
Computer Communications 194 (2022) 301–310

C
f
P

A

K
H
E
C
C
A

1

n
2
a
2
c
n
c
s
a
c
a

S
i
C
c
a

h
R
A
0

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

hameleon: A Self-adaptive cache strategy under the ever-changing access
requency in edge network
engmiao Li a, Yuchao Zhang a,∗, Wendong Wang a,∗, Weiliang Meng b, Yi Zheng b, Ke Xu c,

Zhili Zhang d

a State key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
b ChuangCache company, Beijing, China
c Tsinghua University, Beijing, China
d University of Minnesota, Minneapolis, United States of America

R T I C L E I N F O

eywords:
it rate
dge caching
ache admission
ache eviction
ccess frequency

A B S T R A C T

In recent years, with the maturity of 5G and Internet of Things technologies, the number of mobile applications
and the amount of data access have increased explosively. However, the frequency of these accesses varies
considerably at different times of the day, requiring different caching strategies in those limited-capacity edge
servers. Existing caching strategies perform well when the access frequency is stable. However, they ignore the
time-varying characteristics of user access frequency in different periods, resulting in a low hit rate in ever-
changing frequency scenarios. To improve the hit rate in such scenarios, we propose a cache replacement policy
called Chameleon, which consists of two components, AutoFre, and Crates. AutoFre is an admission algorithm
that predicts the future access frequency category and calculates the admission thresholds based on the
prediction result. While Crates is an eviction algorithm, it selects the contents evicted by designing a customized
principal component analysis algorithm. We conduct a series of experiments with real application traces from
ChuangCache. The trace has 9,839,213 user accesses in 48 h. The results demonstrate that Chameleon reaches
about 98% in caching hit rate and outperforms SecondHit-Crates algorithm about 8% in frequency-changing
edge networks.
. Introduction

In recent years, with the maturity of 5G and Internet of Things tech-
ologies, mobile users are growing explosively. According to reports [1,
], nearly 300 million mobile applications will be downloaded by 2023,
nd the number of global mobile subscribers will reach 5.7 billion by
023 from 5.31 billion in 2021, which introduces high requirements for
ontent storage. To reduce the burden on cloud data centers and CDN
etworks, edge storage servers closer to users are widely deployed to
ache popular content and provide a higher quality of service (QoS) by
hortening access latency. However, storage resources on edge servers
re limited compared with CDN servers. Therefore, the research on the
ache replacement strategy of edge servers is critical to edge computing
nd storage areas.

Many studies have improved caching performance on edge servers.
uch as LRU, LFU [3,4], or their simple variants [5] are easy to be
mplemented and have been widely used. Akamai [6] implemented the
ache-on-second-hit (SecondHit) [7] rule algorithm, which caches the
ontent only when it is accessed twice. However, the total number of
ccesses received by the edge server in consecutive periods is variable

∗ Corresponding authors.
E-mail addresses: yczhang@bupt.edu.cn (Y. Zhang), wdwang@bupt.edu.cn (W. Wang).

due to the different user preferences for application usage, which is
called time-varying. Although these works increase the hit rate on edge
servers during stable frequency access, they ignore the time-varying
characteristics of user access frequency in different periods.

Considering the mentioned conditions, we deeply analyze the real
traces from ChuangCache [8] in China and find an essential observation
(see Section 3) that is the user and content accessed has different con-
centrations at different frequencies periods. This observation provides
a new perspective to review this caching problem, from the perspective
of user and content concentrations. Therefore, this paper is mainly
committed to designing the caching replacement algorithm utilizing the
user and content concentration to improve the hit rate on edge servers
in the ever-changing access frequency scenario.

To address this problem, we firstly predict the frequency category
in the future by Decision Tree based on the content concentration
information. Then we combine the prediction result and historical hit
rate to design the self-adaptive admission threshold for admitting the
access content or not. When admitting cache the content requested,
we adopt the principal component analysis algorithm to select the
ttps://doi.org/10.1016/j.comcom.2022.07.036
eceived 17 March 2022; Received in revised form 13 June 2022; Accepted 20 Jul
vailable online 29 July 2022
140-3664/© 2022 Elsevier B.V. All rights reserved.
y 2022

https://doi.org/10.1016/j.comcom.2022.07.036
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2022.07.036&domain=pdf
mailto:yczhang@bupt.edu.cn
mailto:wdwang@bupt.edu.cn
https://doi.org/10.1016/j.comcom.2022.07.036


P. Li, Y. Zhang, W. Wang et al. Computer Communications 194 (2022) 301–310

o
c

i
a
a
p
a
S

2

n
f
t
t
f

2

t
n
e
r
s
o
i
w
a
w
a
a
A
f
s

R

2

f
c
F
w

eviction contents and remove them. On this basis, we finally propose a
popular content protection mechanism to prevent the popular content
cached from being removed. Through a series of experiments with
different cache sizes and actual application data with two days of
about 9,839,213 access frequency from ChuangCache in China, we
demonstrate that Chameleon reaches about 98% in caching hit rate and
utperforms the SecondHit-Crates algorithm by about 8%. The main
ontributions of this paper are listed as follows:

• We analyze real traces and find that the user and content con-
centrations change correspondingly with access frequency. It is
a new perspective to address the low hit rate problem in the
ever-changing frequency scenarios.

• We propose a self-adaptive cache replacement policy Chameleon
for different access frequencies, which uses the Decision Tree
algorithm to predict the range of future access frequencies. Then
we design corresponding admission and eviction policies based on
the prediction results and features above.

• We conduct a series of experiments using industry data and
demonstrate the efficiency of Chameleon.

The remainder of the paper is organized as follows. Next section, we
ntroduce the related work about replacement strategies for admission
nd eviction. In Section 3, we deeply analyze the real traces and find
n essential observation. In Section 4, the design of architecture is
resented. Section 5 conducts experiments with a detailed introduction
nd analysis of the results. And our conclusions are presented in
ection 6.

. Related work

The explosive growth of Internet data and the emergence of new
etworks, such as edge computing, IoT, and 5G network, have put
orward higher requirements for caching strategies. There are two
ypical analyses of caching strategies. One focuses on content admission
o decide whether to cache content or not. The other caching strategy
ocuses on content eviction to decide which content to evict.

.1. Admission policy

Only a small amount of content is stored on the edge servers because
heir edge storage resources are limited. Researchers recognize that
ot all content is the same in terms of access frequency, recency, size,
tc., which makes it necessary to design an Admission Policy in cache
eplacement. Akamai [6] counted the number of web file accesses in a
erver cluster over two days and found that of the total 400 million
r so files, 74% were accessed only once. Based on this feature, it
mplemented the Cache-on-second-hit (SecondHit) [7] rule algorithm,
hich caches the content only when it is accessed twice. TinyLFU [9],
cache admission policy also based on access frequency, determines
hether the content is cached in edge servers by the freshness of the
ccessed content. Edge server tends to store smaller content rather than
bigger one so that it can cache more content. Daniel et al. proposed
daptSize [10] based a novel Markov cache model to adjust a threshold

or the size of admitted objects. Combining these factors (frequency,
ize, and recency), RL-Cache proposed a novel algorithm RL-Cache that

adopts model-free reinforcement learning to decide whether or not to
cache an accessed object in CDNs. SecondHit, AdaptSize, TinyLFU and

L-Cache have improved the hit rate significantly.

.2. Eviction policy

Many traditional eviction algorithms have been proposed in dif-
erent scenarios, such as First Input First Output (FIFO), Least Re-
ently Used (LRU), Least Frequently Used (LFU), and Greedy-Dual-Size-
requency (GDSF) [3,4,11,12]. These traditional caching algorithms

ith low complexity are easily implemented and have been widely

302
Fig. 1. Access frequency in every hour.

used. The most commonly deployed caching replacement algorithms by
some CDN providers, such as LRU, LFU, or their simple variants [5], are
simple but do not explicitly consider the future popularity of content
when making caching decisions.

In the studies of eviction policies, researchers have proposed many
solutions from different perspectives [13–18], such as location, size,
and new scenarios. These studies are mainly based on content popu-
larity to design. Paper [19] focused on caching in CDNs and proposed
a new approach called LRB that uses machine learning to approximate
the Belady MIN (oracle) algorithm. For better adaptation to the time-
varying popularity patterns, a Forecast-Based cache replacement policy
has been proposed for mobile video streaming [20]. In recent years,
there has been a rapid increase in short video traffic about CDN, [21]
presented AutoSight. It is a distributed edge caching system for short
video networks, which consists of two main components a predictor
(CoStore) and a caching engine (Viewfinder). In addition, the forecast-
ing popularity [22–27] of online content has been extensively studied
to provide technical support for caching.

Although these admission or eviction policies can increase the hit
rate on edge servers, they ignore the access of variability frequency
affects the caching performance. The reasons that make them inefficient
in improving the hit rate of edge servers will be detailedly described in
Section 3.

3. Motivation

In this section, we firstly find that the variability frequency feature
leads to some challenges for improving the hit rate of edge servers by
analyzing the real trace from ChuangCache in China in Section 3.1.
Then we discuss possible solutions from new perspectives to address
this problem in Section 3.2.

3.1. Content access frequency is time-varying

Due to different user preferences, edge servers receive the frequency
of content accessed changeably at different times. Fig. 1 illustrates the
total number of accesses during one day from ChuangCache in China. It
is worth noting that all the data analyzed in this paper comes from the
access log within 24 h of an application in ChuangCache. The average
hourly user access frequency is 192,772 per hour, and the average
number amount of access content accessed hourly is 32,635 per hour. In
Fig. 1, it is easy to find a variation in frequency accessed with different
hours. For example, the frequency of content accessed is 416,468
during the 22nd hour. However, the frequency of content accessed is
342,634 during the 21st hour, as for the 23rd hours, the frequency is
341,468. In general, the access frequency varies significantly per hour.
For example, the access frequency from 21st to 23rd hours increased
33 times compared to the 4th–6th hours. The total number of content
access frequency is time-varying and leads to a low hit rate, which is
due to two reasons as follows.



P. Li, Y. Zhang, W. Wang et al. Computer Communications 194 (2022) 301–310

e
a
i
f
p
b
p
t
s

4

t
c
S
t
S
m
c

4

n
c
o
s
r

Fig. 2. The access frequency of contents in different period.

• Admission: thresholds setting in different frequency accessed
Statistically [6], edge storage servers have large requests during
periods, and about 74% of the content is accessed only once.
The researchers believe that not having these contents stored
improves the hit rate. Some researchers have proposed SecondHit,
which allows the accessed content into the cache only on the
second access time within a period. However, the cache hit rate
is not optimized all the time by admitting the content accessed
with second access and may sometimes be reduced. For example,
two lists 𝑙1 = {𝐴𝐵𝐴𝐶𝐵𝐷𝐸𝐹𝐴𝐶} and 𝑙2 = {𝐴𝐵𝐶𝐷𝐶𝐷𝐸𝐹 } have
the same contents and different access frequencies. The hit rates
of the two lists with different admission thresholds for the same
eviction algorithm (LRU) are calculated separately. The hit rate
by first access (all) admission and SecondHit for list 𝑙1 is 3/10 and
1/2, and list 𝑙2 are 1/2 and 1/4, respectively. When the second
access times as admission thresholds, the hit rate is higher than
the first one in list 𝑙1 and the opposite in list 𝑙2. Therefore, we can
obtain a viewpoint that using a fixed admission threshold at the
different frequencies accessed may reduce the hit rate.

• Eviction: popular content prediction at different frequency
accessed
It is not difficult to understand that the greater the differences
between the access frequency for different contents, the easier it is
to select content as popular ones. What is particularly noteworthy
here is that the differences between the frequency of accesses
for different contents are practically indistinguishable in some
periods. In Fig. 2, the T1 (see red line) and T2 (see black line) re-
spectively present the access frequency from the top 400 contents
during hour range 1–8 and other ranges.
We can find that the access frequency is 2 for nearly 50 contents
after Id 50 in T1, which lead difficult to select content as future
popular content in the same access frequency. However, the dif-
ference between the access frequencies of different contents in T2
is more evident compared to T1. It indicates that popular contents
are difficult to predict in some periods (like T1) than in others.

Based on the above analysis, we get two reasons that the hit rate
needs to be improved in the ever-changing frequency scenario. To im-
prove the hit rate, we deeply analyze the real traces from ChuangCache
and find new observations about the concentration of content and user
accessed. Therefore, the next subsection uncovers the potential of solv-
ing the above problem by analyzing the concentration characteristics
in real traces.

3.2. Concentration varies with access frequency

It is not difficult to imagine that the hit rate is likely to drop when
requesting more types of content because of the limited storage space.
In addition, the access frequency is partly determined by the number
of users online. Therefore, based on these two viewpoints, we analyze
303
the concentration of contents and users and find the following two
perspectives to solve the problem introduced in Section 3.1.

• Admission: content concentration.
Although access frequency is variable over successive periods,
the same access frequency exists under different periods. Under
the same total access frequency, it is easy to believe that a
substantial variation in access content frequency leads to a higher
hit rate than a tiny difference, whether in admission or eviction
algorithms. As a result, using access frequency alone as the basis
for admission threshold with variation is insufficient. To fully
capture the features of different periods, we illustrate the real
access log information from one day in Fig. 3. The red line is the
standard deviation of the content requested number. In Fig. 3,
we can see that the standard deviation of the accessed content
(which we call content concentration) varies even for the same
access frequency in consecutive periods. Therefore, the access
frequency and content concentration are combined to refine the
characteristics of extracting different access times in this paper.
It provides information to support the setting of access thresholds
under different access frequencies.

• Eviction: user concentration.
The number of access frequencies is inextricably linked with
users. More specially, the number of specific user groups is tiny
but with a high access frequency [28]. We assume that these users
play an important role in cache replacement for improving hit
rates. Therefore, we capture the characteristics of specific user
groups by analyzing the real traces shown in Fig. 3. The red line is
the percentage of the user number of specific user groups among
all users. As seen in red, specific user groups are distributed
differently throughout the day. Their accesses to content are more
concentrated than other user groups during hours 1–6, which is
attributed to their higher average number of content accesses [28]
than during other periods. To sum up, specific user group play
an essential role in those low-frequency periods than the general
users. The contents accessed by this specific user group have a
much higher possibility to become popular content.

Based on the above findings, we can provide new perspectives to
xamine the above-caching problems by predicting frequency to design
self-adaptive admission threshold and adopting specific user groups

nformation to capture popular contents as eviction policy in the low-
requency period. However, there are two challenges: (a) How to
redict the future frequency and design a self-adaptive admission policy
ased on the prediction result, (b) How to capture the relationship and
opular content with specific user groups, and improve hit rate based on
he relationship on edge servers. To address the challenges, we propose
olutions described in detail in the next section.

. System models and design

In this section, we firstly present the caching background in Sec-
ion 4.1. Then we present the admission algorithm AutoFre by de-
ision tree technology to predict the future frequency category in
ection 4.2. Next, we adopt the principal component analysis algorithm
o obtain the relationship between popular contents and core users in
ection 4.3.1. On this basis, we propose a popular contents protection
echanism in Section 4.3.2. Finally, we introduce the overall design of

aching strategy of Chameleon in Section 4.4.

.1. Background

The framework overview is shown in Fig. 4, which mainly includes
etwork infrastructures, the flow of access contents by users, and a
aching replacement strategy. The network infrastructure is made up
f clients, edge servers, CDNs, and Cloud. In this architecture, content
tatuses of users’ accesses include: hit, CDN hit, and miss. When users
equest content, it is searched in edge servers, firstly. If the content



P. Li, Y. Zhang, W. Wang et al. Computer Communications 194 (2022) 301–310

e
t

Fig. 3. The access information of Special user groups and content. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Fig. 4. The framework overview.
xists, we call its status hit, and it is sent to the user ( 1⃝ 2⃝ 3⃝). If not,
he content is found in CDNs as CDN hit ( 1⃝ 2⃝ 4⃝ 7⃝ 8⃝ 3⃝). Else, the

access content is only stored in the remote Cloud, and the statue is
miss ( 1⃝ 2⃝ 4⃝ 5⃝ 6⃝ 7⃝ 8⃝ 3⃝).

In this paper, we propose a caching strategy, Chameleon, which
includes two parts AutoFre and Crates. The system architecture of
Chameleon is shown in Fig. 5, which shows two cases when receiving
a request. (1) When the edge server finds the requested content is
requested missing, AutoFre makes the admission decision. If the missing
content admits in caching, Crates selects the eviction contents, and then
the edge server responds to the missing content after fetching it from
the cloud. Otherwise, the missing content is responded to the user. (2)
When the content requested is hit, the edge server responds to users
directly. The following will introduce AutoFre and Crates, respectively.

4.2. Admission algorithm: AutoFre

The first challenge, to predict the future access frequency and design
a self-adaptive admission policy based on the prediction result, is
divided into two parts: (1) predicting future access frequency category
304
by adopting a Decision Tree [29], and (2) defining a dynamic adaptive
admission threshold based on the prediction result and historical hit
rate, which will be detailed below Section 4.2.1 and Section 4.2.2,
respectively.

4.2.1. Decision Tree
Because precisely predicting future access frequency is a tough un-

dertaking, we anticipate the future access frequency will fall into four
categories: high frequency and concentrated access ℎ𝑐, high frequency
and discrete access ℎ𝑑, low frequency and concentrated access 𝑙𝑐, and
low frequency and discrete access 𝑙𝑑 to replace the precise access
frequency to simplify it. Since the Decision Tree C4.5 algorithm can
generate predictions quickly [29] and is suitable for making caching
decisions, it is used in this paper to predict future access frequency
categories. As a result, a decision tree technique is used in this paper
to forecast future access categories.

• Capturing the attributes.
Based on the study in the preceding Section 3.2, we created a
decision tree model using the access frequency and access content



P. Li, Y. Zhang, W. Wang et al. Computer Communications 194 (2022) 301–310

o

Fig. 5. The system architecture of Chameleon.
4

r
d
i
s

Algorithm 1 AutoFre
input: Training feature set:𝐷; Historical frequency of access content:

𝑟𝑛𝑐𝑛𝑒𝑤 ;
utput: Admission Decision 𝑎
1: function Decision Tree(𝐷)
2: Create Tree 𝐶𝑇
3: while 𝐷 ≠ ∅ do
4: Compute the entropy of 𝐷 by equation (1)
5: for Iterate over all the attribute 𝐴 do
6: Compute the entropy of 𝐴 by equation (3)
7: Compute the information gain by equation (4)
8: Compute 𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝐷) of attribute 𝐴 by equation (5).
9: Compute 𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐴) by equation (6)

10: end for
11: Find the node 𝑛 with the max 𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐴) by equation (7)
12: Pop node 𝑛 in 𝐷
13: 𝐶𝑇 add the leaf node 𝑛
14: end while
15: end function
16:
17: function Admission Thresholds(𝑟𝑛𝑐𝑛𝑒𝑤 )
18: Predict the future access frequency category 𝑓𝑡 by 𝐶𝑇
19: Compute the admission thresholds 𝑟𝑡𝑖 by equation (8)
20: if 𝑟𝑛𝑐𝑛𝑒𝑤 > 𝑟𝑡𝑖 then
21: 𝑎 = 1
22: else
23: 𝑎 = 0
24: end if
25: return 𝑎
26: end function

concentration obtained from the historical access information as
attribute values of training data. However, these two criteria
cannot predict future access frequency categories by adopting
these attribute values. Furthermore, we append the attributes
with a future access change trend attribute, which is the increase
or decrease in access frequency during two continue periods. 1,
−1, and 0 indicate the gradual increase, gradual reduction, and no
change, respectively. It provides guarantees for predicting future
access frequency categories. Therefore, the dataset for predicting
future access frequency categories includes three attributes, ac-
cess frequency, access content concentration, and trend, denoted
by 𝐷.

• Generation of the decision tree.
The main idea of the C4.5 algorithm is to build a decision tree by
classifying instances in the dataset and the information entropy
gain rate according to each attribute classification. The informa-
tion entropy of the original dataset 𝐼𝑛𝑓𝑜(𝐷) can be calculated by

𝐼𝑛𝑓𝑜(𝐷) = −
𝑀
∑

𝑖=1

|

|

𝐷𝐶𝑖
|

|

|𝐷|

𝑙𝑜𝑔
|𝐷𝑖|
|𝐷|

2 , (1)

where 𝐷 denotes a dataset composed of 𝑀 samples and 𝑊
category. 𝐷𝐶 (1 ≤ 𝑖 ≤ 𝑀) is the category sample set 𝐶 in the
𝑖 𝑖 s

305
dataset 𝐷. Let 𝑁 = |𝐷| denotes the samples number in the dataset
𝐷, |𝐷𝐶𝑖| denotes the samples number of the subset 𝐷𝐶𝑖 for the
category 𝐶𝑖. The information entropy 𝐼𝑛𝑓𝑜𝐴(𝐷) is computed by
the division of attribute 𝐴 category. Due to the continuous nature
of these attributes, we must discretize the access frequency and
access number concentration before computing 𝐼𝑛𝑓𝑜𝐴(𝐷). These
attributes are divided into subsets by mapping into a few discrete
data, and the formula is as follows:

𝑓 (𝐴) = ⌊𝐴∕10𝑘⌋ ∗ 10𝑘, (2)

where 𝑘 presents the magnitudes of 𝐴. Then 𝐼𝑛𝑓𝑜𝐴(𝐷) can be
obtained by

𝐼𝑛𝑓𝑜𝐴(𝐷) =
𝑉𝐴
∑

𝑗=1

|

|

|

𝐷𝑗
|

|

|

|𝐷|

∗ 𝐼𝑛𝑓𝑜(𝐷𝑗 ), (3)

where 𝑉𝐴 is the number of subsets by the mapping equation.

𝐷𝑗 (1 ≤ 𝑗 ≤ 𝑉𝐴) presents the 𝑗th partition subset, and
|

|

|

𝐷𝑗
|

|

|

|𝐷|

is the
proportion of the j𝑡ℎ partition. Information gain of attribute A is
the original information entropy minus the information entropy
of attribute A. It can be presented by Eq. (4). The larger the
value of information gains, the purer the division according to
that category is. And then, we calculate the split information
entropy of attribute 𝐴 by Eq. (5). Lastly, the information gain rate
𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐴) of the attribute 𝐴 by Eq. (6). The above processes
are repeated for all attributes until the final decision tree model
is generated, and the primary operations are shown in function
Decision Tree of Algorithm 1. A decision tree includes nodes
and leaf nodes. The nodes of this paper’s decision tree includes
three attributes: access frequency, access content concentration,
and trend. The leaf nodes present four predicted outcomes hd,
hc, ld, and lc. It means the decision tree is four-level in this
paper. Different values are formed based on the division of
attributes as described before and operations such as mapping.
One combination of these attribute values can be considered as
an input. We can use the input to generate the corresponding
prediction results (i.e., the categories of future access frequencies)
by a decision tree model.

𝐺𝑎𝑖𝑛(𝐴) = 𝐼𝑛𝑓𝑜(𝐷) − 𝐼𝑛𝑓𝑜𝐴(𝐷) (4)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝐷) = −
𝑉𝐴
∑

𝑗=1

|

|

|

𝐷𝑗
|

|

|

|𝐷|

∗ 𝑙𝑜𝑔
|
𝐷𝑗 |
|𝐷|

2 (5)

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐴) =
|𝐺𝑎𝑖𝑛(𝐴)|

|

|

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝐷)|
|

(6)

max
𝑖∈𝑁

𝑓 (𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐴𝑖)) (7)

.2.2. Admission threshold
Based on the steps and equations above, we obtain the prediction

esult of the future access frequency category 𝑓𝑡. It is essential for
esigning self-adaptive admission thresholds to consider not only the
nfluencing factors of access frequency and concentration but also the
ize of the storage space and hit rate conditions. If the storage surplus
ize is larger than the current access content size in a period, we



P. Li, Y. Zhang, W. Wang et al. Computer Communications 194 (2022) 301–310

q
t
v

4

u
b
S
t
t
s
b
p

4

u
d
k
p
i
a
c
w
t

𝑥

Algorithm 2 Crates
input: A new content 𝑐𝑛𝑒𝑤 is access, with size 𝑠𝑛𝑒𝑤; the surplus area

in dynamic cache: 𝑟𝑠; each contents size: 𝑠𝑖; Core users accesses
numbers sequence in time 𝑡: 𝑥𝑡1; whole users accesses numbers
sequence in time 𝑡: 𝑥𝑡2.

1: while 𝑟𝑠 < 𝑠𝑛𝑒𝑤 do
2: Calculate 𝑐𝑜𝑣(𝑥𝑡1, 𝑥

𝑡
2) by equation (12) and obtain 𝐸

3: Get 𝑐𝑖 by value 𝑣𝑡 from 𝐸 by equation (14)
4: 𝑟𝑠 = 𝑟𝑠 + 𝑠𝑖
5: remove 𝑐𝑖
6: end while
7: 𝑟𝑠 = 𝑟𝑠 − 𝑠𝑛𝑒𝑤
8: Storage 𝑐𝑛𝑒𝑤 in dynamic cache.

can assume that all access contents are necessary for caching. We
can assume that when the hit rate is close to 1 and more of the
access contents are hit, these contents may be valuable and must be
cached. Based on the above two assumptions, we design the formula
for calculating the access threshold as shown in Eq. (8). If 𝑠𝑡 is less
than 𝑆, 𝑟𝑡𝑖 is equal to 0. 𝑆 represents the size of the entire storage
space. 𝑠𝑡 is the total size of the access contents for the current period
by computing Eq. (10). When the current access content 𝑟𝑛𝑐𝑛𝑒𝑤 has a
history of being accessed more frequently than 𝑟𝑡𝑖, it is allowed to cache.
The admission decision process is shown in the function Admission
Thresholds of Algorithm 1.

𝑟𝑡𝑖 =

⎧

⎪

⎨

⎪

⎩

0 if 𝑆 ≥ 𝑠𝑡

[ 𝑒
𝑦−𝑒−𝑦
𝑒𝑦+𝑒−𝑦 ] otherwise

(8)

𝑦 = (1 − ℎ𝑡) ∗ 𝑓𝑡 (9)

𝑠𝑡 =
𝑚
∑

𝑖=1
𝑠𝑖 (10)

Combining the above two parts of predicting future access fre-
uency categories and self-adaptive admission thresholds, we obtain
he admission algorithm, named AutoFre, for access frequency-
ariability, as shown in algorithm 1.

.3. Eviction algorithm: Crates

Another challenge is how to capture the relationship between pop-
lar content and specific user groups, and to improve the hit rate
ased on the relationship in edge servers. Through analysis above in
ection 3.2, the specific user group with many features plays an impor-
ant part during the low-frequency period. In the eviction algorithm,
he principal component analysis determines the relationship between
pecific users and popular content, and the eviction content is chosen
ased on that relationship value in Section 4.3.1. On this basis, we
ropose a popular content protection mechanism in Section 4.3.2.

.3.1. Principal component analysis
To describe specific user groups clearly, we denote the users (whole

sers) with high access frequency and broader distribution on the time
imension as core users 𝑈 , and treat others as common users. It is well
nown that many users access the same content, which will become
opular. The popularity of the content is gauged by the number of
ts accesses. On this basis, the relationship between popular content
nd core users can transform into the relationship between the access
ontent number of core users and whole users, respectively. Therefore,
e measure the relationship between popular content and core users by

𝑡 𝑡 𝑡 𝑡
he content access number 𝑋 = [𝑥1, 𝑥2], where 𝑥1 is an m-dimension

306
vector of length 𝑚 as a sliding window from core users in time 𝑡, is
presented as

𝑥𝑡𝑖 = [𝑟𝑡−𝑚∗𝛥𝑡1 , 𝑟𝑡−(𝑚−1)∗𝛥𝑡2 ,… , 𝑟𝑡−𝛥𝑡𝑚 ], (11)

each term represents the total number of user accesses per unit of time
𝛥𝑡. 𝑥𝑡2 is the same structure as 𝑥𝑡1 and represents the access number
of whole users. We obtain the relationship between the access content
number of core users and whole users’ by

𝑐𝑜𝑣(𝑥𝑡1, 𝑥
𝑡
2) =

∑𝑛
𝑖=1 (𝑥

𝑡
1𝑖 − 𝑥̄𝑡1)(𝑥

𝑡
2𝑖 − 𝑥̄𝑡2)

𝑛
, (12)

where 𝑥̄𝑡1 and 𝑥̄𝑡2 are computed by

̄ 𝑡𝑖 =
∑𝑛

𝑖=1 𝑥
𝑡
𝑖

𝑛
. (13)

The eigenvector with the largest eigenvalue in 𝑐𝑜𝑣(𝑥𝑡1, 𝑥
𝑡
2) is the rela-

tionship value between the contents of core users and whole users.
The larger an element in eigenvector 𝐸𝑡 is the closer the relationship
between popular content of core users and whole users is. We choose
the immense value in the eigenvector 𝐸𝑡 as the relationship between
popular contents and core users in time 𝑡. Eviction content 𝑣𝑡 is the
lowest value of 𝐸 cached in the dynamic cache area. Suppose the total
size of evicting contents and the surplus area is smaller than the access
one. In that case, we choose the smallest one in the remaining contents
until the cache size of evicts is larger than the access content size. And
then we pop these contents finally. (Line 1–8 in algorithm 2)

𝑣𝑡 = 𝑓 (𝑚𝑖𝑛(𝐸)) (14)

4.3.2. Popular contents protection mechanism
We can solve the problem by getting the relationship between core

users and popular material to identify popular content. In addition, we
find that there is still a tiny amount of popular content in each period
that can easily be obtained by historical access frequency. To reduce
the computation, these easily obtained contents cannot be used as the
selected set for evicting contents. As a result, we suggest a strategy to
protect those popular contents.

The main idea of the mechanism is to divide cache resources into
dynamic and static cache areas dynamically. The existing intersection
in popular content sets between two continuous unit times can regard
as the future popular content. The dynamic cache area stores the access
contents in real-time. The static cache area stores the intersection of
popular contents without caching replacement. Since the intersection
changes over time, we dynamically adjust the size of the static cache
𝑆𝑡
𝑠 by

𝑆𝑡
𝑠 =

𝑘𝑡
∑

𝑖=1
𝑠𝑖𝑧𝑒(𝑞𝑡𝑖 ), (15)

where 𝑘𝑡 is the number of protection popular contents in time 𝑡−1 and
is calculated by Eq. (16). 𝑞𝑡𝑖 presents the 𝑖th popular content in time
𝑡 − 1, where 𝑞𝑡𝑖 is one of the protection popular content set 𝑞𝑡 can be
obtain in Eq. (17).

𝑘𝑡 = 𝑛𝑢𝑚(𝐻t−1 ∩𝐻t−2) ∗ 𝑎𝑡 (16)

𝑞𝑡 = 𝑇 𝑜𝑝𝑘𝑡 (𝐴𝑐𝑐𝑒𝑠𝑠(𝐻t−1 ∩𝐻t−2)) (17)

𝐻𝑡−1 and 𝐻𝑡−2 are popular content sets from two continuous unit times.
Due to the content of the request being time-varying, the dynamic

and static cache regions need to be automatically generated. So we
design a coefficient 𝑎𝑡 to implement it. It is generated based on hit rates
𝑟𝑡−1𝑠 and 𝑟𝑡−1𝑑 from dynamic and static cache areas. The coefficient 𝑎𝑡 is
calculated by

𝑎𝑡 =
𝑎𝑡−1 ∗ 𝑟𝑡−1𝑠

𝑡−1 𝑡 𝑡−1 𝑡−1
. (18)
𝑎 ∗ 𝑟𝑠 + (1 − 𝑎 ) ∗ 𝑟𝑑



P. Li, Y. Zhang, W. Wang et al. Computer Communications 194 (2022) 301–310

a
a
t
t

𝛿
f

5

s
6
2
a
r
a
t
a
h
g
t
m
e
7
f

5

e
p
c
t
O
C
t

In other words, when a cache region has a higher hit rate, more areas
are allocated to that region in the next update time. This approach can
dynamically provide an appropriate static cache size 𝑆𝑡

𝑠 between two
continuous unit times. Dynamic cache size 𝑆𝑡

𝑑 is the total size of the
cache minus the static cache size 𝑆𝑡

𝑠.
In the introduction above, we can gain a metric to measure the

content’s value by the relationship between popular content and core
users and propose a protection mechanism to ensure the hit rate for a
low access period. In other periods, we can choose the existing eviction
policy and combine the protection popular contents mechanism as our
eviction algorithm, which is called Crates and it is shown in algorithm
2. It is worth mentioning that, because the low-frequency access period
is variable, we determine if it is in the low-frequency access period by
predicting the access frequency category.

Algorithm 3 Chameleon
input: A new content 𝑐𝑛𝑒𝑤 is access, with size 𝑠𝑛𝑒𝑤, user id 𝑢𝑛𝑒𝑤 and

time 𝑡𝑛𝑒𝑤; 𝐶 contents {𝑐1, ..., 𝑐𝑖} are already stored in the cache area,
each size is 𝑠𝑖; Core users accesses numbers sequence 𝑥1 and wholes’
𝑥2 are cache.

1: if Size(historical traces)<Size(sliding window) then
2: caching replacement by LRU.
3: else
4: if Size(historical traces)=Size(sliding window) then
5: Calculate the static cache size by equation (15)
6: Calculate the intersection 𝑞𝑡 by equation (17)
7: cache 𝑞𝑡
8: end if
9: if 𝑐𝑛𝑒𝑤 NOT in 𝐶 then

10: 𝑎 = decision 𝑐𝑛𝑒𝑤 whether admission or not by algorithm 1
11: if 𝑎 = 1 then
12: remove eviction contents and caching 𝑐𝑛𝑒𝑤 by algorithm

2
13: end if
14: end if
15: end if
16: 𝑥𝑡−𝛿𝑡2 = 𝑥𝑡−𝛿𝑡2 + 1
17: if 𝑢𝑛𝑒𝑤 in 𝑈 then
18: 𝑥𝑡−𝛿𝑡1 = 𝑥𝑡−𝛿𝑡1 + 1
19: end if
20: if 𝑡𝑜𝑙𝑑 + 𝛿𝑡 = 𝑡𝑛𝑒𝑤 then
21: remove 𝑥𝑡−𝑚∗𝛿𝑡1
22: remove 𝑥𝑡−𝑚∗𝛿𝑡2
23: Calculate the static cache size by equation (15)
24: Calculate the intersection 𝑞𝑡 by equation (17)
25: cache 𝑞𝑡
26: end if

4.4. Overall design: Chameleon

By integrating the admission (AutoFre) and eviction (Crates) al-
gorithms, we obtain our cache replacement algorithm Chameleon. It
mainly includes four phases: Initialization, Admission Decision, Evic-
tion Decision, and Updating Information as follows:

• Initialization. When the length of access content information is
inconsistent with the sliding window size, the cache replacement
technique is LRU at first. When the size matches, we divided
storage resources into dynamic and static cache areas and cached
the intersection of popular contents between two continuous unit
times in the static cache area based on the protection mechanism
above. (Line 1–8 in algorithm 3)

• Admission Decision. With uninterrupted access, content statuses
are different. When the status is miss, the future frequency level
is gained. Based on the future access frequency predicted, the
307
algorithm 1 decides whether allow the access content or not to
cache. (Line 9–10 in algorithm 3)

• Eviction Decision. If the access content is admitted to the cache
storage, the eviction content is selected and removed by algorithm
2. (Line 11–13 in algorithm 3)

• Updating Information. Access information is updated, and the con-
tents and cache size of the static cache area through the sliding
window periodically. (Line 16–26 in algorithm 3)

5. Evaluation

In this section, we evaluate our approach Chameleon by real traces
from ChuangCache, show the results of applying Chameleon on them
versus the existing representative policies, and analyze the results.

5.1. Experiment setting

Algorithms:We compare with three algorithms including SecondHit-
LFU, SecondHit-LRU, and SecondHit-Crates.

• SecondHit-LFU : The admission policy is SecondHit, and the evic-
tion policy is LFU. LFU removes the content object which has been
cached for the smallest access frequency.

• SecondHit-LRU : The admission policy is SecondHit, and the evic-
tion policy is LRU, which removes the least accessed content in
the cache.

• SecondHit-Crates: The admission policy is SecondHit, and the evic-
tion policy is Crates.

DataSet: The traces are from ChuangCache in China with 9,839,213
ccesses in two days. Each trace item contains the timestamps,
nonymized user ID, content ID, server ID, access size, URL, et al. We
hen deploy and evaluate Chameleon by comparing it with representa-
ive algorithms.
Parameter Settings: The sliding window size was set to 1 min, and

𝑡 was 1 s. Each access content size was 1. The core users were obtained
rom the previous day’s traces in the same application.

.2. Performance comparison

We conduct a series of experiments with different cache sizes to
how the overall hit rate performance in Fig. 6. Fig. 6(a), 6(b), 6(c),
(d), and 6(e) show that hit rates of each hour with cache size 100,
00, 500, 800 and 1000. Fig. 6 presents the average hit rate of 4
lgorithms in different cache sizes. When cache size is small, the hit
ate of our algorithm (red line) has a similar performance in high
ccess frequency–time (such as the 17th and 22nd hour) but is superior
o other times compared to the baselines. In particular, in Figs. 6(a)
nd 6(b), the frequency during low-frequency access is significantly
igher than that during high-frequency periods. As the size of the cache
rows, so does the hit rate. With the enlargement of the cache size,
he performance of our algorithm becomes more prominent because
ore content can be cached in edge servers, so the hit rate increase as

xpected. The hit rate of our algorithm reaches about 98% during the
th hour in Fig. 6(e), and the improvement is nearly 8%. From these
igures, we can see that Chameleon exceeds the other three methods.

.3. Result analysis

Fig. 7(a), 7(b), 7(c), 7(d), and 7(e) show that replacement rate of
ach hour with cache size 100, 200, 500, 800 and 1000. Fig. 7(f)
resents the average of replacement rate from 4 algorithms in different
ache size. When the cache size is 100, the replacement rate is higher
han other cache sizes because the hit rate being lower than others.
ur algorithm’s replacement rate (red line) is nearly the SecondHit-
rates’s in some time, such as the 7th hour, but its hit rate is higher
han the SecondHit-Crates’s. That means, sometimes the SecondHit is



P. Li, Y. Zhang, W. Wang et al. Computer Communications 194 (2022) 301–310
Fig. 6. [Performance comparison] The hit rate in different cache size. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
t
–
a
W
W
K
e

D

c
i

A

F
C
j
6
2
t

not fit as admission to improve the hit rate. As the cache size grows,
the replacement rate of our algorithm gradually pulls away from the
second eviction algorithm. It demonstrates that our algorithm can
automatically adjust the cache access threshold as the hit rate and
cache size grows. As you can see from the above graph, our algorithm
increases access to some extent, but the overall hit rate is improved.

In summary, it is necessary to consider the time-varying character-
istics of access frequency in different periods to improve the cache hit
rate of edge servers in the cache replacement strategy.

6. Conclusion

To address the problem of low hit rate in ever-changing frequency
scenarios, we analyze the real trace from ChuangCache. Based on the
analysis, we propose a self-adaptive admission threshold in continue
time with various access frequencies, including the decision tree to
predict the access frequency category to support the admission policy.
Then, we adopt the principal component analysis algorithm to analyze
the relationship between popular content and core users for choosing
the eviction content. Lastly, we propose a popular contents protection
mechanism, which caches the popular contents from history in the
static cache area, and cache & evict contents in real-time by the
relationship between popular contents and core users in the surplus
area. Through a series of experiments using real application trace data,
we demonstrate that Chameleon reaches about 98% in caching hit rate
and outperforms the SecondHit-Crates by 8%.
308
CRediT authorship contribution statement

Pengmiao Li: Research algorithm development, System architec-
ure design, Analysis and/or interpretation of data, Validation, Writing
original draft, Writing – review & editing. Yuchao Zhang: Conception
nd design of study, Writing – review & editing, Funding acquisition.
endong Wang: Conceptualization, Supervision, Funding acquisition.
eiliang Meng: Acquisition of data. Yi Zheng: Acquisition of data.
e Xu: Writing – review & editing. Zhili Zhang: Writing – review &
diting.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

The work was supported in part by the National Natural Science
oundation of China (NSFC) under Grant 62172054, BUPT-
huangCache Joint Laboratoryunder B2020009, the Key Project of Bei-

ing Natural Science Foundation under M21030, the NSFC under Grant
2072047, and the National Key R&D Program of China under Grant
019YFB1802603. The work of Pengmiao Li was supported in part by
he BUPT Excellent Ph.D. Students Foundation under CX2019134.



P. Li, Y. Zhang, W. Wang et al. Computer Communications 194 (2022) 301–310

o

R

Fig. 7. [Result analysis] The replacement rate in different cache size. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)
eferences

[1] We Are Social& Hootsuite, 2022. https://datareportal.com/reports/digital-2022-
global-overview-report.

[2] Cisco, 2018. https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html.

[3] Nicola Blefari-Melazzi, Giuseppe Bianchi, Alberto Caponi, Andrea Detti, A gen-
eral, tractable and accurate model for a cascade of LRU caches, IEEE Commun.
Lett. 18 (5) (2014) 877–880, http://dx.doi.org/10.1109/LCOMM.2014.031414.
132727.

[4] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H. Noh, Sang Lyul Min,
Yookun Cho, Chong-Sang Kim, On the existence of a spectrum of policies
that subsumes the least recently used (LRU) and least frequently used (LFU)
policies, in: Daniel A. Menascé, Carey Williamson (Eds.), Proceedings of the
1999 ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems, Atlanta, Georgia, USA, May 1-4, 1999, ACM, 1999, pp.
134–143, http://dx.doi.org/10.1145/301453.301487.

[5] Martin F. Arlitt, Ludmila Cherkasova, John Dilley, Rich Friedrich, Tai Jin,
Evaluating content management techniques for Web proxy caches, SIGMETRICS
Perform. Eval. Rev. 27 (4) (2000) 3–11, http://dx.doi.org/10.1145/346000.
346003.

[6] Akamai, 2022. https://www.akamai.com/.
[7] Mac Dowell Maggs, Ramesh K. Sitaraman, Algorithmic nuggets in content

delivery, ACM SIGCOMM (2015).
[8] ChuangCache, 2022. https://www.chuangcache.com/.
[9] Gil Einziger, Roy Friedman, Ben Manes, TinyLFU: A highly efficient cache

admission policy, ACM Trans. Storage 13 (4) (2017) 35:1–35:31, http://dx.doi.
org/10.1145/3149371.

[10] Daniel S. Berger, Ramesh K. Sitaraman, Mor Harchol-Balter, AdaptSize: Or-
chestrating the hot object memory cache in a content delivery network, in:
Aditya Akella, Jon Howell (Eds.), 14th USENIX Symposium on Networked
309
Systems Design and Implementation, NSDI 2017, Boston, MA, USA, March 27-
29, 2017, USENIX Association, 2017, pp. 483–498, URL https://www.usenix.org/
conference/nsdi17/technical-sessions/presentation/berger.

[11] Nicaise Choungmo Fofack, Philippe Nain, Giovanni Neglia, Don Towsley, Analysis
of TTL-based cache networks, in: Bruno Gaujal, Alain Jean-Marie, Eduard A.
Jorswieck, Alexandre Seuret (Eds.), 6th International ICST Conference on Per-
formance Evaluation Methodologies and Tools, Cargese, Corsica, France, October
9-12, 2012, ICST/IEEE, 2012, pp. 1–10, http://dx.doi.org/10.4108/valuetools.
2012.250250.

[12] L. Cherkasova, Improving WWW proxies performance with greedy-dual-size-
frequency caching policy, Hewlett-Packard Laboratories (1998).

[13] Suoheng Li, Jie Xu, Mihaela van der Schaar, Weiping Li, Popularity-driven
content caching, in: 35th Annual IEEE International Conference on Computer
Communications, INFOCOM 2016, San Francisco, CA, USA, April 10-14, 2016,
IEEE, 2016, pp. 1–9, http://dx.doi.org/10.1109/INFOCOM.2016.7524381.

[14] Qiang Li, Wennian Shi, Yong Xiao, Xiaohu Ge, Ashish Pandharipande, Content
size-aware edge caching: A size-weighted popularity-based approach, in: IEEE
Global Communications Conference, GLOBECOM 2018, Abu Dhabi, United Arab
Emirates, December 9-13, 2018, IEEE, 2018, pp. 206–212, http://dx.doi.org/10.
1109/GLOCOM.2018.8647794.

[15] Peng Yang, Ning Zhang, Shan Zhang, Li Yu, Junshan Zhang, Xuemin Shen,
Content popularity prediction towards location-aware mobile edge caching, IEEE
Trans. Multim. 21 (4) (2019) 915–929, http://dx.doi.org/10.1109/TMM.2018.
2870521.

[16] Tongyu Zong, Chen Li, Yuanyuan Lei, Guangyu Li, Houwei Cao, Yong Liu,
Cocktail edge caching: Ride dynamic trends of content popularity with ensemble
learning, in: 40th IEEE Conference on Computer Communications, INFOCOM
2021, Vancouver, BC, Canada, May 10-13, 2021, IEEE, 2021, pp. 1–10, http:
//dx.doi.org/10.1109/INFOCOM42981.2021.9488910.

[17] Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Martinez, Steven Lyons, Jason
Liu, Raju Rangaswami, Ming Zhao, Giri Narasimhan, Driving cache replacement
with ML-based lecar, in: Ashvin Goel, Nisha Talagala (Eds.), 10th USENIX

https://datareportal.com/reports/digital-2022-global-overview-report
https://datareportal.com/reports/digital-2022-global-overview-report
https://datareportal.com/reports/digital-2022-global-overview-report
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
http://dx.doi.org/10.1109/LCOMM.2014.031414.132727
http://dx.doi.org/10.1109/LCOMM.2014.031414.132727
http://dx.doi.org/10.1109/LCOMM.2014.031414.132727
http://dx.doi.org/10.1145/301453.301487
http://dx.doi.org/10.1145/346000.346003
http://dx.doi.org/10.1145/346000.346003
http://dx.doi.org/10.1145/346000.346003
https://www.akamai.com/
http://refhub.elsevier.com/S0140-3664(22)00284-5/sb7
http://refhub.elsevier.com/S0140-3664(22)00284-5/sb7
http://refhub.elsevier.com/S0140-3664(22)00284-5/sb7
https://www.chuangcache.com/
http://dx.doi.org/10.1145/3149371
http://dx.doi.org/10.1145/3149371
http://dx.doi.org/10.1145/3149371
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/berger
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/berger
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/berger
http://dx.doi.org/10.4108/valuetools.2012.250250
http://dx.doi.org/10.4108/valuetools.2012.250250
http://dx.doi.org/10.4108/valuetools.2012.250250
http://refhub.elsevier.com/S0140-3664(22)00284-5/sb12
http://refhub.elsevier.com/S0140-3664(22)00284-5/sb12
http://refhub.elsevier.com/S0140-3664(22)00284-5/sb12
http://dx.doi.org/10.1109/INFOCOM.2016.7524381
http://dx.doi.org/10.1109/GLOCOM.2018.8647794
http://dx.doi.org/10.1109/GLOCOM.2018.8647794
http://dx.doi.org/10.1109/GLOCOM.2018.8647794
http://dx.doi.org/10.1109/TMM.2018.2870521
http://dx.doi.org/10.1109/TMM.2018.2870521
http://dx.doi.org/10.1109/TMM.2018.2870521
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488910
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488910
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488910


P. Li, Y. Zhang, W. Wang et al. Computer Communications 194 (2022) 301–310
Workshop on Hot Topics in Storage and File Systems, HotStorage 2018, Boston,
MA, USA, July 9-10, 2018, USENIX Association, 2018, URL https://www.usenix.
org/conference/hotstorage18/presentation/vietri.

[18] Zhengxin Yu, Jia Hu, Geyong Min, Zi Wang, Wang Miao, Shancang Li, Privacy-
preserving federated deep learning for cooperative hierarchical caching in fog
computing, IEEE Internet Things J. (2021) 1, http://dx.doi.org/10.1109/JIOT.
2021.3081480.

[19] Zhenyu Song, Daniel S. Berger, Kai Li, Wyatt Lloyd, Learning relaxed belady for
content distribution network caching, in: Ranjita Bhagwan, George Porter (Eds.),
17th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020, USENIX Asso-
ciation, 2020, pp. 529–544, URL https://www.usenix.org/conference/nsdi20/
presentation/song.

[20] Ge Ma, Zhi Wang, Miao Zhang, Jiahui Ye, Minghua Chen, Wenwu Zhu,
Understanding performance of edge content caching for mobile video streaming,
IEEE J. Sel. Areas Commun. 35 (5) (2017) 1076–1089, http://dx.doi.org/10.
1109/JSAC.2017.2680958.

[21] Yuchao Zhang, Pengmiao Li, Zhili Zhang, Bo Bai, Gong Zhang, Wendong Wang,
Bo Lian, Ke Xu, AutoSight: Distributed edge caching in short video network, IEEE
Netw. 34 (3) (2020) 194–199, http://dx.doi.org/10.1109/MNET.001.1900345.

[22] Marisa A. Vasconcelos, Jussara M. Almeida, Marcos André Gonçalves, Predicting
the popularity of micro-reviews: A foursquare case study, Inform. Sci. 325 (2015)
355–374, http://dx.doi.org/10.1016/j.ins.2015.07.001.

[23] Zhiyi Tan, Wen Hu, Ya Zhang, Hao Ding, Online popularity prediction of
video segments: Towards more efficient content delivery networks, in: 2019
IEEE Global Communications Conference, GLOBECOM 2019, Waikoloa, HI,
USA, December 9-13, 2019, IEEE, 2019, pp. 1–6, http://dx.doi.org/10.1109/
GLOBECOM38437.2019.9013162.
310
[24] Yuchao Zhang, Pengmiao Li, Zhili Zhang, Chaorui Zhang, Wendong Wang,
Yishuang Ning, Bo Lian, GraphInf: A GCN-based popularity prediction system
for short video networks, in: Wei-Shinn Ku, Yasuhiko Kanemasa, Mohamed Adel
Serhani, Liang-Jie Zhang (Eds.), Web Services - ICWS 2020 - 27th International
Conference, Held As Part of the Services Conference Federation, SCF 2020,
Honolulu, HI, USA, September 18-20, 2020, Proceedings, in: Lecture Notes in
Computer Science, 12406, Springer, 2020, pp. 61–76, http://dx.doi.org/10.1007/
978-3-030-59618-7_5.

[25] Jie Liang, Dali Zhu, Haitao Liu, Heng Ping, Ting Li, Hangsheng Zhang,
Liru Geng, Yinlong Liu, Multi-head attention based popularity prediction
caching in social content-centric networking with mobile edge computing, IEEE
Commun. Lett. 25 (2) (2021) 508–512, http://dx.doi.org/10.1109/LCOMM.2020.
3030329.

[26] Saran Tarnoi, Wuttipong Kumwilaisak, Vorapong Suppakitpaisarn, Kensuke
Fukuda, Yusheng Ji, Adaptive probabilistic caching technique for caching net-
works with dynamic content popularity, Comput. Commun. 139 (2019) 1–15,
http://dx.doi.org/10.1016/j.comcom.2019.03.001.

[27] Zhengxin Yu, Jia Hu, Geyong Min, Zhiwei Zhao, Wang Miao, M. Shamim
Hossain, Mobility-aware proactive edge caching for connected vehicles using
federated learning, IEEE Trans. Intell. Transp. Syst. 22 (8) (2021) 5341–5351,
http://dx.doi.org/10.1109/TITS.2020.3017474.

[28] Pengmiao Li, Yuchao Zhang, Huahai Zhang Wendong Wang, Ke Xu Zhili Zhang,
CRATES : A cache replacement algorithm for access frequency-low period in edge
server, in: 17th International Conference on Mobility, Sensing and Networking,
MSN 2021, Exeter, UK, December 13-15, 2021, IEEE, 2021.

[29] Anis Cherfi, Kaouther Nouira, Ahmed Ferchichi, Very fast c4.5 decision tree
algorithm, Appl. Artif. Intell. 32 (2) (2018) 119–137, http://dx.doi.org/10.1080/
08839514.2018.1447479.

https://www.usenix.org/conference/hotstorage18/presentation/vietri
https://www.usenix.org/conference/hotstorage18/presentation/vietri
https://www.usenix.org/conference/hotstorage18/presentation/vietri
http://dx.doi.org/10.1109/JIOT.2021.3081480
http://dx.doi.org/10.1109/JIOT.2021.3081480
http://dx.doi.org/10.1109/JIOT.2021.3081480
https://www.usenix.org/conference/nsdi20/presentation/song
https://www.usenix.org/conference/nsdi20/presentation/song
https://www.usenix.org/conference/nsdi20/presentation/song
http://dx.doi.org/10.1109/JSAC.2017.2680958
http://dx.doi.org/10.1109/JSAC.2017.2680958
http://dx.doi.org/10.1109/JSAC.2017.2680958
http://dx.doi.org/10.1109/MNET.001.1900345
http://dx.doi.org/10.1016/j.ins.2015.07.001
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9013162
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9013162
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9013162
http://dx.doi.org/10.1007/978-3-030-59618-7_5
http://dx.doi.org/10.1007/978-3-030-59618-7_5
http://dx.doi.org/10.1007/978-3-030-59618-7_5
http://dx.doi.org/10.1109/LCOMM.2020.3030329
http://dx.doi.org/10.1109/LCOMM.2020.3030329
http://dx.doi.org/10.1109/LCOMM.2020.3030329
http://dx.doi.org/10.1016/j.comcom.2019.03.001
http://dx.doi.org/10.1109/TITS.2020.3017474
http://refhub.elsevier.com/S0140-3664(22)00284-5/sb28
http://refhub.elsevier.com/S0140-3664(22)00284-5/sb28
http://refhub.elsevier.com/S0140-3664(22)00284-5/sb28
http://refhub.elsevier.com/S0140-3664(22)00284-5/sb28
http://refhub.elsevier.com/S0140-3664(22)00284-5/sb28
http://refhub.elsevier.com/S0140-3664(22)00284-5/sb28
http://refhub.elsevier.com/S0140-3664(22)00284-5/sb28
http://dx.doi.org/10.1080/08839514.2018.1447479
http://dx.doi.org/10.1080/08839514.2018.1447479
http://dx.doi.org/10.1080/08839514.2018.1447479

	Chameleon: A Self-adaptive cache strategy under the ever-changing access frequency in edge network
	Introduction
	Related work
	Admission policy
	Eviction policy

	Motivation
	Content access frequency is time-varying
	Concentration varies with access frequency

	System models and design
	Background
	Admission algorithm: 
	Decision Tree 
	Admission threshold 

	Eviction algorithm: 
	Principal component analysis 
	Popular contents protection mechanism 

	Overall design: 

	Evaluation
	Experiment setting
	Performance comparison
	Result analysis

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


