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ABSTRACT
The development of machine learning models requires a large

amount of training data. Data marketplace is a critical platform to

trade high-quality and private-domain data that is not publicly avail-

able on the Internet. However, as data privacy becomes increasingly

important, directly exchanging raw data becomes inappropriate.

Federated Learning (FL) is a distributed machine learning paradigm

that exchanges data utilities (in form of local models or gradients)

among multiple parties without directly sharing the original data.

However, we recognize several key challenges in applying existing

FL architectures to construct a data marketplace. (i) In existing

FL architectures, the Data Acquirer (DA) cannot privately assess

the quality of local models submitted by different Data Providers

(DPs) prior to trading; (ii) The model aggregation protocols in ex-

isting FL designs cannot effectively exclude malicious DPs without
“overfitting” to the DA’s (possibly biased) root dataset; (iii) Prior
FL designs lack a proper billing mechanism to enforce the DA to

fairly allocate the reward according to contributions made by dif-

ferent DPs. To address above challenges, we propose martFL, the
first federated learning architecture that is specifically designed

to enable a secure utility-driven data marketplace. At a high level,

martFL is empowered by two innovative designs: (i) a quality-aware
model aggregation protocol that allows the DA to properly exclude

local-quality or even poisonous local models from the aggregation,

even if the DA’s root dataset is biased; (ii) a verifiable data transac-
tion protocol that enables the DA to prove, both succinctly and in

zero-knowledge, that it has faithfully aggregated these local models

according to the weights that theDA has committed to. This enables

the DPs to unambiguously claim the rewards proportional to their

weights/contributions. We implement a prototype of martFL and

evaluate it extensively over various tasks. The results show that

martFL can improve the model accuracy by up to 25% while saving

up to 64% data acquisition cost.
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1 INTRODUCTION
Artificial Intelligence (AI) continues to shape many aspects of our

lives. However, the development of AI models requires a large

amount of high-quality training data. However, collecting data,

especially the private-domain data that is not publicly available on

the Internet, is challenging. The community proposed the concept

of data marketplace [30, 44, 45, 60] to address this problem. In a

data marketplace (such as the International Data Spaces Associ-

ation [6]), organizations can access high-quality data owned by

other organizations that is specific to their needs. However, as data

privacy becomes increasingly important, directly trading raw data

could be inappropriate or even prohibited by laws (e.g., GDPR [66],

PIPL [17]). This implies a fundamental paradigm shift from trading

raw data to only trading data utilities without raw data exchange.

Federated Learning (FL) [58] is a machine learning paradigm that

enables multiple parties to train a global model on their own data

without sharing the data with each other. This is achieved by having

each party train a local model on their own data and then sending

the updates to a central server. The central server then aggregates

the updates from all of the parties to create a global model. This

makes FL a promising paradigm for a utility-driven marketplace

because organizations can buy and sell data without having to

share the underlying data. Viewing FL as a primitive, we could

construct a strawman data marketplace as shown in Figure 1(a).

In this diagram, the aggregation server in FL serves as the data
acquirer (DA) that initiates the FL task. The FL clients serve as the

data providers (DPs) to participate in the FL task by providing local

model updates trained on their own data. The DA evaluates the

local models submitted by different DPs to purchase high-quality
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local models. Eventually, the DA aggregates local models to update

the global model, based on which it may initiate another iteration.

However, we recognize three major challenges in applying the

vanilla FL to construct a secure data marketplace. First, the model

aggregation protocol in vanilla FL does not allow the DA to eval-

uate the data quality of local model updates before obtaining the

updates from DPs. This raises a dilemma in data trading: the DPs
are unwilling to give away their local updates before receiving

rewards, while the DA prefers to evaluate the updates first before

purchasing them.

Second, the model aggregation protocol of the vanilla FL is sub-

ject to various attacks, such as [9, 31, 52, 76]. Prior art on miti-

gating these issues can be roughly categorized into client-driven

approaches and server-driven approaches. The client-driven ap-

proaches [12, 71, 72] improve aggregation robustness by smoothing

the local update updates based on their statistics (e.g., median or

average). The server-driven approaches [18, 56] instead rely on

the DA to lead the aggregation process. They assume that the DA
possesses a high-quality root dataset based on which it can calibrate

the local model updates submitted by the DPs. As a result, prior
works exhibit a fundamental tradeoff between inclusiveness and

robustness: the client-driven approaches can potentially include

more local model updates for training, yet they stake robustness

on the “honest majority” (which might be incorrect in the data

trading scenario), while the server-driven approaches are more

resilient against malicious DPs, yet they sacrifice inclusiveness by

“overfitting” to the DA’s existing dataset (which could be biased).

Third, existing model aggregation protocols lack the required

verifiability to enable fair billing. Specifically, in FL, the local mod-

els receiving higher aggregation weights have more impacts on

the final model. Thus, the aggregation weights essentially quan-

tify the values (or utilities) provided by the local model updates.

Prior art (e.g., Omnilytics [51], FPPDL [57]) tries to achieve fair

billing by directly executing the entire model aggregation process
on blockchains, which significantly limits the design space of the

aggregation algorithms (see analysis in § 2.2). Thus, the third chal-

lenge in designing a fair utility-driven data marketplace is to ensure

that the DA faithfully distributes rewards among the DPs according
to their actual aggregation weights. This also ensures that the DA
only pays for its desired model updates, rather than blindly pur-

chasing arbitrary updates, which greatly reduces model acquisition

cost (see evaluation results in § 6.2).

To address these challenges, we presentmartFL, a novel FL archi-
tecture that enables robust and verifiable local model aggregation

in a utility-driven data marketplace. martFL is powered by two in-

novative designs. First, martFL designs a two-phased protocol that

first privately evaluates all local model updates submitted by DPs
based on a baseline to remove outliers (i.e., local-quality updates)

and then dynamically adjusts the evaluation baseline to incorpo-

rate the high-quality updates. Therefore, our quality-aware model

aggregation protocol eliminates the fundamental tradeoff between

inclusiveness and robustness, by indiscriminately evaluating the

complete set of DPs and meanwhile avoiding overfitting to the

(possibly biased) root dataset owned by DA.
Second,martFL designs a novel verifiable data transaction proto-

col that enables the DA and the selected DPs to securely exchange

the reward and model updates. Our verifiable transaction proto-

col centers around a proving scheme that allows the DA to prove,

both succinctly and in zero-knowledge, that it faithfully aggregates

the model using the committed aggregation weights. Based on the

publicly verifiable proof, the DPs can unambiguously claim the

reward corresponding to their weights. Crucially, martFL achieves

the fair trading without relying on any online trusted third party

to regulate the trading process.

Contributions. The main contribution of this paper is the design,

implementation and evaluation of martFL, the first FL architecture

that simultaneously offers robustness and verifiability to enable a

secure utility-driven data marketplace. We implement a prototype

of martFL in approximately 3750 lines of code and extensively

evaluate its accuracy and robustness using two image classification

datasets and two text classification datasets. The results show that

compared to existing server-driven methods, martFL can improve

accuracy by up to 25% even when the DA has a biased root dataset,

while saving up to 64% data acquisition cost. In addition,martFL can
resist various untargeted attacks, targeted attacks, and Sybil attacks,

and achieves the highest accuracy and the lowest attack success

rate compared to both server-driven and client-driven methods. We

also report the system-level overhead of martFL to demonstrate its

feasibility in practice.

2 BACKGROUND AND MOTIVATION
2.1 Data Marketplace
The traditional circulation of data trading mainly relies on data

trading platforms (such as International Data Spaces [6], BDEX [3],

Quandl [7] and GE Predix [5]) that are endorsed by government

or industry leaders. The research community explored API-based

marketplace designs that allow the data acquirers to collect data

stream online [45]. Due to the rising importance of data privacy,

direct trading of raw data, particularly data associated with personal

information [17, 66], is subject to significant regulatory burdens in

practice. Therefore, it is essential to explore data marketplaces that

do not require direct exchange of raw data.

2.2 Federated Learning and Its Robustness
In designing anAI-specificmarketplace, Federated Learning (FL) [58]

is a promising learning paradigm since it enables collaborative train-

ing without directly sharing the raw data. A data marketplace built

upon the vanilla FL architecture has three phases: (i) global model

distribution: the central server (serving as the data acquirer DA)
initializes a global model and distributes it to the clients (serving as

the data providers DPs); (ii) local model training: the DPs use their
local data to train the model and then upload the resulting models

(referred to as local models) to the DA; and (iii) model aggregation:

the DA aggregates these local models to obtain a new global model.

This process repeats for multiple epochs until the DA obtains a

sufficiently accurate global model.

However, the above vanilla FL-driven data marketplace faces

several critical challenges. First, FL is known to be vulnerable to var-

ious attacks, such as untargeted attack [11, 27] (e.g., the Byzantine
clients disrupt the training process by rescaling the sizes of local

gradients or randomizing the directions of local gradients), targeted

attack [9] (e.g., the Byzantine clients mislead the global model to
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Figure 1: The architecture comparison between the vanilla FL and martFL.

specifically misclassify certain classes), and Sybil Attack [31]. The

community has therefore proposed various robustness FL designs

that can be roughly divided into two categories. The client-driven

approaches [11, 12, 31, 71, 72] try to exclude malicious local model

updates by learning representative statistics from all local mod-

els; and the server-driven designs [18, 19, 27, 56] instead assume

that the server owns a trusted root dataset based on which it can

calibrate these local models. These approaches suffer from a funda-

mental tradeoff between inclusiveness and robustness, resulting in

non-trivial performance degradation (see § 4.1).

In addition to the robustness concern, existing FL architectures

lack several key features that are essential for data trading. On the

one hand, the data acquirer (DA) cannot assess quality of the local

models submitted by different DPs prior to trading; on the other

hand, the DPs are not assured of receiving adequate compensa-

tion after submitting their models. Several recent approaches (e.g.,
Omnilytics [51], FPPDL [57]) try to achieve trading-oriented FL

designs by simply executing the entire model aggregation process on
blockchains, either via general-purpose smart contracts or leverag-

ing specialized block structures. These approaches, however, are

fundamentally limited because they force the DA to make the lo-

cal model assessment protocol publicly executable on blockchains,

preventing the DA from using proprietary and complex/advanced

algorithms. As a result, the aggregation algorithm in FPPDL [57] is

unable to handle malicious DPs; and Omnilytics [51] only supports

four DPs using the simple Secure-Aggregation algorithm [13] with

the multi-Krum [12] algorithm to remove outliers, while incurring

significant gas cost (at least 1000 times more thanmartFL, as shown
in § 6.2.5).martFL is fundamentally different from these blockchain-

based FL approaches because martFL relies on smart contract to

verify the correctness of the offline model assessment and aggrega-
tion performed by theDA. This enables theDA to design proprietary

and advanced local model evaluation protocols to handle various

FL attacks. Additionally, martFL designs a verifiable transaction

protocol to ensure the DA cannot cheat about the reward allocation,

even though the DA uses proprietary model aggregation protocols

that are not known to the DPs.

2.3 Zero-Knowledge Proofs
To ensure fair trading, martFL requires the DA to publicly prove

that it has faithfully aggregated local models using the aggregation

weights that were committed to before receiving the plaintext local

models from the DPs. This proving process can be formulated as

an argument of knowledge for the aggregation protocol, without

disclosing these local models to the public. The recent progress in

zero-knowledge proof technology, especially the development of

zero-knowledge succinct non-interactive arguments of knowledge

(zk-SNARK) [15, 37, 42, 67] where the prover only needs present

one message (proof) instead of interacting with the verifier [34],

has demonstrated the potential to achieve this goal. Yet, simply

applying existing zk-SNARK constructions [16, 22, 37] to prove the

end-to-end training process in FL is challenging. This is because

(i) the detailed local model evaluation algorithm can be complex

and even contains computations over homomorphically encrypted

values (see § 4.2); and (ii) the model sizes are large, for instance,

with millions of floating-point parameters or even more. Both of

these issues would result in significantly large proof circuits, which

are impractical to implement.

2.4 Motivation
To address above challenges, we propose martFL, a secure and ver-

ifiable FL architecture specifically designed for utility-driven data

marketplaces.martFL advances state-of-the-art in both secure local

model aggregation and verifiable data trading. In particular,martFL
designs a novel quality-aware model evaluation protocol that can

indiscriminately and privately assess all the local models submitted

by the DPs based on a dynamically adjusted baseline. As a result,

it can accurately remove malicious local models while avoiding

overfitting to the root dataset owned by the DA, eliminating the

tradeoff between inclusiveness and robustness exhibited in prior

art. Further, martFL proposes an efficient verifiable transaction

protocol that enables fair data trading without the need to prove the
entire FL training process. The key novelty of our approach is that

our proving scheme focuses on only proving the critical compu-

tation that is necessary and sufficient to ensure fair billing. This

results in the proving overhead being independent of both the local

model evaluation algorithm and the model size. Given this proof,

the DPs can unambiguously claim corresponding reward over a

smart contract. To the best of our knowledge, this is the first veri-

fiable scheme designed specifically for proving the correctness of

model aggregation in FL, without directly placing the entire model

aggregation protocol on blockchains.
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2.5 Assumptions and Threat Model
We consider Byzantine DPs that may submit arbitrary local models.

They may launch these aforementioned attacks to disrupt the train-

ing process, or try to earn rewards without actual contributions to

training (e.g., the free-rider attack [52]). We consider that the DA
is semi-honest, i.e., the DA is protocol-compliant, but motivated to

manipulate the reward distribution so as to minimize the cost of

collecting data. We assume that the DA possesses a root dataset.

Many well-established robust FL approaches (e.g., [18, 27]) assumed

that DA has a reliable and unbiased root or validation dataset to

handle malicious DPs. In contrast to these approaches, the root

dataset assumed inmartFL can be both of poor quality and of limited
volume. For instance, it may contain only half of the labels (i.e.,
the DA’s root dataset exhibits biased distributions), or it may be

approximately 1% of the data held by all DPs (see evaluation results

in § 6.2.1). Therefore, the assumption made about the root dataset

in martFL is significantly less restrictive than that made by exist-

ing robust FL approaches. This makes martFL suitable for the data

trading scenario, in which the DA, without necessarily possessing

a good root dataset, can collect high-quality and high-volume local

models from a diverse set of DPs.
We assume that the cryptographic primitives and the consensus

protocol of the blockchain system used to host the data transaction

smart contract in martFL are secure so that the blockchain can

have the concept of transaction finality and contract publicity. On

Nakamoto consensus based blockchains, finality is achieved by

assuming that the probability of blockchain reorganizations drops

exponentially as new blocks are appended (i.e., the common-prefix

property) [32]. On Byzantine tolerance based blockchains, finality

is guaranteed by signatures from a quorum of permissioned voting

nodes. We assume that the blockchain has a public ledger that

allows external parties to examine the public state of its deployed

smart contracts. We assume that the zk-SNARK protocol [37] used

in our verifiable transaction protocol is sound.

3 MARTFL OVERVIEW
Architecturally, martFL is designed around four components (as

shown in Figure 1(b)). (i) A data acquirer (DA) relies on martFL
to collect training data for a FL training task from a utility-driven

marketplace like martFL. Each training epoch is associated with

a reward that the DA will pay after the data trading is closed. (ii)
Data providers (DPs) participate in FL training by contributing their
local model updates. martFL itself has two building blocks. (iii) A
Quality-aware Model Evaluation Protocol that enables the DA to

confidentially pre-evaluate the quality of the local models from

different DPs. The DA can keep the detailed aggregation algorithm

(e.g., how to remove poisonous local models) confidential, making

it difficult for the malicious DPs to manipulate the training process

(see analysis in § 6.3.2). (iv) Afterwards, they apply the Verifiable

Transaction Protocol to achieve fair data trading. The DA first com-

mits the aggregation weights, obtained by the model evaluation

protocol, on the trading smart contract. Upon commitment, the

DPs can safely submit their plaintext local models offline to the DA.
The DA is expected to generate a publicly verifiable proof (with-

out disclosing its model evaluation method and the received local

models) to demonstrate that it has faithfully aggregated these local
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Figure 2: The tradeoff between robustness and inclusiveness
in prior robust FL approaches.

models using the committed weights. Given the proof, the DPs can
unambiguously claim the reward (proportional to their aggregation

weights) deposited by the DA on the smart contract. Violations

against the transaction protocol (e.g., the proof verification fails)

results in automatic penalties coded in the smart contract.

4 QUALITY-AWARE MODEL EVALUATIONS
4.1 Key Observations
We first discuss the key observations about the tradeoff between the

inclusiveness and robustness in the prior client-driven and server-

driven secure FL aggregation protocols, which motivates our model

aggregation design. We consider a common data trading scenario

where the DA has an unevenly distributed root dataset prior to

trading, and the data qualities for different DPs vary and some

DPs are malicious. Specifically, using the TREC dataset [50] as an

example, suppose that (i) the root dataset of the DA is dominated by

half of the class labels; (ii) the DPs are heterogeneous, where 30%
of them have high-quality data (evenly distributed across all types

of labels), 30% of them own biased dataset, and 40% of them are

malicious; (iii) the malicious DPs may launch the backdoor attack

[9] (a type of the targeted attack) or the sign-randomizing attack (a

type of untargeted attack). We evaluate two representative prior

art using this setting: a server-driven design FLTrust [18] and a

client-driven design Krum [12].

We report three metrics in Figure 2. Robustness represents the

ability to exclude poisoned local models, quantified by the per-

centage of malicious DPs whose local models are not selected for

aggregation. Inclusiveness represents the ability to identify benign

DPs, quantified by the percentage of benign DPs whose local mod-

els are selected for aggregation. Accuracy represents the final model

performance on the testset. We observe a clear tradeoff between

inclusiveness and robustness in prior art, where the server-driven

approach has higher robustness while only selecting DPs similar to

the (biased) root dataset (sacrificing inclusiveness), and the client-

driven design behaves the opposite. Instead, our design strikes a

good balance between robustness and inclusiveness, thus yield-

ing significant accuracy gain over prior art. In § 6.3.1, we further

investigate this tradeoff using a series of different parameters.

4.2 Model Aggregation Protocol
The architecture of our local model evaluation protocol is presented

in Algorithm 1. TheDA first prepares a baseline model using its own

root dataset (could be biased). This model will be used as a reference

for scoring other local models submitted by DPs in each training
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Algorithm 1: Quality-Aware Model Aggregation Protocol

1 Inputs: The scores of local models in the 𝑡 -th training epoch

S𝑡 = {𝑠𝑡
1
, 𝑠𝑡

2
, . . . , 𝑠𝑡𝑛 }; the DP selected as the baseline in the 𝑡 -th

epoch 𝑝𝑡 ; a control flag 𝛼 for baseline adjustment; the ratio of

randomly selected baseline candidates 𝛽 ; the threshold𝑇 used in

hierarchical clustering; the root dataset 𝐷0; the maximum number

of clusters𝐺 .

2 Outputs: The aggregation weights obtained for the 𝑡 -th epoch and

the DP selected as the baseline for the (𝑡 + 1)-th epoch 𝑝𝑡+1.
3

4 Function Main (S𝑡 , 𝑝𝑡 , 𝛼, 𝛽,𝑇 , 𝐷0,𝐺 ) :
5 // Set P𝑡 stores the DPs selected for aggregation; Set K𝑡 stores their weights.

6 P𝑡 ,K𝑡 ← OutlierRemoval (S𝑡 , 𝑝𝑡 , 𝛽,𝑇 ,𝐺 )
7 //M𝑡 are the plaintext models that the DA commits to purchase.

8 M𝑡 ←ModelTrading(P𝑡 )
9 if 𝛼 = true then 𝑝𝑡+1 ← BaselineAdjustment(M𝑡 , 𝐷0 )

10 else 𝑝𝑡+1 ← 0

11

12 Function OutlierRemoval(S𝑡 , 𝑝𝑡 , 𝛽,𝑇 ,𝐺 ) :
13 U ← {1, 2, . . . , 𝑛}, P1 ← ∅, P2 ← ∅, K ← {1.0, . . . , 1.0}
14 // Determine the number of clusters 𝑔 by Gap statistics.

15 for 𝑔← 1, 2, . . . ,𝐺 do
16 𝑔← the minimum g such that Gap(𝑔) −Gap(𝑔+1) +𝜎𝑔+1 ≥ 0

17 𝑑 ←Max(S𝑡 )−Min(S𝑡 )
18 if 𝑔 = 1 and 𝑑 > 𝑇 then 𝑔← 2

19 else P1 ← U // Single-cluster gathered distribution.

20 // K-Means returns the clusters and centroids of the scores.

21 N1, C1 ← K-Means(S𝑡 , 𝑔)
22 𝐶𝑏𝑒𝑠𝑡 = Max(C1 ) // Centroid of the highest-score cluster.

23 if 𝑔 > 2 then N2, C2 ← K-Means(S𝑡 , 2) // Re-clustering.
24 else N2 ← N1

25 for 𝑖 ← 1, 2, . . . , 𝑛 do
26 if 𝑔 = 1 then break

27 if 𝑖 = 𝑝𝑡 or N1 [𝑖 ] = 0 or N2 [𝑖 ] = 0 then
28 K[𝑖 ] ← 0.0 // Low-quality model.

29 else if N1 [𝑖 ] = 𝑔 − 1 and (N2 [𝑖 ] ≠ 0 ) then
30 K[𝑖 ] ← 1.0, P1.add(𝑖) // High-quality model.

31 else
32 K[𝑖 ] ← 1.0 − Abs(S [𝑖 ]−𝐶𝑏𝑒𝑠𝑡 )

Max(Abs( [𝑠𝑡
𝑖
−𝐶𝑏𝑒𝑠𝑡 for 𝑠𝑡

𝑖
in S]) )

33 P2.add(𝑖) // Qualified but weighted model.

34 if P2 = ∅ and Len(P1 ) < 0.5 × 𝑛 then
35 P2 ← RandomSample(U − P1, 𝛽 )
36 return P1

⋃ P2, K
Sum(K)

37

38 Function BaselineAdjustment(M𝑡 , 𝐷0 ) :
39 𝑘𝑝𝑚𝑎𝑥 = -inf, 𝑝𝑡+1 = 0

40 for 𝑖,𝑚 in Enumerate(M𝑡 ) do
41 𝑘𝑝 ← Kappa(𝑚,𝐷0 )
42 if 𝑘𝑝 > 𝑘𝑝𝑚𝑎𝑥 then 𝑘𝑝𝑚𝑎𝑥 ← 𝑘𝑝, 𝑝𝑡+1 ← 𝑖

43 return 𝑝𝑡+1

epoch. Afterwards, theDA clusters theDPs according to their scores
and removes the outliers (i.e., low-quality local models) for this

epoch. Finally, the DA and selected DPs finalize the data trading

using our verifiable transaction protocol detailed in § 5, which

guarantees that the DA distributes rewards to the DPs according to
their model quality. Before starting the next training epoch, the DA
dynamically adjusts the baseline to incorporate the high-quality

data collected in the prior epoch, which is the key to address the

possibly biased root dataset. Throughout the training process, we

apply Homomorphic Encryption (HE) to ensure that the DA cannot

obtain plaintext local models before committing to purchase them.

4.2.1 Hierarchical Clustering for Outlier Removal
We score the local models submitted byDPs using cosine similarities

(similar to FLTrust [18]). Suppose that𝑊 𝑡
𝑔 is the global model at

round 𝑡 ,𝑊 𝑡 ′
𝑔 is the baseline model (in the first epoch, it trained from

𝑊 𝑡
𝑔 by theDAwith its root dataset𝐷0), and𝑢

𝑡
𝑔 = Flatten(𝑊 𝑡 ′

𝑔 −𝑊 𝑡
𝑔 )

is therefore the self-update computed by the DA. Suppose that𝑊 𝑡
𝑖

is the model obtained by the 𝑖-th DP after it trains𝑊 𝑡
𝑔 on its local

dataset 𝐷𝑖 , and 𝑢
𝑡
𝑖
= Flatten(𝑊 𝑡

𝑖
−𝑊 𝑡

𝑔 ) is the update computed by

the 𝑖-th DP. Then, the score of 𝑢𝑡
𝑖
is calculated as follows.

𝑠𝑡𝑖 = Cosine(𝑢𝑡𝑔, 𝑢𝑡𝑖 ) =
𝑢𝑡𝑔 · 𝑢𝑡𝑖
| |𝑢𝑡𝑔 | | · | |𝑢𝑡𝑖 | |

(1)

The DA selects the desired updates according to their scores. Unlike

the FLTrust [18] that simply clips the scores via ReLU, our design

avoids simply referencing the DA’s root dataset by analyzing the

cluster distribution of all scores. Specifically, we propose a hierar-

chical clustering algorithm to select the desired updates. We first

apply the Gap-Statistics algorithm [65] to determine the optimal

number of clusters 𝑔 1
. Afterwards, we obtain our first-layer clus-

tering by applying the K-Means algorithm [55] with 𝑔. This may

produce three types of distributions, as shown in Figure 3.

• Single-cluster gathered distribution: the model scores are concen-

trated, and the range of scores is less than a predefined threshold

𝑇 . This often indicatesmodels submitted by allDPs have compara-

ble quality. In this case, we include all updates to the high-quality

model set P1 (line 19 of Algorithm 1).

• Single-cluster scattered distribution: the model scores are scat-

tered over a large range. This could be a sign of attack, where the

malicious DPs intentionally submit arbitrary model updates. As

a result, we perform the second layer of clustering (via K-Means

clustering with 𝑔=2) to divide the scores into a high-quality clus-

ter and a low-quality cluster. The updates in the high-quality

cluster are selected for aggregation in this round (line 30 in Al-

gorithm 1) .

• Multi-cluster distribution: the update scores form multiple clus-

ters. This could be caused by highly-heterogeneous DPs where
some of them possess good dataset, some of them possess biased

dataset and some of them are malicious. The algorithm performs

the second clustering by separating these first-stage clusters into

two categories. The low-quality category is discarded. Within

the high-quality category, the updates in the highest-score clus-

ter are added to the set P1. The local models in the remaining

clusters of the high-quality category considered to be qualified

1
The elbow coefficient [64] and silhouette [63] are other possible methods to calculate

𝑔. However, the elbow coefficient algorithm requires manual judgment to determine

the position of the elbow, and the silhouette algorithm can only be used with two or

more clusters.
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Figure 3: Three different cases of distribution of scores.

(line 32 of Algorithm 1), but weighted based on their distances

to the centroid of the highest-score cluster.

Eventually, theDPs in P1 and a small subset of DPs (e.g., 5%-10%)
randomly selected from P2 are selected for aggregation. The DA
first commits to purchase local models from these DPs. Afterwards,
it is safe for the selectedDPs to hand over the plaintext local models

to the DA (see the detailed transaction protocol in § 5).

4.2.2 Dynamic Baseline Adjustment
To avoid overfitting to theDA’s root dataset,martFL enables theDA
to dynamically adjust the baseline for outlier removal. Specifically,

for each local model𝑚 ∈ M𝑡
, theDA evaluates𝑚 on its root dataset

and computes the Kappa coefficient [23]. The DA then selects the

DPs with high Kappa coefficients as preferred DPs. For simplicity,

Algorithm 1 only selects the DP with the highest-Kappa-coefficient

as the single preferred DP (line 42). In the next epoch, the DA
trades the local models in advance with these preferred DPs and
aggregates them as the new baseline. The DA should not disclose

these preferred DPs until they have committed their local models.

4.3 The Integrated Training Process
We have described the local model evaluation protocol in martFL.
In a utility-driven data marketplace, it is critical to ensure that the

DA cannot obtain the plaintext model updates before committing

to purchase them. Towards this end, we apply the CKKS Homo-

morphic Encryption [21] to allow DA to privately assess the local

models submitted by the DPs.
Supposed that in the 𝑡-th epoch, the DA obtains the baseline

update 𝑢𝑡𝑔 . Instead of directly sharing 𝑢𝑡𝑔 with the DPs, the DA ho-

momorphically encrypts it by the public key 𝑘 as 𝑐𝑡𝑔 = Enc(𝑘, 𝑢𝑡𝑔

| |𝑢𝑡𝑔 | |
).

Once a DP receives 𝑐𝑡𝑔 , it multiply its local update 𝑢𝑡
𝑖
with 𝑐𝑡𝑔 as

𝑐𝑡
𝑖
=

𝑢𝑡
𝑖

| |𝑢𝑡
𝑖
| | · 𝑐

𝑡
𝑔 , and returns the result back to the DA. Eventually,

the DA receives the encrypted cosine 𝑐𝑡
𝑖
, and decrypts it to obtain

the score for the update 𝑢𝑡
𝑖
. Afterwards, the DA can perform local

model evaluations as described in § 4.2.

A critical step in adopting CKKS is to safeguard against the DPs
from using different models in model evaluation and subsequent

model transactions, i.e., preventing the DPs from intentionally sub-

mitting different model updates after being selected by the DA.
To this end, we require the DPs to commit their model updates

before model evaluations. These committed updates are then used

to ensure the correctness of subsequent model transactions, as we

will further discuss below.

5 VERIFIABLE TRANSACTION PROTOCOL
Our verifiable transaction protocol has two phases: (i) a zero-knowledge
proving system that allows the DA to prove that it has faithfully

aggregated the global model based on claimed weights, without

disclosing the local models submitted by the DPs; and (ii) a pay-
ment protocol based on smart contract to allow the DA and DPs to
exchange rewards and plaintext local models.

5.1 Proving Scheme for Model Aggregation
5.1.1 Overview
The DA should prove that it faithfully aggregates the global model.

Although there are many zero-knowledge proof (ZKP) construc-

tions [2, 4, 26], it is challenging to simply adopt these designs to

achieve verifiable aggregation in martFL. Specifically, the model

evaluation algorithm (Algorithm 1) used by martFL is complex, es-

pecially considering the homomorphic computations involved. This

complexity makes it difficult to generate and implement the arith-

metic circuit to represent the algorithm. To address this challenge,

martFL does not prove the end-to-end training process. Instead, it

only proves the local model summation computation, which ag-

gregates the local models using the aggregation weights returned

by the model evaluation algorithm. This design drastically reduces

the proving complexity without affecting the fairness of billing, be-

cause reward allocations are completely driven by the aggregation

weights. In addition, we also design verifiable samplingmethod such

that the DA only needs to prove a fix number of scalars/parameters

regardless of the model size (i.e., the number of model parameters).

Setup. Denote the local model summation as A, which represents

the following calculation𝑊 𝑡
𝑔 =𝑊 𝑡−1

𝑔 + 𝐾𝑡𝑈 𝑡 , where𝑊 𝑡−1
𝑔 (𝑊 𝑡

𝑔 ) is

the global model in the previous (current) epoch. For each 𝑘𝑡
𝑖
∈ K𝑡 ,

𝐾𝑡 = [𝑘𝑡
1
, 𝑘𝑡

2
, . . . , 𝑘𝑡𝑛] are the aggregation weights claimed by the

DA, and 𝑈 𝑡 = [𝑢𝑡
1
, 𝑢𝑡

2
, . . . , 𝑢𝑡𝑛] are the local models submitted by

the DPs. The public input of our zero-knowledge proving scheme

is X𝑡 = {𝑊 𝑡
𝑔 ,𝑊

𝑡−1
𝑔 , 𝐾𝑡 }, and the private witness isW𝑡 = {𝑈 𝑡 }.

Concretely, our proving scheme has the following algorithms.

• C← Compile(A): In the compiling step, the prover (i.e., the DA)
quantizes the floating-point public input X𝑡 and private witness

W𝑡
to X𝑡 = {W𝑡𝑔,W𝑡−1𝑔 ,K𝑡 } and W𝑡 = {U𝑡 } in finite field,

respectively. In addition, it quantizes the aggregation algorithm

A and compiles it to a circuit C.

• (𝑝𝑘, 𝑣𝑘) ←Setup(1𝜆,C): Given a security parameter 𝜆 and the

circuit C, a trusted third party randomly generates a proving key

𝑝𝑘 and a verification key 𝑣𝑘 . The proving key 𝑝𝑘 is given to the
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Figure 4: The circuit design for the proving scheme inmartFL.

DA and the verification key 𝑣𝑘 is given to the DPs. We consider

a proving scheme that requires trusted setup in this paper, and

leave exploration of trust-free schemes in future work.

• (𝑐𝑚𝑡 ,W𝑡𝑔, 𝜋𝑡 ) ← Prove(X𝑡 ,W𝑡 , 𝑟𝑡 , 𝑝𝑘,C): Given a random open-

ing 𝑟𝑡 , the prover first commits the private witnessW𝑡 as 𝑐𝑚𝑡 =
Commit(U𝑡 , 𝑟𝑡 ). Then it calculates the quantized global model

W𝑡𝑔 and generates a proof 𝜋𝑡 . Afterwards, the prover publishes

𝑐𝑚𝑡 , 𝜋𝑡 , andW𝑡𝑔 to the DPs.
• {1, 0} ← Verify(X𝑡 , 𝑣𝑘, 𝜋𝑡 , 𝑐𝑚𝑡 ): The public verifiers (e.g., DPs)
can verify the computation in C using the verification key 𝑣𝑘 ,

public input X𝑡 , the commitment 𝑐𝑚𝑡 , and the proof 𝜋𝑡 . If the

DA faithfully aggregates the global model, the verifier will accept

the proof; otherwise, the verifier will reject it.

5.1.2 Circuit Design
Quantization The circuit C is designed based on the quantized

version of algorithm A. Quantization maps a floating point value

𝑥 ∈ [𝑎, 𝑏] to an unsigned integer 𝑥𝑞 ∈ [𝑎𝑞, 𝑏𝑞] and de-quantization
is the reversed process. As defined in the partial quantization [38],

the quantization and de-quantization are represented as 𝑞 = ⌊ 𝑥𝑠 ⌋ +𝑧
and 𝑥 = 𝑠 (𝑞 − 𝑧), respectively, where 𝑠 is a floating-point scaler, 𝑞
is the quantized integer for 𝑥 , and 𝑧 is the zero point (i.e., the value
of a floating-point zero when mapped to the integer field).

We observe in our experiments that the above quantization de-

sign may result in overflow. Specifically, the subtractions on un-

signed integers may result in overflow due to accuracy loss in

quantization. Consequently, the de-quantization produces a very

inaccurate dequantized model for the next training epoch. To avoid

overflow, we extend the range of floating-point numbers by a small

𝜖 , i.e., 𝑥 ∈ [𝑎 − 𝜖, 𝑏 + 𝜖]. Afterwards, we derive 𝑠 and 𝑧, by solving

the following linear Equation (2).

𝑎 − 𝜖 = 𝑠 (𝑎𝑞 + 𝑧); 𝑏 + 𝜖 = 𝑠 (𝑏𝑞 + 𝑧) (2)

Commitment Circuit. The first part of C is to commit the pri-

vate parameters U𝑡 with the opening random 𝑟𝑡 such that U𝑡 are
not disclosed to the public verifiers, i.e., 𝑐𝑚𝑡 = Commit(U𝑡 , 𝑟𝑡 ).
POSEIDON [36] is an optimized commitment algorithm. Yet, sim-

ply applying POSEIDON to commit all model parameters would

require in a large number of constraints. In § 5.1.3, we design a

verifiable sampling mechanism to avoid committing and verifying

all parameters.

Aggregation Circuit Design. The second part of C is the aggre-

gation circuit that computes 𝑈 𝑡
′
= 𝐾𝑡𝑈 𝑡 in the quantized form,

where 𝐾𝑡 ∈ R1×𝑛 , 𝑈 𝑡 ∈ R𝑛×𝑚 , 𝑈 𝑡
′ ∈ R1×𝑚 , 𝑛 is the number of

DPs, and𝑚 is the number of parameters in the model. To be ZKP-

friendly, we minimize the use of negative numbers and division in

the calculation, while ensuring that all operations are performed

in the field F𝑞 . First, in Equation (3), we apply the de-quantization

equation.

𝑈 𝑠
′
(U𝑞

′

𝑖, 𝑗
−𝑈 𝑧

′
) =

𝑛∑︁
𝑘=1

𝐾𝑠 (K𝑞
𝑖,𝑘
− 𝐾𝑧)𝑈 𝑠 (U𝑞

𝑘,𝑗
−𝑈 𝑧) (3)

where K𝑞 , U𝑞 and U𝑞
′
are the quantization matrix of 𝐾𝑡 , 𝑈 𝑡 , and

𝑈 𝑡
′
, respectively; 𝐾𝑠 ,𝑈 𝑠 and𝑈 𝑠

′
are the scaler of 𝐾𝑡 ,𝑈 𝑡 , and𝑈 𝑡

′
,

respectively; 𝐾𝑧 ,𝑈 𝑧 and𝑈 𝑧
′
are the zero points of 𝐾𝑡 ,𝑈 𝑡 , and𝑈 𝑡

′
,

respectively. In the context, K𝑡 = {K𝑞, 𝐾𝑠 , 𝐾𝑧 }, etc. We use a big

integer 2
𝜂
(𝜂 should be 22 or even larger) to replace the floating-

point scale with unsigned integers and enable the full quantization

computation. Also, we rearrange the calculation order in Equation

(4) to eliminate negative numbers in calculation. The remainder R𝑎

is to ensure correctness after division, as shown in [29].

2
𝜂U

𝑞′

𝑖, 𝑗
= R𝑎𝑖,𝑗 + 2

𝜂𝑈 𝑧
′
+
⌊
2
𝜂 𝐾

𝑠𝑈 𝑠

𝑈 𝑠
′

(
𝑀1 +𝑀4 −𝑀2 −𝑀3

)⌋
s.t.𝑀1 =

𝑛∑︁
𝑘=1

K
𝑞

𝑖,𝑘
U
𝑞

𝑘,𝑗
, 𝑀2 = 𝑈

𝑧
𝑛∑︁
𝑘=1

K
𝑞

𝑖,𝑘
,

𝑀3 = 𝐾
𝑧
𝑛∑︁
𝑘=1

U
𝑞

𝑘,𝑗
, 𝑀4 = 𝑛𝐾

𝑧𝑈 𝑧

(4)

Update Circuit Design. The third part of C is the update circuit.

We use Equation (5) to present the de-quantized update equation

𝑊 𝑡
𝑔 =𝑊 𝑡−1

𝑔 +𝑈 𝑡 ′ , with𝑊 𝑡
𝑔 ∈ R1×𝑚 ,𝑊 𝑡−1

𝑔 ∈ R1×𝑚 ,𝑈 𝑡
′ ∈ R1×𝑚 .

𝑊 𝑠′ (W𝑞
′

𝑖, 𝑗
−𝑊 𝑧′ ) =𝑊 𝑠 (W𝑞

𝑖,𝑗
−𝑊 𝑧) +𝑈 𝑠

′
(U𝑞

′

𝑖, 𝑗
−𝑈 𝑧

′
), (5)

whereW𝑞
′
,W𝑞 and U𝑞

′
are the quantization matrices of𝑊 𝑡

𝑔 ,𝑊
𝑡−1
𝑔

and𝑈 𝑡
′
, respectively;𝑊 𝑠′

,𝑊 𝑠
and𝑈 𝑠

′
are the scaler of𝑊 𝑡

𝑔 ,𝑊
𝑡−1
𝑔

and 𝑈 𝑡
′
, respectively.𝑊 𝑧′

,𝑊 𝑧
and 𝑈 𝑧

′
are the zero points of𝑊 𝑡

𝑔 ,

𝑊 𝑡−1
𝑔 and𝑈 𝑡

′
, respectively.

Similarly, we rearrange the above equation to Equation (6) to

eliminate negative numbers. And the remainder R𝑢 to ensure cor-

rectness after division.

2
𝜂W

𝑞′

𝑖, 𝑗
= R𝑢𝑖,𝑗 + 2

𝜂𝑊 𝑧′ +
⌊
2
𝜂

(
𝑁1 + 𝑁3 − 𝑁2 − 𝑁4

)⌋
s.t.𝑀1 =

𝑊 𝑠

𝑊 𝑠′
W
𝑞

𝑖,𝑗
, 𝑁2 =

𝑊 𝑠

𝑊 𝑠′
𝑊 𝑧 ,

𝑁3 =
𝑈 𝑠
′

𝑊 𝑠′
U
𝑞′

𝑖, 𝑗
, 𝑁4 =

𝑈 𝑠
′

𝑊 𝑠′
𝑈 𝑧
′

(6)

In summary, the complete circuit C is plotted in Figure 4.

5.1.3 Verifiable Sampling
Given the concatenated local models 𝑈 𝑡 ∈ R𝑛×𝑚 (where 𝑛 is the

number of DPs, and𝑚 is the number of parameters in the model),

the number of constraints required in the commitment circuit, the

aggregation circuit, and the update circuit isO(𝐻 ·𝑛·𝑚),O(𝑛·𝑚) and
O(𝑚), respectively, where 𝐻 represents the required constraints

in the hash function used in commitment circuit. Considering that
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𝑛 ≪ 𝑚 and 𝐻 is fixed once the commitment hash function is

selected, we explore to reduce the number of parameters required

for proof generation. Specifically, we randomly select 𝑐 out of𝑚

parameters as the verification objects. Suppose that the sampling

is provable random (i.e., not controlled by the DA), as long as the
DA can provide the correct proof for the sampled parameters, then

with high probability, theDA has calculated all parameters correctly.

Thus, the proof complexity becomes independent on𝑚.

Conceptually, the provable random sampling is similar to ran-

domness beacon [62]. Both verifiable random function (VRF) [35,

59] and verifiable delay function (VDF) [14] can be used as a primi-

tive to construct the verifiable random sampling. We sketch a con-

struction below. In each training epoch, each DP publishes a cryp-

tographic nonce to a public bulletin board (e.g., a public blockchain).
The DA is required to useH(𝑠1, 𝑠2, ..., 𝑠𝑛) as the seed 𝑠𝑡vdf to a VDF
to select the parameter indices 𝑅𝑡vdf = {𝑟

𝑡
1
, 𝑟𝑡
2
, . . . , 𝑟𝑡𝑐 } (e.g., using the

output of the VDF as the random seed for a pre-agreed pseudoran-

dom number generator). VDF is necessary to prevent the DP that

lastly publishes its nonce from introducing bias by strategically

selecting its nonce.

After random sampling, the public input and private witness for

the proving scheme should be also adjusted accordingly asW𝑡,𝑐𝑔 =

{W𝑡
𝑔,𝑟𝑡

1

,W𝑡
𝑔,𝑟𝑡

2

, . . . ,W𝑡
𝑔,𝑟𝑡𝑐
},W𝑡−1,𝑐𝑔 = {W𝑡−1

𝑔,𝑟𝑡
1

,W𝑡−1
𝑔,𝑟𝑡

2

, . . . ,W𝑡−1
𝑔,𝑟𝑡𝑐
},U𝑡,𝑐 =

{𝑢𝑡
𝑟𝑡
1

, 𝑢𝑡
𝑟𝑡
2

, . . . , 𝑢𝑡
𝑟𝑡𝑐
}, where W𝑡,𝑐𝑔 ∈ R1×𝑐 , W𝑡−1,𝑐𝑔 ∈ R1×𝑐 , U𝑡,𝑐 ∈

R𝑛×𝑐 . As a prerequisite for using the sample-based verification, the

DA shall publish the modelW𝑡𝑔 before sampling (since only part of

theW𝑡𝑔 is used as the public input).

5.1.4 Integrated Verification Protocol
Taken all parts together, our verifiable aggregation protocol pro-

ceeds as follows. The DA first quantizes𝑊 𝑡−1
𝑔 , 𝑈 𝑡 and 𝐾𝑡 to the

quantized format, and performs the aggregation calculation as

Equation (4) and Equation (6). In addition, the DA applies the de-

quantization equation to calculate the floating-point global model

𝑊 𝑡
𝑔 , and commits 𝐾𝑡 ,𝑊 𝑡

𝑔 andW𝑡𝑔 to DPs. Afterwards, the DA ob-

tains the randomly selected parameters from the VDF, and gen-

erates a zero-knowledge proof 𝜋𝑡 with public input as X𝑡,𝑐 =

{W𝑡,𝑐𝑔 ,W𝑡−1,𝑐𝑔 ,K𝑡 } and private witness asW𝑡,𝑐 = {U𝑡,𝑐 }. The proof
𝜋𝑡 is then submitted to a smart contract so that the DPs can verify

its correctness and claim corresponding rewards (see § 5.2).

5.2 The Trading Smart Contract
martFL designs a trading smart contract to enable the DA and DPs
to exchange plaintext local models and rewards. Due to space con-

straint, we provide the high-level description of our smart contract

in Algorithm 2. The more detailed realization close to the real-world

implementation is deferred to the technical report [49]. The trading

smart contract is divided into two high-level phases.

Prepare Phase. The PreparePhase performs necessary setup for

reward distribution. First, the DA commits the aggregation weights

𝐾𝑡 and the corresponding DPs (identified by their public keys or

addresses on blockchain) in the smart contract. Meanwhile, the DA
deposits the reward 𝑣DPs for the DPs proportional to their weights

in 𝐾𝑡 . Additionally, the DA also deposits 𝑣DA as the penalty if it

cannot later provide a correct proof. Afterwards, the DPs can safely

Algorithm 2: The Trading Smart Contract

1 PreparePhase() :
2 commit 𝐾𝑡

, addrs # addrs identify selected DPs in current epoch

3 𝑣DPs, 𝑣DA = Deposit(msg.value) # DA deposits (reward, penalty)

4 𝑅DPs := Allocate(𝑣DPs, 𝐾𝑡
) # allocate DPs reward based on 𝐾𝑡

5 𝑈 𝑡
:= Submission(addrs) # DPs submit local models off-chain

6 W𝑡
𝑔 := Aggregate(W𝑡−1

𝑔 ,K𝑡 ,U𝑡 ) # DA generates proof off-chain

7 commitW𝑡
𝑔,W

𝑡−1
𝑔 ,K𝑡 # DA commits public inputs

8 VerifyPhase() :
9 DA performs verifiable sampling offline and publishes 𝑠𝑡vdf, 𝜋

𝑡
vdf

10 DA adjustsW𝑡,𝑐
𝑔 ,W𝑡−1,𝑐

𝑔 and U𝑡,𝑐 based on 𝑅𝑡vdf
11 DA generates 𝜋𝑡agg :=Prove(X𝑡,𝑐 ,W𝑡,𝑐 , 𝑝𝑘,C) offline

12 DA publishes the proof 𝜋𝑡agg on-chain

13 DPs invokes verification 𝑣𝑡 := Verify(𝑣𝑘 , X𝑡,𝑐 , 𝜋𝑡agg)
14 if 𝑣𝑡 = false :
15 distribute both the security deposit 𝑣DA the award 𝑣DPs to DPs
16 else : distribute 𝑣DPs to DPs and return 𝑣DA to DA
17 Function Verify(𝑣𝑘,X𝑡,𝑐 , 𝜋𝑡agg) :

18 𝑠 := ΣLen(X
𝑡,𝑐 )−1

𝑖=0
ScalarMul(vk.𝛾𝑎𝑏𝑐 [i + 1],X𝑡,𝑐 [i])

19 𝑠 :=Addition(𝑠 , vk.𝛾𝑎𝑏𝑐 [0])
20 𝑝1 := 𝜋

𝑡
𝑎𝑔𝑔 .a, Negate(𝑠), Negate(𝜋

𝑡
agg.c), Negate(vk.𝛼 )

21 𝑝2 := 𝜋
𝑡
agg.b, vk.𝛾 , vk.𝛿 , vk.𝛽

22 return PairingCheck(𝑝1,𝑝2)

submit their plaintext local models off-chain to the DA, based on

which the DA generates the verifiable proof as described in § 5.1.

After proof generation, the DA commits the public inputs.

Verify Phase. The second phase focuses on verifying the integrity

of model aggregation. The DA performs verifiable random sam-

pling and provides the proper proof (i.e., 𝜋𝑡vdf) for randomness.

Afterwards, the DA adjusts the public and private inputs according

to the random seed 𝑠𝑡vdf, based on which it generates the final proof

for model aggregation 𝜋𝑡agg. The proof is uploaded to the trading

smart contract such that any DP can verify its correctness by in-

voking the on-chain Verify function. The DA will lose its security

deposit if the verification fails.

On-Chain Verification Procedure. The Verify function is respon-

sible for checking the correctness of 𝜋𝑡agg. It takes input as the com-

mitted verification key 𝑣𝑘 and the quantized public input X𝑡,𝑐 , and
the proof 𝜋𝑡agg. The underlying verification is based on the Groth16
protocol [37] which checks four pairings. The cryptography-related

computations (such as Addition and ScalarMul) are implemented

via the precompiled smart contracts to reduce gas cost.

6 EVALUATION
6.1 Experimental Setup
Our experiments are conducted on two Linux servers with Intel(R)

Xeon(R) Gold 6348 CPU and NVIDIA RTX A100 GPU. We use

Pytorch [61] to implement FL, apply SEAL [1] for CKKS-based

Homomorphic operations, and Ethereum [68] testnet for deploying

our trading smart contract. The source code is available at Github
2
.

All results are obtained based on five repetitions of experiments.

2
https://github.com/liqi16/martFL

1503

https://github.com/liqi16/martFL


martFL: A Robust and Verifiable FL for Data Marketplace CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Datasets, Models, and Baselines. We use multiple datasets from

different domains in our evaluations, including two image classifi-

cation datasets, FMNIST [69] and CIFAR [46], and two text classifi-

cation datasets, TREC [50] and AGNEWS [75]. We train LeNet [47]

as global model for FMNIST [69], TextCNN [73] for TREC [50] and

AGNEWS [75]. We train a convolutional neural network (CNN)

with three CNN layers and four linear layers as the global model

for the CIFAR [46] dataset. We compare martFL with two server-

driven methods (FLTrust [18] and CFFL [56]) and four client-driven

methods (FedAvg [58], RFFL [71], Krum [12], and Median [72]).

Training. We set the same number of participants for both client-

driven and server-driven approaches. This ensures that all partici-

pants use the same number of samples in the training process. For

client-driven methods, we set 𝑛 DPs. For server-driven methods,

we set one DA and 𝑛 − 1 DPs. For image classification tasks, we

set 30 participants, the optimizer is SGD, and the learning rate is

1.0 × 10−2. For text classification tasks, we set 20 participants, the

optimizer is Adam, and the learning rate is 5.0 × 10−5. The number

of samples in the DA’s root dataset is 200 for FMNIST, CIFAR, and

AGNEWS, and 120 for TREC, counting for roughly 0.3%, 0.4%, 2%,

and 1.6% of the total data held by the DPs, respectively. Unless
otherwise specified, we train a model until its peak accuracy on

our validation dataset does not increase for 100 training epochs.

Data Splits.We apply two sampling methods to divide the amount

of data held by each DP: UNI and POW. In UNI, each DP has the

same amount of samples; in POW method, the numbers of samples

owned by differentDPs follow a power-law distribution. In addition,

we divide the local data distribution of the DPs according to two

methods, IID and NonIID. IID means that each DP has all classes of

samples and the samples in each class are uniformly distributed;

NonIID means that the DP has a subset of classes, and the data

distributions vary for different DPs.
The Adversary. We consider two untargeted attacks, two tar-

geted attacks, and Sybil attack [31]. The untargeted attacks in-

clude sign-randomizing attack and free-rider attack [52]. The sign-

randomizing attack is an attack on the direction of the gradients

where the adversary randomly sets the sign as +1 or −1. In the

free-rider attack, we implement the delta weight attack [52], which

generates gradient updates by subtracting the two global models

received in the previous two epochs. The targeted attacks include

label-flipping attacks and backdoor attacks [9]. In a label-flipping at-

tack, the adversary swaps the labels of the two classes of data in the

training process to train poisoned local models. In the Sybil attack,

the adversary conjures up a number of clients and submit the same

compromised model. In the Sybil attack, we use the label-flipping

attack to train the malicious local models.

Evaluation Metrics. We use Main Task Accuracy (MTA) and
Attack Success Rate (ASR) as the evaluation metrics. MTA mea-

sures the classification accuracies of the trained models, while ASR

measures the fraction of poisoned samples that are predicted as

the target class in targeted attacks. Thus, higher MTAs indicate

more effective models, and lower ASRs indicate more robust models

against targeted attacks. We further define Data Acquisition Cost

(DAC) as the average percentage of local models that the DA must

procure in each training epoch in order to train the global model. In

general, the DA seeks to obtain high-performing models (i.e., with
high MTAs and low ASRs) at a reasonable DAC (lower the better).

Default Hyper-Parameters. For martFL, we set the threshold 𝑇
used in hierarchical clustering as 0.05 and the ratio of randomly

selected baseline candidates 𝛽 as 0.1. For Krum [12], we set the

proportion of possibly Byzantine as 20%. For CFFL [56], we set the

coefficient of reputation threshold as 1.0 and 𝛼 as 5. For RFFL [71],

we set the hyper-parameter 𝛼 as 0.95 and threshold as 1.0. For the

backdoor attack, we implement the attack proposed in [9] where

the hyper-parameter 𝛼 is 0.95.

6.2 Evaluation Results
Our evaluations are centered around the following questions:

• Accuracy. In § 6.2.1 and § 6.2.2, we quantitatively show that

martFL achieves the best MTAs compared to other server-driven

methods regardless of when the DA’s root dataset is biased or

not. Meanwhile, martFL reduces up to 69% DAC when achieving

comparable (if not better) MTAs with prior arts.

• Robustness. In § 6.2.3, we show that when facing with various

targeted attacks, untargeted attacks, and Sybil attack,martFL can
accurately identify malicious DPs and achieve the highest MTA

and lowest ASR in most cases, compared with prior arts.

• Accuracy Loss by Quantization. In § 6.2.4, we show that quan-

tization has little to no impact on the MTA of the global model.

• System Overhead. In § 6.2.5, we study the system overhead of

martFL, including the cryptography overhead during local model

evaluations, and the gas cost incurred for executing the trading

smart contract.

6.2.1 Biased Root Dataset
First, we evaluate the MTA of prior art when the DA possesses an

unevenly distributed root dataset. Specifically, we consider that (i)
the root dataset of DA is dominated by half of the class labels; (ii) the
DPs follow the form of UNI in the number of samples; (iii) a certain
percentage of DPs have biased local dataset and the remaining DPs
have evenly distributed dataset (i.e., high-quality dataset with IID
distributions across all class labels).

We evaluate three different percentages of DPs (20%, 30%, and
40%) possessing biased local datasets. The results are reported in

Table 1. In terms of main task accuracy (MTA),martFL consistently

outperforms existing server-driven approaches, with particularly

significant advantages over FLTrust. We observed that all three

methods have very close MTAs on the FMNIST task. This may be

because the FMNIST task is relatively simple and we use a fairly

small model with approximately 44,000 parameters. The advan-

tages of martFL become more pronounced on larger models (for

instance, the models for both text classification tasks have ∼3 mil-

lion parameters, and the model for the CIFAR task has ∼1 million

parameters). The underlying reason for the MTA improvements

in martFL is because existing server-driven approaches has poor

inclusiveness when the root dataset is biased. To quantify this, we

plot the Cumulative Distribution Function (CDF) of inclusiveness

in Figure 5 for the TREC task with 20% biased DPs. We consider

both the inclusiveness of all the DPs and inclusiveness of only the

high-quality DPs. Because existing server-driven methods tend to

select local models with data distributions similar to the DA’s root
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Dataset

Biased Ratio 20% 30% 40%

Metric MTA DAC MTA DAC MTA DAC

CFFL 76.87 ± 6.87 100.00 81.53 ± 0.90 100.00 79.07 ± 3.24 100.00

TREC FLTrust 67.40 ± 4.76 36.52 72.60 ± 1.07 46.47 71.73 ± 1.09 40.15

Ours 88.80 ± 1.72 53.63 87.53 ± 1.15 53.88 87.20 ± 0.49 51.79

CFFL 44.09 ± 1.95 100.00 43.39 ± 1.57 100.00 45.58 ± 1.46 100.00

AGNEWS FLTrust 44.09 ± 1.43 11.52 45.19 ± 0.39 10.35 43.65 ± 0.90 11.89

Ours 79.71 ± 2.15 36.30 75.89 ± 1.30 38.99 78.04 ± 1.08 41.15

CFFL 88.37 ± 0.55 100.00 88.48 ± 0.25 100.00 88.02 ± 0.32 100.00

FMNIST FLTrust 87.33 ± 0.48 32.64 87.26 ± 0.38 33.57 87.28± 0.39 46.04

Ours 88.22 ± 0.26 35.14 88.88 ± 0.27 30.06 87.71 ± 0.43 39.60

CFFL 63.34 ± 0.22 100.00 62.38 ± 0.33 100.00 60.85 ± 0.80 100.00

CIFAR FLTrust 10.00 ± 0.00 7.59 11.42 ± 1.00 10.79 14.25 ± 1.99 1.30

Ours 64.24 ± 0.06 53.63 63.79 ± 0.28 53.88 62.60 ± 0.37 51.79

Table 1: MTA (%) and DAC (%) when the DA possesses a biased root dataset.
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Figure 5: The inclusiveness analysis when the DA posseses a
biased root dataset.

dataset, their selection of DPs is highly biased towards its root

dataset. On the contrary, benefited from the dynamic baseline ad-

justment design, martFL can include more high-quality DPs, even
if the root dataset is biased.

We further report DACs for all three methods, which represents

the average percentage of local models that the DA purchases in

each training epoch. The DAC in CFFL is always 100% because CFFL

must obtain all local models and evaluate their accuracies before

deciding whether or not to aggregate them. Therefore, the model

aggregation design in CFFL is undesirable in data marketplace,

where theDA prefers to only pay for high-quality local models from

the DPs. On the contrary, FLTrust has low DACs in this setting

because its local model selections are highly biased. As a result,

FLTrust has the lowest MTAs in nearly all tasks. martFL instead

strikes a good balance between MTA and DAC, allowing the DA to

obtain high-performing global models with low cost.

6.2.2 Unbiased Root Dataset
In this segment, we evaluate the scenario where the DA’s root
dataset is unbiased. The total number of data samples owned by

each DP follows the POW distribution. However, each DP has

evenly distributed class labels. The results are shown in Table 2. In

general, when the root dataset is reliable, all three methods have

better MTAs than the case where the root dataset is biased. martFL
achieves slightly better or comparable MTAs compared with other

methods with the lowest DACs in all four tasks.

With the results in Table 1 and Table 2, we demonstrate that

(i) CFFL is slightly more resilient against a biased root dataset

than FLTrust. Yet, CFFL introduces consistently high DACs, which

is less desirable in data marketplace. (ii) FLTrust, on the other
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Figure 6: The MTA of the global model obtained by different
aggregation protocols under untargeted attacks.

hand, heavily depends on the root dataset, and can only achieve

comparable MTAs with CFFL when the root dataset is unbiased.

In contrast, martFL produces the best MTAs in nearly all cases

regardless of whether the root dataset is biased or not. Crucially,

martFL maintains the lowest DACs when achieving comparable

MTAs with the other two methods.

6.2.3 Robustness Against Various Attacks
In this case, we consider the robustness of martFL when facing

malicious DPs. We compare martFL with both client-driven and

server-driven approaches. Since we investigate over nearly 600

different combinations of approaches, attacks, and tasks, we train

each combination for a fixed number of 100 epochs in this segment.

First, Figure 6 presents the MTA of each scheme under free-rider

attack and sign-randomizing attack on the TREC and CIFAR dataset.

The result shows that martFL can defend against the attacks even

80% of the DPs are malicious. For the free-rider attack, the MTA

of martFL slightly decreases by 2.80% when the number of faulty

DPs increases from 30% to 80%. For the sign-randomizing attack,

the MTA of martFL remains consistent given different numbers of

faulty DPs.
Second, we plot the robustness of different aggregation schemes

against targeted attacks on the TREC and CIFAR dataset in Figure
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Dataset TREC AGNEWS FMNIST CIFAR

Metric MTA DAC MTA DAC MTA DAC MTA DAC

CFFL 85.47 ± 0.68 100.00 78.79 ± 1.03 100.00 89.22 ± 0.15 100.00 65.38 ± 0.50 100.00

FLTrust 87.40 ± 0.71 46.65 80.94 ± 1.26 66.11 89.40 ± 0.20 51.62 70.66 ± 0.45 39.44

Ours 87.67 ± 0.57 44.38 83.35 ± 1.54 65.61 89.88 ± 0.15 45.27 70.28 ± 0.27 34.89

Table 2: MTA (%) and DAC (%) when the DA has an unbiased root dataset.
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Figure 7: The MTA and ASR of the global model obtained by
different aggregation protocols under targeted attacks.

7. The results show that martFL can achieve the highest MTA and

lowest ASR in most cases. Note that in Figure 7(f), the ASR of Krum

and Median initially increase, but then decrease to 0. However, the

MTAs of both methods also decrease to zero, as shown in Figure

7(e). This indicates that the global model is not converged for both

methods when the percentage of malicious DPs is over 60%.
Finally, we evaluate the robustness of different schemes against

the Sybil attack in Figure 8. The experimental results show martFL
and FLTrust have comparable MTAs in most cases. In contrast,

the MTA of other methods decrease significantly as the number

of Sybil nodes increases. This is because the models submitted by

Sybil nodes are similar to each other, so that these schemes cannot

accurately eliminate the poisoned local model updates.
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Figure 8: The MTA of the global model obtained by different
aggregation protocols against Sybil attacks.

Dataset ATK Ratio 30% 40% 50% 60% 70% 80%

TREC

FR

FLTrust 99.22 84.38 36.18 31.4 24.22 13.68

Ours 87.32 68.32 46.58 31.54 20.26 12.02

SR

FLTrust 61.64 53.32 42.82 33.50 26.18 16.06
Ours 67.44 57.28 40.3 37.98 22.82 17.4

BD

FLTrust 80.54 68.60 72.24 67.38 53.72 45.62

Ours 53.76 51.50 46.60 39.60 29.64 41.86

LF

FLTrust 83.06 81.24 65.28 70.66 58.04 53.46

Ours 61.12 52.40 47.92 56.44 30.02 24.96

SY

FLTrust 67.20 62.64 66.72 66.98 70.40 77.92

Ours 53.76 48.10 48.68 44.9 50.62 60.66

CIFAR

FR

FLTrust 72.22 63.24 51.09 48.56 35.82 20.71
Ours 68.02 60.36 45.91 46.49 33.02 22.13

SR

FLTrust 59.76 53.82 47.24 40.29 33.33 25.93
Ours 76.73 63.38 57.6 52.18 46.16 30.73

BD

FLTrust 72.29 72.20 68.27 73.09 69.67 73.64

Ours 60.93 60.64 54.44 54.56 70.62 49.27

LF

FLTrust 74.62 74.38 72.69 72.76 70.42 66.42

Ours 65.98 60.73 63.07 56.27 54.42 44.58

SY

FLTrust 61.29 65.38 68.42 70.2 64.38 61.33

Ours 56.00 50.53 48.27 44.2 40.36 39.33
*
In this table, “ATK” represents the type of attacks, “FR” represents the free-rider attack, “SR”

represents the sign-randomizing attack, “BD” represents the backdoor attack, “LF” represents the

label-flipping attack, and “SY” represents the Sybil attack.

Table 3: The DAC (%) comparison between FLTrust and
martFL in the robustness experiments. Results for CFFL are
omitted since they are always 100.

To sum up, CFFL and all the client-driven methods are more vul-

nerable to faulty DPs. For instance, some client-driven aggregation

protocols cannot produce a meaningful global model when the num-

ber of malicious DPs is sufficiently large. martFL achieves slightly

better robustness than FLTrust, yet reducing roughly 13.91% DAC

on average compared with FLTrust, as shown in Table 3.

6.2.4 Accuracy Loss by Quantization
To enable verifiable data transaction inmartFL, theDA needs to first

quantize the prior model𝑊 𝑡−1
𝑔 and local model updates𝑈 𝑡 , perform

the aggregation to obtain quantized global modelW𝑡𝑔 , and then de-

quantize the model to obtain a floating-point model𝑊 𝑡
𝑔 . In this

segment, we study the impact of quantization on model accuracy.

We evaluate the scenario where the DA’s root dataset is unbiased.
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Dataset

MTA F1

𝑄𝑇 Δ𝑄𝑇 𝑄𝑇 Δ𝑄𝑇

TREC 88.60 ± 0.28 -0.93 ↑ 87.58 ± 0.37 -0.65 ↑
AGNEWS 82.61 ± 0.65 0.74 ↓ 82.54 ± 0.65 0.64 ↓
FMNIST 90.07 ± 0.07 -0.20 ↑ 90.03 ± 0.07 -0.20 ↑
CIFAR 69.74 ± 0.62 0.54 ↓ 69.74 ± 0.69 0.53 ↓

Table 4: The MTA(%) and F1(%) loss in quantization.
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times for verifying different numbers
of parameters.

Phrase Prepare Verify Any

Function NE Deposit CM Prepare CR(DA) CR(DP) RE

Gas (wei) 163076 46643 127731 222018 38036 42632 -

Time (ms) 92.0 73.6 80.6 83.4 64.2 70.6 74.8

*
In this table, “NE” represents NewEpoch, “CM” represents CommitModel,“CR” represents Claim-
Reward, and “RE” represents ReadEpoch.

Table 5: The gas costs and execution times of the functions
in our trading smart contract.

The total number of data samples and the type of labels owned

by each DP follows the POW and IID distribution, respectively.

The results are summarized in Table 4. The Δ𝑄𝑇 represents the

MTA and F1 loss due to quantization (i.e., the accuracy difference

between𝑊 𝑡
𝑔 and W𝑡𝑔). The results indicate that the quantization

operations introduce negligible accuracy losses.

6.2.5 System-level Overhead
In this segment, we study the system-level overhead of (i), including
the cryptography overhead in our quality-aware model evaluation

protocol; (ii) the time and gas cost of the functions in the trading

smart contract.

In Figure 9, we plot the overhead of homomorphic encryption

and decryption operations. In the experiment, we set 4096 slots per

batch for the CKKS algorithm. The encryption time of the DA is

longer because the DA needs to perform homomorphic encryption,

while DPs only needs to complete homomorphic additions. Overall,

the extra latency introduced by homomorphic operations is small.

Further, we report the gas cost and latency for executing different

functions in our trading smart contract in § 5.2. We developed a set

of key functions in the smart contract (see detailed implementations

in [49]). In the PreparePhase, NewEpoch initializes training epochs,

Deposit enables the DA to deposit rewards and penalties. Commit-
Model allows the DPs to commit local models, and Prepare records
rewards and selects verification parameters. In the VerifyPhase,
CommitInputs (abbreviated as “CI”) allows the DA to commit the

public inputs for aggregation verification, and VerifyAggregation

(abbreviated as “VA”) verifies the integrity of aggregation. Both the

DA and DPs can use ClaimReward to claim rewards. Finally, ReadE-
poch is a convenience handle to return detailed epoch information.

Overall, none of these functions consumes more than 0.25×106 wei,
which costs less than 0.0025 US dollars at the time of this writing.

In comparison to Omnilytics [51], which directly aggregates

local models via a smart contract, the gas cost in martFL is at least

1000 times smaller, when enabling approximately 8 times more

participants to collectively train models with ∼100 times more

parameters than the model trained in Omnilytics. In fact, the gas

cost in martFL is independent of the model size and the model

evaluation method, since martFL only verifies a fixed number (a

system setting) of randomly sampled model parameters. In addition,

the execution time of each function is less than 0.1 seconds. In

Figure 10, we also report the gas cost and execution time when

martFL has different system settings that verify different numbers

of model parameters.

6.3 Deep Dive
In this section, we further investigate several key design choices of

martFL and outline some future work.

6.3.1 Tradeoff Between Inclusiveness and Robustness
In § 4.1, we presented the key observation that existing approaches

exhibit a fundamental tradeoff between inclusiveness and robust-

ness when aggregating local models submitted by the DPs. In this

segment, we further analyze this tradeoff by tuning the key pa-

rameters in the aggregation algorithms of both FLTrust [18] and

Krum [12]. Specifically, since FLTrust selects local models based on

the cosine similarities between them and the self-computed model

update trained on the DA’s root dataset, the key system parameter

that dictates the aggregation in FLTrust is the quality of the root

dataset. We quantify the quality as unbiasness ratio, which repre-

sents the percentage of class labels that predominates the DA’s root
dataset. For instance, FLTrust-1/3 represents the case where the root

dataset contains 1/3 of the class labels. In Krum, the key tunable

parameter 𝑓 is the proportion of Byzantine DPs defined in Krum’s

problem formulation, which directly determines the number of

local models selected for aggregation in each epoch. We evaluate

four Krum settings in this part (for instance, Krum-50 represents

the setting where the Krum algorithm is supposed to tolerate 50%

Byzantine DPs). We consider a group of heterogeneous DPs, where
30% of them hold high-quality data (evenly distributed across all

types of labels), 30% of them hold biased datasets in which the class

labels are dominated by half of the randomly selected labels, and

40% of them are malicious. We experiment both the targeted and

untargeted attacks on the TREC and FMNIST tasks.

The results are plotted in Figure 11, where inclusiveness is the

percentage of benignDPswhose local models are selected for aggre-

gation, and robustness is quantified as the percentage of malicious

DPs that are excluded for aggregation. We collect these two metrics

in each training epoch and report the average values. In general,

FLTrust can achieve reasonably good inclusiveness only if the unbi-

asness ratio of the DA’s root dataset is sufficiently large (e.g., reach-
ing 2/3). Krum, which is significantly impacted by its Byzantine

tolerance threshold 𝑓 , tends to have high robustness at the expense
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Figure 11: Deep dive into the tradeoff between inclusiveness
and robustness in various settings.

Dataset TREC FMNIST

Attack BD SR LF FR

Metric MTA ASR MTA MTA ASR MTA

FLTrust-1/3 48.60 12.02 57.08 74.71 18.96 70.71

FLTrust-1/2 58.84 9.01 57.48 87.11 4.69 86.52

FLTrust-2/3 81.53 9.43 83.16 87.97 5.37 86.38

Krum-10 70.11 41.58 32.08 88.43 5.12 87.69

Krum-30 61.64 68.27 38.24 86.44 13.43 86.60

Krum-50 64.16 67.04 85.08 80.64 32.20 79.16

Krum-70 72.64 36.23 78.64 85.97 4.95 8.19

Ours-1/3 83.71 7.75 76.36 87.94 3.41 81.19

Ours-1/2 83.38 8.43 75.36 88.23 4.48 84.34

Ours-2/3 84.08 7.55 79.96 88.65 3.94 88.18
*
In this table, “BD” represents the backdoor attack, “SR” represents the

sign-randomizing attack, “LF” represents the label-flipping attack, and

“FR” represents the free-rider attack.

Table 6: The MTA (%) and ASR (%) in the inclusiveness-
robustness tradeoff experiments.

of inclusiveness. In contrast, martFL achieves the best tradeoff be-

tween inclusiveness and robustness in all cases. As a result,martFL
consistently achieves high model performance regardless of the

parameter settings, as summarized in Table 6. However, FLTrust

begins to match martFL only when the root dataset is sufficiently

good. Krum fails to perform consistently across all tasks, regardless

of the parameter choices. For instance, although Krum-50 achieves

a good MTA on TREC against the sign-randomizing attack, it has a

significantly high ASR against the backdoor attack.

6.3.2 Analysis of Dynamic Baseline Adjustment
Quantitative Results. We first quantitatively analyze the accu-

racy of our Dynamic Baseline Adjustment algorithm (detailed in

§ 4.2.2) to demonstrate its robustness in various data distributions.

We consider a challenging setting for the DPs, where 30% of them

hold high-quality data and 30% of them hold biased datasets. The

remaining 40% of DPs have three different settings: (i) holding

Attack Scenarios TREC AGNEWS FMNIST CIFAR

None

Type-I Biased 80.00 70.00 98.80 95.67

Type-II Biased 88.33 98.67 100.00 100.00

Unbiased 95.67 100.00 99.67 99.67

BD

Type-I Biased 65.33 58.00 96.67 95.00

Type-II Biased 80.33 93.00 95.33 100.00

Unbiased 79.00 84.00 100.00 100.00

SR

Type-I Biased 64.67 62.67 98.67 99.00

Type-II Biased 96.00 88.67 99.00 89.50

Unbiased 95.67 99.67 99.33 91.50

“BD” and “SR” represent the backdoor and sign-randomizing attack, re-

spectively.

Table 7: The probability of selecting correct baselines by our
dynamic baseline adjustment algorithm.

evenly-distributed data, (ii) maliciously engaging the backdoor at-

tack (one type of targeted attack), and (iii)maliciously engaging the

sign-randomizing attack (one type of untargeted attack). In terms

of the root dataset held by the DA, we consider the following three

scenarios:

• Type-I Bias. The root dataset of DA is dominated by half of

the class labels. The data distributions of the biased DPs are
similar to the distributions of the DA’s root dataset.
• Type-II Bias. The root dataset of DA is dominated by half of

the class labels. However, the data distributions of the biased

DPs are random and independent of theDA’s data distributions.
• Unbiased. The root dataset of DA is evenly distributed.

We analyze the probability of selecting correct baselines during

the training process. A baseline is correct if the cosine similarity

between the baseline and the ground truth model update is strictly
positive. The ground truth update is an ideal update obtained di-

rectly on high-quality data, which can be considered as a hypothet-
ical scenario where the DA possesses sufficient high-quality data

and can train the model all by itself.

The results are reported in Table 7. The Type-I Bias is arguably

the most challenging scenario because the DA and the biased DPs
are similarly biased. Therefore, the DA is prone to be misled by

these biased DPs, resulting in possible incorrect baseline selections

(note that all our experiments in § 6.2 considered the Type-I Bias).

Nonetheless, our method still achieves reasonably accurate baseline

selections, up to 99% accuracy in the training epochs of the CIFRA

task. We also observed that the selection accuracies are affected by

the total number of class labels. Specifically, TREC and AGNEWS

have 6 and 4 class labels, respectively, while FMNIST and CIFAR

both have 10 class labels. When the total number of class labels is

smaller, the data diversity experienced by the biased DA and DPs
is even lower (for instance, they only see 2 labels in the AGNEWS

task). This results in a relatively higher probability of selecting

incorrect baselines. In the Type-II Bias scenario, where the data

distributions of the biased DPs and the DA are not correlated, the

probabilities of selecting correct baselines are higher than the Type-

I Bias scenario, even for the TREC and AGNEWS task. In fact,

the selection accuracies in the Type-II Bias scenario are already

comparable to the case where the DA’s root dataset is unbiased,
achieving over 90.0% baseline selection accuracy in most settings.
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Attack Discussion. To attack our model aggregation protocol, an

adversary must carefully design local models that can be selected as

the baseline. However, there are several challenges to crafting such

models. First, the adversary has no access to the plaintext models

submitted by other DPs throughout the model aggregation and

transaction. Instead, the adversary only observes the commitments

of these local models, which do not reveal the actual local models.

Additionally, because theDA evaluates all local models offline using

the private model evaluation algorithm with its private root dataset,

it is difficult for the adversary to predict what types of local models

will receive higher Kappa scores in the root dataset. Finally, the

DA discloses the DP that is selected as the baseline for the current

epoch only after all DPs have committed their models. At this point,

the adversary cannot modify its committed local model, even if it

colludes with the selected DP. In summary, becausemartFL enables
complete offline and private local model evaluation and aggregation

by the DA, attacking our aggregation protocol is significantly more

difficult than existing blockchain-based approaches (e.g., Omnilyt-

ics [51], FPPDL [57]) that require the aggregation protocol to be

publicly observable on the blockchain.

FutureWork onModel Evaluation andAggregation Protocols.
Several studies [8, 40] have shown that historical information can

be used to identify Byzantine DPs. In our future work, we intend to

leverage this insight by taking into account DPs’ historical reputa-
tions and incorporate momentum into our local model evaluation

algorithm. This approach may further reduce the reliance on the

DA’s root dataset and compensate for errors in baseline selections,

particularly in the Type-I Bias scenario.

7 RELATEDWORK
Verifiable Protocols for Real-world Systems. The enthusiasm
for Web 3.0 [54] drives a growing number of literature on empower-

ing or even transforming real-world systems via verifiable (or trust-

free) protocols, such as verifiable cloud computing (e.g., [24, 48]),
decentralized digital good exchanges (e.g., [25]), smart contract

based legal sector transformation [28], and various proposals to im-

prove the Blockchain systems themselves (such as interoperability

(e.g., [53, 70, 74]) and private smart contracting [20, 41]). Overall,

practicability and deployability are two the primary challenges for

designing verifiable protocols to power real-world systems. Thus,

the verifiable transaction protocol in martFL only proves the crit-

ical computations that are necessary and sufficient to ensure fair

billing. It does not verify the entire FL training process, which

would otherwise impose unacceptably high overhead.

Data Pricing. Prior works have studied data pricing. For instance,

proposals [33, 39] evaluate data value based on Shapley Value us-

ing a game theoretic approach, which typically requires access to

the full datasets. Some other literatures (e.g., [10, 43]) propose a
pricing framework for relational queries. Data pricing for FL-based

marketplace is part of our future work.

8 CONCLUSION
In this paper, we propose martFL, a novel FL architecture that is

specifically designed to enable a utility-driven data marketplace.

Benefiting from the quality-awaremodel evaluation protocol,martFL
can eliminate the tradeoff between inclusiveness and robustness

when selecting desired DPs. Further, martFL designs a verifiable

transaction protocol that enables the DA to prove that it faithfully

aggregates model using the committed aggregations weights, en-

abling fair trading between the DA and DPs. We implemented a

prototype of martFL and extensively evaluated it on four datasets.

The experimental results demonstrate the accuracy, robustness and

efficiency of martFL.
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