces higher privacy
risks. Reference [1] introduces a dynamic regularization term
to resolve the problem of gradient divergence. In summary,
most of the previous investigations try to solve the issue of
gradient diversity through the gradient calculating, such as
gradient prediction, regularization, personalized target func-
tion, and so on. However, the influence of local updates gains
less attention. In this paper, we propose a new perspective to
analyze the optimization process by Gradient Signal to Noise
Ratio, it reduces the required communication rounds via an
elaborate configuration of local updates and proposes a method
to evaluate the contributions of different clients.

B. Personalization in FL
Another important problem in federated learning is per-

sonalization. Formally, personalization transforms the opti-
mization issue from the global distribution to a specific local
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distribution on client Ck, it scarifies the global performance
in order to gain more benefit in local scenario. Reference [19]
reviews the investigations of personalization, and the situations
are divided into three categories: device heterogeneity, data
heterogeneity, and model heterogeneity, the last one is the
motivation of personalization. Reference [24] proposes three
methods to achieve personalization, these methods try to
balance the model performance on global data distribution and
the local data distribution. Reference [32] proposes a method
to optimize the global model and local model separately in
order to make the local model more personalized. Reference
[13] proposes three objectives to make personalization easily.
However, personalization is an important topic in FL since
different clients confront different issues, but if we greedily
utilize global information for personalization, there is likely
to appear Prisoner’s Dilemma, the collective benefit for all
clients is not optimal. Therefore, the profit for each client can
probably be further improved. Hence, cooperation is also an
important problem, and the better goal of personalization is to
search for optimum on conditional data distribution combined
with cooperation.

III. PRELIMINARY

A. Federated Averaging (FedAvg)
In FL, we have a set of clients C = {C1, · · · , CK} and the

problem can be formalized as:

min
w

F (w) := Eξ[F (w, ξ)] = EC [Eξ[F (w, ξ)] | C]

:=

K∑
k=1

P (C = Ck) · Eξ[F (w, ξ|Ck)], (1)

where F (w, · ) is a specified loss function with model w, K
is the number of clients, and P (C) is a discrete probability
distribution correlated to the importance of different clients.
Usually, P (C) is a uniform distribution or proportional to local
data quantity. ξ|Ck is a random sample drawn from the dataset
of Ck, i.e., ξ|Ck ∼ p(x|Ck).

Regarding traditional machine learning, the global dataset
is gathered from all clients, and the goal is to minimize

F (w) = Eξ[F (w, ξ)], (2)

where ξ is a random sample of global dataset, i.e., ξ ∼ p(x) =∑K
k=1 P (C = Ck)p(x|Ck). However, we cannot gather data

from different clients in most cases due to privacy concerns.
Thus, we separate the target function as Eq. (1), and send
the initial model w1 to all clients. Then the clients do the
optimization locally and send back the corresponding results.
Finally, the results are obtained by Eq. (1).

If each client does only one-step optimization, according to
the property of conditional expectation, minimizing Eq. (1) is
equivalent to minimizing Eq. (2). However, this procedure puts
much pressure on communication, so researchers propose to
do more local updates for efficiency. Hence,for client Ck, the
optimization procedure of a typical round can be formalized
as

wk
i+1 ← wk

i − ηEξ|Ck
[∇wF (wk

i , ξ|Ck)], i = 1, · · · , n.
Then the server aggregates local models w1

n+1, · · · ,wK
n+1 to

update the global model by

w =
∑K

k=1
pkw

k
n+1, (3)

where we denote pk for P (C = Ck) for convenience.

B. Wasserstein Distance
Wasserstein distance [33] is a metric in probabilistic space

inspired by the problem of optimal transport. It is a distance
between probability distributions that takes geometric infor-
mation into account. The Wasserstein distance is defined as

W p(µ,ν) = inf
γ∈Γ(µ,ν)

E(x,y)∼γ [‖x− y‖p],

which is difficult to find a closed-form solution. However, if
we choose 2-norm as the geometric measure and simplify the
issue to Gaussian distribution, the distance becomes

d2 = ‖µ1 − µ2‖22 + tr

((
Σ

1
2
1 −Σ

1
2
2

)2)
, (4)

where we define d := W 2(N (µ1,Σ1),N (µ2,Σ2)). In Sec-
tion IV, we use it to transform the issue of calculating GSNR
to the issue of minimizing the distance between the global and
local gradients.

IV. OPTIMAL LOCAL UPDATES LEADS TO MAXIMAL
CHANNEL UTILIZATION

In this section, we establish a quantitative correlation
between GSNR and the optimal local updates, which achieves
the channel capacity for information communication. Then
we derive a method to estimate the optimal local updates
with initial information, which expedites FL convergence by
maximizing the channel utilization. Finally, based on optimal
local updates, we derive a method to calculate GSNR, which
is a metric for local contributions.

A. Gradient Signal to Noise Ratio
Regarding FL, we have a set of clients C, and each client

Ck ∈ C has a local data distribution p(x|Ck). Ideally, our
target is gathering data from all clients to minimize Eq. (2),
which means we optimize the model with the global gradient

gglobal = Eξ[∇wF (w, ξ)],

where ξ ∼ p(x) =
∑K
k=1 P (C = Ck)p(x|Ck) is the sample

drawn from global distribution. Due to limited resources and
privacy concerns, we cannot gather data to minimize Eq. (2). In
practice, the optimization processes are distributed to different
clients. Specifically, client Ck optimizes Eq. (2) with the local
distribution p(x|Ck), which means Ck utilizes local gradient
for optimization, i.e.,

gl = Eξ|Ck
[∇wF (w, ξ|Ck)], ξ|Ck ∼ p(x|Ck),

Usually, in non-iid scenario, gl is different from gglobal (as
illustrated in Fig. 1), hence we can decompose gl orthogonally
according to gglobal, and define GSNR with model w as:

r(w) =
‖g‖l ‖
‖g⊥l ‖

,

s.t. gl = g
‖
l + g⊥l , g

‖
l = λ · gglobal, 〈g

‖
l , g
⊥
l 〉 = 0. (5)

Note that r(w) is decided by four elements: the model
w, the loss function F ( · , · ), the global distribution
p(x), and the local distribution p(x|Ck). Among them, w
is variable during training, while others are pre-decided by
various training techniques.
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Fig. 2. The relation between GSNR and optimal local updates: when Ck

utilizes optimal local updates, Ck reaches the channel capacity decided by
GSNR.

Moreover, at a specific point in parameter space, r(w), i.e.,
the GSNR, measures the channel’s quality for information
sharing in FL. Fig. 1 intuitively displays that if GSNR is large,
then the directions of gl and gglobal are similar to each other.
In this case, a large number of local updates will not lead
to too much deviation from gglobal, which means the channel
has better capability for information transmission. Moreover,
if GSNR is small, the opposite is true.

1) The Relation Between GSNR and Optimal Local
Updates: Intuitively, as illustrated in Fig. 2, angle θ can be
viewed as the similarity between gglobal and gl, and GSNR
represents the cot θ. Moreover, when we utilize optimal local
updates gmul, where gmul = n · gl and n is the number of
local updates, to approximate gglobal, which means the distance
between gmul and gglobal reaches the minimal value ∆, where
∆ = ‖∆g‖ and ∆g = gglobal − gmul, we have ∆g ⊥ gmul.
Hence, we can get csc θ = ‖gglobal‖/∆. Then according
to trigonometric transformation, i.e., cot2 θ = csc2 θ − 1,
we conclude that utilizing optimal local updates reaches the
channel capacity, which maximizes the channel utilization. We
will formalize these intuitions under certain assumptions.

B. Maximize Channel Utilization With Optimal Local
Updates

In practice, we utilize mini-batch SGD for optimization,
which means gglobal and gl are random variables, hence their
distributions are important factors for the analysis. Meanwhile,
another important factor is the relationship between gl and
gmul. Here we prove that under bounded in-client variance
and smoothness assumptions, the distributions converge to
Gaussian and the relationship is linear.

To get the distributions of gglobal and gl, we make the
following assumption:

Assumption 1 (Bounded in-Client Variance): The variance
of stochastic gradients are uniformly bounded, i.e., ∀Ck ∈
C, ∀w, Eξ|Ck

‖∇wF (w, ξ|Ck) − µk‖2 ≤ σ2, where µk :=
Eξ|Ck

[∇wF (w, ξ|Ck)].
With this assumption, we have Lemma 1, which implies the

distributions of gglobal and gl for mini-batch stochastic gradient
descent converges to Gaussian distributions.

Lemma 1: With Assumption 1, let {ξi,b | 1 ≤ i ≤ n; 1 ≤
b ≤ B} be a set of iid samples of a specific dataset, g =
(g1, · · · , gn) be a finite-dimensional gradient vector, where

gi = 1
B

∑B
b=1∇wF (wi, ξi,b), i ∈ {1, · · · , n}, then

√
B(g −

E[g]) converges to multivariate Gaussian distribution.
Proof: For any constant n, g can be rewritten as

g =
1

B

B∑
b=1

(∇wF (w1, ξ1,b), · · · ,∇wF (wn, ξn,b)),

let g̃b = (∇wF (w1, ξ1,b)), · · · ,∇wF (wn, ξn,b))), we have

g =
1

B

B∑
b=1

g̃b,

then with Assumption 1 and n is a constant, g̃b is subject to
some complex distribution with bounded covariance matrix.
As ξi,b is iid sampled from a specific dataset, g is the mean
vector of g̃1, · · · , g̃B , which are iid random vectors.

Therefore, based on the classical Central Limit Theory, with
B growing large,

√
B(g − E[g]) converges to N (0,Σ) in

distribution, where Σ is the covariance matrix of g.�
Moreover, Lemma 1 also implies that with mini-batch

stochastic gradient descent, multiple local updates, i.e., ḡ =
wn+1 − w1 =

∑n
i=1 gi = 1

Tg, converges to a Gaussian
distribution since ḡ is a linear transformation of a joint
Gaussian vector, which can be used to describe gmul.

Moreover, to analyze the relationship between gl (the initial
local gradient for each round) and gmul, we have Assumption
2 of smoothness.

Assumption 2 (Smoothness): The target function F (w, · ):
Rm → R is twice differentiable, and the expected matrix
norm of hessian matrix H(F (w, · )) is bounded, i.e.,
Eξ‖H(F (w, ξ))‖2 ≤ L2, where ξ is randomly sampled from
a specific dataset.

Note that Assumption 2 is weaker than L-smooth Assump-
tion, since if a function F (w, · ) is L-smooth, it conforms
to Assumption 2, but not vice versa. Moreover, Assumption 2
always holds for typical machine learning tasks, e.g., logistic
regression, soft-max classification, and so on. With these
assumptions, we have the following lemma.

Lemma 2: If Assumption 1 and Assumption 2 hold, let
{ηr}+∞r=1 be a sequence of real number such that lim

r→+∞
ηr = 0,

and {εr}+∞r=1 be a sequence of random vectors, where r
denotes for the communication round index, εr = ĝ − ḡ,
ĝ =

∑n
i=1∇wF (w1, ξ), and ḡ =

∑n
i=1∇wF (wi, ξ) with

wi = wi−1 − ηrgi−1, i ∈ {2, · · · , n}, then we have εr
L→ 0,

which implies ĝ L→ ḡ.
Proof: First, we prove lim

r→+∞
E‖εr‖ = 0.

Regarding the gradient gi, i ∈ {1, · · · , n}, due to the
smoothness of ∇wF (wi, ξ), we can expand gi based on
Lagrange’s mean value theorem as

gi=∇wF (wi, ξ)=∇wF (w1, ξ)+H(F (w̃i, ξ ))(wi−w1)

= g1 +H(F (w̃i, ξ ))(wi −w1), (6)

where w̃ := λwi + (1− λ)w1, λ ∈ [0, 1]. Then

E‖gi − g1‖ = E‖H(F (w̃i, ξ ))(wi −w1)‖
(a)

≤ E‖H(F (w̃i, ξ ))‖‖(wi −w1)‖
(b)

≤
√

E‖H(F (w̃i, ξ ))‖2E‖wi −w1‖2

(c)

≤ L ·

√√√√E‖ηr
i−1∑
j=1

gj‖2
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(d)

≤ L2 · ηr

√√√√(i− 1)

i−1∑
j=1

E‖gj‖2
(e)

≤ (i− 1)ηrLG,

(7)

where (a) follows from sub-multiplicative property of matrix
norm, (b) is based on Cauchy-Schwarz inequality, (c) is
an immediate consequence of Assumption 2 and the local
optimization process, (d) comes from the fact ‖

∑n
i=1 ai‖2 ≤

n
∑n
i=1 ‖ai‖2, and (e) is based on Assumption 1, where

G2 := σ2 + µ2, µ = max({‖µi‖}i∈{1,··· ,n}). Hence,

E‖εr‖ = E‖ĝ − ḡ‖ = E‖
n∑
i=1

(gi − g1)‖ ≤
n∑
1

E‖gi − g1‖

≤

(
n∑
i=1

(i− 1)

)
ηrLG =

n(n− 1)

2
ηrLG

where the first inequality follows from the triangle inequality,
and the second inequality is based on Eq. (7).

As n represents the number of local steps, which is a
constant, E‖εr‖ is upper bounded by ηr · M , where M is
a bounded value. Therefore,

0 ≤ lim
r→+∞

E‖εr‖ ≤ lim
r→+∞

ηr ·M = 0. (8)

Eq. (8) implies εr converge to 0 in mean, i.e., εr
L→ 0, which

immediately completes the proof.�
Remark 1: Based on the proof of Lemma 2, the estimation

error is E‖ḡ− ĝ‖ ≤ n(n− 1)ηrLG, which implies that if we
consider learning rate decay,1 then

∀ε, lim
r→+∞

Pr(‖ḡ − ĝ‖ > ε) = 0. (9)

Moreover, in a typical communication round r, the opti-
mization process implies that wn+1 − w1 = ηrḡ. While
based on Eq. (9), we can use ηrĝ = ηr

∑n
i=1∇wF (w1, ξ)

to approximate ηrḡ. With multiplying Eq. (9) by ηr, the
estimation error becomes O((nηr)

2LG).
Particularly, in local optimization, we have gl = g1 =

∇wF (w1, ξ) and gmul = ḡ. Then based on Lemma 2, we
can estimate gmul by n · gl. Hence, if we denote the mean
values and the covariance matrices of gl and gmul as µmul, µl,
Σmul, and Σl, respectively, we have

µmul = n · µl, Σmul = n2 ·Σl.

For convenience, in the rest of our work, we use µ∗ and
Σ∗ to denote the corresponding mean vector and covariance
matrix of gradients estimated by a specific dataset. More-
over, if we utilize mini-batch SGD, the covariance matrix
is scaled by the batch size B. Then, with the initial param-
eters, the distribution of n updates can be estimated by
N
(
nηrµ∗, n

2η2r
Σ∗
B

)
.

According to Lemma 1 and Lemma 2, we can approximate
distributions of ηrgglobal and ηrgmul with n local steps by

N
(
ηrµg, η

2
r
Σg

B

)
and N

(
nηrµl, n

2η2r
Σl

B

)
respectively. Then

the optimal number of local updates to reach channel capacity
is implied by the following theorem.

Theorem 1: The minimal Wasserstein distance between
two multivariate Gaussian distributions denoted by

1For example, ηr = η0αr refers to a widely used learning rate decay
method with a decay rate α < 1.

N
(
ηrµg, η

2
r
Σg

B

)
and N

(
nηrµl, n

2η2r
Σl

B

)
with variable

n is achieved when n is

nopt1 = max

0,
µTl µg +

tr
(
(ΣlΣg)

1
2

)
B

‖µl‖2 + tr(Σl)
B

 ,

and the minimum distance is (∆opt
1 )2 = η2r∆2,

∆2 = ‖µg‖2 +
tr(Σg)

B
−

(
µTl µg +

tr
(
(ΣlΣg)

1
2

)
B

)2

‖µl‖2 + tr(Σl)
B

.

Proof: According to Eq. (4), to minimize the distance
between N

(
ηrµg, η

2
r
Σg

B

)
and N

(
nηrµl, n

2η2r
Σl

B

)
, we can

build an optimization problem as

min
n

d2 = ‖ηrµg − nηrµl‖2 + tr(M2)

s.t. M =

(
η2rΣg

B

) 1
2

−
(
n2η2rΣl

B

) 1
2

n ≥ 0. (10)

Note that Eq. (10) is a quadratic function of n, which imme-
diately completes the proof.�

Corollary 1: For two distributionsN (mηrµg,m
2η2rΣg) and

N (nηrµl, n
2η2rΣl), where m is a constant, the optimal n to

minimize the Wasserstein distance is noptm = m · nopt1 and the
minimal distance is (∆opt

m )2 = m2 · (∆opt
1 )2.

Proof: In this case, we change the distribution
N
(
ηrµg, η

2
r
Σg

B

)
to N

(
mηrµg,mη

2
r
Σg

B

)
, and reformulate

problem (10) as

min
n

d2 = m2
(
‖ηrµg −

n

m
ηrµl‖2 + tr(M2)

)
s.t. M =

(
η2rΣg

B

) 1
2

−

((
n
m

)2
η2rΣl

B

) 1
2

n ≥ 0,

let d̃ = d
m and ñ = n

m , then the new problem reduces to
problem (10), which concludes the proof immediately.�

Based on Corollary 1, if m is a constant, the minimum
Wasserstein distance is achieved when n = m∗nopt1 , which is
the optimal number of local updates for maximizing channel
utilization, leading to the maximal capability for information
communication.

C. Contribution Evaluation With GSNR

As aforementioned, GSNR decides the channel capacity of
information communication, thus it can be used to evaluate
the contribution of different clients. Here we derive a method
to calculate GSNR.

First, for convenience, we define a matrix as follows:

R∗ =


u1∗

u2∗
. . .

ud∗ (
1
BΣ∗

) 1
2


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where µi∗ is the component of µ∗ = (µ1
∗, · · · , µd∗). Then we

have ‖gglobal‖ = ‖Rg‖2F ,2 and ‖gl‖ = ‖Rl‖2F .
From Theorem 1, we obtain the optimal distance between

gglobal and gmul, i.e., ∆, hence we can get the csc θ =
‖gglobal‖/∆. Moreover, as mentioned in Section IV-A, r(w)
is the cot θ, which can be calculated by trigonometric trans-
formation, i.e., cot2 θ = csc2 θ − 1, then we can derive
Proposition 1.

Proposition 1 (Gradient Signal to Noise Ratio (GSNR)):
For a local dataset Dl and a global dataset Dg , with a loss
function F (w, · ), the GSNR is a function of w as

r(w) = max

(
0,

〈Rl,Rg〉F√
‖Rl‖2F ‖Rg‖2F − 〈Rl,Rg〉2F

)
.

Proposition 1 can be used to calculate GSNR directly from
local datasets.

Algorithm 1 FedGSNR in Conjunction With FedAvg
Input: initial model w1, learning rate η0, sample size B, and

chosen global steps Econst
for r = 1 to R do

Sample clients S ⊆ C
Server: send w1 and ηr to each client Ck ∈ S
On each active client Ck in parallel: initialize local
model wk ← w1, compute g̃k and diag

(
Σ̃
k
)

, and
send them to the server
Server: compute nopt1,k according to Theorem 1 for each
client Ck, and send it to client Ck
On each active client Ck in parallel:
for t = 1 to Econst · nopt1,k do
wt ← wt − ηr∇wF (wt, ξ|Ck)
end for

Server: w1 ←
∑|S̃|
k=1 p̃kw

k, where S̃ ={
Ck | Ck ∈ S, nopt

1,k > 0
}

, and p̃k is the corresponding
probability ratio, i.e., pk/

∑
s∈S̃ ps

end for

V. FEDGSNR: PROPOSED ALGORITHM FOR MAXIMIZING
CHANNEL UTILIZATION

Theorem 1 describes the method to calculate the optimal
local updates, and the mean vectors and the covariance matri-
ces for both local distribution and global distribution are the
key parameters. In practice, we can use sample mean vector
and sample covariance matrix to estimate the parameters
of local distribution. Specifically, for client Ck with model
w1, the corresponding statistics are g̃k = 1

B

∑B
b=1 gk,b and

Σ̃k = 1
B

∑B
b=1(gk,b − g̃k)(gk,b − g̃k)T , where gb,k =

∇wF (w1, ξb|Ck). For the server, based on the theory of
conditional expectation, the corresponding global statistics are

g̃ = EC [g̃|C] =
∑K

k=1
pkg̃k, (11)

Σ̃ = EC [Σ̃|C] + CovC(g̃|C)

=
∑K

k=1
pkΣ̃k +

∑K

k=1
pk[(g̃k − g̃)(g̃k − g̃)T ]. (12)

2‖ · ‖F and 〈·, ·〉F are Frobenius inner product and Frobenius norm
respectively.

Fig. 3. The entropy of optimal local updates for different partition methods.
Note that the larger entropy means the channel capacities of different clients
are similar to each other.

In practice, as the covariance matrix increases the commu-
nication traffic and the calculation of the matrix introduces
lots of computation, we use trace to simplify the procedure.
Specifically, in Theorem 1, we mainly use the trace of the
covariance matrix. Meanwhile, according to [3], the covariance
matrix of gradient is a sparse matrix and the estimated error
can be scaled down by the batch size B. Therefore, we instead
utilize the principal diagonal element of Σ̃k for efficiency.
Based on former analysis, we propose an algorithm FedGSNR
to calculate the optimal number of local updates, and Algo-
rithm 1 is a typical example of FedGSNR in conjunction with
FedAvg.3

A. Fairness Analysis

An important concern of FedGSNR is the fairness of
different clients. For this purpose, we experimentally ana-
lyze the entropy of optimal local updates, i.e., H =∑K
k=1 p(Ck) log p(Ck), where p(Ck) =

nopt
1,k∑K

i=1 n
opt
1,i

, and the
results are illustrated in Fig. 3 (the blue dashed line on the
top represents the uniform distribution, i.e., identical local
updates, which is the maximum entropy distribution). In these
experiments, we distributed the data according to different
techniques, and the details of distributing methods can be
found in Section VIII. The key observations of Fig. 3 include
two aspects. First, the entropy becomes smaller when the
degree of non-iid is increased, which means with the increased
degree of non-iid, the channel capacity varies dramatically
according to different clients, indicating that the optimal local
updates becomes more important. Second, for all distribution
methods, the entropy is an increasing function according
to communication rounds, which means FedGSNR naturally
seeks the fair path (the entropy gets closer to uniform distri-
bution) for optimization.

VI. CONVERGENCE ANALYSIS

In this section, we aim to analyze the convergence of
FedGSNR and demonstrate that it is a convergent algorithm.
Table I lists major notations used in this section, and we will
describe the remaining notations when they are utilized.

3Note that our proposed FedGSNR is a compatible method, and the referred
FedAvg can also be replaced by other methods (e.g., FedProx, Scaffold, etc.).
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TABLE I
MAJOR NOTATION EXPLANATION

As defined in Section IV-C, we have

R∗ =


u1∗

u2∗
. . .

ud∗ (
1
BΣ∗

) 1
2

 (13)

where µ∗ and Σ∗ are the corresponding mean vector and
covariance matrix calculated by the samples sampled from
different datasets, µi∗ is the component of µ∗ = (µ1

∗, · · · , µd∗).
Then we have the following lemmas.

Lemma 3: ‖R∗‖2 ≥ 1
BEξ[‖g∗‖2], where B ≥ 1.

Proof: First, we have

µT∗ µ∗ = Eξ[g∗]TEξ[g∗] = tr(Eξ[g∗]Eξ[g∗]T ),

Note that B ≥ 1, hence

‖R∗‖2 = µT∗ µ∗ +
tr(Σ∗)

B
≥ µ

T
∗ µ∗ + tr(Σ∗)

B

=
tr(Eξ[g∗]Eξ[g∗]T + Σ∗)

B

=
Eξ[tr(g∗gT∗ )]

B
=

1

B
Eξ[‖g∗‖2],

which concludes the proof.�
Lemma 4: ‖R∗‖2 ≤ Eξ[‖g∗‖2], where B ≥ 1.
Proof: Similarly,

‖R∗‖2 = µT∗ µ∗ +
tr(Σ∗)

B
≤ µT∗ µ∗ + tr(Σ∗)

= tr(Eξ[g∗]Eξ[g∗]T + Σ∗)

= Eξ[tr(g∗gT∗ )] = Eξ[‖g∗‖2],

which concludes the proof.�
With these lemmas, we can analyze the convergence of

FedGSNR with FedAvg according to existing technique [17].
For convenience, we denote F (w; ξ|Ck) and F (w; ξ) as
Fk(w) and F (w), respectively. It is worth noting that F (w) =∑K
i=1 pkFk(w). Then we make additional assumptions.

Assumption 3: The functions Fk(·), k ∈ {1, · · · ,K}, are
all L-smooth: for all w and v, Fk(v) ≤ Fk(w) + 〈v −
w,∇Fk(w)〉+ L

2 ‖v −w‖
2
2.

Assumption 4: The functions Fk(·), k ∈ {1, · · · ,K}, are all
γ-strongly convex: for all w and v, Fk(v) ≥ Fk(w) + 〈v −
w,∇Fk(w)〉+ γ

2 ‖v −w‖
2
2.

Assumption 5: The local optimization variance at the opti-
mum is bounded: Eξ

[∑K
k=1 pk‖∇Fk(w∗)‖2

]
≤ σ2

opt, where
w∗ := min

w
F (w).

As w∗ is a fixed point for F (·), Assumption 5 always holds
with finite σ2

opt for all non-degenerate sampling distributions,
which is a much more meaningful quantity for the convergence
analysis [17]. Then we have the following lemmas.

Lemma 5: If Assumption 3 holds, we have

Eξ‖∇Fk(w)−∇Fk(v)‖2 ≤ 2LDFk
(w,v),

where DFk
(w,v) := Eξ[Fk(w)−Fk(v)−〈w−v,∇Fk(v)〉]

is the Bregman divergence associated with function Fk(·) and
arbitrary w, v.

Lemma 5 is an immediate consequence of Proposition 2 in
[17], which can be proved by the L-smoothness of Fk(·).

Lemma 6: Suppose Assumption 3, 4, and 5 hold, we have

Eξ‖
K∑
k=1

pk∇Fk(wk
t )‖2 ≤ 2L2Vt + 8LDF (w̄t,w

∗) + 4σ2
opt,

where we denote Vt =
∑K
k=1 pk‖wk

t − w̄t‖2.
Proof: With the fact that ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2, we

have

Eξ‖
K∑
k=1

pk∇Fk(wk
t )‖2

≤ 2Eξ‖
K∑
k=1

pk∇Fk(wk
t )−

K∑
k=1

pk∇Fk(w̄t)‖2︸ ︷︷ ︸
A1

+ 2Eξ‖
K∑
k=1

pk∇Fk(w̄t)‖2︸ ︷︷ ︸
A2

. (14)

For the first term A1, we have

A1

(a)

≤ 2

K∑
k=1

pkEξ‖∇Fk(wk
t )−∇Fk(w̄t)‖2

(b)

≤ 2L2
K∑
k=1

pk‖wk
t − w̄t‖2,

where inequality (a) depends on the Jensen’s inequality and
inequality (b) is a consequence of L-Smoothness of Fk(·).

For the second term A2, we have

A2 = 2Eξ‖∇F (w̄t)‖2
(a)

≤ 4Eξ‖∇F (w̄t)−∇F (w∗)‖2 + 4Eξ‖∇F (w∗)‖2

(b)

≤ 8LDF (w̄t,w
∗) + 4Eξ‖

K∑
k=1

pk∇Fk(w∗)‖2

(c)

≤ 8LDF (w̄t,w
∗) + 4σ2

opt,
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where inequality (a) depends on the fact that ‖a + b‖2 ≤
2‖a‖2 + 2‖b‖2, inequality (b) is based on Lemma 5, and
inequality (c) is the consequence of Jensen’s inequality and
Assumption 5.

Using A1 and A2 in Eq. (14) concludes the proof.�
Lemma 7: If Assumption 3 and 4 hold, we have

− 2Eξ

[
K∑
k=1

pk〈w̄t −w∗,∇Fk(wk
t )〉

]

≤ −2DF (w̄t,w
∗)− γ‖w̄t −w∗‖2 + L

K∑
k=1

pk‖wk
t − w̄t‖2,

Proof: We split the left-hand side as

−2〈w̄t −w∗,∇Fk(wk
t )〉 = A1 +A2. (15)

where A1 = −2〈w̄t − wk
t ,∇Fk(wk

t )〉 and A2 =
−2〈wk

t −w∗,∇Fk(wk
t )〉. Using the γ-strongly convexity and

L-smoothness, we have

A1 ≤ 2
(
Fk(w∗)− Fk(wk

t )− γ

2
‖wk

t −w∗‖2
)

A2 ≤ 2

(
Fk(wk

t )− Fk(w̄t) +
L

2
‖w̄t −wk

t ‖2
)
.

Averaging Eq. (15) over k, we have

− 2Eξ

[
K∑
k=1

pk〈w̄t −w∗,∇Fk(wk
t )〉

]

≤ 2Eξ
K∑
k=1

pk[Fk(w∗)− Fk(w̄t)]− γ
K∑
k=1

pk‖wk
t −w∗‖2

+ L

K∑
k=1

pk‖w̄t −wk
t ‖2

(a)

≤ −2DF (w̄t,w
∗)− γ‖w̄t −w∗‖2 + LVt,

where Vt =
∑K
k=1 pk‖wk

t − w̄t‖2 and inequality (a) depends
on the definition of DF (w̄t,w

∗) and the convexity of ‖ · ‖2,
which concludes the proof.�

Lemma 8 (Bounding the Divergence of wk
t in FedGSNR):

Suppose Assumption 3, 4, and 5 hold, if η ≤ 1
4EconstL

√
γ

2BL ,
we have

Eξ[Vt] ≤
16η2E2

constBL
2

γ
DF (w̄t,w

∗) +
8η2E2

constBL

γ
σ2
opt,

where Vt =
∑K
k=1 pk‖wk

t − w̄t‖2.
Proof: Based on the strategy of FedGSNR, the number of

local steps is individually decided by Ekr = nopt1,k,r ∗ Econst,
where Econst is a constant. Hence we define the local opti-
mization process as

wk
t+1 =

{
wk
t − η∇wF (wk

t ), 0 ≤ t− t0 < Ekr
wk
t , E

k
r ≤ t− t0 < Emax,

(16)

where wk
t0 = w̄t0 represents the aggregation step, and without

loss of generality, t0 is the initial time of communication round
r, Emax = max{Ekr | 1 ≤ k ≤ K, 1 ≤ r ≤ R}. Then the
situation becomes FL with identical local steps, and we will
prove that the divergence is independent of Emax. We use

the fact that t − t0 ≤ Emax, where t0 represents the latest
aggregation step before t, η is the learning rate. Then we have

Eξ

[
K∑
k=1

pk‖wk
t − w̄t‖2

]

= Eξ

[
K∑
k=1

pk‖(wk
t − w̄t0)− (w̄t − w̄t0)‖2

]
(a)
= Eξ

[
K∑
k=1

pk‖wk
t − w̄t0‖2

]
− ‖w̄t − w̄t0‖2

≤ Eξ

[
K∑
k=1

pk‖wk
t − w̄t0‖2

]
︸ ︷︷ ︸

A1

. (17)

In equality (a), we expand the quadratic equation and use the
fact that w̄t =

∑K
k=1 pkw

k
t . Then we further have

A1
(a)
=

K∑
k=1

pkEξ

‖min{t,t0+Ek
r−1}∑

s=t0

η∇Fk(wk
s)‖2


(b)

≤
K∑
k=1

pkEξ

t0+Ek
r−1∑

s=t0

Ekr η
2‖∇Fk(wk

s)‖2


(c)

≤ 2Lη2
K∑
k=1

pkEξ

t0+Ek
r−1∑

s=t0

Ekr (Fk(wk
s)− Fk(wk∗))


(d)

≤ 2Lη2
K∑
k=1

pkEξ

t0+Ek
r−1∑

s=t0

Ekr (Fk(wk
t0)− Fk(wk∗))


= 2Lη2

K∑
k=1

pkEξ[Ekr
2
(Fk(w̄t0)− Fk(wk∗))], (18)

where equality (a) is based on the local optimization
process, i.e., Eq. (16). Inequality (b) is a consequence
of ‖

∑n
i=1 ai‖2 ≤ n

∑n
i=1 ‖ai‖2. Inequality (c) depends

on the L-Smoothness of Fk(·), i.e., ‖∇Fk(wk
s)‖2 ≤

2L(Fk(wk
s) − Fk(wk∗)). Inequality (d) depends on the fact

that Fk(wk
t+1) ≤ F (wk

t ), ∀t ∈ {t0, · · · , t0 + Ekr − 1} (i.e.,
the local optimization process is a non-increasing sequence
[14]), where wk∗ := min

w
Fk(w). Finally, as t0 is the latest

aggregation step, we have w̄t0 = wk
t0 .

For Ekr , we have

Ekr = Econst ∗ nopt1,k,r ≤ Econst ∗
‖Rg,t0‖
‖Rkl,t0‖

, (19)

where the inequality depends on the Cauchy-Schwarz inequal-
ity, i.e., nopt1 ≤ ‖Rg‖‖Rl‖

‖Rl‖2 =
‖Rg‖
‖Rl‖ . Using Eq. (19) in Eq. (18)

A1 ≤ 2Lη2E2
const

K∑
k=1

pkEξ

[
‖Rg,t0‖2

‖Rkl,t0‖
2

(Fk(w̄t0)− Fk(wk∗)

]
︸ ︷︷ ︸

A2

A2

(a)

≤ B

K∑
k=1

pkEξ

[
‖∇F (w̄t0)‖2

‖∇Fk(w̄t0‖

2

(Fk(w̄t0)− Fk(wk∗)

]
,

(20)
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where inequality (a) is a consequence of Lemma 3 and 4.
According to the γ-strong convexity, we have

‖∇F (wk
s)‖2 ≥ 2γ(F (wk

s)− F (wk∗)).

Using it in Eq. (20)

A1 ≤
LBη2E2

const

γ
Eξ‖∇F (w̄t0)‖2

(a)

≤ LBη2E2
const

γ

K∑
k=1

pkEξ‖∇Fk(w̄t0)‖2

(b)

≤ 2LBη2E2
const

γ


K∑
k=1

pkEξ‖∇Fk(w̄t0)−∇Fk(wk
t )‖2︸ ︷︷ ︸

A3

+

K∑
k=1

pkEξ‖∇Fk(wk
t )‖2︸ ︷︷ ︸

A4

 , (21)

where inequality (a) depends on the convexity of ‖ · ‖2,
inequality (b) is a consequence of ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2.
With the L-Smoothness of Fk(·), we have

A3 ≤ L2Eξ

[
K∑
k=1

pk‖w̄t0 −wk
t ‖2
]

= L2A1.

Using ‖
∑n
i=1 ai‖2 ≤ n

∑n
i=1 ‖ai‖2 to bound A4, we have

A4 ≤ 3

K∑
k=1

pkEξ‖∇Fk(wk
t )−∇Fk(w̄t)‖2︸ ︷︷ ︸

A5

+ 3

K∑
k=1

pkEξ‖∇Fk(w̄t)−∇Fk(w∗)‖2︸ ︷︷ ︸
A6

+ 3

K∑
k=1

pkEξ‖∇Fk(w∗)‖2︸ ︷︷ ︸
A7

. (22)

As Assumption 5 hold, we have A7 ≤ 3σ2
opt. Then with

Lemma 5 and the fact that F (w) =
∑K
i=1 pkFk(w), we have

A6 ≤ 6LDF (w̄,w∗). Moreover, with the L-Smoothness of
Fk(·), we have

A5 ≤ 3L2Eξ

[
K∑
k=1

pk‖w̄t −wk
t ‖2
]

≤ 3L2Eξ

[
K∑
k=1

pk‖w̄t0 −wk
t ‖2
]

= 3L2A1,

where the last inequality depends on Eq. (17). Using A3 and
A4 in Eq. (21), we have

A1 ≤
2LBη2E2

const

γ
(4L2A1 + 6LDF (w̄,w∗) + 3σ2

opt︸ ︷︷ ︸
A8

),

rearranging the inequality, we have(
1− 8L3Bη2E2

const

γ

)
A1 ≤

2LBη2E2
const

γ
A8.

Since η ≤ 1
4EconstL

√
γ

2BL , we have 1 − 8L3Bη2E2
const

γ ≥ 3
4 ,

then we have

A1 ≤
16L2Bη2E2

const

γ
DF (w̄,w∗) +

8LBη2E2
const

γ
σ2
opt,

which immediately concludes the proof.�
Lemma 9: (Bound for One step recursion) Assume Assump-

tion 3, 4, and 5 hold, if η ≤ 1
8L , we have

‖ζt+1‖2 ≤ (1− ηγ)‖ζt‖2 +
5ηL

4
Vt − ηDF (w̄t,w

∗)

+ 4η2σ2
opt,

where ‖ζt‖2 = Eξ‖w̄t −w∗‖2, Vt =
∑K
k=1 pk‖wk

t − w̄t‖2.
Proof: According to the definition of w̄t and the local

optimization process, we have

‖ζt+1‖2 = Eξ‖w̄t − η
K∑
k=1

pk∇Fk(wk
t )−w∗‖2

= ‖ζt‖2 − 2ηEξ

[
K∑
k=1

pk〈w̄t −w∗,∇Fk(wk
t )〉

]

+ η2Eξ‖
K∑
k=1

pk∇Fk(wk
t )‖2

≤ (1− ηγ)‖ζt‖2 + ηL(1 + 2ηL)Vt

− 2η(1− 4ηL)DF (w̄t,w
∗) + 4η2σ2

opt,

where the last inequality depends on Lemma 6 and Lemma 7.
Since η ≤ 1

8L , we have 1−4ηL ≥ 1
2 and 1 + 2ηL ≤ 5

4 , hence

‖ζt+1‖2 ≤ (1− ηγ)‖ζt‖2 +
5ηL

4
Vt − ηDF (w̄t,w

∗)

+ 4η2σ2
opt,

which concludes the proof.�
Theorem 2: Suppose Assumption 3, 4, and 5 hold, then for a

learning rate η > 0 such that η ≤ min
{

1
8L ,

1
4EconstL

√
γ

2BL

}
,

we have

Eξ[F (ŵT )− F (w∗)] ≤ 8‖ζ0‖2

3ηT
+

80η2E2
constBL

3γ
σ2
opt

+
32η

3
σ2
opt,

where ŵT := 1
T

∑T−1
t=0 w̄t and ‖ζ0‖2 = ‖w̄0 −w∗‖2.

Proof: We start with Lemma 9. As ηγ ≥ 0, we have

Eξ‖ζt+1‖2 ≤ Eξ‖ζt‖2 +
5ηL

4
Vt − ηDF (w̄t,w

∗)

+ 4η2σ2
opt.

Summing up over t, we have
T−1∑
t=0

Eξ[‖ζt+1‖2 − ‖ζt‖2]

≤ η

[
5L

4

T−1∑
t=0

Vt −
T−1∑
t=0

DF (w̄t,w
∗)

]
+ 4Tη2σ2

opt
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≤ η
(

20η2E2
constBL

3

γ
− 1

) T−1∑
t=0

DF (w̄t,w
∗) + 4Tη2σ2

opt

+
10Tη3E2

constBL

γ
σ2
opt, (23)

where the last inequality depends on Lemma 8. As η ≤
1

4EconstL

√
γ

2BL , we have 20η2E2
constBL

3

γ − 1 ≤ − 3
8 . Then we

rearrange Eq. (23)

3η

8

T−1∑
t=0

DF (w̄t,w
∗)

≤ ‖ζ0‖2 − ‖ζT ‖2 + 4Tη2σ2
opt +

10Tη2E2
constBL

γ
σ2
opt

≤ ‖ζ0‖2 + 4Tη2σ2
opt +

10Tη3E2
constBL

γ
σ2
opt.

Hence, we have

1

T

T−1∑
t=0

DF (w̄t,w
∗) ≤ 8‖ζ0‖2

3ηT
+

80η2E2
constBL

3γ
σ2
opt

+
32η

3
σ2
opt

Finally, according to the convexity of F (·), we have
Eξ[F (ŵT )− F (w∗)] ≤ 1

T

∑T−1
t=0 DF (w̄t,w

∗), which imme-
diately concludes the proof.�

Corollary 2: Choose Econst ≤
√
T and B ≥ γ

2L , then
η = 1

8
√
TL
≤ min

{
1
8L ,

1
4EconstL

√
γ

2BL

}
, we have

Eξ[F (ŵT )− F (w∗)] ≤ 64L‖w̄0 −w∗‖2

3
√
T

+
4σ2

opt

3L
√
T

+
5E2

constBσ
2
opt

12TLγ
,

which gives O
(

1√
T

)
convergence rate.

VII. DETAILED ANALYSIS OF GSNR

A. The Necessity of FedGSNR
As FedGSNR calculates the optimal local updates for dif-

ferent clients according to their local datasets, it employs
the heterogeneous local steps in FL when data is non-iid
distributed among clients. Previous work indicates that het-
erogeneous local steps of FL cause objective inconsistency
issue [35], but the elaborately calculated local steps is nec-
essary when the data is non-iid distributed. It minimizes the
gap between the ideal optimization process with the global
dataset and the practical optimization process in FL to extract
more information from the local datasets, thus expediting the
convergence of FL.

To objectively illustrate this issue, we provide the following
theorem to theoretically explain that when data is non-iid dis-
tributed, there is a gap between the ideal optimization process
with the global dataset and the FL optimization process.

Theorem 3 (Gap Between the Global and Local Gradients):
If we denote the distribution of local gradient calculated by
the data of Ck as φk(ξ), i.e., ∇F (w; ξ|Ck) ∼ φk(ξ), which
implies that the distribution of global gradient calculated by
the global dataset is φ(ξ) =

∑K
k=1 pkφk(ξ), we have

0 ≤ Gap1 ≤
K∑
k=1

K∑
i=1

pkpiDKL(φk(ξ)‖φi(ξ)),

where Gap1 :=
∑K
k=1 pkDKL(φk(ξ)‖φ(ξ)), which is the

average KL-divergence between the distributions of global
gradient and local gradients. The first equality holds if and
only if φ1(ξ) = · · · = φK(ξ), which implies that the data is
iid distributed.

Proof: Based on the definition of Gap1 and the fact that
DKL ≥ 0, we have 0 ≤ Gap1, which is the first inequality,
and the equality holds if and only if φ1(ξ) = · · · = φK(ξ).

Then we focus on the second inequality
K∑
k=1

pkDKL(φk(ξ)‖φ(ξ))

=

K∑
k=1

pk

∫
ξ

φk(ξ) log
φk(ξ)∑K

i=1 piφi(ξ)
d ξ

=

K∑
k=1

pk

∫
ξ

[
φk(ξ) log φk(ξ)− φk(ξ) log

K∑
i=1

piφi(ξ)

]
d ξ

≤
K∑
k=1

K∑
i=1

pkpi

∫
ξ

φk(ξ) log φk(ξ)d ξ

−
K∑
k=1

K∑
i=1

pkpi

∫
ξ

φk(ξ) log φi(ξ)d ξ

=

K∑
k=1

K∑
i=1

pkpiDKL(φk(ξ)‖φi(ξ)),

where the inequality depends on the Jensen’s inequality and
the fact that

∑K
i=1 pi = 1.�

Corollary 3 (More Information in Global Gradient): For
Shannon’s entropy H(∇F (w; ξ)) and H(∇F (w; ξ|Ck)), k ∈
{1, · · · ,K}, we have the following result

H(∇F (w; ξ))−
K∑
k=1

pkH(∇F (w; ξ|Ck)) = Gap1 ≥ 0.

Corollary 3 is an immediate consequence according to the
definition of Shannon’s entropy [5].

Theorem 3 proves that there is a gap, i.e., Gap1, between
the ideal optimization process and FL optimization process
with identical local steps, and Gap1 vanishes if and only
if the data is iid distributed among clients. Moreover, as
Shannon’s entropy quantifies the information contained in a
random variable, Corollary 3 implies that approximating the
ideal optimization process can extract more information from
the local datasets, thus expediting the convergence of FL.
Hence, Gap1 may be the reason that FL with non-iid data
suffers from unstable and slow convergence issues [12], [15],
[31]. Combining Theorem 3 and Corollary 3, we conclude
that minimizing the gap between ideal optimization process
and FL optimization process can expedite the convergence of
FL, which is the purpose of FedGSNR.

To clarify the necessity of FedGSNR, we go deeper into the
gap between the ideal optimization process with the global
dataset and the FL optimization process with heterogeneous
local steps. As displayed in Fig. 4, the gap is composed of two
parts: Gap1, which is the gap between the ideal optimization
process and FL with identical local steps (Theorem 3); and
Gap2, the gap between FL with identical local steps and the
one with heterogeneous local steps (the objective inconsistency
[35]). It is worth noting that Theorem 3 demonstrates that
Gap1 is decided by the degree of non-iid, which cannot
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Fig. 4. FedGSNR minimizes the residual gap by solving for the optimal
local updates (results in a crafted Gap2) according to the non-iid data
(results in Gap1), which elaborately calculates the local steps to make the FL
optimization process closer to the ideal optimization process with the global
dataset. This strategy extracts more information from the local datasets, thus
expediting the convergence of FL.

be changed in FL due to the pre-determined data and loss
function. Moreover, Wang et al. [35] indicate that Gap2
depends on the difference in local steps, which can be easily
changed during training. If the residual gap in Fig. 4 gets
smaller, Corollary 3 indicates that FL optimization process
can extract more information from the local datasets, thus
expediting the convergence of FL. Hence, our target is to
minimize the residual gap between the ideal optimization
process and the FL optimization process.

Moreover, Gap2 caused by randomly decided local steps
may enlarge the residual gap to keep the FL optimization
process away from the ideal optimization process (e.g., to
make residual gap equal Gap1+Gap2), this may be the reason
that FedNova tries to eliminate Gap2. However, an elaborately
calculated local steps can be used to offset the influence of
Gap1 and make the residual gap equal Gap1 −Gap2, which
leads the FL optimization process much closer to the ideal
optimization process, thus expediting the convergence of FL.

To this end, FedGSNR employs the optimal strategy to
set local steps to minimize the residual gap between the FL
optimization process and the ideal optimization process. As
explained in Theorem 1, FedGSNR decides the local steps
of FL by directly solving for the optimal steps (i.e., nopt1 ),
which employs the information of Gap1 described by µg , µl,
Σg , and Σl to minimize the Wasserstein distance, i.e., the
residual gap, between the FL optimization process and the
ideal optimization process to expedite the convergence of FL.

Specifically, the situations in FedGSNR are two-fold: if the
data is iid distributed (Gap1 = 0), the optimal local steps,
i.e., nopt1,k (k represents the index of client), are identical for
all clients k ∈ {1, · · · ,K}, which implies the local steps are
identical (Gap2 = 0). Our proposed strategy is equivalent to
the ideal optimization process. Moreover, if the data is non-
iid distributed (Gap1 > 0), nopt1,k , k ∈ {1, · · · ,K}, are usually
different for different clients, which results in optimal Gap2 >
0 to offset the influence of Gap1. And Theorem 1 guarantees
the local steps minimizes the residual gap between the FL
optimization process and the ideal optimization process in this
case.

To validate this analysis, we compare FedGSNR with
FedNova [35] under different non-iid conditions (the details
of non-iid condition will be explained in Sec. VIII). In
these experiments, we distributed the data among 30 clients
with different partition methods and set Econst = 20.
Fig. 5(a), 5(b), and 5(c) indicate that FedGSNR expedites
the convergence of FL when the data is non-iid distributed.
Moreover, as displayed in Fig. 5(d), we gather statistics
of the gaps between different loss curves under different

Fig. 5. We compare FedGSNR with FedNova [35] under different settings and
demonstrate that FedGSNR uses elaborately calculated local steps to expedite
the convergence of FL. It is worth noting that Fig. 5(d) displays the statistics
of the loss gap in all communication rounds between different loss curves.

Fig. 6. A case for choosing the global steps: there is an optimal distance
between one-step global update and multiple local updates. Furthermore,
when global updates converge to the optimum w∗, the optimal local updates
converge to wopt, which achieves the minimal distance between multiple
global updates and multiple local updates.

non-iid conditions. Specifically, as FedNova solves the objec-
tive inconsistency issue, the loss gap between it and the
ideal optimization process represents Gap1. Meanwhile, the
loss gap between FedNova and FedGSNR reflects Gap2. In
Fig. 5(d), the boxes on the left represent LossFedNova −
LossIdeal, i.e., Gap1, which indicates that the degree of non-
iid decreases from Pareto to Dirichlet (α = 0.5) partition.
Furthermore, the boxes on the right represent LossFedNova−
LossFedGSNR, i.e., Gap2 caused by FedGSNR, these results
indicate that the optimal Gap2 increases according to the
degree of non-iid. The increased Gap2 leads the optimization
process of FedGSNR much closer to the ideal optimization
process, thus expediting the convergence of FL more signifi-
cantly, which is consistent with our analysis.

B. Parameter Analysis of FedGSNR
According to Fig. 6, the stochastic gradient descent algo-

rithm converges to the ε-neighborhood of optimum after a
constant steps (usually more than O

(
1
ε

)
[29]). For conve-

nience, we denote this constant as mopt. In practice, as
Fig. 6 indicates, with determined differences between global
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Fig. 7. A representative scenario of GSNR: r(w) is a random variable with
regard to w. If we get closer to the optimum of C2, the GSNR of C1 will
increase and the GSNR of C2 will decrease. If we get closer to the optimum
of C1, the situation changes oppositely.

distribution and local distribution, i.e., maximal GSNR is
constant during a specific round, set the target global steps
as mopt is the optimal choice. However, a large number of
m leads to a large error of gradient estimation, which is
determined by O(η2n2). Hence, we need to trade off between
the estimation error and the corresponding convergence rate
in practice to decide m.

Then we focus on Proposition 1, the function to calculate
GSNR. Specifically, Cauchy-Schwarz inequality implies that
∆2 ≥ 0, and the equality holds when the local distribution
is the same as the global distribution, i.e., the data is iid dis-
tributed among all clients. With ∆2 decreases, which implies
the local data distribution approaches the global data distribu-
tion, nopt1 gradually increases. Moreover, when ∆2 reaches its
minimum 0, nopt1 attains its maximum value 1. Based on the
analysis, we can conclude that the more similarity between
the local dataset and the global dataset, i.e., the local dataset
achieves the larger GSNR, the more local updates we need
for optimization process, which is heuristically experimented
in [22].

As described in Proposition 1, r(w) is positive related
to nopt1 . On the one hand, when nopt1 = 0, we know that
〈Rl,Rg〉F = 0 from its definition, hence the optimal distance
∆2 achieves its maximum ‖Rg‖2F , and r(w) attains its mini-
mum 0. On the other hand, when the local distribution is the
same as the global distribution, i.e., ∆2 = 0, r(w) → +∞,
we denote this scenario as a noiseless optimization process,
and the data is iid distributed among all clients. Therefore, we
have r(w) ∈ (0,+∞).

Based on the former analysis, we know that r(w) ∈
(0,+∞). On the one hand, as the data is iid distributed among
all clients, i.e., GSNR goes to +∞, the distributed optimiza-
tion is a noiseless procedure, which means the local updates is
unbiased. On the other hand, when GSNR is 0, which means
〈Rl,Rg〉F ≤ 0, the angle between the local gradient and the
global gradient is greater than 90◦. In other words, for current
optimization, local data distribution is independent of global
data distribution, thus for global optimization, it is no better
than a random guess, then its signal component will be set to
0, which leads GSNR to be 0.

As for the relationship between GSNR and the parameter
w, Fig. 7 displays the representative scenario. Due to the
randomness of SGD, the new parameter after w1 with another
aggregation can be either w2 or w′2. If the parameter is w2,
which means we get closer to the optimum of client C2,
there are different changes of the GSNR for different clients:

for C1, the GSNR is increased; while for C2, the vector is
almost orthogonal to global optimization vector, which implies
its GSNR is closer to 0. If the parameter is w′2, which is
closer to the optimum of C1, the phenomenon is different: the
GSNR of C1 is decreased, and the GSNR of C2 is increased.
Hence, during the training process, r(w) is a random variable
correlated to the random variable, i.e., w, and we can use
the mean or median of GSNR to evaluate the contributions of
different clients.

VIII. EXPERIMENT

We run the experiments on the well-known real-world
datasets CIFAR-10 and CIFAR-100 mentioned in [18] to
validate our design. For all experiments, we use LeNet for
CIFAR-10 and VGG-16 for CIFAR-100.

A. Different Methods of Data Partition
For non-iid settings, we utilize 3 methods for the data

partition. First, we follow the settings in [11] to generate
non-iid data across different clients by Dirichlet distribution,
where α is a parameter representing the non-iid level. Second,
we propose NonBalance and Pareto for imbalanced partition,
which simulate the imbalanced distributed information in
practice.

1) Dirichlet Partition: Specifically, the prior distribution of
the Dirichlet partition is set to be uniform, and the parameter
α represents the concentration level. With α→ +∞, the data
distributions of all clients tend to be identical, hence the data
is iid distributed among all clients. While α→ 0, each client
only possesses data chosen from just one class, i.e., one label
for each client. As for Label 2., it is a specific partition method
in [11], and each client owns the data sampled from 2 classes.

2) NonBalance Partition: In this method, we simulate
the practical scenario of imbalanced information distribution.
Specifically, we divide all clients into three categories: abun-
dant information, medium information, and less information,
which means the clients’ data is chosen from different numbers
of labels. First, for clients with abundant information, we
randomly choose the data from all the classes, and they
account for 10% of the total clients. Second, for the clients
with medium information, we randomly choose the data from
50% of the classes, and the ratio of them is 40%. Finally, for
the clients with less information, we randomly choose the data
from 20% of the classes, and the ratio of them raises to 50%.

3) Pareto Partition: In practice, Pareto distribution is a
common scenario. It represents the long-tailed distribution of
practical scenarios such as the degree of nodes in the complex
network, the distribution of social wealth, the distribution of
followers in the social network, etc. Hence, we design the
Pareto partition to simulate the so-called Two-Eight distribu-
tion in practice. In this method, we first sample N points from
the Pareto distribution,

p(x) =

k · x
k
min

xk+1
, if x ≥ xmin

0, otherwise,

where N represents the number of clients. Then we denote the
corresponding samples as X = {xi}Ni=1 and normalize xi as
x̃i = xi/max(X) to guarantee all data distributed in [0, 1].
Finally, we use x̃i as the ratio of classes possessed by different
clients for random sampling, and set the minimum number of
labels among all clients to be 1.
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Fig. 8. We calculate the L2 distance between the ideal optimization updates with the global dataset (Econst = 20) and the local updates of different strategies,
including optimal local updates, identical local steps, and using ĝ (ĝ = nopt

1 g1). The results demonstrate that L2 distances increase as the learning rate
increases, but the strategy of optimal local updates achieves the minimal distance from the ideal optimization process.

Fig. 9. Test accuracy of different algorithms with different local steps.

B. Experiment Results

1) The Gap Between the Ideal Updates and the Practical
Updates: We first investigate the distance between the ideal
optimization updates and the local updates of different strate-
gies, including optimal local updates (FedGSNR), identical
local steps (FedAvg), and using ĝ (i.e., ĝ = nopt1 g1 in
Lemma 2). In these experiments, we employ the global dataset,
which gathers all clients’ data to calculate the gradient, to
update the model for Econst = 20 steps to calculate the ideal
updates. Then we use different strategies to update the model
parameters from the identical initial model and calculate the
L2 distance between different local strategies and the ideal
updates. As illustrated in Fig. 8, the distance between ideal
updates and different strategies consistently increases as the
learning rate increases, the reason is that a large learning rate
will enlarge the gap between the ideal updates and the practical
updates regardless of the strategies. However, the distance
between optimal local updates and the ideal updates is the
minimum among the three strategies, which validates our anal-
ysis of FedGSNR in Sec. VII, indicating that FedGSNR can
minimize the gap to the ideal optimization process. Moreover,
the strategy of using ĝ (ĝ = nopt1 g1) results in the maximal
distance because compared to the strategy of FedGSNR, which
only uses one approximation for calculating the optimal local
steps, the strategy of using ĝ brings additional approximation
errors of gradient calculation into the optimization process,
thus enlarging the approximation errors.

Then we compare FedGSNR with other methods. To ensure
all methods are comparable, we set the total computation
(i.e., local updates) to be equal. Therefore, we set the local

updates for different clients to be Ek = NEconst
nopt
1,k∑K

i=1 n
opt
1,i

in FedGSNR, where N and Econst represent the active clients
and the local updates of baseline algorithms, respectively. Note
that Ek is a redistribution of local steps.

2) Model Convergence of FedGSNR: In these experiments,
we set µ = 0.01 for FedProx, and compare the performance
of different algorithms to its combination with FedGSNR.

Fig. 10. Test accuracy and the area under acc curve by interpolation.

Fig. 11. An imbalanced scenario with Pareto partition on CIFAR-100 dataset.

According to Table II, FedGSNR with different algorithms
achieve faster convergence versus its original, it reaches a
1.69× speedup on average with comparable accuracy. Besides,
Fig. 9 displays the accuracy when we use different Econst, and
FedGSNR with FedAvg converges faster and achieves better
accuracy when we use different local steps (Scaffold fails
to work when we set Econst = 25). Moreover, in practice,
Pareto’s Law is a common principle, which means a small
number of clients possess a large number of information.
Fig. 11(a) indicates that FedGSNR with different algorithms
converge faster and reaches comparable accuracy. These
results demonstrate the importance of maximizing channel
utilization. Meanwhile, the GSNRs of different clients resem-
ble their label distribution (the histogram at the bottom of
Fig. 11(b)), which demonstrates that GSNR can distinguish
the information quality between different local datasets. Fur-
thermore, Table IV indicates that the growth of active clients
speeds up the convergence of different algorithms. Particularly,
FedGSNR gains more benefit from global information as its
speedup is increased from 1.4× to 1.8× when active clients
grow.

Moreover, with the Pareto partition on CIFAR10, we use
the interpolation to further investigate the performance of
deviating from optimal local updates, i.e., E = (1 −
λ)(E1, · · · , EK) + λ(Econst, · · · , Econst) (when λ = 1, the
algorithm reduces to FedAvg). The results in Fig. 10 demon-
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TABLE II

COMMUNICATION ROUNDS TO REACH 0.5 ACCURACY AND CORRESPONDING SPEEDUP4 OF FEDGSNR ON CIFAR10.
WE DISTRIBUTED THE DATA AMONG 30 CLIENTS, UTILIZE THE BATCH SIZE OF 64, AND SET Econst = 20

TABLE III
BEST TEST ACCURACY ON CIFAR-10. WE DISTRIBUTED THE DATA AMONG 30 CLIENTS, UTILIZE BATCH SIZE OF 64, AND

SET LOCAL STEPS Econst = 20 FOR DIFFERENT ALGORITHMS

Fig. 12. The GSNR of different clients. We observe that GSNR is larger and almost the same among all clients when data is iid distributed, then it gets
smaller and heterogeneous as the non-iid level grows. Finally, when the data partition method is Label 2, GSNR is small but similar to each other again,
which indicates that data is distributed with symmetries regarding the information.

TABLE IV

COMMUNICATION ROUNDS TO REACH 0.5 TEST ACCURACY FOR CLASSI-
FICATION ON NONBALANCE CIFAR-10 OF 100 CLIENTS AS WE VARY

THE NUMBER OF ACTIVE CLIENTS

strate that the convergence gets faster when we get closer to
optimal local updates, which indicates maximizing channel
utilization can accelerate the convergence of FL.

3) The Impact on Test Accuracy: Versus their original
version, FedGSNR with different FL algorithms achieve com-
parable test accuracy and even outperform their original
version when the non-iid degree is increased. For example,
in the Pareto scenario, the accuracy of FedGSNR with Fed-
Prox achieves an increase of 6.43%. Table III displays the
corresponding test accuracy of different algorithms aforemen-

4Speedup [15], i.e., S = Told
Tnew

, measures the relative performance of two
methods.

tioned in Table II, and it indicates that FedGSNR not only
converges faster but also achieves comparable accuracy to its
opponents. As for the accuracy drop in Table III, it is because
that FedGSNR is a gradient-based algorithm, if the basic
method introduces the gradient estimation (i.e., Scaffold), the
performance of FedGSNR will be correlated to the precision
of such an estimation, and a relatively low precision leads
to the corresponding accuracy drop. Meanwhile, as illustrated
in Fig. 12, the method of Label 2 distributes the data with
symmetries regarding the information, i.e., the GSNRs of
all clients are similar to each other, hence it is naturally
compatible to identical local updates, and the test accuracy
between FedGSNR and its opponents are close to each other.

4) Evaluate Local Contributions With GSNR: Fig. 12 dis-
plays the variation of GSNR when we utilize the Dirichlet
method with different α for the data partition. The results
demonstrate that when the non-iid level is increased, the
GSNRs of different clients vary dramatically, which indicate
the contributions of different clients are different. Moreover,
combined GSNR with the results in Table II, the model
convergence gets faster than its opponents when the channel
utilization is maximized. To further investigate the character-
istics of data evaluation, we change the labels l on client
0 to be (l + 5)mod 10, so that client 0 conducts the label
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Fig. 13. We make different malicious changes to client 0. In (a) and (b), we change the labels l of client 0 to l+ 3. While in (c) and (d), the labels remain
unchanged, and we change the input data to be a uniform distribution U(−1, 1). (e)-(h) are the corresponding test accuracy in different scenarios.

flipping attack [10]. Fig. 13(a) and 13(b) illustrate the changes
of GSNR when the labels are changed, and the red dashed
line box represents the original GSNR when the labels are
unchanged. Specifically, we observe that the GSNR is dra-
matically decreased when we make the malicious change to
the labels. Additionally, we instead change the data to be
sampled from a uniform distribution and observe a similar
phenomenon. For both of the malicious changes, we observe
that FedGSNR is more robust.

Fig. 13 displays the change of GSNR and corresponding
test accuracy when we apply different malicious changes to
the client. Interestingly, comparing Fig. 13(a) and 13(b) with
Fig. 13(c) and 13(d), we discover that the decrease of GSNR
for random input is larger than label changing. This phe-
nomenon is consistent with our intuition since the malicious
attack of label changing still provides more information than
the attack of random input. Specifically, the model can still get
the information that the data belongs to the same class after
label changing. For example, if we change all labels of ‘cat’
to ‘dog’, we still know the data of ‘cat’ belongs to the same
class, though they are called ‘dog’ now. On the contrary, the
change of random input cannot provide this information.

IX. CONCLUSION

In this paper, we innovatively investigated the FL issue via
the perspective of information communication. Under non-
iid scenarios, we maximize the channel utilization with the
optimal local updates. Then we propose a practical algorithm
FedGSNR to calculate the optimal local updates for different
FL algorithms, which leads to faster model convergence.
Additionally, we derive a method to calculate GSNR directly
from the local datasets, which can be utilized to evaluate
the local contributions of different clients. Finally, extensive
experiments demonstrate the beneficial effect of optimizing FL
from the new perspective of information communication, and
the perspective also opens up a promising new direction for
follow-up research.
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