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Abstract
Radio Frequency based Wireless power transfer (RF-WPT) has become increasingly popular in recent years. Its ability to 
harvest Radio Frequency (RF) energy enables a novel approach to charge low-power wireless devices, resulting in benefits 
to product design, usability, and reliability in wireless sensor networks (WSN). It is however known that RF-WPT also intro-
duces interference to wireless communications, leading to poor data throughput. The joint routing and charging remains a 
challenging job in RF energy harvesting networks. In this paper, we take initial steps towards understanding both data routing 
and charger scheduling in WSNs. We propose a smart interference-aware scheduling to maximize network lifetime and avoid 
potential data loss caused by charging interference. Then, we theoretically prove the optimality of the proposed design, i.e., 
1 −

�

W
 , where W is an arbitrary positive integer and � is determined by network properties. The evaluation indicates that the 

proposed design can guarantee 99% optimality and significantly improve network lifetime in WSNs.

Keywords Wireless power transfer · Energy · Interference · Rechargeable · Sensor networks · Network lifetime

1 Introduction

Radio Frequency based Wireless power transfer (RF-WPT) 
technology is recognized as a promising way to charge low-
power electronics in next generation wireless networks (Liu 
et al. 2013; Xie et al. 2013). Different from traditional mag-
netic resonant coupling approaches (Kurs et al. 2007), RF-
WPT is a lightweight and more flexible charging technique 
for low-power RFIDs and sensors (Kellogg et al. 2014; Liu 
et al. 2013; Xie et al. 2013). This feature gives RF chargers 
better mobility yet also introduces higher degree of interfer-
ences to wireless communications. In particular, the study 
from Naderi et al. (2014) showed that RF energy transfer 
would cause data loss and largely reduce wireless through-
put. To bring RF-WPT deployments into reality, a smart 
scheduling approach is therefore required to jointly consider 
RF charging and wireless data routing.

In this paper, we take initial steps to investigate the poten-
tial benefits by jointly optimizing data routing and charger 
scheduling together. Based on our model analysis, we find 
that the lifetime maximization problem cannot be solved in 
polynomial time due to the time dependent constraints. To 
address this issue, we carefully transform the time depend-
ent continuous problem into a time independent discrete 
problem. We show that the maximum system lifetime (in 
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the original problem) can be obtained by solving the time 
independent discrete problem. To further reduce the com-
plexity of the problem, we relax the energy constraints in 
the original problem and simplify the charger’s travel path 
to a single TSP (Traveling Salesman Problem) path. We then 
construct a linear programming problem and prove that its 
optimal solution is an equivalent form of the relaxed prob-
lem. Based on this observation, we propose a near-optimal 
solution to the original problem with theoretically provable 
optimality 1 − �

W
 , where W is an arbitrary positive integer 

and � is determined by system properties such as the maxi-
mum charging duration. The contributions of this paper are 
summarized as follows.

1. To the best of our knowledge, this is the first study that 
considers RF-WPT charging interference in lifetime 
maximization of WSNs.

2. Our model analysis successfully approximates the com-
plex joint optimization problem into a linear program-
ming problem.

3. Based on the approximated linear programming, we 
develop a solution with 99% optimality to the original 
problem.

The rest of this paper is organized as follows: Sect. 2 pre-
sents the system model. After that, the lifetime maximiza-
tion problem is formulated in Sect. 3. Section 4 explores a 
near optimal solution with guaranteed performance bound. 
This solution is then evaluated in Sect. 5. Section 6 further 
discusses some practical issues in system deployment and 
Sect. 7 presents related work. Finally, Sect. 8 concludes the 
paper.

2  Modeling the interference of charging 
and data routing

We introduce the system model in the following orders to 
make it easier to understand. Section 2.1 gives the system 
overview. Section 2.2 describes the basic network model 
without energy charging. After a mobile charger is intro-
duced, the charger mobility is presented in section 2.3. 
Then, Sect. 2.4 focuses on charging interference. Section 2.5 
describes the data routing under charging interference con-
cerns. Lastly, sensor’s energy profiles are illustrated in 
Sect. 2.6. The related notations are listed in Table 1 for the 
sake of clarity.

2.1  System overview

As we all know, there are two kinds of wireless charg-
ing technologies, non-radiative charging and radiative 

charging. They are represented by inductive coupling and 
RF charging, respectively. Inductive coupling requires 
accurate alignment in charging directions, which is incon-
venient. Simultaneously, Kurs et al. (2007) show that the 
charging efficiency of inductive coupling will be better if 
charging distance would be eight times the radius of the 
coils, which may need more changes on sensors. Mean-
while, since RF charging is more appropriate to low-power 
RFID which means a small node size, it has been put into 
practice by Peng et al. (2010) and Powercast (2019). In 
this paper, we use RF charging as our charging method.

We consider a set of wireless sensors N initially 
equipped with rechargeable batteries and randomly 
deployed over a two-dimensional area (as the wireless sen-
sors cannot move, their positions are fixed after deploy-
ment). Each sensor i ∈ N  generates monitoring data with 
a rate of gi , and all sensory data are forwarded to the sink 
(base station). Whenever sensory data are transmitted or 
received, sensor i’s energy will be consumed.

We define network lifetime T as the duration from the 
start of monitoring operations to the first time a sensor 
runs out of energy. To maximize T, a mobile charger is 
introduced to dynamically charge sensors with low power 
status. The charger starts from the sink, travels within the 
network area and visits sensors. In this paper, similar to 
Guo et al. (2013) and Shi et al. (2011), we assume that a 
sensor can be charged when the charger visits it. This is 
based on the fact that charging efficiency drops exponen-
tially with increasing charging distances. As reported in 
He et al. (2013) and Naderi et al. (2014), when the charger 
operates with a 3 W ET (Energy Transmission) power, sen-
sors located at 1 m away acquire a charging rate of 4 mW. 
However, this value drops to below 0.01 mW when the 
distance increases to 10 m.

In fact, there is no exclusive spectrum allocated for 
power transfer, and most RF-WPT systems operate at 
the ISM (Industry, Science and Medical) band, which is 
already crowded with communication systems. Although 
charging interference can be partially alleviated by allo-
cating non-intersect spectrums for power transfer and data 
routing, it causes severe spectrum efficiency problems. 
Thus, a smart algorithm that can both maximize network 
lifetime T and avoid charging interference is urgently 
required, which is the main objective of this paper.

2.2  Basic network model

Let gij(t) be the data rate from sensor i to j at time t 
( i, j ∈ N, i ≠ j ). Specifically, gi0(t) represents the data 
rate from sensor i to the sink. Then, the flow conserva-
tion equation at sensor i can be presented as (Shi and Hou 
2012):
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In this paper, we adopt the following energy consumption 
model (Shi et al. 2011):

(1)
k≠i∑

k∈N

gki(t) + gi =

j≠i∑

j∈N

gij(t) + gi0(t)

(2)ei(t) =

k≠i∑

k∈N

�gki(t) +

j≠i∑

j∈N

Cijgij(t) + Ci0gi0(t)

where ei(t) is the energy consumption rate for sensor i at time 
t, � is the energy consumption rate for receiving a unit of 
data rate and Cij is the energy consumption rate for transmit-
ting a unit of data rate from sensor i to sensor j. Specifically, 
Cij = �1 + �2d

�
ij
 , where dij is the distance between sensor i 

and j, �1 and �2 are coefficients, and � is the path loss index.

Table 1  List of notations in the 
system model

General notations

N The set of sensors in the WSN
Nl The set of interfered sensors during [tl, tl + U(xl)]

L The charger’s visit sequence
R The charging interference radius
dil Distance between sensor i and sojourn location xl
xl Charger’s sojourn location of the lth visit
yl Path between two sojourn locations xl and xl+1
�l The virtual point to represent path segment yl
W Number of repeated TSP paths traveled by the charger
Time related notations
 tl The time when charger arrives at xl
 U(xl) Time duration of the charger sojourning xl
 U(yl) Time duration to traverse yl
 U(�l) Time duration to traverse �l and U(�l) = U(yl)

 T
0
,T

1
End instances of initial and operational intervals

 T Network lifetime (duration of the operational interval)
 tTL Time spent to visit each sensor once during [0,T

0
]

 �i Charging duration for sensor i during [0,T
0
]

Flow routing related notations
 gi Data generation rate of sensor i
 gij(t) Flow routing from sensor i to sensor j at time t
 gs

i
(t) Data storing rate for sensor i at time t

 gr
i
(t) Data releasing rate for sensor i at time t

  fij(xl) Flow routing during [tl, tl + U(xl)]

  fij(�l) Flow routing during [tl + U(xl), tl+1]

  f s
i
(xl) Data storing rate for sensor i during [tl, tl + U(xl)]

  f r
i
(�l) Data releasing rate for sensor i during [tl + U(xl), tl+1]

 gr
max

Maximum data releasing rate
Energy related notations
 E The total energy assigned for the network
 � The energy charging rate during [T

0
,T

1
]

 �
0

The energy charging rate during [0,T
0
]

 h
0

Initial battery of each sensor
 e
0

Sensor’s energy consumption rate during [0,T
0
]

 Hi Battery status of sensor i at T
0

 eil Energy consumption of sensor i during [tl, tl+1]
 Kil Energy charged for sensor i during [tl, tl + U(xl)]

 Bi(t) Battery status of sensor i at time t
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2.3  Charger mobility

As shown in Fig. 1, the charger’s travel path is consisted 
of xl and yl ( l ∈ L ), where L is the sensor sequence that the 
charger will visit, xl is a sojourn point and yl is the path 
segment between xl and xl+1 . Suppose the charger arrives 
at xl at t = tl and the sojourn duration is U(xl) , then we have 
tl+1 − tl = U(xl) + U(yl) , where U(yl) is the time spent to 
traverse yl.

Real experiments in He et al. (2013) and Naderi et al. 
(2014) have reported that charging rates decrease exponen-
tially with increasing charging distances. For the sake of 
effective charging, similar to Guo et al. (2013), Shi et al. 
(2011), we assume that a sensor can be charged only when 
the charger visits it. Thus, the energy transfer model in He 
et al. (2013) can be simplified as Kil = �U(xl) , where � is 
the energy transfer rate, Kil is the energy charged for sensor i 
when the charger sojourns at xl . In particular, Kil > 0 implies 
that the charger sojourns at xl to visit sensor i. Otherwise, 
Kil = 0.

2.4  Charging interference

Data routing will be interfered whenever the charger trans-
fers energy. Denote the interference radius as R and the 
distance between xl and sensor i as dil . When the charger 
sojourns at xl , only if dil ≥ R , sensor i’s data can be transmit-
ted (or received) without loss. Let Nl be the interfered sensor 
set, then we have Nl = {i|i ∈ N, dil < R} . Take Fig. 2 as an 
example, the charger is visiting sensor 8 and N8 = {5, 7, 8}.

As shown in Fig. 1, each charging duration U(xl) is fol-
lowed by a travel duration U(yl) . During U(yl) , neither power 
transfer nor interference exists. We can leverage this regu-
larity to avoid data loss caused by charging interference. 
Specifically, when data communications are interfered, 
sensors temporarily store all the to-be-transmitted data. 
Whenever the interference disappears, the stored data can 
be released from local storage and transmitted toward the 
sink. As shown in Fig. 2a, sensors 5, 7 and 8 store data when 
the charger is charging sensor 8. When the charger finishes 
charging and moves to the next sensor, all the stored data in 
sensors 5, 7 and 8 can be forwarded to the sink.

2.5  Data routing

Considering the time interval [tl, tl + U(xl)] , the data rout-
ing for sensor i can be extended from the basic model as 
follow:

where gs
i
(t) is the data storing rate.

Specifically, for sensor i ∉ Nl , it is unnecessary to store 
data, thus the above equation is transformed to the fol-
lowing one:

where gs
i
(t) = 0.

As to the interfered sensor i ∈ Nl , data transmission and 
reception are prohibited to avoid possible loss. Thus we 
have:

where 
∑k≠i

k∈N
gki(t) = 0 , 

∑j≠i
j∈N

gij(t) = 0 and gi0(t) = 0.
During [tl, tl + U(xl)] , interfered sensor i ∈ Nl stores sen-

sory data to its storage. And longer sojourn duration U(xl) 
will lead to larger storage occupation. Since a sensor’s 
storage is limited, a maximum sojourn time Umax is set to 
ensure that there is no stored overflow:

When the charger finishes charging at xl and moves to the 
next sensor during [tl + U(xl), tl+1] , no sensor will be inter-
fered. During this interval, for sensor i, we have the follow-
ing flow conservation equation:

k≠i∑

k∈N

gki(t) + gi =

j≠i∑

j∈N

gij(t) + gi0(t) + gs
i
(t)

(3)
k≠i∑

k∈N

gki(t) + gi =

j≠i∑

j∈N

gij(t) + gi0(t), i ∉ Nl

(4)gi = gs
i
(t), i ∈ Nl

(5)U(xl) ≤ Umax, ∀l ∈ L

Fig. 1  The charger’s travel path consists of sojourn point xl and path 
segment yl . Diamonds and circles represent the location of the sink 
( x

0
 ) and sensors ( x

1
, x

2
, ... ). The car represents the mobile charger (a) Network topology. (b) Charging interference.

Fig. 2  In this example, the network topology is given in (a) and 
a mobile charger sojourns at x

8
 to visit sensor 8 in (b). Around the 

charger, sensors 5, 7, 8 are interfered. Solid diamonds and circles rep-
resent sink and sensors, respectively
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where gr
i
(t) is the data releasing rate. To avoid unacceptable 

delay, data stored during [tl, tl + U(xl)] must be all released 
out during [tl + U(xl), tl+1]:

Here, a maximum data releasing rate gmax is set to keep 
interfered sensors in Nl from releasing their stored data with 
an extremely high transmission rate simultaneously, leading 
to frequent medium access collisions, i.e.,

Regulating gr
i
(t) will largely decrease the collision possibili-

ties, however, this situation cannot be thoroughly avoided. 
Then, the remained collisions can be handled by collision 
resolution protocols such as Yigitel et al. (2011).

2.6  Energy profiles

Studies (Shi et al. 2011; Xie et al. 2013) assumed a scenario 
that the recharged energy is infinite and the sensor network 
stays operational forever. In this paper, we focus on a differ-
ent situation where the total amount of energy assigned for 
the network is limited to E (Zhu et al. 2010). Specifically, E 
equals to the sum of sensors’ initial and recharged energy. 
(Since the total amount energy is limited and the time for 
each charge is confined to less than Umax , we have limited 
the battery capacity to a suitable range.)

Typically, a sensor network’s life span is consisted of 
deployment (before t = 0 ), initial ( [0, T0] ) and operational 
intervals ( [T0, T1] ). During the deployment interval, sensors 
are fairly allocated with the same amount of initial battery 
h0 and randomly distributed to the interested area. Denote 
the initial interval as [0, T0] , during which initial operations 
such as neighbor discovery and routing construction are 
performed. Meantime, the charger visits each sensor once 
and charges its battery to an appropriate level to support 
monitoring operations during the next interval. Denote the 
charging duration for sensor i as �i and the travel time to visit 
all sensors as tTL , we have:

(6)
k≠i∑

k∈N

gki(t) + gi =

j≠i∑

j∈N

gij(t) + gi0(t) − gr
i
(t)

(7)∫
tl+U(xl)

tl

gs
i
(t)dt = ∫

tl+1

tl+U(xl)

gr
i
(t)dt

(8)0 ≤ gr
i
(t) ≤ gmax

T0 = tTL +
∑

i∈N

�i

Considering the initial interval, we denote the energy charg-
ing rate as �0 . Each sensor consumes energy with a rate of 
e0 and sensor i’s battery status at t = T0 is Hi . Then, we have:

Let T1 be the end time of the sensor network, which is 
defined as the first time a sensor runs out of energy. Dur-
ing operational interval [T0, T1] , sensors monitor the inter-
ested environment and forward sensory data to the sink. The 
network lifetime T is defined as the duration of operational 
interval, i.e., T = T1 − T0 . Because data transmissions are 
more important than initial interactions, during the opera-
tional interval, energy should be transferred more cautiously 
to avoid large scale interference. Thus we have 𝜛 < 𝜛0 , 
where � and �0 are energy charging rates during opera-
tional and initial intervals, respectively.

Denote eil the energy consumption of sensor i during 
[tl, tl+1] , we have:

Let Bi(t) be the battery status of sensor i at time t. To ensure 
each sensor never runs out of energy before T1 , the following 
energy constraint must be satisfied:

Due to the fact that the total energy of the sensor network is 
limited to E, we have the following constraint:

where Nh0 , �0

∑
i∈N �i and �

∑
l∈L U(xl) are total energy 

ated/recharged during deployment, initial and operational 
intervals, respectively (Table 2).

Hi = �0�i + h0 − e0T0, ∀i ∈ N

eil = ∫
tl+1

tl

ei(t)dt

(9)Bi(tl) = Hi −

l∑

�=0

(ei� − Ki�) ≥ 0, i ∈ N, l ∈ L

(10)Nh0 +�0

∑

i∈N

�i +�
∑

l∈L

U(xl) ≤ E

Table 2  List of equations (Eqs. (11)–(15) are time discrete equations)

Equations Description

(1) Flow routing in the basic network model
(2) Energy consumption in the basic network model
(3), (11) Flow routing for un-interfered sensor i ∉ Nl

(4), (12) Flow routing for interfered sensor i ∈ Nl

(5) Regulating the maximum sojourn duration
(6), (13) Flow routing when the charger is moving
(7), (14) The stored data must be all released
(8), (15) Regulating the maximum data releasing rate
(9) Sensors never run out of energy during [T

0
,T

1
]

(10) The total energy allocation should be lesser than E
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3  Problem formulation

In this section, we first formulate the lifetime maximization 
problem as a time dependent continuous problem (OR-C). 
Due to its high complexity, we convert it to a time inde-
pendent discrete problem (OR-D) and prove that problem 
(OR-D) achieves the same maximum network lifetime as 
problem (OR-C). Although problem (OR-D) is also NP-hard, 
near optimal solutions can be constructed based on it. The 
description of related equations are listed in Table 2 for the 
sake of clarity.

3.1  Continuous formulation

Since the charger sojourns and travels within the network 
area during the whole operational interval, network lifetime 
T equals to the sum of the charger’s sojourn and travel dura-
tions during [T0, T1] (Guo et al. 2013). Thus, the lifetime 
maximization problem can be formulated as:

In the above formulation, Eqs. (3), (4), (6) are flow conserva-
tion constraints. Equation (5) avoids the stored data occupy 
excessive storage. Equation (7) ensures all stored data are 
released from sensors’ storage. Equation (8) tries to mitigate 
medium access collisions. Equation (9) ensures that sensors 
never run out of energy before T1 , and Eq. (10) regulates that 
the total amount of energy assigned to the network is finite.

Actually, the charger’s path planning sub-problem is not 
modeled in the above formulation. This is based on the find-
ing that near optimal solutions can be constructed without 
calculating the optimal charger’s travel path (see Sect. 4.2). 
Thus we can omit it in our formulation to keep the system 
model concise.

Problem (OR-C) is highly complicated and cannot be 
solved in polynomial time due to the following reasons:

(1) In terms of flow routing, gij(t) , gi0(t) , gsi (t) and gr
i
(t) are 

all continuous functions of time t. There may exist infinite 
number of t, thus infinite number of possible value of data 
flow functions. Hence, problem (OR-C) is in the form of 
non-polynomial programming.

(2) The charger’s visit sequence L is unknown, which 
can be determined after a travel path of the charger is found. 
However, finding the charger’s optimal travel path is NP-
hard. Considering the simplest path planning problem, TSP, 
is generally NP-hard.

Before a near optimal solution can be constructed, we con-
vert the time dependent continuous problem (OR-C) to a time 
independent discrete problem (OR-D), which borrows the idea 

(OR-C)
max T =

∑

l∈L

[
U(xl) + U(yl)

]

s.t. Eqs. (3) − (10)

from (Shi and Hou 2012). Note that the authors only con-
sidered the static situation, where the sensor network did not 
operate when the base station was traveling. This differs from 
our model in that the sensor network operates continuously 
during its whole lifetime. Moreover, in our model, network 
circumstances, sensor and charger behaviors are different from 
Shi and Hou (2012).

3.2  Discrete formulation

Actually, different relations between U(xl) and U(yl) reflect the 
charger’s different behaviors. In particular, there exists three 
different charger behaviors

– Case 1: U(xl) > 0 and U(yl) > 0 . The charger sojourns at 
xl for duration U(xl) and spends U(yl) to traverse yl.

– Case 2: U(xl) = 0 and U(yl) > 0 . The charger passes xl 
without sojourn and spends U(yl) to traverse yl.

– Case 3: U(xl) = U(yl) = 0 . The charger directly sets out for 
location xl+1 after xl−1 is visited.

An example of different charger behaviors is shown in Fig. 3. 
To formulate a time independent discrete optimization, we 
define time independent data flow functions as the average of 
their time dependent counterparts. As to Case 1, for sensor i 
during [tl, tl + U(xl)] , we have:

In the discrete formulation, the time dependent continuous 
path segment yl is replaced with the time independent dis-
crete virtual point �l (see Fig. 4). Let U(�l) = U(yl) , then data 

Sensor i to sensor j∶ fij(xl) =
∫ tl+U(xl)

tl
gij(t)dt

U(xl)

Sensor i to the sink: fi0(xl) =
∫ tl+U(xl)

tl
gi0(t)dt

U(xl)

Sensor i stores data: f s
i
(xl) =

∫ tl+U(xl)

tl
gs
i
(t)dt

U(xl)

(a) Cases 1 & 2.

(b) Case 3.

Fig. 3  An illustrative example of different charger behaviors
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flow functions during [tl + U(xl), tl+1] can be transformed as 
follows:

With regard to Case 2, we define fij(xl) = gij(tl) , 
fi0(xl) = gi0(tl) and f s

i
(xl) = gs

i
(tl) . Data flow functions during 

[tl + U(xl), tl+1] are transformed similar to Case 1. As to Case 
3, we define fij(xl) = gij(tl) , fi0(xl) = gi0(tl) , f si (xl) = gs

i
(tl) , 

fij(�l) = gij(tl) , fi0(�l) = gi0(tl) and f r
i
(�l) = gr

i
(tl).

In the discrete formulation, for sensor i, when the charger 
sojourns at xl and �l , the flow conservation equations are:

and

For sensor i ∉ Nl , data communications are not interfered, 
such that f s

i
(xl) = 0 . As to interfered sensor i ∈ Nl , data 

should be stored to avoid loss. Thus f s
i
(xl) = gi . As we dis-

cussed before, data stored during [tl, tl + U(xl)] should be all 
released during [tl + U(xl), tl+1] to avoid long delay:

Similar to the time dependent situation, data releasing rate 
should be restricted to avoid medium access collisions, i.e.,

Energy consumption rates for sensor i during [tl, tl + U(xl)] 
and [tl + U(xl), tl+1] are converted as follows:

Sensor i to sensor j∶ fij(�l) =
∫ tl+1
tl+U(xl)

gij(t)dt

U(�l)

Sensor i to the sink: fi0(�l) =
∫ tl+1
tl+U(xl)

gi0(t)dt

U(�l)

Sensor i releases data: f r
i
(�l) =

∫ tl+1
tl+U(xl)

gr
i
(t)dt

U(�l)

(11)
k≠i∑

k∈N

fki(xl) + gi =

j≠i∑

j∈N

fij(xl) + fi0(xl), i ∉ Nl,

(12)gi = f s
i
(xl), i ∈ Nl

(13)
k≠i∑

k∈N

fki(�l) + gi =

j≠i∑

j∈N

fij(�l) + fi0(�l) − f r
i
(�l)

(14)f s
i
(xl)U(xl) = f r

i
(�l)U(�l)

(15)0 ≤ f r
i
(�l) ≤ gmax

and

Energy consumed during [tl, tl+1] is eil = ei(xl)U(xl)+ 
ei(�l)U(�l).

Then, the time independent discrete problem (OR-D) can 
be formulated as follows:

The following theorem shows that it is feasible to obtain the 
maximum network lifetime of the original problem (OR-C) 
by solving problem (OR-D).

Theorem 1 The optimal solution of problem (OR-D) can 
achieve the same maximum network lifetime as problem 
refOR-C).

We refer the readers to Appendix A for a comprehensive 
proof.

4  A near optimal solution

This section is organized as follows: Sect. 4.1 discuss the 
minimum energy routing. Next, we build a linear program-
ming with relaxed energy constraint to approximate the 
original problem (OR-D). Based on this relaxed problem, 
a near optimal solution is constructed in Sect. 4.3. Finally, 
Sect. 4.4 summarizes our solution.

4.1  Minimum energy routing

Peng et al. (2010) show that with enough total-energy and 
appropriate transfer efficiency, the minimum energy rout-
ing would outperform others. As we can meet these condi-
tions, we define the minimum energy routing as the routing 
scheme.

4.1.1  Basic network model

Naturally, data should be forwarded to the sink in an 
energy-efficient way, such that the network lifetime can 
be prolonged. The minimum energy routing in the basic 
model (Sect. 2.2) can be calculated by the following linear 
programming:

ei(xl) =

k≠i∑

k∈N

�fki(xl) +

j≠i∑

j∈N

Cijfij(xl) + Ci0fi0(xl)

ei(�l) =

k≠i∑

k∈N

�fki(�l) +

j≠i∑

j∈N

Cijfij(�l) + Ci0fi0(�l)

(OR-D)
max T =

∑

l∈L

[U(xl) + U(�l)]

s.t. Eqs. (5), (9)−(15)

Fig. 4  Replacing the time dependent continuous path segment yl with 
time independent discrete virtual point �l . Then, the charger’s travel 
path is consisted of discrete points xl and �l
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We use CPLEX (IBM 2019) to solve problem (MIN-B). 
Suppose �i is the resulted energy consumption rate of sen-
sor i, then the minimum total energy consumption rate is ∑

i∈N �i.

4.1.2  Extended network model

As to the extended network model, the minimum energy 
routing during [tl, tl+1] can be calculated by the following 
optimization:

Since the duration [tl, tl+1] is unknown, the charger’s sojourn 
duration U(xl) is set to a unit of time. Problem (MIN-E) 
is a quadratic programming due to the quadratic term in 
ei(�l)U(�l) . Before we can solve it, the following theorem is 
given to convert it to a linear programming.

Theorem 2 For a given U(xl) > 0 , denote gl
max

 the maxi-
mum data generation rate for all interfered sensors, i.e., 
gl
max

= max(gi) , i ∈ Nl . To obtain the minimum energy rout-
ing during [tl, tl+1] , equality U(�l) = �lU(xl) must hold, where

Note that gmax is the maximum data releasing rate. We 
refer the readers to Appendix B for a comprehensive proof.

Based on the above theorem, problem (MIN-E) can be 
converted to a linear programming and solved by CPLEX. 
Suppose the resulted energy consumptions of sensor i during 
[tl, tl + U(xl)] and [tl + U(xl), tl+1] are �il and �il , respectively. 
Then, the minimum total energy consumption during [tl, tl+1] 
is 
∑

i∈N[�ilU(xl) + �ilU(�l)].

4.1.3  Minimum energy routing and charger behaviors

As we mentioned before, charger behaviors can be reflected 
by the relation between U(xl) and U(�l) , which also affects 
the minimum energy routing. Take Fig. 5 as an example, if 
U(xl) = 0 and U(𝜈l) > 0 , sensors only need to forward newly 
generated data during [tl + U(xl), tl+1] . However, if U(xl) > 0 
and U(𝜈l) > 0 , sensors are required to forward both stored 
and newly generated data during [tl + U(xl), tl+1] . Since we 
cannot predict the values of U(xl) and U(�l) , each relation 
should be considered carefully. In particular, four possible 
relations are listed below:

(MIN-B)
min

∑

i∈N

ei(t)

s.t. Eqs. (1), (2)

(MIN-E)
min

∑

i∈N

eil

s.t. Eqs. (11) − (15), U(xl) = 1

𝜆l =
gl
max

gmax
> 0

• (1) Relation 1: U(xl) > 0 and U(𝜈l) > 𝜆lU(xl)

• (2) Relation 2: U(xl) > 0 and U(�l) = �lU(xl)

• (3) Relation 3: U(xl) = 0 and U(𝜈l) > 0

• (4) Relation 4: U(xl) = 0 and U(�l) = 0

Based on results obtained from problem (MIN-B) and (MIN-
E), we give the following proposition to calculate sensor i’s 
energy consumption during [tl, tl+1] regardless of the relation 
between U(xl) and U(�l).

Proposition 1 Suppose the minimum energy routing is 
always adopted during the operational interval [T0, T1] . 
Then the energy consumption of sensor i during [tl, tl+1] can 
be calculated by:

We refer the readers to Appendix C for a comprehensive 
proof.

4.2  Problem relaxation

Actually, charger scheduling is consisted of finding the 
charger’s optimal travel path consisting of xl and �l , and 
deciding durations U(xl) and U(�l) . To construct a near opti-
mal solution to the original problem (OR-D), we temporarily 
neglect the maximum sojourn time constraint Eq. (5) and 
relax the energy constraint Eqs. (9)–(16). Then, a relaxed 
problem can be built as follows:

 
Since path planning is generally NP-hard, we simplify 

the charger’s travel path to a single TSP path to reduce the 
complexity of problem (RLX). Further, we suppose the 
minimum energy routing is adopted during the whole opera-
tional interval [T0, T1] . Then a linear programming can be 
constructed as follows:

eil = �ilU(xl) + �il�lU(xl) + [U(�l) − �lU(xl)]�i

(RLX)max T =

∑

l∈L

[
U(xl) + U(�l)

]

(16)
s.t. Eqs. (10) − (15)

Bi(T1) = Hi −

∑

l∈L

(eil − Kil) = 0, ∀i ∈ N

(LP-T)max T =

∑

l∈L

[U(xl) + U(�l)]

Fig. 5  Relations between U(xl) and U(�l)
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Note that L = N refers to the fact that the charger’s travel 
path is a single TSP path. Due to the adoption of minimum 
energy routing, constraint Eq. (16) is equivalently trans-
formed to Eq. (18). Details are omitted to conserve space.

We give the following theorem to show that it is suffi-
cient to solve problem (LP-T) for the objective of lifetime 
maximization in problem (RLX).

Theorem 3 The optimal solution of problem (LP-T) is also 
the optimal solution of problem (RLX).

We refer the readers to Appendix D for a comprehensive 
proof.

4.3  Satisfying all constraints

Theorem 3 shows that the optimal solution of problem 
(RLX) can be obtained by solving linear programming prob-
lem (LP-T). However, comparing to the original problem 
(OR-D), problem (RLX) lacks of two constraints: sojourn 
time constraint Eq. (5) and energy constraint Eq. (9). In this 
part, we will show the way to construct a near optimal solu-
tion of problem (OR-D) that meets all constraints.

4.3.1  Sojourn time constraint Eq. (5)

To satisfy the sojourn time constraint, we divide the single 
TSP path into W repeated TSP paths, where W is an arbitrary 
positive integer. During each TSP path, sojourn time U(xl) 
is reduced by 1

W
 . Eq. (5) can be satisfied only if W is large 

enough. We construct the following linear programming:

We give the following theorem to show that the maximize 
lifetime T is irrelevant to W.

(17)
s.t. Eq. (10), L = N

U(�l) ≥ �lU(xl), ∀l ∈ L

(18)
∑

l∈L

eil −�U(xi) = Hi, ∀i ∈ N

(LP-W)max T = W
∑

l∈N

[U(xl) + U(�l)]

(19)

s.t. Eq. (17), L = N

∑

l∈L

eil −�U(xi) =
Hi

W
, ∀i ∈ N

(20)Nh0 +�0

∑

i∈N

�i +W�
∑

l∈L

U(xl) ≤ E

Theorem 4 Suppose P∗ is the optimal solution of problem 
(LP-T) with the maximum network lifetime T∗ . Then, T∗ can 
be achieved by problem (LP-W) regardless of W.

We refer the readers to Appendix E for a comprehensive 
proof.

Similar to Theorem 4, we can prove that if U(xl) and U(�l) 
are optimal results of problem (LP-T), then U(xl)

W
 and U(�l)

W
 are 

optimal results of problem (LP-W). The network lifetime T is 
irrelevant to W, however, the value of W will decide whether 
the sojourn time constraint is satisfied. Suppose the optimal 
sojourn time obtained by solving problem (LP-T) is Ut

(xl) . 
Then, the maximum sojourn time in problem (LP-W) must 
be shorter than Umax , i.e.,

Thus we have

When the above inequality holds, the solution to problem 
(LP-W) satisfies the sojourn time constraint Eq. (5).

4.3.2  Energy constraint Eq. (9)

We focus on one of the W repeated TSP paths. Suppose the 
optimal solution of problem (LP-W) consists of e∗

il
 , U∗

(xl) 
and U∗

(�l) , and that t∗ is the time required to finish one TSP 
path. Based on Eq. (19), during one TSP path, sensor i’s 
energy consumption comes from two sources: sensor i’s 
initial battery Hi

W
 and energy replenished by the charger, i.e., 

�U∗

(xi).
Before the charger visits and recharges sensor i, energy 

from sensor i’s initial battery may be depleted, i.e., 
Hi

W
≤ ∑

l∈N e∗
il
 . Thus, the energy constraint Eq. (9) is vio-

lated. Take the dash line in Fig. 6 as an example, at time tl , 
the charger sojourns at xl and the energy remained in sensor 
i’s battery is Bi(tl) . Before the charger arrives at sensor i 
when t = ti , its battery depletes and the energy constraint is 
violated. To avoid it, as the solid line shown in Fig. 6, we 
only need to assign sensor i with additional energy �U∗

(xi) . 
Suppose each sensor is assigned with an additional energy 
� , we have

The total amount of additional energy N� cannot be allo-
cated directly from E since energy allocation is determined 
after we solve problem (LP-W). However, we can cancel the 
last � ∈ Z+ TSP paths and assign the reserved energy carried 
by the charger. The reserved energy should be large enough 

max

(
Ut

(xl)

W

)
≤ Umax

W ≥ max(Ut
(xl))

Umax

, W ∈ Z+

(21)� = max(�U∗

(xi)), ∀i ∈ N
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to guarantee each sensor is assigned with energy � during 
initial interval, thus we have:

where the left part is the reversed energy, N� is the total 
required additional energy, and N� Ne0

�0

 is the energy con-
sumed to assign N� . Then, we can obtain:

where � is irrelevant to W.

4.4  Solution summary

Now, we give a summary of our near optimal solution:

1. Let L = N , for each sojourn location xl ( l ∈ N ), calculate 
N∗

l
 and �∗

l
.

2. Next, solve problems (MIN-B) and (MIN-E) to obtain 
the minimum energy routing. For each sensor i ∈ N , cal-
culate �∗

i
 , �∗

il
 and �∗

il
.

3. Based on �∗
i
 , �∗

il
 and �∗

il
 , solve problem (LP-T). The 

optimal solution consists of Ut
(xl) , Ut

(�l) , � ti  and 
Tt

=

∑
l∈N[U

t
(xl) + Ut

(�l)] . Note that Tt is an upper 
bound of the proposed near optimal solution since it is 
the optimal solution of the relaxed problem (RLX).

4. Solve problem (LP-W) to obtain the optimal results 
U∗

(xl)  a n d  U∗

(�l)  .  S e t  W∗

= ⌈max(Ut
(xl))

Umax

⌉ , 
�∗ = max(�U∗

(xi)) and �∗

= ⌈ N�∗(Ne0+�0)

��0

∑
i∈N U∗

(xi)
⌉.

5. Finally, the near optimal solution of the original problem 
(OR) are constructed as follows: (i) Let �∗ = � t

i
+

�∗

�0

 , 
during the initial interval, the charger charges each sen-
sor, e.g., i, with energy of �0�

∗

i
 . (ii) Adopt the minimum 

energy routing during the whole network lifetime. Spe-
cifically, during [tl, tl + �lU

∗

(xl)] and [tl + �lU
∗

(xl), tl+1] , 
adopt minimum energy routings obtained from problems 
(MIN-E) and (MIN-B), respectively. (iii) Solve problem 

��
∑

i∈N

U∗

(xi) ≥ N�

(
1 +

Ne0

�0

)

� ≥ N�(Ne0 +�0)

��0

∑
i∈N U∗

(xi)

(LP-W) and the charger travels W∗

− �∗ repeated TSP 
paths. Thus, the near optimal network lifetime 
T∗

= (W∗

− �∗

)

∑
l∈N[U

∗

(xl) + U∗

(�l)].

We summarize our near optimal solution procedure in 
Table  3. The complexity of our algorithm depends on 
the complexity of solving linear programming, which is 
acceptable.

Since Tt is an upper bound of T∗ , the optimality of our 
near optimal solution is:

5  Evaluation

In this part, we first give a numerical example to present 
some interesting results of our solution. Then, we exten-
sively evaluate it under different parameter settings and 
reveal insights of the solution performance. Finally, we give 
some comparisons to show the effectiveness of the proposed 
solution.

Assuming that sensors are randomly distributed over 
a 200m ∗ 200m two-dimensional square area, the sink is 
located at (0, 0) and sensors’ data generation rate are ran-
domly generated within [1, 10] kb/s. The energy consump-
tion coefficients �1 = 50 nJ/b, �2 = 0.0013 pJ/(b ⋅ m4 ), � = 4 
and � = 50 nJ/b. The charger sojourns at the sink when t = 0 . 

T∗

Tt
=

(W∗

− �∗

)

∑
l∈N[U

∗

(xl) + U∗

(�l)]∑
l∈N[U

t
(xl) + Ut

(�l)]
= 1 −

�∗

W∗

Table 3  A summary of the proposed solution procedure

Solution procedure

1. Let L = N , for each sojourn location xl ( l ∈ N ), calculate N∗

l
 and �∗

l

2. Solve problems (MIN-B) and (MIN-E) by CPLEX, calculate �∗
i
 , �∗

il
 and �∗

il

3. Solve problem (LP-T) by CPLEX, calculate Ut
(xl) , Ut

(�l) , � ti
4. Set W∗

= ⌈max(Ut
(xl))

Umax

⌉
5. Solve problem (LP-W) by CPLEX, calculate the optimal results U∗

(xl) and U∗

(�l)

6. Set �∗ = max(�U∗

(xi)) ; �∗

= ⌈ N�∗(Ne
0
+�

0
)

��
0

∑
i∈N U∗

(xi)
⌉ and the initial energy allocation Einitial = �∗

∑
l∈N[U

∗

(xl) + U∗

(�l)

7. Obtain T∗

= (W∗

− �∗

)

∑
l∈N[U

∗

(xl) + U∗

(�l)]

Fig. 6  Satisfying energy constraint Eq. (9) by assigning sensor i with 
additional energy �U∗

(xi)
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The energy charging rates during initial and operational 
intervals are �0 = 1 J/s and � = 0.05 J/s, respectively. The 
charging interference radius is R = 50 m.

The total energy E is proportional to the number of sen-
sors, i.e., E = N × 104  J. The beginning battery is set to 
h0 = 1000 J and the energy consumption rate during ini-
tial interval is e0 = 1 × 10−3 J/s. Moreover, the maximum 
sojourn time is Umax = 60 s, the maximum data releasing 
rate is gmax = 10 kb/s, and the charger’s travel time during 
initial interval is tTL = 1000 s.

5.1  A numerical example

Here, a 15-sensor random network with initial energy 
h0 = 100 J is built and h0 is set to a small value to accom-
modate the small network. Following default settings, we 
run the solution and obtain the optimal network lifetime 
T = 9.4 × 106 s. Details are listed in Table 4, where (x-axis, 
y-axis) represents sensor locations. Based on Step (4) of 
our solution, W = 7580 and � = 4 . Thus the network ter-
minates after the charger repeats W − � = 7576 TSP paths. 
In this case, the optimality of our near optimal solution is 
1 −

�

W
= 99.95%.

5.2  Parameter analysis

We increase the number of sensors to 50 and analyze how 
the parameter settings influence our solution. Four param-
eters are considered here: energy charging rate � , inter-
ference radius R, energy consumption rate during initial 
interval e0 , and the maximum data releasing rate gmax . For 
each parameter, we consider the following solution details: 
network lifetime T, energy allocated during initial/opera-
tional intervals, solution optimality, and the number of 
repeated TSP paths.

We vary varpi from 0.01 J/s to 0.1 J/s while keeping 
other parameters unchanged. From Fig. 7a, we find that � 
has limited influence to T. However, it affects the constitu-
ent parts of T: sojourn and travel time. With larger � , the 
charger spends less time on energy transfer (sojourn), but 
more time on traveling. Impressively, as shown in Fig. 7b, 
the near optimal solution always achieves above 99% opti-
mality. The high optimality means through our scheduling, 
we can nearly reach the upper limit of lifetime, under the 
condition of limited energy, in ideal surroundings (Once 
the environment and conditions change, such as taking 

Table 4  A numerical example: solution details

Variables Sensor index (i)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x-axis 91 171 63 14 37 131 92 118 100 177 11 32 177 34 194
y-axis 80 186 86 40 146 159 22 165 23 70 66 179 115 107 95
gi 5 2 6 3 3 6 4 3 7 8 4 4 1 8 2
�i 0.60 0.60 0.80 0.40 0.80 0.60 0.70 0.60 0.70 0.80 0.80 0.40 0.80 0.80 0.80
�i 3 3 3 2.32E4 3 3 3 3 3 3 2.04E4 3 3 7.22E3 3
Hi 951 951 951 2.41E4 951 951 951 951 951 951 2.14E4 951 951 8.17E3 951
U(xi) 44.7 0.68 23.6 0 8.86 17.1 60 19.5 31.2 40.5 0 5.87 1.17 0 0.59
U(�i) 839 0.41 18.9 0 7.09 10.2 42 11.7 21.9 32.4 0 2.34 0.93 0 0.47

(a) Network lifetime details. (b) Allocation ratio during T0 and opti-
mality.

(c) Number of repeated TSP paths.

Fig. 7  Parameter analysis of charging rate �
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energy dissipation into consideration, we may not reach 
such a good result).

We can find that � has direct influences on energy allo-
cation. Since the initial battery h0 is constant, we focus 
on energy allocation ratio during the initial interval, i.e., ∑

i∈N �0�i

E
 . In Fig. 7b, when � = 0.01 J/s, 81.2% of energy is 

allocated during [0, T0] while less than 10% energy is allo-
cated during [T0, T1] . When � increases to 0.1 J/s, above 
60% energy is allocated during [T0, T1] while only 28.8% is 
during [0, T0] . The ratio T0

T
 follows the same trend.

Another factor we consider is the number of TSP paths, 
i.e., W − � . As shown in Fig. 7c, as � increases, W − � 
increases at first and after a threshold ( � = 0.02 J/s) is sur-
passed, W − � decreases quickly. The incremental part is 
caused by the charger’s frequent movement to transfer more 
energy. After � ≥ 0.02 , the charger has stronger charging 
ability and it could sojourn longer to achieve higher energy 
transfer. Thus, W − � decreases.

As to interference radius R, the network lifetime varies 
slowly (see Fig. 8a). Compared to � , an apparent char-
acteristic of R is the large randomness. Although T keeps 

stable, sojourn and travel durations vary widely. With the 
increase of R, generally, the sojourn time decreases while the 
travel time increases. Since larger R causes more interfered 
sensors, chargers tend to sojourn less when R is large. The 
energy and time ratios both increase as R increases, also 
with random fluctuations (see Fig. 8b). In Fig. 8c, the large 
randomness of W − � is mainly caused by sensor distribu-
tion. For example, when the charger is visiting sensor i with 
R = 20 m, 3 sensors around i may be interfered. However, 
this number may increase to 15 when R = 40 m due to the 
random distribution of sensors.

The initial energy consumption rate e0 has significant 
effect on network lifetime. As shown in Fig. 9a, when e0 
increases, network lifetime decreases quickly. Specifically, 
when e0 is small ( e0 < 1.2 × 10−3 J/s), sojourn time increases 
while travel time decreases with the increase of e0 . The rea-
son is apparent: larger e0 leads to more energy consumption 
during the initial interval. Thus, T0 is kept small and more 
energy is allocated during the operational interval, lead-
ing to longer sojourn time. After e0 > 1.2 × 10−3 J/s, as the 
increase of e0 , the sojourn and travel time in Fig. 9a decrease 

(a) Network lifetime details. (b) Allocation ratio during T0 and opti-
mality.

(c) Number of repeated TSP paths.

Fig. 8  Parameter analysis of interference radius R 

(a) Network lifetime details. (b) Allocation ratio during T0 and opti-
mality.

(c) Number of repeated TSP paths.

Fig. 9  Parameter analysis of the initial energy consumption rate e
0
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while energy and time ratio in Fig. 9b increase, all in a linear 
manner. The decreased sojourn/travel times are caused by 
reduced network lifetime.

The reasons of increased energy/time ratios are more 
complex. To obtain longer network lifetime, the sensors 
must be allocated with sufficient energy. Moreover, energy 
should be allocated among sensors in a balanced way. When 
e0 surpasses a threshold ( e0 > 1.2 × 10−3 J/s), the energy 
balance becomes much more important than the energy 
quantity. Although larger e0 leads to more energy consump-
tion during the initial interval, longer initial duration is still 
required to make energy allocation balanced. As to W − � 
in Fig. 9c, e0 shows insignificant importance.

At last, we analyze the maximum data releasing rate 
gmax . As gmax increases, network lifetime and sojourn time 
increase while travel time decreases as shown in Fig. 10a. 
When gmax ∈ [1, 6] kb/s, sojourn and travel times vary 
quickly. While after gmax > 6 kb/s, both vary slowly. Energy 
and time ratios in Fig. 10b present similar regularities. The 
same as e0 , gmax shows trivial importance to W − �.

5.3  Performance comparison

We set up two baselines to compare with our near opti-
mal solution. The first one is the minimum energy rout-
ing, which is pervasively adopted in practice. In this case, 
the total energy E is averagely allocated among sensors. 
After deployment, sensors forward sensory data to the sink 
with a minimum energy routing. The second algorithm is 
named as perfect allocation. Suppose the minimum energy 
routing is adopted by the sensor network, the total energy 
E is allocated based on the sensor energy consumption in 
a perfect way, which means that sensor batteries will be 
depleted simultaneously when the network terminates. We 
note that perfect allocation is unreachable in practice since 
we cannot obtain sensor energy consumption information 
before the energy is actually consumed. Perfect allocation 

represents the possible maximum network lifetime while 
the minimum energy routing stands for the generally 
adopted solution.

To evaluate our solution in different network sizes, 
the number of sensors is varied from 40 to 100. Impres-
sively, as shown in Fig. 11, with the same amount of the 
total energy E, the network lifetime of our solution is 
7.15–22.75 times longer than that of the minimum energy 
routing which is pervasively adopted. Moreover, the ratio 
between our solution and the perfect allocation varies from 
92.8% to 97% , which validates the high effectiveness. In 
terms of energy efficiency, as shown in Fig. 12, less than 
0.2% energy is wasted by our solution. Compared to perfect 
allocation, which utilizes 100% energy, our solution pre-
sents high efficiency. The minimum energy routing wastes 
above 86% energy. This is because the network lifetime is 
determined by the sensor with the largest energy consump-
tion. When the network terminates, a large part of energy 
is remained in the batteries of light-burdened sensors.

(a) Network lifetime details. (b) Allocation ratio during T0 and opti-
mality.

(c) Number of repeated TSP paths.

Fig. 10  Parameter analysis of the maximum data releasing rate gmax

Fig. 11  Performance comparison: network lifetime
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6  Further discussion

RF-WPT is known to be a promising way to solve energy 
bottlenecks for low power devices. Our study has provided 
evidences that RF-WPT chargers can be utilized to promote 
sensor network performance at the cost of introducing higher 
degree of interferences. Since deploying mobile relays (Park 
and Heidemann 2011; Somasundara et al. 2006; Qu et al. 
2015) in wireless sensor networks are mature technologies 
with years of exploration, implementing the proposed solu-
tion will not pose severer challenges. A simple and practical 
design is to make the charger a coordinator that controls 
sensor-charger collaboration (Anastasi et al. 2007; Li et al. 
2013).

Our work remains an initial attempt toward jointly consid-
ering communication and charger scheduling in interference-
aware environments. There are still many open issues that 
can be further explored, and we hereby list three in which 
we are particularly interested.

Sensor-charger interaction overheads In our investigation, 
communications among sensors are optimized. However, in 
real environments, interactions between the charger and sen-
sors are inevitable and lead to communication overheads. 
Efficient designs that minimize communication overheads 
are to be developed.

Sensor storage and charger travel distance Except for 
energy, storage is also quite limited in sensors. To avoid 
large storage usage, in our solution, the charger sojourn 
time is restricted. This may cause frequent charger move-
ments, leading to longer travel distance. Therefore, trade-
offs between sensor storages and charger travel distances are 
worth of further explorations.

Power transfer efficiency In this study, we focus on allocat-
ing constant total energy E among sensors. To achieve this 

goal, in practice, more energy than E will be transferred 
by the charger due to efficiency problems. Although there 
has been researches aiming at promoting power transfer 
efficiency (Lee and Lorenz 2011; Chen et al. 2013), more 
researches are still required.

7  Related work

Typically, an RF-WPT system consists of an energy trans-
mitter that radiates RF signals and an energy harvester that 
collects and converts signal power to appropriate direct cur-
rents. In the modern society, probably the most well-known 
commercial application of RF-WPT is RFID, where the 
RFID tags collect energy from interrogating radio waves 
and communicate exclusively with RFID readers. By har-
vesting energy from ambient RF signals, (Liu et al. 2013) 
extended the traditional RFID tag with incomplete functions 
to a mini-computer with full computation, communication 
and control abilities. Compared to magnetic resonant cou-
pling approaches proposed by Kurs et al. (2007), RF-WPT 
is recognized as a suitable way to charge devices with ultra-
low power requirements such as sensors and RFIDs (Kel-
logg et al. 2014; Liu et al. 2013; Xie et al. 2013). This is 
due to the simplicity of RF-WPT that neither large coils 
(with diameter of 0.6m in Kurs et al. (2007) nor scrupulous 
resonance alignment is needed. Most importantly, RF-WPT 
brings about the minimal cost increase, because it can be 
implemented by adding several basic electronic elements 
such as rectifier, capacitors and diodes to the existing circuits 
(Kellogg et al. 2014).

However, RF signals emitted for power transfer always 
exhibit higher signal strength than low-power data commu-
nications. Without special treatments, data transmissions 
will be heavily interfered after an RF-WPT charger is intro-
duced in WSNs. For example, through experimental stud-
ies, Naderi et al. (2014) showed that the RF energy trans-
fer would cause data loss and largely reduce the wireless 
throughput. The study in Naderi et al. (2014) reported that 
sensors would experience 100% data loss when the charger 
was operating within 140 m with 1 W ET(energy transmis-
sion) power.

Academic researches have taken important steps towards 
applying WPT technologies in WSNs (Shi et al. 2011; Xie 
et al. 2013; Guo et al. 2013; He et al. 2013; Fu et al. 2013; 
Dai et al. 2014; Zhang et al. 2015). In Shi et al. (2011), 
a mobile wireless charging vehicle (WCV) is introduced 
and sensor batteries are replenished in a periodical man-
ner. Adopted in small-scale networks, WCV ensured sensors 
stay operational forever. The mathematical study in Xie et al. 
(2013) proved that bundling the base station on the WCV 
could further promote network performance. Aiming at the 
maximum network utility, an anchor-point based mobile 

Fig. 12  Performance comparison: energy efficiency
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data gathering scheme is proposed in Guo et al. (2013), 
which achieves finer scalability and can be adopted in larger 
networks. Different from mobile charger approaches, (He 
et al. 2013) considered the charger deployment problem in 
static scenarios, which also ensured enough power trans-
fer for sensor networks. Moreover, Fu et al. (2013) stud-
ied the minimum charging delay problem while (Dai et al. 
2014) attempted to transfer the maximum power under a 
predefined electromagnetic radiation threshold. Zhang et al. 
(2015) jointly considered the charger placement and power 
allocation, aiming at improving energy charging quality. The 
recent studies mainly focus on sensor-charger cooperation. 
However, how to avoid charging interference has seldom 
been examined. This paper takes initial steps to make up the 
research gap in this area.

8  Conclusion and future work

In this paper, we investigated the joint optimization of maxi-
mizing network lifetime and avoiding data loss under charg-
ing interference concerns. Considering the complexity of the 
original problem, we relaxed it and constructed a series of 
simpler optimizations. Based on them, a near optimal solu-
tion with provable 1 − �

W
 performance guarantee has been 

developed. The effectiveness of our solution is validated 
with extensive evaluations and comparisons. In our future 
work, we will further explore the situation with extremely 
large scale networks and multiple mobile chargers.
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Prove of Theorem 1

Proof Suppose P is the optimal solution of problem (OR-
C), which consists of the maximum network lifetime T, the 
optimal charger’s travel path, sojourn/travel durations U(xl) 
and U(yl) , data flow functions gij(t) , gi0(t) , gsi (t) and gr

i
(t) . 

Based on solution P, we can construct a solution P∗ with 
lifetime T∗ as follows. First, we keep the charger’s travel 
path and sojourn/travel durations the same as solution P. 
Then we show that both of these solutions achieve the same 
network lifetime:

Next, we construct data flow functions of solution P∗ as 
described in Sect. 3.2. And we need to show that P∗ is a 
feasible solution of problem (OR-D). Specifically, we need 

T∗

=

∑

l∈L

[U(xl) + U(�l)] =
∑

l∈L

[U(xl) + U(yl)] = T

to prove that solution P∗ meets constraints Eqs. (5), (9)–(15). 
Here, we focus on constraint Eq. (13) while others are simi-
lar and thus omitted to conserve space. The proofs are based 
on 3 different cases described in Sect. 3.2.

Considering Case 1, for sensor i, we have:

Cases 2 and 3 can be proved in the same way. Since all the 
constraints of problem (OR-D) are satisfied by solution P∗ , 
P∗ is a feasible solution to problem (OR-D).

Finally, we need to show that P∗ is the optimal solution 
of problem (OR-D). Suppose P is the optimal solution of 
problem (OR-D) with the maximum network lifetime T > T . 
Based on P , we can construct a solution of problem (OR-C) 
with lifetime T  , which contradicts with the fact that T is the 
maximum network lifetime.

Since we have proved that T∗

= T  , the optimal solution 
of problem (OR-D) can achieve the same maximum network 
lifetime as problem (OR-C), which concludes the proof.  
 ◻

Proof of Theorem 2

The proof of Theorem 2 is based on the following lemmas.

Lemma 1 For a given feasible charger travel path and a 
sojourn point xl , we have U(�l) ≥ �lU(xl).

Proof Since both gl
max

 and gmax are positive parameters, 
𝜆l > 0 holds. If U(xl) = 0 , U(�l) ≥ �lU(xl) = 0 holds. Here, 
we emphasize on proving the U(xl) > 0 case. Based on 
Eqs. (12), (14) and (15), we can derive:

Hence, gmaxU(�l) ≥ giU(xl) holds for all sensor i ∈ Nl . It 
holds for the sensor with the maximum data generation 
rate in Nl , thus gmaxU(�l) ≥ gl

max
U(xl) , which concludes the 

k≠i�

k∈N

fki(�l) + gi

=

k≠i�

k∈N

∫ tl+1
tl+U(xl)

gki(t)dt

U(�l)
+

∫ tl+1
tl+U(xl)

gidt

U(�l)

=

∫ tl+1
tl+U(xl)

[

∑k≠i
k∈N

gki(t) + gi]dt

U(�l)

=

∫ tl+1
tl+U(xl)

[

∑j≠i
j∈N

gij(t) + gi0(t) − gr
i
(t)]dt

U(�l)

=

j≠i�

j∈N

fij(�l) + fi0(�l) − f r
i
(�l)

(22)giU(xl) = f s
i
(xl)U(xl) = f r

i
(�l)U(�l) ≤ gmaxU(�l)
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proof. Note that this lemma also holds for the time depend-
ent continuous formulation, we omit the proof to conserve 
space.   ◻

Lemma 2 Considering a data routing with full sensor par-
ticipation, denote �i the minimum energy consumption rate 
required to forward a unit of data from sensor i to the sink, 
and the corresponding routing path is Fi . Suppose each sen-
sor has a unit of data generation rate, then, the combination 
of 
∑

i∈N Fi is the minimum energy routing with the minimum 
total energy consumption rate 

∑
i∈N �i.

Proof It is apparent that 
∑

i∈N Fi is a routing scheme of the 
sensor network. Next, we prove 

∑
i∈N Fi is the minimum 

energy routing using contradictions. Suppose M∗ is a rout-
ing scheme that consumes less energy than 

∑
i∈N �i . Thus at 

least one routing path F∗

i
 in M∗ consumes less energy than 

�i , which contradicts with the fact that Fi is the minimum 
energy routing path.   ◻

Now, we begin to prove Theorem 2.

Proof During [tl + U(xl), tl+1] , the sensory data generated by 
sensor i is consisted of two parts: gs

i
(xl)U(xl) and giU(�l) . 

The former is generated and stored during [tl, tl + U(xl)] , and 
the latter is newly generated during [tl + U(xl), tl+1] . Sup-
pose the minimum energy routing is adopted during [tl, tl+1] , 
based on Lemma 2, the total energy consumption is:

When U(�l) = �lU(xl) , the total energy consumption during 
[tl + U(xl), tl+1] is minimized, which concludes the proof.  
 ◻

Proof of Proposition 1

Proof The proofs of Relations 2 and 3 are apparent. After 
we solve problem (MIN-E), eil = �ilU(xl) + �ilU(�l) can be 
easily obtained. Here, we focus on Relation 1. We assume 
that the minimum energy routing during [tl, tl+1] is unique 
(the proof of non-unique situation is similar). To prove the 
proposition, we only need to prove that the total energy con-
sumption 

∑
i∈N eil is minimal.

∑

i∈N

�i[g
s
i
(xl)U(xl) + giU(�l)]

=

∑

i∈N

�ig
s
i
(xl)U(xl) +

∑

i∈N

�igiU(�l)

=

∑

i∈Nl

�igiU(xl) +
∑

i∈N

�igiU(�l)

≥ ∑

i∈Nl

�igiU(xl) +
∑

i∈N

�igi�lU(xl)

Based on Lemma 2, we can derive 
∑

i∈N �i =
∑

i∈N �igi 
and

Then, we have:

where 
∑

i∈N �ilU(xl) is the minimum energy consumption 
during [tl, tl + U(xl)] and the successive two polynomi-
als together represent the minimum energy routing during 
[tl + U(xl), tl+1] , which concludes the proof.   ◻

Proof of theorem 3

The proof is based on the following lemmas.

Lemma 3 A feasible solution of problem (LP-T) is also a 
feasible solution of problem (RLX).

Proof Suppose P is a feasible solution of problem (LP-T) 
that consists of U(xl) and U(�l) . Since energy consumption 
results �i , �il and �il are all obtained by solving problems 
(MIN-B) and (MIN-E), and data routing constraints Eqs. 
(11)–(15) are naturally satisfied by P. Let the charger travel 
a single TSP path (with each sensor visited once) and con-
straint Eq. (18) is equivalent to constraint Eq. (16). There-
fore, constraints Eqs. (10)–(16) are all satisfied by solution 
P. Thus P is a feasible solution to problem (RLX), which 
concludes the proof.   ◻

Lemma 4 In terms of problem (RLX), as long as the total 
sojourn durations 

∑
l∈N U(xl) and 

∑
l∈N U(�l) at each sen-

sor’s location remains the same, the network lifetime will 
remain unchanged regardless of the charger’s travel path.

Proof Since the energy constraint Eq.  (9) is relaxed to 
Eq. (16) in problem (RLX), the above lemma can be eas-
ily proved by analyzing sensor’s energy profiles at each 

(23)
∑

i∈N

�il�lU(xl) =
∑

i∈Nl

�igiU(xl) +
∑

i∈N

�igi�lU(xl)

(24)

∑

i∈N

eil

=

∑

i∈N

�ilU(xl) +
∑

i∈N

�il�lU(xl) +
∑

i∈N

[U(�l) − �lU(xl)]�i

=

∑

i∈N

�ilU(xl) +
∑

i∈Nl

�igiU(xl) +
∑

i∈N

�igi�lU(xl)

+

∑

i∈N

[U(�l) − �lU(xl)]�igi

=

∑

i∈N

�ilU(xl) +
∑

i∈Nl

�igiU(xl) +
∑

i∈N

�igiU(�l)
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location, which only relates to the duration spent at sojourn/
virtual points. We omit the proof here to conserve space.  
 ◻

Lemma 5 Suppose P∗ is an optimal solution of problem 
(RLX), which consists of �∗

il
 , U∗

(xl) , �∗

il
 , U∗

(�l) , �∗i  , H
∗

i
 , �∗

i
 , T∗

0
 

and the maximum network lifetime

We can always construct a solution of problem (LP-T) with 
the network lifetime T � ≥ T∗.

Proof Based on Lemma 4, we can regulate the charger’s 
travel path to a single TSP path ( L = N ), and then problem 
(RLX) can be solved by CPLEX. The resulted solution is 
denoted by P∗.

Next, we construct a solution P as follows: we keep the 
charger’s travel path, sojourn and travel durations unchanged 
while data routing is altered to the minimum energy rout-
ing. Specifically, P consists of �il , U∗

(xl) , �il , U∗

(�l) , �i , Hi , 
�i , T0 and T  (note that T = T∗ ). Suppose the total energy 
consumption of solution P∗ and P during the operational 
interval are �∗ and � , respectively. To prove Lemma 5, we 
need to prove: (i) �∗ ≥ � ; (ii) T∗

0
≥ T0 ; (iii) For P∗ , Eq. (10) 

reaches equality.

 (i) Based on the definition of �∗ and � , we have: 

 where 

 and 

 Solution P adopts the minimum energy rout-
ing during the whole network lifetime. There-
fore, for any l ∈ L , we have 

∑
i∈N �il ≤ ∑

i∈N �∗
il
 , ∑

i∈N �il ≤ ∑
i∈N �∗

il
 and 

∑
i∈N �i ≤ ∑

i∈N �∗
i
 . Thus, 

we have 

T∗

=

∑

l∈N

[U∗

(xl) + U∗

(�l)].

�∗

=

∑

i∈N

∑

l∈N

e∗
il

and � =

∑

i∈N

∑

l∈N

eil

e∗
il
= (�∗

il
+ �∗

il
�l)U

∗

(xl) + [U∗

(�l) − �lU
∗

(xl)]�
∗

i

eil = (�il + �il�l)U
∗

(xl) + [U∗

(�l) − �lU
∗

(xl)]�i

�∗

− � =

∑

l∈N

{(∑

i∈N

�∗
il
−

∑

i∈N

�il

)
U∗

(xl)

+

(∑

i∈N

�∗

il
−

∑

i∈N

�il

)
�lU

∗

(xl)

+

(∑

i∈N

�∗
i
−

∑

i∈N

�i

)
[U∗

(�l) − �lU
∗

(xl)]} ≥ 0

 (ii) Based on energy conservation, we have: 

 and 

 Let Eq. (25) minus Eq. (26), then we can obtain 

 The charging rate during the initial time �0 is 
larger than the total energy consumption rate, i.e., 
𝜛0 − Ne0 > 0 holds (otherwise, sensor batteries may 
deplete before the beginning of the operational inter-
val T0 ). Thus we obtain 

∑
i∈N �∗

i
≥ ∑

i∈N �i . Based on 
T0 = tTL +

∑
i∈N �i , we can derive T∗

0
≥ T0.

 (iii) This can be explained intuitively. Suppose the equal-
ity is not reached, which means that part of the total 
energy E is unallocated. Then, we can always find 
a method to reallocate the unallocated energy and 
obtain a larger T, which contradicts the fact that T∗ is 
the maximum network lifetime. Thus we have: 

The above equation is based on the fact that we are in full 
charge of energy allocation of the sensor network. To prove 
Lemma 5, we first need to prove that P is a feasible solution 
of problem (LP-T). Since Hi is an intermediate parameter 
that can be removed by reformulation and U∗

(�l) ≥ �lU
∗

(xl) 
holds, we only need to prove that Eq. (10) is satisfied by P . 
Based on (i) and (ii), we can derive:

Thus P is feasible to problem (LP-T). The above equation 
also shows that a part of energy is unallocated in solution P . 
Based on (iii), we can always construct a solution of prob-
lem (LP-T) with longer network lifetime T � ≥ T = T∗ , which 
concludes the proof.   ◻

Finally, we prove Theorem 3.

Proof Suppose P∗ is an optimal solution of problem (RLX) 
with the maximum network lifetime T∗ . Based on Lemma 5, 
we can always construct a solution of problem (LP-T), e.g., 
P , with a network lifetime T ≥ T∗ . Meanwhile, based on 

(25)�∗

+ Ne0T
∗

0
= Nh0 +�0

∑

i∈N

�∗
i
+�

∑

i∈N

U∗

(xi)

(26)� + Ne0T0 = Nh0 +�0

∑

i∈N

�i +�
∑

i∈N

U∗

(xi)

(�0 − Ne0)

(∑

i∈N

�∗
i
−

∑

i∈N

�i

)
= �∗

− � ≥ 0

Nh0 +�0

∑

i∈N

�∗
i
+�

∑

l∈N

U∗

(xl) = E

Nh0 +�0

∑

i∈N

�i +�
∑

l∈N

U∗

(xl) = � + Ne0T0

≤ �∗

+ Ne0T
∗

0
= Nh0 +�0

∑

i∈N

�∗
i
+�

∑

l∈N

U∗

(xl) = E
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Lemma 3, solution P is also feasible to problem (RLX). 
And the maximum network lifetime of problem (RLX) is 
T∗ . Hence, solution P is also the optimal solution of problem 
(RLX) with the network lifetime T = T∗ , which concludes 
the proof.   ◻

Proof of Theorem 4

Proof As to W = 1 , problem (LP-W) equals to problem 
(LP-T). Here, we emphasize on the W > 1 situation. Let 
Uw

(xl) = WU(xl) and Uw
(�l) = WU(�l) , then the objective 

function of problem (LP-W) becomes

And constraint Eq. (19) is converted to:

where

Similarly, constraint Eq. (20) is converted to:

Then, based on the new objective function Eq. (27) and 
constraints Eqs. (28), (29), problem (LP-W) can be equiva-
lently transformed to problem (LP-T), which concludes the 
proof.   ◻
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