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Abstract—With the development of communication and trans-
mission technologies, more and more applications, like Internet
of vehicles and tele-medicine, become more sensitive to network
latency and accuracy, which requires routing schemes to be
more efficient. In order to meet such urgent need, learning-
based routing strategies emerges, with the advantages of high
flexibility and accuracy. These strategies can be divided into two
categories, centralized and distributed, enjoying the advantages
of high precision and high efficiency, respectively. However,
routing become more complex in dynamic network, where the
link connections and access states are time-varying, so these
learning-based routing mechanisms are required to be able
to adapt to network changes in real time. In this paper, we
designed and implemented both two of centralized and dis-
tributed reinforcement learning-based routing schemes (RLR-T).
By conducting a series of experiments, we deeply analyzed the
results and gave the conclusion that the centralized is better to
cope with dynamic networks due to its faster reconvergence, while
the distributed is better to handle with large-scale networks by
its high scalability.

Index Terms—routing, deep reinforcement learning, DQN

I. INTRODUCTION

Along with the burgeoning development of the Internet in
recent years, emerging network applications, such as industrial
Internet, IoV (Internet of Vehicles), 4K/8K video transmission
and edge computing, are requiring routing schemes to be more
efficient. Nevertheless, today’s network is no longer as stable
as the traditional wired network due to the access of a large
number of mobile devices, which make network connection
status change frequently. The conflict between application
requirement and network characteristic brings great challenges
to the network in providing efficient and flexible routing
decisions.

To ensure the QoS (Quality of Service) in current dynamic
networks, improving hardware infrastructures not only causes
huge cost but also has limitations of performance improve-
ment. Meanwhile, a research of CAIDA [1] has shown that the
existing network still has a lot of room for optimization. How-
ever, many traditional mathematical model-based optimization
schemes [2], [3], which aim to simplify specific scenarios
through idealized assumptions to solve network optimization
problems, cannot be guaranteed due to uncertainties in the real
scene. Then, the ML(Machine Learning) brings new ideas to
solve this problem.

Given the development of ML and SDN (Software Defined
Network), ML-based intelligent routing scheme has noble
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feasibility. Data-driven intelligent routing has features of high
accuracy and extreme versatility. Models trained by different
data set can solve various network optimization problems
without complicated network environment assumptions and
modeling. Some existing researches show that the ML-based
routing strategies have been successfully applied in many
scenarios, such as opportunistic networks [4], wireless net-
works [5], IoT [6], and improved in accuracy and performance
than the traditional routing protocol [6]. The deployment
of the ML-based routing scheme can be divided into two
categories, centralized and distributed. The centralized gets the
globe network state and makes globe routing decisions via a
centralized controller which is akin to the SDN controller, and
the distributed makes single routing hop by each router. Most
of current networks are time-varying, whose connections be
established and canceled at any time, or nodes be accessed
and eliminate. Both the centralized and distributed require the
model to achieve convergence or it will make wrong decision.
The aforementioned dynamics cause the fitted model non-
convergence again.

In this paper, we designed and implemented both central-
ized and distributed (based on Deep Reinforcement Learning
method) routing schemes, then compared and analyzed the
performance of the two models, especially under dynamic
conditions, through a series of experiments. The results show
that the centralized scheme is suitable to deal with dynamic
networks due to its faster reconvergence, and the distributed
scheme is better to handle with large-scale networks by its
high scalability.

II. BACKGROUND AND RELATED WORK

Along with the development of the Internet, more and more
devices, such as smartphones, automobiles, which result in
quite dynamic networks [7]. The time-varying connections
of links and access states in a dynamic network require
routing strategies to vary to adapt the network. ML-based
decision system can fit the optimal result only when the
model converges. The dynamic mentioned above will exercise
a great influence on it, which needs re-train the model to re-
fit the current network status. In the rest of this section, some
representative works on reinforcement learning and AI-based
network optimization schemes are presented.
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A. AI-based Network Optimizations

Given the successful application of machine learning in
natural language processing, computer vision, and other fields,
many scholars try to apply AI technology to network context,
including congestion control, resource allocation, security, and
so on. Zhang et al. optimized the video caching strategy
of edge servers through model prediction [8]. Liang et al.
optimized the decision tree generation strategy for flow clas-
sification by an reinforcement learning model [9]. Hua et al.
put forward a reward-clipping mechanism to stabilize GAN-
DDQN training against the effects of widely-spanning utility
values to solve the problem of several slices in a radio access
network with base stations which share the same physical
resources [10]. In the realm of routing, Mao et al. proposed
a DBN(Deep Belief Network)-based routing scheme in the
backbone of the network, where the domain’s border routers
calculate the best inter-domain path for packets [11]. Xiao
et al. combined a deep learning model and the link reversal
theory to generate a DDAG (Decision Directed Acyclic Graph)
and assign some weights to all links, then choosing an optimal
path via a greedy algorithm when making routing decisions
[12].

B. Reinforcement Learning

Environment

At

Rt, St+1

Agent

Q

target Q

𝜃 ⟶ 𝜃’

Memory replay

Q value

loss

Q target

Update Q

(Si, Ai, Ri, Si+1)

Fig. 1. DQN structure.

Reinforcement learning learns the optimal strategy by max-
imizing accumulated rewards which is suitable for decision-
making problems [13]. The agent chooses the action At

according to the strategy π in the current state St. The envi-
ronment transfers to the next state St+1 according to At. The
agent receives the fed back reward Rt by the environment and
chooses the next action according to strategy π. As shown in
Fig 1, DRL combines the advantages of deep neural networks
and traditional reinforcement learning, such as DQN, SARSA,
etc., to solve the problem of excessive data dimensions in the
Qtable-based RL model. Following some classic DRL models,
like A3C, DDPG, and MADDPG, were proposed [14]–[16].

Xu et al. used DRL for intra-domain traffic engineering
optimization, and proposed the DRL-based traffic engineering
solution, DRL-TE, which uses traditional methods to generate
paths and uses a DRL unit to adjust the routing path split ratio
online [17]. Valadarsky et al. tried to predict the future network
traffic based on historical traffic data through the DRL unit and
calculated the appropriate routing configuration based on the

TABLE I
DECLARATION OF NOTATIONS

Notation Declaration
N the set of all nodes
Ni means router i, and Ni ∈ N
E the set of all links
Eij means the link of Ni to Nj , if it is exist then Eij ∈ E,

otherwise, Eij /∈ E
des destination of a task
S state of the model environment
A action
R reward of state change, RSi→Sj

means reward of change
from Si to Sj . Rmax means the biggest prize when the
task is done and Rmin means the harshest punishment which
usually a very small negative number

Cij the cost of transform from Ni to Nj , such time consumption
or decrease of utilization.

q target a network trained by data of state change and related reward
q value a network evaluates the action and updated by q target

predicted results [18]. Ramy et al. developed a hierarchical
cluster-oriented adaptive per-flow path calculation mechanism
by leveraging the DDQN(Deep Double Q-Network) algorithm,
where the end-to-end paths are calculated by the source nodes
with the assistance of cluster leaders at different hierarchical
levels [19].

III. MODELS DESIGN

In this Section, we propose a RLR-T with two modes,
centralized and distributed, whose details are presented.
A. Variable Definition

A network topology is defined as a directed graph, ¡N, E¿.
All routers are defined as a node set N , and router i is Ni.
And all links are denoted as edge set E, Eij ∈ E means there
is a direct link between Ni and Nj . All declarations are shown
in TABLE I.

B. Centralized Routing Scheme

1) Overall Structure: This fashion needs a central con-
troller that akin to the SDN controller to make all routing
decisions. It can train the DRL-based model offline and push
forwarding rules to all routers via OpenFlow protocol. It is
different from the traditional routing protocol in this mode.
All routers no longer need to interact with neighbors, but the
state of the entire network is maintained by the controller.
The centralized mode can be directly upgraded in the existing
network running the OpenFlow protocol and does not require
to do much work on the underlying equipment.

As shown in the Fig. 2, the environment generates a
reward based on state change after performing the last action.
The reward is usually related to the optimal criteria, if the
transmission target is to minimize delay, the smaller the delay
of routing decision, the greater the reward, and vice versa. In
a period, it involves the state before action, action, state after
the action, reward, and whether the task is done. This five-
tuple will be stored in the experience pool of RL to make the
previous five-tuples used for training the q target network
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Fig. 2. Centralized RL-based routing model.

independently. The state after action will be taken as the input
of q value which will output an action with biggest reward of
this state. The environment performs this action and feedbacks
a reward, then a new period is completed. The pseudocode
of the centralized process is shown in the Algorithm 1. The
q target obtains previous data from the experience pool and
trains its model. The q value has the same network structure
as q target, and its parameters are updated periodically by
the q target.

Algorithm 1 Centralized Process.
Initial: Scurrent = environment.state()

1: # Interaction Process:
2: while TRUE do
3: A = q value(Scurrent)
4: Snext, R = environment.execute(A)
5: experience pool.save([Scurrent, A, R, Snext])
6: Scurrent = Snext

7: end while
8: # Training Process:
9: while TRUE do

10: replay data = experience pool.sample(batch size)
11: q target.train(replay data)
12: if ifupdate == TRUE then
13: q value.copy parameters(q target)
14: end if
15: end while

2) Detailed Design: If routing decisions on all transport
tasks need to be made using a model, then there must be
at least two essential properties for a packet forwarding, the
source address, and the destination address. Besides, because
forwarding satisfies a Markov random process, the address of
the router that is processing the packet is the source address
in the current state, which is independent of all previous
states. Therefore, we define that the state has two attributes,
the current and the destination, as shown in the Eq(1). After
performing the forwarding action, only the current will be
modified, and the destination address remains to be consistent
with the entire transmission process.

S = [Ncurrent, Ndes] (1)

The reward is a significant part of DRL, which needs to be
designed with different calculation rules according to diverse
tasks and the transition of environmental states. Before that,
it was explained that the action space is nodes set N , and the
action output by the model is Ni, ∈ N , such as Eq(2).

A = [Nnext] (2)

First, if Nnext is not directly connected, the reward is the
harshest punishment, Rmin, which is usually a very small
negative number. Second, if Ncurrent is Nnext, the reward is
the maximum reward, Rmax, which is usually a large positive
number. For the third case, Nnext is not Ndes and it can
be reached directly by Ncurrent, the reward is a positive
coefficientthe α multiply the minimum cost of from Nnext’s
neighbors to Ndes minus the cost of from Nnext to Ndes.
As shown in formula Eq(3). Due to the iterative computation,
the value of Ncurrent = Nnext = Ndes is required, which is
already included in the above case because the cost of from
one to itself is 0.
R[i,des]→[j,des] =

Rmin, Eij /∈ E

Rmax, Eij ∈ E & j = des

α(argmink∈neighbor(i)(C(k, des))− C(j, des),
Eij ∈ E & j 6= des)

(3)

Since the controller has the global perspective of the net-
work, it can calculate the cumulative reward value for all nodes
that made forwarding decisions along the routing path based
on historical optimal routing decision and the final routing
decision performance. Then, it can put the reward value as
the label to train the q target, as shown in the Eq4.

q target[i,des]→[j,des] = R[i,des]→[j,des] (4)

The q value network is periodically updated by q target
using the copy scheme.

C. Distributed Routing Scheme

1) Overall structure: Different from the above-mentioned
centralized mode, the distributed mode does not require a
centralized controller. Each router only needs to maintain its
link states to its neighbors and interact q value network with
them. It is similar to the traditional routing protocol, but the
optimal path is calculated through the RL model. And the
information in the routing table is no longer the distance
metrics but some parameters of q value network.

Each router in the network needs to maintain its model. Take
one router as an example, as shown in the Fig. 3. The router
quantifies environmental states and rewards and stores them in
the experience pool. When training the q target network, it is
necessary to combine the q value network of the maintained
neighbors and the reward to calculate the target value. This
process takes into account the cumulative reward to prevent
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Fig. 3. Distributed RL-based routing model.

Algorithm 2 Distributed Process.
Take Ni as example:
Initial: Scurrent = get des(packet)

1: # Interaction Process:
2: while TRUE do
3: A = q value(Scurrent)
4: R = environment.execute(A)
5: experience pool.save([Scurrent, A, R])
6: Scurrent = get des(packet)
7: end while
8: # Training Process:
9: while TRUE do

10: replay data = experience pool.sample(batch size)
11: q target label = replay data + cumulative reward()
12: q target.train(replay data)
13: if ifupdate == TRUE then
14: q value.copy parameters(q target)
15: end if
16: end while
17: # Diffusion and Reception of q value:
18: while TRUE do
19: if ischange(q value) == TRUE then
20: send neighbors(q value)
21: end if
22: if isreceive(q value) == TRUE then
23: Ni.update neighbors(q value)
24: end if
25: end while

the decision model from only selecting the optimal link based
on the immediate reward. The parameters of q value are
maintained and updated by q target. Taking the transmission
task label as the input of q value and selecting the maximum
value action according to the calculation result. This action
will be sent to the router forwarding module or as an entry
updated to the local routing table. When the action result
of q value changes, the latest network parameters need to
be diffused to neighbors. The pseudocode of the distributed
process is shown in the Algorithm 2.

2) Detail Design: Since the distributed mode does not have
a global perspective and all routers only maintain their state
and neighbor q values, considering that the forwarding of
data packets satisfies the Markov random process, the state in
this mode only needs to have a destination parameter, such as
the Eq(5) shown. The action of the model is the same as the
centralized mode as Eq(2).

S = [Ndes] (5)

The reward calculation of distributed mode can be divided
into the following two situations. The first, if Nnext is not
Ndes, whether it can be reached directly by Ncurrent or not,
the reward is the harshest punishment, Rmin. The second
is that the Nnext can be reached directly by Ncurrent and
it is Ndes, then the reward is the maximum reward, Rmax,
minus the cost of from Ncurrent to Nnext multiply the positive
coefficient, α. Again, it includes the value of Ncurrent = Nnext

= Ndes due to the cost of from one to itself. As shown in the
Eq(6).

R
i,[des]
→j =

{
Rmin, Eij /∈ E or j 6= des

Rmax − αCij , Eij ∈ E & j = des
(6)

To prevent the model from causing local optimum by choos-
ing actions based only on a one-step reward, the q target
network update takes into account two parts. One is the reward
immediately obtained by the action, and the other is the long-
term cumulative reward, which is calculated by neighbor’s
q value network according to the action. The formula is as
Eq(7), which means that the target value from [Ni] to [Nj ]
under destination node is Ndes should be the direct reward
from [Ni] to [Nj ] plus the max value calculated by Nj’s
q value to [Ndes]. This is an iterative process, and it will
finally converge to a stable state.

q target
i,[des]
→j = R

i,[des]
→j + γmax(q value

j,[des]
→k |Nk ∈ N)

(7)
In the same way, the q value is updated by q target

periodically as mentioned above.

IV. EVALUATION

In this section, we explain the experimental setup and
analyzed the RLR-T in convergence time and reconvergence
time when network state changes under different network
scales.

A. Experiment Setup

The two modes of centralized and distributed RL-based
models are implemented by TensorFlow 1.3.0 and on the
Ubuntu 16.04-LTS operating system. The GPU is GeForce
GTX 970 and the CPU is Intel Xeon 3.30GHz × 8.

Topologies: Two topologies, with 20 nodes and 8 nodes,
were set up in the experiment shown in the Fig. 4(a) and
Fig. 4(b). The 20-nodes one is based on Savvis 2011 USA
topology [20]. To increase the number of alternative paths in
this topology, three routers are added to form some loops.
Link weights (delays) are assigned. And setting acnodes(N8)
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Fig. 6. Distributed mode.

and unconnected subgraphs(N6 and N7) in 8-nodes one is to
verify the validity of setting edge weights to represent node
exits.

In the process of model retraining, topology changes as
following rules, the 20-nodes changes the weight of some links
randomly, and 8-nodes is connected to all subgraphs, as shown
in the Fig. 4(c).

B. Experimental Results

Based on the experimental setup above, we use centralized
and distributed strategies respectively in the two topologies.
The verification label of accuracy is the globally optimal
decision calculated according to the shortest path algorithm.
The accuracy of each calculation is to verify whether the
forwarding port of all points to other points except itself

conforms to the label. It needs to be explained that this paper
only puts forward a common model to compare the situation
under the two modes horizontally, and does not make model
and decision optimization for the requirements under special
scenarios, which is the future work.

Centralized mode: In this mode, the relationship between
accuracy and training time in the two topologies is shown in
the Fig.5(a) and 5(b). The retraining process is to save the
convergent model of the initial training first, and then modify
the network state, such as modifying links weight randomly
or adding or deleting nodes, and then load the saved model
parameters for retraining. On the basis of some fitting ability,
the accuracy of the model at the beginning time has reached
a relatively high, so it can reconverge faster than the initial
training. In the 8-N topology, initial training time, as the line
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marked by ‘•’ in Fig.5(a), takes about 30 seconds to stabilize
at 100% accuracy. The retraining time, as the line marked by
‘|’ in Fig.5(b), only takes 10 seconds to reach 100% accuracy
state. In the 20-N topology, the accuracy goes up quickly, but
it also takes a long time to reach 100% accuracy. Similarly,
the time of retraining is significantly shorter than its the initial
training.

Distributed mode: In this mode, each point needs to process
distribute training first, which means the model should fit
neighbors states, and then completes the federal training
of the entire network via the neighbor-to-neighbor q value
exchange. In the 8-N topology, due to the small scale, the
neighborhood fitting process makes it achieve relatively high
accuracy quickly, reaching 90% accuracy in less than 5 sec-
onds and 100% in less than 40 seconds, as shown in the
Fig.6(a). The time to reach 90% accuracy of retraining is
similar to the initial training, but the time to reach 100%
is slightly shorter. In the 20-N topology, the fluctuation in
the beginning stage of initial training is severe, because the
updating of neighbor q value has a great influence on the
decision making, and the global q value convergence is a
conjunct process. The early stage of retraining is more stable,
and the convergence state with high accuracy can be achieved
more quickly, as shown in the Fig.6(b).

From excellent to perfect: For the model, it is time-
consuming to converge to 100% accuracy. The tail accuracy
performance from 99% to 100% in 20-N topology as shown
in Fig.5(c)and 6(c). Tail convergence accounts for a large
proportion of the overall situation. We analyze the decision
results of the tail stage. The most are suffered fitting fluctuation
between the sub-optimal and the optimal. Only a tiny learning
rate and multiple iterations can complete the final fitting. And
it will be more obvious when the sub-optimal and the optimal
are close, but this is not necessary. One is that it’s acceptable
to choose a sub-optimal path approaching optimal when there
is only one optimal criterion. The second is that multi-optimal
criteria are usually considered in the current network, such as
selecting the comprehensive optimal path subjected by delay
and bandwidth, so using top N optimal sets intersection to
relax the model fitting accuracy, and then avoiding the tail
convergence time.

Analysis: According to the above results, the distributed
mode requires a process akin to route switching, so the
reconvergence time is not as good as the centralized mode.
However, when the scale gradually increases, the distributed
can improve accuracy and converge faster than the centralized.
On large scale, directional diffusion optimization can further
improve the performance of the distributed mode, but the
centralized mode will be greatly affected.

V. CONCLUSION

Although machine learning can break through some bot-
tlenecks of traditional methods in the network, it still has
some limitations, such as only applicable to some special
scenarios. This paper designed the centralized and distributed
RL-based routing decisions, compared and analyzed time

of model convergence and reconvergence, and pointed out
the advantages and characteristics of each mode in different
networks. The future work will design the most suitable RL-
based routing decision model for diverse network scenarios
and transmission requirements basis on the conclusion.
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