
Learning from Limited Heterogeneous Training Data:
Meta-Learning for Unsupervised Zero-Day Web Attack Detection

across Web Domains
Peiyang Li∗

INSC, Tsinghua University & BNRist
li-py23@mails.tsinghua.edu.cn

Ye Wang∗
INSC, Tsinghua University & BNRist
wangye22@mails.tsinghua.edu.cn

Qi Li�
INSC, Tsinghua University
qli01@tsinghua.edu.cn

Zhuotao Liu
INSC, Tsinghua University
zhuotaoliu@tsinghua.edu.cn

Ke Xu
DCS, Tsinghua University
xuke@tsinghua.edu.cn

Ju Ren
DCS, Tsinghua University
renju@tsinghua.edu.cn

Zhiying Liu
Tencent

louiszyliu@tencent.com

Ruilin Lin
Tencent

ruilin@tencent.com

ABSTRACT
Recently unsupervised machine learning based systems have been
developed to detect zero-day Web attacks, which can effectively en-
hance existing Web Application Firewalls (WAFs). However, prior
arts only consider detecting attacks on specific domains by train-
ing particular detection models for the domains. These systems
require a large amount of training data, which causes a long pe-
riod of time for model training and deployment. In this paper, we
propose RETSINA, a novel meta-learning based framework that
enables zero-day Web attack detection across different domains in
an organization with limited training data. Specifically, it utilizes
meta-learning to share knowledge across these domains, e.g., the
relationship between HTTP requests in heterogeneous domains, to
efficiently train detection models. Moreover, we develop an adap-
tive preprocessing module to facilitate semantic analysis of Web
requests across different domains and design a multi-domain repre-
sentation method to capture semantic correlations between differ-
ent domains for cross-domain model training. We conduct exper-
iments using four real-world datasets on different domains with
a total of 293M Web requests. The experimental results demon-
strate that RETSINA outperforms the existing unsupervised Web
attack detection methods with limited training data, e.g., RETSINA
needs only 5-minute training data to achieve comparable detection
performance to the existing methods that train separate models
for different domains using 1-day training data. We also conduct
real-world deployment in an Internet company. RETSINA captures
on average 126 and 218 zero-day attack requests per day in two
domains, respectively, in one month.
∗Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00
https://doi.org/10.1145/3576915.3623123

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems.

KEYWORDS
Web attack detection; meta-learning; zero-day attacks

ACM Reference Format:
Peiyang Li, Ye Wang, Qi Li�, Zhuotao Liu, Ke Xu, Ju Ren, Zhiying Liu,
and Ruilin Lin. 2023. Learning from Limited Heterogeneous Training Data:
Meta-Learning for Unsupervised Zero-Day Web Attack Detection across
Web Domains. In Proceedings of the 2023 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’23), November 26–30, 2023, Copen-
hagen, Denmark. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3576915.3623123

1 INTRODUCTION
Web services suffer from various Web attacks (e.g., SQL injection).
Web Application Firewalls (WAFs) [1, 3, 4, 52] have become the de
facto Web attack defense mechanisms against the attacks. However,
since WAFs detect Web attacks according to manually configured
rules, the zero-dayWeb attacks generating unknown attack patterns
can easily evade WAFs. Recently unsupervised machine learning
systems [50, 60, 63] have been developed to complement existing
WAFs to detect zero-day attacks. These systems learn patterns of
benign Web requests and then identify zero-day attacks whose
patterns deviate from benign requests.

However, these ML-based systems fail to align with the require-
ments of Web attack detection systems in large-scale, operational
environments. First, an organization hosting Web services often
maintains multiple Web domains for different Web applications.
These domains normally exhibit heterogeneity because they enable
different Web functionalities, e.g., Google Scholar and Gmail are
two heterogeneous domains hosting different Google applications.
However, existing methods [39, 41, 50, 60, 63, 66] only focus on
developing the detection model for one specific domain, which are
developed independently for one domain and can hardly be gen-
eralized to detect attacks on other domains. Second, the detection
model requires frequent model retraining to avoid significant per-
formance degradation [12, 13, 24, 30, 51] due to the Web services

1020

https://doi.org/10.1145/3576915.3623123
https://doi.org/10.1145/3576915.3623123
https://doi.org/10.1145/3576915.3623123
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576915.3623123&domain=pdf&date_stamp=2023-11-21

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Peiyang Li, et al.

update [79]. According to our study on real-world Web services,
we find that most of the services are regularly updated, e.g., the
average update interval of four real-world services in our study is
only 3.79 days. It is difficult to retrain and update detection models
due to the required long period of time of training data collection
[60]. In addition, collecting such a large amount of production data
incurs significant data preprocessing or privacy breach [44].

In this paper, we develop RETSINA, a novel meta-learning based
framework for zero-day Web attack detection across multiple do-
mains. RETSINA utilizes meta-learning to jointly train detection
models for new deployed domains based on limited heterogeneous
data. RETSINA exploits correlations between heterogeneous re-
quests generated from various domains to build a universal detec-
tion model. Based on the universal detection model and limited
requests from each domain, RETSINA generates a separate domain-
specific detection model to detect attacks for the domain, which
realize efficient model training and update for the domain.

However, it is challenging to utilize meta-learning to achieve
zero-day Web attack detection for multiple domains. First, it is dif-
ficult to extract valid information from such requests due to the
heterogeneity and complexity of processing HTTP requests across
heterogeneous domains. Second, since lexical features of HTTP
requests are not in the same semantic space among different do-
mains [60, 63, 66, 74], we cannot easily capture feature correlations
across Web domains. Third, it is not easy to transfer its knowledge
to the domain-specific detection models according to the universal
detection model because the structures of detection models vary
for different domains.

In order to address these issues, we develop three key designs
to enable knowledge sharing across heterogeneous domains. First,
we develop an adaptive approach to facilitate semantic analysis
of HTTP requests. It can automatically generate domain-specific
strategies to eliminate redundant information that is not useful for
attack detection and then produce valid tokens for training ma-
chine learning models. Second, we propose a feature representation
approach for multi-domain requests. It performs token alignment
operations by utilizing orthogonal transformations to measure the
similarity of tokens across domains. Based on this similarity, it
maps all tokens to the same feature space, which facilitates ma-
chine learning models to capture correlations and share knowledge
across heterogeneous domains. Third, we develop a dedicated two-
loop strategy for training the universal detection model, which
updates parameters that can be inherited by the target domain.
This ensures that the knowledge learned by the universal detection
model is fully transferable to different target domains.

We evaluate RETSINA using four real-world datasets collected
from four different domains that provide different types of Web ser-
vices to demonstrate the effectiveness of RETSINA. In particular, we
conduct a comparative analysis of RETSINA against two state-of-
the-art unsupervised Web attack detection methods [60, 69], one of
which is a knowledge-sharing-based framework that is proposed for
multi-task security problems, and two supervised Web attack detec-
tion techniques [74, 81]. The experimental results demonstrate that
RETSINA outperforms the existing methods with limited training
data, e.g., RETSINA needs only 5-minute training data to achieve
comparable detection performance for different domains to the
existing methods that train separate models for different domains

using 1-day training data. We perform ablation experiments to ana-
lyze how different modules of RETSINA contribute to the detection.
We also deploy RETSINA in real-world production services in an In-
ternet company. RETSINA detects on average 126 and 218 zero-day
attack requests per day in two domains, respectively.

In summary, we make the following contributions:

• We propose RETSINA, an unsupervised framework to detect
zero-day Web attacks by utilizing meta-learning, which is the
first one to detect Web attacks across multiple domains with
limited and heterogeneous data.
• We design an adaptive method to preprocess multi-domain Web
requests, which automatically converts unstructured raw re-
quests into structured token sequences for training and detection.
• We develop a multi-domain representation method to construct
unified feature representations across different Web domains,
which can be easily extended to enable detection for new do-
mains.
• We conduct extensive evaluations with a total of 293M Web re-
quests from 4 real-world domains owned by an Internet company.
Evaluation results demonstrate the effectiveness of RETSINA for
multiple heterogeneous Web domains with limited training data.
• We perform real-world deployment in real production and evalu-
ate the performance for one month, detecting on average 126 and
218 zero-day attack requests per day, demonstrating the superi-
ority of RETSINA with respect to effectiveness and robustness.

2 PROBLEM STATEMENT
We consider the scenario where an Internet company operates mul-
tiple frequently updated domains and consistently releases new
domains. These domains exhibit heterogeneity since they have
different functionalities to support different services. Meanwhile,
these domains follow the same development specification and can
share the same underlying interface (e.g., the authentication inter-
face). Web attack detection models are needed for updated or newly
developed domains. However, to keep up with the rapid domain
release, only a limited number of data is available for these domains.

Our goal is to develop zero-day Web attack detection models
for each target domain with limited training data, by leveraging
the heterogeneous data collected from several auxiliary domains.
While requests from the target domain are limited, each auxiliary
domain has adequate request data. The developed detection model
will work together with existing rule-based WAFs, i.e., detecting
zero-day attacks that evade WAFs.

Similar to existing approaches (e.g., [60, 74]), we focus on ana-
lyzing URLs as well as the message bodies with the “x-www-form-
urlencoded” content type, which covers a majority of Web attacks.
To validate this issue, we manually analyze 352 Web vulnerabilities
collected from a popular GitHub project [6], and find that 83.2% of
these vulnerabilities can be detected by RETSINA. We do not con-
sider the other types of message bodies since their formats are not
restricted by the HTTP protocol. We also skip headers because they
have limited information for attack detection, and more crucially,
anomalies in headers can be identified by certain rules defined in
traditional WAFs.

In this paper, we leverage the state-of-the-art unsupervised
method, i.e., ZeroWall [60], as the basic detection model in our

1021

Learning from Limited Heterogeneous Training Data CCS ’23, November 26–30, 2023, Copenhagen, Denmark

G
ET

 /a
dm
in

 H
TT

P/
1.

1
…

…

① Adaptive Preprocessing

G
ET

 /i
nd
ex

 H
TT

P/
1.

1
…

…

Adaptation+

Detection Benign
Malicious

Flow of the Auxiliary Domains

③ Cross-domain Training

/Path/?Key1=%3CV1%3E&...

...
Request Parsing

[0-9a-z]{5}

cid

cid

cid

abcde

bcdef

cdefg

cid
cid

Token Merging

Grouping and Regular
Expression Generation

Key1Path <V1>

Flow of the Target Domain

 Target
Embeddings

Target
Model

Feature
Space

② Multi-domain Representation

Token Alignment

Similarity Measurement

Universal Embedding Mapping

Target Token

Meta Objective

M
eta G

radients

Auxiliary
Embeddings

A
pproxim

ation
First O

rder

Update
Seq2seq
Model

A
ux

ili
ar

y
D

om
ai

ns

Ta
rg

et
 D

om
ai

n

Figure 1: The overview of RETSINA.

framework. Zerowall leverages an embedding layer and a sequence-
to-sequence (seq2seq) model to learn the benign pattern of Web
requests by minimizing the reconstruction error between the input
benign requests and the output reconstructed requests. Then it
detects malicious Web requests whose patterns deviate from the
benign pattern. In particular, the embedding layer converts each
input sequence of requests into a vector sequence. The seq2seq
model consists of a sequence-based encoder-decoder network that
encodes a vector sequence into the latent feature space and decodes
it back to a new vector sequence, and a generator that converts the
vector sequence into the discrete output sequence.

3 FRAMEWORK OVERVIEW
We propose RETSINA for zero-day Web attack detection across
heterogeneous domains with limited data. Our key insight is that
semantic correlations exist between requests from different het-
erogeneous domains. The rationale behind semantic correlations
is that domains operated by the same company follow the same
development specification and share the same underlying interface.
For example, the corporate data we collected for experiments estab-
lished a series of cross-business parameter specifications for data
governance. This is prevalent in other organizations. For example,
multiple Google Web services including Google Cloud use five spe-
cific URL parameters with the prefix “utm” [2] to track user traffic.
This insight indicates that the detection on one domain can benefit
from the existing detection experiences from other domains.

Based on this insight, RETSINA leverages meta-learning to gain
detection experience over models from multiple auxiliary domains.
Since meta-learning learn patterns and relationships that are com-
mon across different domains, RETSINA is capable of training the
detection models on target domains with limited data. RETSINA
consists of the following three modules.

• Adaptive Preprocessing.Adaptive preprocessing converts each
unstructured request into a structured token sequence, to facil-
itate semantic analysis during model training and detection. It
first parses requests into token sequences based on punctuation
and then merges tokens with inessential information according
to the strategy automatically generated for each domain.
• Multi-domain Representation.Multi-domain representation
projects tokens from heterogeneous domains into the same fea-
ture space in which the tokens with similar semantics are close.
It chooses a domain as the base domain, and tokens in other
domains are represented as a weighted sum of tokens in the base
domain according to their semantic similarities.
• Cross-domain Training. Cross-domain training obtains a de-
tection model for each target domain with limited training data.
We first build a universal initial model using data from auxiliary
domains and then adapt the model to the target domain using
the limited data from that domain. Particularly, the universal
initial model is trained to be adapted well to new domains by
leveraging the idea of meta-learning.
Figure 1 shows the workflow of our framework from the perspec-

tive of auxiliary domains and target domains. For auxiliary domains,
the adaptive preprocessing module converts requests from each do-
main into token sequences. Then the multi-domain representation
module chooses a base domain among all domains and builds em-
beddings for all tokens according to the base domain. Using these
embeddings, the cross-scenario training module obtains a universal
initial model. For each target domain, the adaptive preprocessing
module converts requests from this domain into token sequences.
The multi-domain representation module builds embeddings for
tokens in this domain according to the chosen base domain. Us-
ing these embeddings, in the cross-scenario training module, the
universal initial model is then adapted to a target domain-specific
model, on which we can perform online zero-day Web attack detec-
tion. It is worth noticing that, RETSINA finishes the computation

1022

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Peiyang Li, et al.

of auxiliary domains in advance, without knowing the target do-
main, thus enabling the detection model development for the target
domain with limited data as well as a short development time.

4 DESIGN DETAILS
In this section, we present detailed designs of RETSINA.

4.1 Adaptive Preprocessing
Adaptive preprocessing aims at converting HTTP requests into
token sequences, to facilitate semantic analysis during model train-
ing and attack detection. As mentioned earlier, HTTP requests are
strings with complex semantics that vary across different domains.
Therefore, adaptive preprocessing automatically generates domain-
specific preprocessing strategies, to obtain token sequences with
accurate semantics. In particular, for each domain, each request is
first parsed into a token sequence. Then, by extracting the format
of tokens, a preprocessing strategy, named as merging strategy, is
automatically generated. It is applied to merge a number of tokens
into fixed tokens. An example is shown in Figure 2.
Request Parsing. We parse each request into several parts ac-
cording to the HTTP protocol and convert letters to lowercase.
Specifically, we decode and parse a request into a path and multiple
pairs of a key and a value in a query. Then we decode and split each
part into tokens according to the punctuation (e.g., ‘/’) and space.
Token Merging. We now merge tokens with similar semantics
into the same tokens to obtain tokens with accurate semantics. We
observe that frequently, the values of a key can be uncertain, and
may even evolve with time, e.g., the number of distinct values of
key “androidId” can be extremely huge. These values complicate
the HTTP requests, but provide no additional benefits to attack
detection since they have almost the same semantics. We regard
these values as inessential tokens and merge them as the same to-
kens. In particular, we perform the following steps to merge these
inessential tokens: i) We first group values by their keys to obtain
each key’s values. We identify keys whose number of distinct values
is large, then for each such key, a regular expression is generated
to match all its values for merging. Notably, the regular expression
should be as small as possible to extract accurate semantics best. For
example, for a set of values that only contains numbers, “[0-9]+”
is generated instead of “[0-9a-z]+”. For a simple implementation,
we devise several common-used regular expressions, such as for
numbers, and conduct auto selection among them. ii) After obtain-
ing the regular expression of a key, for each of its values, we merge
the value token in the token sequence using the same token (e.g.,
“_aId_” for key “androidId” in Figure 2) if the value matches its
regular expression.

In addition, we replace all low-frequency tokens using the same
token “_other_”, to allow our preprocessing to deal with previously
unseen tokens. Note that the “_other_” token category generally
implies that the requests are anomalous, since the low-frequency
tokens with benign values have been merged according to our
regular expressions. Given a collection of HTTP requests as our
training data, besides identifying the regular expression during
token merging, we also identify a token set which contains all
tokens in the token sequences after request parsing and token
merging. When new HTTP requests come, we parse these requests

GET /URL1/URL2/os=android&androidId=ab***12&xToken=cd***34
&timezone=Asia%2FTokyo&time=20230208

URL1 URL2 os android androidId ab***12 xToken cd***34 timezone
 Asia Tokyo time 20230208

URL1 URL2 os android androidId _aId_ xToken _xTk_ timezone Asia
Tokyo time _num_

Raw request

Token sequence

Request Parsing

Token merging

Figure 2: One example of adaptive preprocessing.

and merge tokens according to the regular expression. We also
replace tokens that are not in the token set using “_other_”.

Our preprocessing automatically generates preprocessing strate-
gies for each domain to merge inessential tokens. While accurately
extracting semantics for each domain, it can be easily adapted
to new domains without expertise effort.However, existing ap-
proaches use general preprocessing strategies for all domains, ex-
tracting inadequate semantics to differentiate abnormal when the
strategies are too loose [39, 60], or retaining overly complex se-
mantics to be learned and generalized when the strategies are too
strict [50, 63, 74].

4.2 Multi-domain Representation
We now transform preprocessed token sequences into representa-
tions suitable for detection. Word embedding techniques use real-
valued vectors to represent each token in such a way that tokens
with similar semantics are expected to be closer in the continuous
vector space [45]. Compared to conventional representations like
one-hot embedding, they produce lower-dimensional embeddings
with semantic similarity and are thus widely applied in natural
language processing. However, tokens from different domains will
be separately projected into different vector spaces1, which over-
looks the semantic similarity between different domains, rendering
the knowledge distilling from one domain incapable to improve
detection on other domains.

With the expectation that similar tokens across all domains can
have close representations, we propose multi-domain represen-
tation, where tokens from any domain will be represented as a
weighted sum of a universal token set. We observe that, if token
sets of two domains overlap on a token, this overlapping token gen-
erally has similar semantics in both domains. The following three
cases can lead to semantics similarity in overlapping tokens. i) Do-
main developers follow the same development specifications, e.g.,
two domains share several overlapping tokens when using the same
API. ii) Developers use common tokens to express certain concepts.
For example, even without development specifications, “version”
typically describes a set of numbers identifying an update. Such

1Note that combining all tokens from multiple domains in one set is capable of pro-
ducing representations in the same vector spaces. However, such a method cannot be
extended to new domains because it requires obtaining representations of all domains
at the same time.

1023

Learning from Limited Heterogeneous Training Data CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 1: Notations

Notation Explanation

𝑄𝑚 The token set of the𝑚th domain
𝑇𝑚 The token sequences of the𝑚th domain
𝑇𝑚
𝑖

The 𝑖𝑡ℎ token sequence of 𝑇𝑚

𝐷𝑚 HTTP requests of the𝑚th domain

tokens rarely incur semantic overloading. iii) Our adaptive prepro-
cessing merges similar values into the same predefined tokens that
represent the same semantics across different domains. Our empir-
ical study on real-world data also confirms this observation. For
example, we manually investigate the overlapping tokens between
the two domains in our experiment data and find that 120 of the
145 overlapping tokens share similar semantics in both domains.

Based on the observation above, intuitively, we select one base
domain and then, all these overlapping tokens shared between the
base domain and each other domain can serve as the references
for aligning the tokens of them. Note that we leverage orthogonal
transformations to align tokens (see Equation (1)) so that a few
overlapping tokens that do not share the same semantics have
negligible impacts on token alignment [57]. Then, the similarity
between any pair of tokens can then be computed and used to
represent each token using the weighted sum of the universal token
set (i.e., the token set of the base domain). Below we describe the
details. Important notations are summarized in Table 1.
Token Alignment. We first align the tokens in different domains
according to their semantic similarities. Among all 𝑀 domains,
we select a domain 𝑢 as our base domain and align the tokens
in each other domain with tokens in the base domain. Given the
token sequences, we first compute the preliminary representations
{𝑊 𝑖 }𝑀

𝑖=1 for tokens 𝑄
𝑖 in each domain 𝑖 separately. Here we adopt

Word2vec [45] which mines contextual information within token
sequences by predictingmissing tokens from a surroundingwindow.
Then for each domain 𝑣 , we find a orthogonal linear transformation
to project the preliminary representation of 𝑣 to𝑊𝑢 vector space,

𝑊 𝑣→𝑢 = 𝑂𝑣 ·𝑊 𝑣, 𝑠 .𝑡 .𝑂𝑇
𝑣𝑂𝑣 = 𝐼 , (1)

where 𝐼 denotes the identity matrix. In other words,𝑂𝑇
𝑣 can project

tokens in domain 𝑢 back into𝑊 𝑣 vector space of domain 𝑣 . We find
the transformation by minimizing the squared reconstruction error
on the overlapping tokens 𝑋𝑢𝑣 as follows:

𝑚𝑖𝑛
𝑂𝑣

𝑝∑︁
𝑥 ∈𝑋𝑢𝑣

𝑊𝑢 (𝑥) −𝑂𝑣 ·𝑊 𝑣 (𝑥)

2 , 𝑠 .𝑡 .𝑂𝑇

𝑣𝑂𝑣 = 𝐼 , (2)

Note that, we can easily identify these overlapping tokens by find-
ing the intersection of token sets, i.e., 𝑋𝑢𝑣 = 𝑄𝑢 ∩ 𝑄𝑣 , without
resorting to manual effort. Unfortunately, Equation (2) cannot be
optimized by simply applying gradient descent methods because
of the orthogonal constraint for 𝑂𝑣 . Instead, we use the singular
value decomposition based method [57] under the condition that
𝑊𝑢 and𝑊 𝑣 are normalized. Readers can refer to the original paper
for more details.
Universal Embedding Mapping. We now map tokens from
different domains to a universal embedding space. According to

…

Auxiliary Domains

Universal
Initial Model

Universal
Embedding

Encoder-Decoder
Network

Domain-Specific
Embedding

Generator

Initialized Randomly
Initialized with the Universal Initial Model

HTTP requests

Reconstructed
requests

Output

Input

Minimizing the
Reconstruction

Error

Train

Target
Domain Target M

odel

Figure 3: Training of the target model.

the Equation (1) which aligns the preliminary representations of
domain 𝑣 with those of the base domain 𝑢, the similarity between a
token 𝑡𝑣 in domain 𝑣 and a token 𝑡𝑢 in domain 𝑢 can be computed
following the equation below:

𝑆 (𝑡𝑣, 𝑡𝑢) =𝑊𝑢 (𝑡𝑣) · 𝐴 ·𝑊 𝑣→𝑢 (𝑡𝑢), (3)

where A is a learnable parameter initialized as an identity matrix
and is jointly trained with the seq2seq model. With the token simi-
larity, each token can be represented as the weighted sum of the
token set 𝑄𝑢 of the base domain 𝑢, named as universal embedding:

𝑈 𝑣 (𝑡𝑣) =
∑︁

𝑡𝑖 ∈𝑄𝑢

𝑒𝑆 (𝑡𝑣 ,𝑡𝑖)∑
𝑡 𝑗 ∈𝑄𝑢 𝑒𝑆 (𝑡𝑣 ,𝑡 𝑗)

· 𝐸 (𝑡𝑖) (4)

where the multiplicator on the left is the weight calculated by
normalizing the similarity using a softmax function, and 𝐸 is a
matrix whose shape is ∥𝑄𝑢 ∥ ×𝑑 . We initialize 𝐸 randomly and train
it jointly with the seq2seq model.

Besides, a domain-specific embedding term is integrated to sup-
port representing the tokens derived from URL paths, e.g., token
"CGI1" from "/URL1/URL2/CGI1. . . ". Note that, these tokens are
domain-specific and have no similar context structure with other
tokens, thus can only be “memorized” by the models. Finally, by
summing up the universal embedding 𝑈 𝑣 in Equation (4) and the
domain-specific embedding 𝐸𝑣 , our multi-domain representation for
domain 𝑣 is computed:

𝑈̃ 𝑣 (𝑥) = 𝑈 𝑣 (𝑥) + 𝐸𝑣 (𝑥), (5)

where 𝐸𝑣 is a matrix whose shape is ∥𝑄𝑣 ∥ × 𝑑 . 𝐸𝑣 is initialized as a
zero matrix and is trained only to obtain the detection model for a
specified target domain.

4.3 Cross-domain Training
Cross-domain training obtains a detection model for each target
domain by combining the knowledge from both the target domain
and the other auxiliary domains. It utilizes meta-learning to better
exploit the knowledge from auxiliary domains. Specifically, we first

1024

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Peiyang Li, et al.

Algorithm 1 Training the universal initial model

Input: Model 𝑓𝜃 ; token sequences of𝑀 domains𝑇𝑀 = {𝑇 1,𝑇 2, . . . ,𝑇𝑀 };
learning rate 𝛼 ; step size 𝑠 .

Output: Parameters 𝜃∗ of universal initial model.
1: Randomly initialize 𝜃 ;
2: while 𝑓𝜃 is not convergent do
3: 𝜃𝑡𝑒𝑚𝑝 ← 𝜃 ;
4: 𝑇𝑘 ← Sample a domain 𝑘 from𝑇𝑀 ;
5: for 𝑗 = 1, 2, ..., 𝑠 do
6: 𝑏𝑘 ← Sample a batch data from𝑇𝑘 ;
7: Update 𝜃 according to Eq. (8) with 𝑏𝑘 ;
8: end for
9: 𝑈

𝑇𝑘 (𝜃) ← 𝜃

10: 𝑏𝑘 ← Sample a batch data from𝑇𝑘 ;
11: Compute 𝑔𝑚𝑒𝑡𝑎 according to Eq. (10) with 𝑏𝑘 and𝑈

𝑇𝑘 (𝜃) ;
12: 𝜃 ← 𝜃𝑡𝑒𝑚𝑝 ;
13: update 𝜃 according to Eq. (11) with 𝑔𝑚𝑒𝑡𝑎 ;
14: end while
15: 𝜃∗ ← 𝜃 ;
16: return 𝜃∗

build a universal initial model using training data from multiple
auxiliary domains, with the expectation that it exploits several
auxiliary domains, yet provides better performance on any novel
domain without resorting to a large amount of training data. To
obtain the detection model for a specified target domain, the uni-
versal initial model is then adapted using the limited training data
from that domain.
Universal Initial Model. Using the training data from multiple
domains, we produce a model with parameters that can be adapted
well to new domains by leveraging the idea of meta-learning [17].
Note that, though the meta-learning algorithm [17] is designed for
supervised learning, it can be also applied to our unsupervised task
that uses unlabeled data. This is because the objective of our task
is to identify attacks by reconstructing each request, which is a
supervisory signal. Formally, the loss L𝑇 𝑖 on training data𝑇𝑖 from
domain 𝑖 is defined as:

L𝑇 𝑖 (𝜃) =
∑︁

𝑇 𝑖
𝑗
∈𝑇 𝑖

𝑅(𝑇 𝑖
𝑗 , 𝑓𝜃 (𝑇

𝑖
𝑗)), (6)

where 𝑓𝜃 is our model with the learnable parameters 𝜃 , 𝑇 𝑖
𝑗
is the

𝑗-th token sequence of the domain 𝑖 , and 𝑅(·) is the negative log-
likelihood function, i.e., reconstruction error. Note that 𝑓𝜃 is com-
posed of the multi-domain representation and the seq2seq model,
and these two parts are optimized jointly. The details of the multi-
domain representation are described in Section 4.2, and the seq2seq
model, which consists of the encoder-decoder network and the
generator, uses the same design as ZeroWall [60].

Given training data𝑇𝑀 = {𝑇 1,𝑇 2, . . . ,𝑇𝑀 } from M domains, our
objective function, denoted as the meta objective, aims to find the
following parameters 𝜃∗:

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃

∑︁
𝑇 𝑖 ∈𝑇𝑀

L𝑇 𝑖 (𝑈𝑇 𝑖 (𝜃)), (7)

where 𝑈𝑇 𝑖 (·) is the parameter update operator using gradient de-
scents on the training data of 𝑖-th domain. Equation (8) shows a

step in the gradient descents:

𝜃
′
= 𝜃 − 𝛼∇𝜃L𝑇 𝑖 (𝜃), (8)

where 𝛼 is a hyperparameter representing the learning rate.𝑈𝑇 𝑖 (𝜃)
may contain several steps in Equation (8), but below we let 𝑈𝑇 𝑖 (𝜃)
contain only one step for the simplicity of discussion, i.e.,𝑈𝑇 𝑖 (𝜃) =
𝜃
′
. Intuitively, the meta objective ensures that a model initialized

with 𝜃∗ can be trained (using gradient descents) to achieve the
minimized loss under each domain.

We leverage gradient descents to solve this meta objective and
denote the gradient for optimizing it as the meta gradient 𝑔𝑚𝑒𝑡𝑎 :

𝑔𝑚𝑒𝑡𝑎 =
∑︁
𝑇 𝑖

∇𝜃L𝑇 𝑖 (𝑈𝑇 𝑖 (𝜃))

=
∑︁
𝑇 𝑖

∇𝑈
𝑇𝑖 (𝜃)L𝑇 𝑖 (𝑈𝑇 𝑖 (𝜃))∇𝜃𝑈𝑇 𝑖 (𝜃)

=
∑︁
𝑇 𝑖

∇𝑈
𝑇𝑖 (𝜃)L𝑇 𝑖 (𝑈𝑇 𝑖 (𝜃))∇𝜃 (𝜃 − 𝛼∇𝜃L𝑇 𝑖 (𝜃))

=
∑︁
𝑇 𝑖

∇𝑈
𝑇𝑖 (𝜃)L𝑇 𝑖 (𝑈𝑇 𝑖 (𝜃)) (𝐼 − 𝛼∇𝜃∇𝜃L𝑇 𝑖 (𝜃)).

(9)

Since the high-order derivatives in 𝑔𝑚𝑒𝑡𝑎 are expensive to compute,
we apply the first-order approximation [49] to the meta gradient,
yielding the following approximation:

𝑔𝑚𝑒𝑡𝑎 ≈
∑︁
𝑇 𝑖

∇𝑈
𝑇𝑖 (𝜃)L𝑇 𝑖 (𝑈𝑇 𝑖 (𝜃)) . (10)

After obtaining 𝑔𝑚𝑒𝑡𝑎 , a naive way to optimize Equation (7) is to
perform gradient descents iteratively according to 𝑔𝑚𝑒𝑡𝑎 . However,
as shown in Figure 3, in our model the domain-specific embedding
and the generator that creates the transformation between tokens
and the vector space needs to be reinitialized for processing new
domains. Therefore, the learned knowledge represented in these
parameters cannot be retained [71] when training on new domains.

To address this issue, we do not update the parameters of domain-
specific embedding and generator when applying 𝑔𝑚𝑒𝑡𝑎 , which
enables us to “embed” the knowledge to the parameters that can be
retained. Formally, the universal initial model is updated as follows:

𝜃 ← 𝜃 − 𝛼 · 𝑔𝑚𝑒𝑡𝑎 ⊙ 𝑲 , (11)

where ⊙ represents the element-wise multiplication and 𝑲 is a pa-
rameter mask whose values are 0 for the parameters of the domain-
specific embedding and the generator, and 1 otherwise.

Algorithm 1 shows the pseudocode of training the universal
initial model. We first randomly initialize 𝜃 (line 1). Then we apply
a two-loop strategy, consisting of an inner and an outer loop, to
iteratively update 𝜃 . In lines 4-9, the inner loop updates 𝜃 using a
randomly selected domain 𝑘 and obtain 𝑈𝑇 𝑖 (𝜃), which simulates
model training on any given target domain. In lines 10-13, the outer
loop updates 𝜃 by computing 𝑔𝑚𝑒𝑡𝑎 . The training data for both
the inner loop and outer loop are sampled independently from
the randomly chosen domain. It is worth noting that, unlike the
outer loop which does not update domain-specific parameters, all
parameters are still eligible for updates in the inner loop.
Target Model. We take the universal initial model as the starting
point to obtain a detection model for the target domain (denoted
as the target model). Note that the structure of the target model
is the same as that of the universal initial model. Specifically, the

1025

Learning from Limited Heterogeneous Training Data CCS ’23, November 26–30, 2023, Copenhagen, Denmark

target model inherits the parameters of universal embedding and
the encoder-decoder network from the universal initial model, and
reinitializes the domain-specific embedding and generator. Given
limited data from the target domain, all learnable parameters of the
target model are jointly optimized by minimizing the loss function
defined in Equation (6).

5 EVALUATION
5.1 Settings
Datasets. As shown in Table 2, we collect four datasets from
different domains provided by a world-leading Internet company:
1) OV is an online video platform for streaming media; 2) SNS
provides social networking service; 3) SF is a sports forum; and
4) IdM offers an identity management service. All four domains
serve different applications, thus providing good diversity for our
evaluation across heterogeneous domains. Specifically, we collect
the HTTP requests allowed by the company’s signature-based WAF
for two consecutive days for each domain. The data from the first
and second days are used for training and testing, respectively. To
collect limited training data, we select consecutive 5-minute data
starting from the same time from the total (1-day) training dataset
of each domain. For ease of data collection, we do not consider the
intervals between the data collection for the auxiliary domains and
the target domain. However, such intervals do not impact the model
performance, because the semantic correlations between different
domains are derived from the same development specifications that
do not change over time. We confirm this in real-world deployment
experiments (see Section 6).
Ground truth. The security operators collect the ground truth
of attacks in the testing set using the following two approaches.
First, they manually perform Web log analysis by investigating
specific predefined keywords generated according to prior detected
events. Second, they examine all requests detected by RETSINA
and the baselines. A request is identified as an attack if it i) includes
malicious payloads, e.g., a code snippet used for injection, or ii)
does not follow the normal user behavior of Web applications,
e.g., attempting to access administration interfaces. The rest of the
requests are considered benign. Notably, the mislabeled attacks, if
any, in our ground truth may lead to a higher reported recall, but
they will not impact the fairness of comparisons with baselines.
Metrics. We evaluate the detection performance using precision
(Pre), recall (Rec), and F1-score (F1), which are also widely used in
previous work since zero-day Web attacks only comprise a very
small proportion of all HTTP requests.
Baselines. We choose the two unsupervised anomaly detection
methods ZeroWall and MTL.We also select the two supervised tech-
niques SCNN and SRNN, to evaluate whether using some known
attack requests yields a better detection system.

• ZeroWall. ZeroWall is the state-of-the-art unsupervised zero-
day Web attack detection method. It parses requests according
to punctuation and leverages a seq2seq model to achieve end-
to-end detection [60]. We also test several widely-used unsuper-
vised zero-day Web attack detection methods. For example, SAE
[63] uses n-gram for tokenization, then leverages the stacked
auto-encoder and the isolation forest for feature extraction and

Table 2: Statistics on 4 domains.

Domain # of Requests # of Attacks

Online Video (OV) 57.71M 392
Social Network Service (SNS) 84.72M 818
Sports Forum (SF) 13.85M 2,623
Identity Management (IdM) 136.78M 59

detection. However, these methods perform very poorly on our
real-world datasets, and the F1-scores are almost 0. Similar results
have also been reported in previous work [60].
• MTL. Neither ZeroWall nor any existing methods for detecting
Web attacks can utilize data from auxiliary domains. To enable
more fair comparisons, we include a knowledge-sharing-based
method formulti-task security problems. In particular, wemodify
the state-of-the-art framework in [69] and designate the modi-
fied method as MTL. MTL fully utilizes data from both the aux-
iliary and the target domains, thus learning similar knowledge
to RETSINA. Specifically, it mixes data from multiple auxiliary
domains and the target domain to train a model on the target
domain. To prevent the effect of task imbalance (e.g., the target
domain has fewer requests), we assign weights to the loss of
requests from each domain in accordance with the number of
requests from with limited data.
• SCNN. SCNN leverages a specially designed CNN to classify
HTTP requests [74]. For better performance, we use the pre-
processing technique of ZeroWall to produce token sequence.
Since supervised methods require labeled data, we collect attack
requests filtered by WAFs from a day for each domain and use
them as malicious samples, i.e., their training data contains 1-day
known attack requests and benign modifyrequests collected at
different lengths of time.
• SRNN. SRNN utilizes the attention-based LSTM to classify se-
quence data [81]. The settings for preparing training data and
preprocessing are the same as SCNN.
For unsupervised methods RETSINA, ZeroWall, and MTL, to

make a fair comparison, we choose LSTM as the backbone of
encoder-decoder networks following [60]. LSTM has been demon-
strated to be more effective at modeling sequence data than GRU
or classic RNNs [10, 16]. Moreover, Transformers may learn an
identity function that reconstructs HTTP requests including at-
tacks, and thus are ill-suited for the detection methods that identify
attacks based on reconstruction errors [48, 64]. Our empirical study
shows that, if we replace LSTM with Transformer, the F1-score of
RETSINA significantly drops from 0.913 to 0.487 in domain OV
with 5-minute training data.
Selection of the Base Domain. We select a domain among the
auxiliary domains as the base domain if the domain has the most
overlapping tokens with other domains. It allows us to maximize
the overlap for token alignment and thus best utilizes the correla-
tion between different domains for detection. We also conduct an
empirical study in Appendix A and show that the selection of the
base domain has limited impacts on the model performance.
Implementation. All the evaluations are conducted on a GPU
server whose hardware environment is configured as 10-core vCPU,

1026

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Peiyang Li, et al.

Table 3: Overall performance comparisons when the collection time of training data is 5 minutes and 1 day respectively.

Time Method OV SNS SF IdM
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

5 min

ZeroWall 0.580 0.918 0.711 0.168 0.536 0.256 0.422 0.964 0.587 0.647 0.932 0.764
MTL 0.777 0.623 0.692 0.268 0.833 0.406 0.498 0.955 0.655 0.845 0.831 0.838

SCNN 0.080 0.940 0.147 0.174 0.845 0.288 0.084 0.699 0.150 0.377 0.966 0.543
SRNN 0.040 0.338 0.072 0.070 0.972 0.131 0.073 0.717 0.133 0.177 0.983 0.300
Ours 0.901 0.926 0.913 0.667 0.911 0.770 0.685 0.972 0.802 0.868 1.000 0.929

1 day

ZeroWall 0.924 0.866 0.894 0.810 0.599 0.719 0.802 0.830 0.816 0.879 0.864 0.872
MTL 0.935 0.861 0.896 0.902 0.513 0.654 0.486 0.797 0.603 0.962 0.847 0.901

SCNN 0.954 0.395 0.559 0.678 0.530 0.595 0.936 0.393 0.553 0.851 0.678 0.755
SRNN 0.960 0.662 0.784 0.324 0.185 0.236 0.529 0.330 0.407 0.897 0.593 0.714
Ours 0.921 0.884 0.902 0.895 0.819 0.855 0.922 0.893 0.907 1.000 0.915 0.956

NVIDIA Tesla T10 GPU, and 40GB memory. Deep learning models
are implemented in PyTorch 1.7.1 with CUDA 11.0 toolkit. We use
Gensim to implement Word2vec.
Configurations. When evaluating the performance of one domain,
we use the other three domains as auxiliary domains to perform
MTL or cross-domain training of RETSINA. Note that, since the
universal initial models only need to be trained once, they do not
suffer from limited data, thus we train them using full datasets
from auxiliary domains. For our method, we use the skip-gram
to train the Word2vec embeddings. For the LSTM-based seq2seq
model adopted in RETSINA, ZeroWall, and MTL, both the hidden
size and embedding size are set to be 512. We use the Adam [32]
with the learning rate of 0.001 as the optimizer and the learning
rate decay is applied. To make an efficient computation on GPU,
we use token-level dynamic batching to train the model. The token
batch size is set to 4096.
Ethical Considerations. The data that we analyze only contains
URLs and bodies of requests that are helpful for detection. Any fields
containing sensitive user information have been removed. We also
do not use the collected data to identify any individual. All datasets
are stored on the company’s servers and are accessed through
an internship program. We conduct experiments in an isolated
environment that has no impact on the production environment.

5.2 Detection performance
First, we run experiments to evaluate whether our method outper-
forms baselines with limited training data. We use the 5-minute
data for model training and test the trained model on the testing
data. Table 3 shows the detection performance of our method and
baselines. It can be seen that our method significantly outperforms
baselines when the collection time is 5 minutes. Compared with
ZeroWall, our method improves the F1-score by 21.5% at least. The
results confirm the advantages of leveraging knowledge sharing
when the training data is limited. We can further observe that such
an improvement is mainly derived from precision (e.g., improved by
55.3% on OV), which indicates that our method effectively mitigates
the false positives caused by the limited training data. Moreover,
MTL can slightly improve model performance when the collection
time is 5 minutes. For example, the F1-scores of SNS using MTL are
improved from 0.256 to 0.406 compared with ZeroWall. However,

101 102 103

Collection time (min)

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

Ours
SCNN

ZeroWall
SRNN

MTL

5 20 60 300 1440
Collection time (min)

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

(a) OV

5 20 60 300 1440
Collection time (min)

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

(b) SNS

5 20 60 300 1440
Collection time (min)

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

(c) SF

5 20 60 300 1440
Collection time (min)

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

(d) IdM

Figure 4: Detection performance with respect to the amount
of training data.

this improvement is still far from ours. Overall, our method is more
effective with limited Web training data.

Second, our method is also better than baselines when the col-
lection time is 1 day. For example, the F1-scores of SNS and IdM are
improved by 18.9% and 9.6% respectively compared with ZeroWall.
This indicates that even with abundant training data, our method
still helps to improve the generalizability of the trained model by
combining the knowledge from other domains. Note that the results
of MTL are even lower than that of ZeroWall when the collection
time is 1 day. We analyze the main reason is that one or more aux-
iliary domains may have a greater impact than the target domain,
which degrades the detection performance on the target domain.

Third, supervised methods SCNN and SRNN perform the worst
when compared to unsupervised methods. For the 5-minute evalu-
ation, both methods are ineffective due to insufficient data. For the

1027

Learning from Limited Heterogeneous Training Data CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 4: A benign request that is incorrectly recognized by
baseline as an attack but is correctly recognized by RETSINA.

Request .../send?xxxx_code=8**&bids=1*****76
&yyyyyy_code=18***6

Token
Sequence

... send xxxx_code _num_ bids _num_
yyyyyy_code _num_

1-day evaluation, their recall is poor compared to their precision,
indicating many attacks are undetected. This is because supervised
methods depend on prior knowledge of attack requests and thus
fail to effectively detect zero-day attacks, which were previously
unknown. Conversely, RETSINA is capable of detecting zero-day
attacks because it detects attacks only according to learned benign
patterns of Web requests.

Fourth, the detection performance varies across domains. For
example, RETSINA performs worse on SNS and SF than on OV
and IdM. This is mainly because the services running in different
domains invoke different APIs with various parameters, and thus
the complexity of benign patterns of these services varies. It is
difficult for the detection model to learn these complicated patterns,
which may result in more false positives and lower precision.

Figure 4 shows the F1-scores given different collection times of
the training data. We observe that our method only needs 5-minute
training data to reach the performance that the baseline method
uses 1-day training data. Moreover, for all methods, model perfor-
mance increases with collection time in most cases. If the collection
time is shorter, the performance gap between the baseline method
and our method will be larger. However, it is worth noting that
more collection time does not always lead to better performance.
For example, the F1-score of 1-day training data is slightly lower
than that of using 5-minute training data on OV. This performance
loss comes from recall (reduced from 0.926 to 0.884) according to the
detailed breakup of performance shown in Table 3, which is mainly
because the training data includes some noise samples that reduce
the ability of the unsupervised model to detect zero-day attacks.
We also discuss this phenomenon in the subsequent section.

We further perform a case study to investigate how our method
helps to improve detection performance. We show a benign request
that is misjudged by ZeroWall but correctly recognized by our
method in IdM (note that some fields are masked for preserving
anonymity and privacy) in Table 4. ZeroWall produces the false
positive because the pattern of the token sequence “xxxx_code
num bids _num_ yyyyy_code _num_” is not included in the
training data. However, requests with a similar pattern may exist
in other domains (Table 5 shows two examples in OV and SNS,
respectively), which allows our method to better learn the pattern
of these requests and avoid the false positive.

5.3 Development Overhead
We now assess the development overhead of our proposed method.
Considering that our proposed method with 5-minute training data
achieves comparable detection performance to ZeroWall using 1-
day training data, we compare the development times of these
two settings. Figure 5 displays the comparison results in terms

Table 5: Token sequence of two example requests that have
a similar structure to that shown in Table 4. Example 1 and 2
are from OV and SNS respectively.

Example 1 watch_record_new callback _pbas_ pagesize
num g_tk _num_ g_vstk _num_

Example 2 cgi_qzshare uin _num_ spaceuin _num_
g_iframe _num_

OV@5min

OV@1day

SNS@5min

SNS@1day

SF@5min

SF@1day

IdM@5min

Idm@1day

Website@Collection time

101

102

103

104

105

Ti
m

e
(s

)

Preprocess Train Collect

OV@5min

OV@1day

SNS@5min

SNS@1day

SF@5min

SF@1day

IdM@5min

Idm@1day

Website@Collection time

101

102

103

104

105

Ti
m

e
(s

)

Figure 5: Development times of RETSINA with 5-minute
training data and ZeroWall with 1-day training data.

of collection time, preprocessing time, and training time, where
training time refers to the time to train a convergent model. It can
be seen that RETSINA is hundreds of times faster than ZeroWall for
both collection and preprocessing. Meanwhile, the training time
of RETSINA is only half that of ZeroWall. These results suggest
that RETSINA is more efficient in developing new detection models
than ZeroWall, which requires a large amount of training data.

We also examine the training time for universal initial models
with the three auxiliary domains. Training universal initial models
of OV, SNS, SP, and IdM takes 437, 487, 459, and 333 minutes,
respectively. Note that universal initial models can be prepared
in advance, thus not affecting the efficiency of developing new
detection models.

5.4 Ablation Study
To further validate the design of RETSINA, we evaluate how differ-
ent modules contribute to improving detection performance. First,
we assess how adaptive preprocessing supports semantics analysis.
We replace the adaptive preprocessing with the naive tokenization
technique commonly used in previous work [60], denoting ours
without adaptive preprocessing. Table 6 shows the comparison of
detection performance. It can be seen that adaptive preprocessing
improves the F1-scores under all settings. The improvements are
significant on SNS, SF, and IdM when the collection times are 5
minutes and 1 day. For example, without adaptive preprocessing,
the F1-score on SNS drops by 26.3%, and its corresponding preci-
sion and recall drop by 31.3% and 18.2%, respectively. Note that, the
improvements brought by adaptive preprocessing in OV are minor

1028

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Peiyang Li, et al.

Table 6: Comparison with and without our adaptive preprocessing. A.P. is the abbreviation of adaptive preprocessing.

Time Method OV SNS SF IdM
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

5 min Ours w/o A.P. 0.908 0.903 0.905 0.458 0.745 0.567 0.525 0.992 0.686 0.825 0.994 0.902
Ours 0.901 0.926 0.913 0.667 0.911 0.770 0.685 0.972 0.802 0.868 1.000 0.929

1 day Ours w/o A.P. 0.919 0.876 0.897 0.745 0.714 0.729 0.763 0.893 0.823 1.000 0.847 0.917
Ours 0.921 0.884 0.902 0.895 0.819 0.855 0.922 0.893 0.907 1.000 0.915 0.956

Table 7: Comparison of different variants of our method with knowledge sharing. K.S. and T.L. are the abbreviations for
knowledge sharing and transfer learning, respectively.

Time Method OV SNS SF IdM
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

5 min
Ours w/o K.S. 0.633 0.943 0.758 0.319 0.774 0.452 0.470 0.989 0.637 0.883 0.898 0.891
Ours w/ T.L. 0.431 0.926 0.588 0.389 0.806 0.525 0.456 1.000 0.626 0.850 0.864 0.857

Ours 0.901 0.926 0.913 0.667 0.911 0.770 0.685 0.972 0.802 0.868 1.000 0.929

1 day
Ours w/o K.S. 0.914 0.882 0.898 0.893 0.689 0.778 0.947 0.824 0.881 0.943 0.847 0.893
Ours w/ T.L. 0.899 0.876 0.887 0.844 0.620 0.715 0.975 0.696 0.812 0.981 0.898 0.938

Ours 0.921 0.884 0.902 0.895 0.819 0.855 0.922 0.893 0.907 1.000 0.915 0.956

since the requests in OV are relatively simple and can be mostly
handled by naive tokenization techniques.

Second, we remove the multi-domain representation module and
the cross-domain module. Note that, we treat the multi-domain rep-
resentation module and the cross-domain training module as being
inseparable in knowledge sharing based on meta-learning because
1) multi-domain representation performs universal embedding map-
ping without changing the relationship between embeddings of
tokens in the same domain, thus training a model using univer-
sal embedding from only one domain brings no benefit, and 2)
cross-domain training requires inputs to be in the same feature
space, which cannot be guaranteed without universal embedding.
Therefore, we consider two variants for these two modules: 1) ours
without knowledge sharing. We use the token sequences generated
by the adaptive preprocessing module to train a seq2seq detection
model and 2) ours with transfer learning. We leverage the common
transfer learning paradigm as an alternative choice for knowledge
sharing. A model is pre-trained using data from multiple auxil-
iary domains and is then fine-tuned to the target domain, where
the embeddings of unknown tokens are randomly initialized. Ta-
ble 7 shows the results. Under all settings, our method achieves
the best performance with the multi-domain representation and
the cross-domain training. Moreover, these two modules are es-
pecially helpful to boost detection performance when the data is
limited. When these two modules are removed, F1-scores drop at
most 41.3% and 9.0% with 5-minute and 1-day training data, re-
spectively. Besides, the performance of transfer learning is even
worse than without knowledge sharing in most cases, indicating
that transfer learning is not effective for sharing knowledge among
heterogeneous Web domains.

We further visualize the distribution of token embeddings in dif-
ferent domains to illustrate how our multi-domain representation
helps to achieve knowledge sharing from heterogeneous Web data.

OV

SNS

SF

IdM

(a) Word2vec

OV

SNS

SF

IdM

(b) Ours

Figure 6: T-SNE Visualization of token embeddings using
Word2vec and our method.

We randomly select 100 tokens in each domain and project their
embeddings into 2-dimension using t-SNE [62]. The embedding of
t-SNE is initialized by principal component analysis, which is more
globally stable than random initialization [5]. Figure 6 shows the
results using our multi-domain representation and the Word2vec
technique. Using Word2vec, embeddings from each domain form a
cluster, which indicates the tokens of each domain are in different
feature spaces. On the contrary, with multi-domain representation,
tokens from the same domain are more dispersed and tokens from
different domains are mixed. This suggests that multi-domain rep-
resentation makes tokens from different domains share the same
feature space, and thus the correlation between tokens is captured.

5.5 Robustness under Data Poisoning
In this section, we quantify how effective our method is against data
poisoning. We realize data poisoning by generating and adding poi-
son samples to the original dataset for model training. Specifically,

1029

CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Clean 0.01 1.00
Poisoning ratio (%)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1-score Precision Recall

Clean 0.01 1.00
Poisoning ratio (%)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) Ours-5 mins

Clean 0.01 1.00
Poisoning ratio (%)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) ZeroWall-5 mins

Clean 0.01 1.00
Poisoning ratio (%)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Ours-1 day

Clean 0.01 1.00
Poisoning ratio (%)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) ZeroWall-1 day

Figure 7: Comparison of detection performance under data
poisoning.

T T+7 T+14 T+30
Day

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

5 min
1 day

(a) OV

T T+7 T+14 T+30
Day

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

5 min
1 day

(b) SNS

Figure 8: Performance of our method in online deployment
when the training data is collected taking 5 minutes and 1
day respectively.

the poison samples are automatically generated by a commercial
Web security scanner2. The poison samples are added to the origi-
nal dataset at different ratios, denoted as poison ratios 𝜂. We vary
𝜂 over [0%, 0.1%, 1%]. We test both our method and ZeroWall using
different collection time and present the comparison of detection
performance on OV in Figure 7.

Overall, our method outperforms ZeroWall when dealing with
data poisoning and is more stable. When the collection time is 5
minutes, both methods are stable when the poison ratio increases,
but our method provides better detection performance. When the
collection time is 1 day, the detection performance of both methods
degrades if we increase the poison ratio to 1%. We can see that recall
drops significantly, compared to precision. This is mainly because
2The scanner presets over 3000 human-written attack instances which cover more
than 40 types of common Web vulnerabilities including remote command execution,
SQL injection, etc. To generate poison samples, it first collects a set of normal requests
and substitutes query values in the HTTP request based on these instances.

the model incorrectly learns the patterns of poisoning samples and
identifies malicious samples with similar patterns as benign ones.

Comparing the results of 5-minute and 1-day evaluations, we sur-
prisingly find that, under the same poisoning ratio, models trained
with limited data are more robust against data poisoning. This is
a result of the fact that, given the same poison ratio, the number
of poison samples in 5-minute data is smaller than in 1-day data.
To be more specific, when the number of poison samples is small,
these samples behave like separate noises and are easily ignored
by deep learning models [54, 68]. As the number of poison samples
increases, it is more probable that these samples will cluster in the
feature space and produce a larger norm of gradient that will be
captured by the gradient descent algorithm [35].

6 REAL-WORLD DEPLOYMENT
To investigate how effective RETSINA is in a real production en-
vironment, we deployed it on the domains of OV and SNS in the
company. The real-world deployment demonstrates the superiority
of RETSINA in terms of effectiveness and robustness. Below, we
first describe our deployment experience. Then, we present the
results of the detection performance and our discoveries.

6.1 Real-World Deployment Experience
Since WAFs are effective in detecting known attacks, RETSINA
works complementarily with WAFs rather than completely replac-
ing them, to solely concentrate on zero-day attacks. We use the
producer-consumer approach to detect online activity. In particular,
the WAF acts as the producer, with the detection station, which
deploys all of the detection models from each domain, acting as
the consumer. Every request permitted by WAF will be mirrored
to the detection station for detection. The detection result will be
delivered to security operators for additional analysis.

Due to its large volume, real-world traffic is hard for deep learn-
ing models to process in a timely manner. We thus leverage the hash
technique to avoid processing the same token sequence repeatedly.
Since requests with the same structure but different valid values
are preprocessed into the same token sequence, a hash table is built
to store the hash values of token sequences and their detection
results for all token sequences that have been processed before-
hand. For example, the detection model only needs to process one
of “/path/?cid=abcde”, “/path/?cid=bcdef”, “/path/?cid=cde
fg” to return detection results for all three requests since they have
the same token sequence “path cid _cid_’. After the hash tables
in the preprocessing significantly reduce the number of token se-
quences needed to be predicted by the model, the preprocessing
itself is the bottleneck for the system throughput. Therefore, we
suggest assigning the majority of the CPU resources to the prepro-
cessing concurrently. Note that, such a system has good scalability.
It can be easily extended by addingmultiple backend servers respon-
sible for preprocessing or model prediction in a distributed way.

In practice, the universal initial models should be trained before
target domain training. Therefore, we use the universal initial mod-
els developed in Section 5 that was trained more than 6 months
ahead of our real-world deployment to train the target models. The
experiment results in Section 6.2 show that the universal initial
models are effective for detection, which confirms that the intervals

1030

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Peiyang Li, et al.

Table 8: Examples of zero-day attacks in OV and SNS.

Domain Example

OV /***/***?_=166******782&callback=$%7B@var
_dump(md5(158477632))%7D&channdlId=0

SNS
/***/***?desc=***&md=1&origin=***&pics
=***&qc=$%7B@var_dump(md5(27365736
8))%7D;&showcount=0&site=&summary=*
&url=https://*.com/***&where=10

between the data collection for the auxiliary domains and the target
domain do not impact the model performance.

6.2 Real-World Detection Performance
Detection Results. In the deployment, we collect 5-minute data
on the 0th, 7th, 14th, and 30th days respectively to train the target
models. For OV and SNS, we detect 126 and 218 zero-day attack
requests on average per day, respectively. We also compare the
models that are trained using 5-minute or 1-day data, respectively,
in Figure 8. It can be seen that our method can achieve high de-
tection performance using only 5-minute training data, and the
F1-scores of 5-minute and 1-day training data are comparable in
most cases. The results confirm the effectiveness of our method
under limited training data in a real-world environment.

Interestingly, we observe that the results of 1-day experiments
can be even worse than those of 5-minute experiments on the 14th
and 30th days of SNS. We carefully examine the corresponding
results and find that, the performance degrades since the training
data is poisoned with many attack requests that the WAF is unable
to identify. Conversely, the results of the 5-minute experiment
behave normally, which is also consistent with the phenomenon
observed in Section 5.5.

We also present two examples of zero-day attacks that are de-
tected by our method but missed by WAF in Table 8. Though de-
tected from OV and SNS, respectively, both attacks belong to the
same attack type—command injection—where attackers aim to force
the server to execute arbitrary codes. Benefiting from unsupervised
learning, our method detects these attacks based on the learned pat-
terns of benign requests. Conversely,WAFs usually detect command
injection attacks based on keyword matching. It is unable to detect
these attacks since it does not cover the keyword “$%7B@var_dump”.
Detection under Concept Drift. Web applications are frequently
updated, aswas earliermentioned. After the update, concept drift—the
phenomenon that the detection performance of a trained model de-
grades when presented with previously unseen data due to the data
update—occurs. We now explore the effectiveness of our approach
against concept drift.

First, we examine howRETSINA and the baseline perform against
concept drift. We train models using the whole data from the 0th
day and use them for subsequent testing without retraining. Figure
9 shows the comparison results. Overall, the detection performance
of both our method and ZeroWall degrades. However, our method
is more robust to concept drift and always performs better than
ZeroWall. For example, for SNS, the F1-score drops by 0.052 in 7

T T+7 T+14 T+30
Day

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

Ours
ZeroWall

(a) OV

T T+7 T+14 T+30
Day

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

Ours
ZeroWall

(b) SNS

Figure 9: Performance comparisons between our method and
ZeroWall against concept drift.

T T+7 T+14 T+30
Day

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

w/o retraining
w/ retraining

(a) OV

T T+7 T+14 T+30
Day

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

w/o retraining
w/ retraining

(b) SNS

Figure 10: The impact of retraining on detection perfor-
mance.

days after training. In comparison, the decrease of ZeroWall is 0.137.
This demonstrates that knowledge sharing enables our model to
have better generalizability against concept drift. We also examine
the corresponding results and find that concepts drift occurs when
the Web services are updated, e.g., new APIs are added. Requests
that invoke these new APIs are unknown to the old model, resulting
in false positives.

Second, we investigatewhether periodic retrainingwith 5-minute
data provides better detection performance than without retrain-
ing (i.e., using the model trained on the 0th day). Figure 10 shows
the comparison results. In a word, the results of detection with
retraining are stable over time and better than the results without
retraining, which validates the necessity of updating the model for
preserving the detection performance over time. On the contrary,
detection performance degrades severely over time without retrain-
ing. For OV, the degradation is significant from the 7th day. For
SNS, although the performance drop appears to be relatively small
on the 7th day, the model performance still suffers a huge drop on
the 14th day. Thus, for these two domains, it is necessary to update
the model at least once a week.

7 DISCUSSION
Security against Adaptive Attacks. Given that RETSINA is a
deep learning-based, adversaries may leverage two common tech-
niques for adaptive attacks against deep learning models, i.e., ad-
versarial examples [72] and data poisoning [47], to bypass our
detection. We argue that these two techniques are less practical for
our framework. For adversarial examples, existing works mainly
study their impact on supervised tasks in computer vision [8] and

1031

CCS ’23, November 26–30, 2023, Copenhagen, Denmark

natural language processing [34]. As discussed in earlier work,
their extension to unsupervised tasks only performs with clus-
tering methods [9, 70] or vanilla auto-encoders [20, 21]. It is still
challenging to construct adversarial examples for HTTP requests in
practice. First, it is impractical to construct adversarial samples in
the discrete input space of our detection model. The earlier research
on inverse feature-mapping problem shows that attacks are still
impractical even when an adversary has white box access to the
model and constructs adversarial examples in the feature space
through optimization. Second, it is hard to generate adversarial
samples while preserving the malicious semantics, and no existing
constraint functions measure the similarity of HTTP requests.

Data poisoning requires a certain number of poisoned requests
that can bypass the existing WAF, which has a cost. Generally,
the number of malicious requests unfiltered by WAFs is relatively
small and thus these requests have less impact on the unsupervised
model that learns dominated patterns in training data. Actually,
the datasets we evaluate are also directly collected from WAFs
and are not completely clean, but as shown in Table 3 our method
still achieves high detection performance across all settings. This
validates that our method is not vulnerable to the small number of
attack requests unfiltered by WAFs. Moreover, in section 5.5, we
show that the model is more robust to poisoning when the number
of training data is less given the fixed poison ratio. Recall that
learning with limited training data is exactly the strength of our
method.We also show that when the collection time of training data
is 5 minutes our method will not be affected even if the poisoning
ratio is 1%. All these results demonstrate the robustness of our
method against data poisoning. We acknowledge that adversaries
may launch more powerful attacks, e.g., [27, 55], where only a small
number of carefully crafted samples can drastically degrade the
model performance. However, no related work has been proposed
for the system of Web attack detection. We leave it to future work.
Limitations. RETSINA has the following limitations. First, our
method can only judge whether a request is an attack, but cannot
provide finer-grained detection results. Thus, it still requires secu-
rity operators to review the reported attacks. In future work, we
plan to incorporate with clustering algorithm and perform fine-
grained detection by automatically correlating the attack requests
that have similar semantics. Second, we detect attacks by inspect-
ing the payload of a single HTTP request, which cannot cover the
context-based attacks, such as challenge collapsar (CC) attacks [43].
In future work, contextual information can be incorporated into
our system to detect these attacks.

8 RELATEDWORK
Web Attack Detection. Deploying WAFs [1, 3, 4, 52] is the com-
monly used way to detect Web attacks in the industry. However,
these methods are rule-based (i.e., non-ML based) and cannot detect
zero-day attacks that are not matched by rules. Recently, machine
learning based methods have been proposed to improve detection
performance. These methods work in a supervised or unsupervised
manner. Supervised methods [14, 19, 39, 41, 42, 66, 76] let the clas-
sifier learn to discriminate malicious requests based on previously
labeled data. However, due to the huge amount of Web traffic and
the rarity of attacks, it is not practical to manually labelWeb data. In

addition, supervised methods assume the knowledge about attacks
during training, which can produce unreliable predictions when
faced with zero-day attacks [18, 25, 36].

Unlike supervised methods which learn from both benign re-
quests and malicious requests, unsupervised methods only learn
the profile of benign requests, and requests which deviate from the
profile are identified as being malicious. Several methods explore
the probability of using the variants of auto-encoder [50, 60, 63].
Vartouni et al. use character-level N-gram and apply stacked auto-
encoder [63]. However, their isolation forest model directly uses
the output of the encoder which is insufficient for request repre-
sentation, thus providing limited performance. Park et al. propose
to use a convolutional auto-encoder with character-level binary
image transformation [50]. Tang et al. formulate the detection prob-
lem as a self-translation problem and apply seq2seq models [60].
Our proposed solution also falls into the category of unsupervised
methods and is designed to complement existing WAFs to detect
zero-day attacks. However, in contrast to all methods above, our
proposed detection model only requires limited training data and
has good generalizability utilizing the knowledge sharing.
Machine Learning in Multi-task Scenario. Recently, a series of
approaches have been proposed for multi-task learning in different
fields [26, 46, 59, 69, 75]. A common goal of these researches is
to learn a unified model to solve a collection of related tasks at
the same time. Their key intuition is that learning one task can
help improve the performance of other tasks. However, multi-task
learning is not a good paradigm to solve our Web attack detection
problem becauseWeb applicationsmay be updated frequently. More
specifically, we must retrain the unified model when a domain is
updated or a new domain comes, which is inefficient compared to
updating the model for a single domain name. Moreover, we have
compared our method with multi-task learning in our evaluations
and demonstrated our advantages.
Machine Learning with Limited Training Data. Many works
focus on improving the performance of machine learning when
using limited training data [30, 31, 58, 61]. These methods can be
grouped into two categories, i.e., data augmentation based and
knowledge sharing based. Traditional augmentation methods are
developed based on domain-specific expertise [33, 56, 67, 80]. Some
works design algorithms to analyze the feature distribution of avail-
able data and generate new data by linear [28, 37, 73] or non-linear
[7, 29, 30, 53, 77] interpolations. However, to the best of our knowl-
edge, none of these methods are applicable to generating HTTP
request data. Knowledge sharing based approaches aim to leverage
existing knowledge to boost the model performance on limited
training data. Depending on the application scenario, different
techniques are developed to achieve knowledge sharing, such as
transfer learning [11, 22, 65], self-supervised learning [15, 38, 40]
and meta-learning [23, 78]. Our method falls into this category. The
key difference is that we propose specific and novel designs to better
capture the correlation of HTTP requests in different domains.

9 CONCLUSION
We propose a novel framework, RETSINA, to detect zero-day Web
attacks across multiple domains with limited training data by uti-
lizing meta-learning. We develop a series of new designs to achieve

1032

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Peiyang Li, et al.

knowledge sharing effectively. We evaluate RETSINA on 4 real-
world datasets and demonstrate the effectiveness of RETSINA for
multiple heterogeneous Web domains with limited training data.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable comments.
The work is supported in part by the National Key R&D Project of
China under Grant 2021ZD0110502, NSFC under Grant 62132011,
61825204, 62122095, 62341201 and 92067206, and the Beijing Out-
standing Young Scientist Program under Grant BJJWZYJH01201910
003011. Qi Li is the corresponding author of this paper.

REFERENCES
[1] 2023. AQTRONiX WebKnight. https://www.iis.net/downloads/community/2016/

04/aqtronix-webknight
[2] 2023. Google Help. Collect campaign data with custom URLs. https://support.

google.com/analytics/answer/1033863?hl=en#zippy=%2Cin-this-article
[3] 2023. ModSecurity. https://github.com/SpiderLabs/ModSecurity/
[4] 2023. Naxsi. https://github.com/nbs-system/naxsi/
[5] 2023. Sklearn TSNE. http://scikit-learn.org/stable/modules/generated/sklearn.

manifold.TSNE.html
[6] 2023. Xray. https://github.com/chaitin/xray/tree/master/pocs
[7] Francesco Calimeri, Aldo Marzullo, Claudio Stamile, and Giorgio Terracina. 2017.

Biomedical data augmentation using generative adversarial neural networks. In
ICANN. Springer, 626–634.

[8] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of
neural networks. In S&P. IEEE, 39–57.

[9] Anshuman Chhabra, Abhishek Roy, and Prasant Mohapatra. 2020. Suspicion-free
adversarial attacks on clustering algorithms. In AAAI, Vol. 34. 3625–3632.

[10] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[11] Dan C Cireşan, Ueli Meier, and Jürgen Schmidhuber. 2012. Transfer learning for
Latin and Chinese characters with deep neural networks. In IJCNN. IEEE, 1–6.

[12] Gabriela F Cretu, Angelos Stavrou, Michael E Locasto, Salvatore J Stolfo, and
Angelos D Keromytis. 2008. Casting out demons: Sanitizing training data for
anomaly sensors. In S&P. IEEE, 81–95.

[13] Gabriela F Cretu-Ciocarlie, Angelos Stavrou, Michael E Locasto, and Salvatore J
Stolfo. 2009. Adaptive anomaly detection via self-calibration and dynamic updat-
ing. In RAID. Springer, 41–60.

[14] Saikat Das, Mohammad Ashrafuzzaman, Frederick T Sheldon, and Sajjan Shiva.
2020. Network intrusion detection using natural language processing and ensem-
ble machine learning. In 2020 IEEE Symposium Series on Computational Intelligence
(SSCI). IEEE, 829–835.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[16] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In ACM CCS.
1285–1298.

[17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML. PMLR, 1126–1135.

[18] Chuanpu Fu, Qi Li, and Ke Xu. 2023. Detecting unknown encrypted malicious
traffic in real time via flow interaction graph analysis. NDSS (2023).

[19] Mateusz Gniewkowski, Henryk Maciejewski, Tomasz R Surmacz, and Wiktor
Walentynowicz. 2021. HTTP2vec: Embedding of HTTP Requests for Detection
of Anomalous Traffic. arXiv preprint arXiv:2108.01763 (2021).

[20] George Gondim-Ribeiro, Pedro Tabacof, and Eduardo Valle. 2018. Adversarial
attacks on variational autoencoders. arXiv preprint arXiv:1806.04646 (2018).

[21] Adam Goodge, Bryan Hooi, See-Kiong Ng, and Wee Siong Ng. 2020. Robustness
of Autoencoders for Anomaly Detection Under Adversarial Impact.. In IJCAI.
1244–1250.

[22] Jiatao Gu, Hany Hassan, Jacob Devlin, and Victor OK Li. 2018. Universal neu-
ral machine translation for extremely low resource languages. arXiv preprint
arXiv:1802.05368 (2018).

[23] Jiatao Gu, Yong Wang, Yun Chen, Kyunghyun Cho, and Victor OK Li. 2018.
Meta-learning for low-resource neural machine translation. arXiv preprint
arXiv:1808.08437 (2018).

[24] Shangbin Han, Qianhong Wu, Han Zhang, Bo Qin, Jiankun Hu, Xingang Shi,
Linfeng Liu, and Xia Yin. 2021. Log-based anomaly detection with robust feature
extraction and online learning. IEEE Transactions on Information Forensics and
Security 16 (2021), 2300–2311.

[25] DanHendrycks and KevinGimpel. 2016. A baseline for detectingmisclassified and
out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136
(2016).

[26] He Huang, Haojiang Deng, Jun Chen, Luchao Han, and Wei Wang. 2018. Auto-
matic multi-task learning system for abnormal network traffic detection. Inter-
national Journal of Emerging Technologies in Learning 13, 4 (2018).

[27] Hai Huang, Jiaming Mu, Neil Zhenqiang Gong, Qi Li, Bin Liu, and Mingwei Xu.
2021. Data Poisoning Attacks to Deep Learning Based Recommender Systems.
In NDSS.

[28] Hiroshi Inoue. 2018. Data augmentation by pairing samples for images classifica-
tion. arXiv preprint arXiv:1801.02929 (2018).

[29] Zubayer Islam, Mohamed Abdel-Aty, Qing Cai, and Jinghui Yuan. 2021. Crash
data augmentation using variational autoencoder. Accident Analysis & Prevention
151 (2021), 105950.

[30] Steve TK Jan, Qingying Hao, Tianrui Hu, Jiameng Pu, Sonal Oswal, Gang Wang,
and Bimal Viswanath. 2020. Throwing darts in the dark? detecting bots with
limited data using neural data augmentation. In S&P. IEEE, 1190–1206.

[31] Xiang Jiang, Mohammad Havaei, Gabriel Chartrand, Hassan Chouaib, Thomas
Vincent, Andrew Jesson, Nicolas Chapados, and Stan Matwin. 2018. On the
importance of attention in meta-learning for few-shot text classification. arXiv
preprint arXiv:1806.00852 (2018).

[32] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[33] Sosuke Kobayashi. 2018. Contextual augmentation: Data augmentation by words
with paradigmatic relations. arXiv preprint arXiv:1805.06201 (2018).

[34] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. 2018. Textbug-
ger: Generating adversarial text against real-world applications. arXiv preprint
arXiv:1812.05271 (2018).

[35] Peiyang Li, Ye Wang, Zhuotao Liu, Ke Xu, QianWang, Chao Shen, and Qi Li. 2022.
Verifying the Quality of Outsourced Training on Clouds. In ESORICS. Springer,
126–144.

[36] Sainan Li, Qilei Yin, Guoliang Li, Qi Li, Zhuotao Liu, and Jinwei Zhu. 2022.
Unsupervised contextual anomaly detection for database systems. In SIGMOD.
788–802.

[37] Zhi Li, Jun Guo, Wenli Jiao, Pengfei Xu, Baoying Liu, and Xiaowei Zhao. 2020.
Random linear interpolation data augmentation for person re-identification.
Multimedia Tools and Applications 79, 7 (2020), 4931–4947.

[38] Junjie Liang, Wenbo Guo, Tongbo Luo, Honavar Vasant, Gang Wang, and Xinyu
Xing. 2021. FARE: enabling fine-grained attack categorization under low-quality
labeled data. In NDSS.

[39] Jingxi Liang, Wen Zhao, and Wei Ye. 2017. Anomaly-based web attack detection:
a deep learning approach. In Proceedings of the 2017 VI International Conference
on Network, Communication and Computing. 80–85.

[40] Chen Liu, Yanwei Fu, Chengming Xu, Siqian Yang, Jilin Li, Chengjie Wang, and
Li Zhang. 2021. Learning a few-shot embedding model with contrastive learning.
In AAAI, Vol. 35. 8635–8643.

[41] Jiaxin Liu, Xucheng Song, Yingjie Zhou, Xi Peng, Yanru Zhang, Pei Liu, Dapeng
Wu, and Ce Zhu. 2022. Deep anomaly detection in packet payload. Neurocom-
puting 485 (2022), 205–218.

[42] Tianlong Liu, Yu Qi, Liang Shi, and Jianan Yan. 2019. Locate-Then-Detect: Real-
time Web Attack Detection via Attention-based Deep Neural Networks.. In IJCAI.
4725–4731.

[43] Xiaolin Liu, Shuhao Li, Yongzheng Zhang, Xiaochun Yun, and Jia Li. 2020. Chal-
lenge Collapsar (CC) Attack TrafficDetection Based on Packet Field Differentiated
Preprocessing and Deep Neural Network. In ICCS. Springer, 282–296.

[44] Zhuotao Liu, Hao Zhao, Sainan Li, Qi Li, Tao Wei, and Yu Wang. 2021. Privilege-
Escalation Vulnerability Discovery for Large-scale RPC Services: Principle, De-
sign, and Deployment. In ACM Asia CCS. 565–577.

[45] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[46] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. 2016.
Cross-stitch networks for multi-task learning. In CVPR. 3994–4003.

[47] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin
Wongrassamee, Emil C Lupu, and Fabio Roli. 2017. Towards poisoning of deep
learning algorithms with back-gradient optimization. In AISec. 27–38.

[48] Andrew Ng et al. 2011. Sparse autoencoder. CS294A Lecture notes 72, 2011 (2011),
1–19.

[49] Alex Nichol, Joshua Achiam, and John Schulman. 2018. On first-order meta-
learning algorithms. arXiv preprint arXiv:1803.02999 (2018).

[50] Seungyoung Park, Myungjin Kim, and Seokwoo Lee. 2018. Anomaly detection
for HTTP using convolutional autoencoders. IEEE Access 6 (2018), 70884–70901.

[51] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, Lorenzo
Cavallaro, et al. 2019. TESSERACT: Eliminating experimental bias in malware
classification across space and time. In USENIX Security. USENIX Association,
729–746.

[52] Stefan Prandl, Mihai Lazarescu, and Duc-Son Pham. 2015. A study of web
application firewall solutions. In ICISSP. Springer, 501–510.

1033

https://www.iis.net/downloads/community/2016/04/aqtronix-webknight
https://www.iis.net/downloads/community/2016/04/aqtronix-webknight
https://support.google.com/analytics/answer/1033863?hl=en#zippy=%2Cin-this-article
https://support.google.com/analytics/answer/1033863?hl=en#zippy=%2Cin-this-article
https://github.com/SpiderLabs/ModSecurity/
https://github.com/nbs-system/naxsi/
http://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
http://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://github.com/chaitin/xray/tree/master/pocs

CCS ’23, November 26–30, 2023, Copenhagen, Denmark

[53] Yuqi Qing, Qilei Yin, Xinhao Deng, Yihao Chen, Zhuotao Liu, Kun Sun, Ke Xu, Jia
Zhang, and Qi Li. 2024. Low-Quality Training Data Only? A Robust Framework
for Detecting Encrypted Malicious Network Traffic. NDSS (2024).

[54] David Rolnick, Andreas Veit, Serge Belongie, and Nir Shavit. 2017. Deep learning
is robust to massive label noise. arXiv preprint arXiv:1705.10694 (2017).

[55] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,
Tudor Dumitras, and Tom Goldstein. 2018. Poison Frogs! Targeted Clean-Label
Poisoning Attacks on Neural Networks. In NeurIPS. 6106–6116.

[56] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[57] Samuel L Smith, David HP Turban, Steven Hamblin, and Nils Y Hammerla. 2017.
Offline bilingual word vectors, orthogonal transformations and the inverted
softmax. arXiv preprint arXiv:1702.03859 (2017).

[58] Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017. Prototypical Networks
for Few-shot Learning. In NeurIPS. 4077–4087.

[59] Anders Søgaard and Yoav Goldberg. 2016. Deep multi-task learning with low
level tasks supervised at lower layers. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers). 231–235.

[60] Ruming Tang, Zheng Yang, Zeyan Li, Weibin Meng, HaixinWang, Qi Li, Yongqian
Sun, Dan Pei, Tao Wei, Yanfei Xu, et al. 2020. Zerowall: Detecting zero-day web
attacks through encoder-decoder recurrent neural networks. In IEEE INFOCOM.
IEEE, 2479–2488.

[61] Hung-Yu Tseng, Hsin-Ying Lee, Jia-Bin Huang, and Ming-Hsuan Yang. 2020.
Cross-domain few-shot classification via learned feature-wise transformation.
arXiv preprint arXiv:2001.08735 (2020).

[62] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

[63] Ali Moradi Vartouni, Saeed Sedighian Kashi, and Mohammad Teshnehlab. 2018.
An anomaly detection method to detect web attacks using stacked auto-encoder.
In 2018 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). IEEE.

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NeurIPS. 5998–6008.

[65] Dong Wang and Thomas Fang Zheng. 2015. Transfer learning for speech and
language processing. In 2015 Asia-Pacific Signal and Information Processing Asso-
ciation Annual Summit and Conference (APSIPA). IEEE, 1225–1237.

[66] Shanshan Wang, Qiben Yan, Zhenxiang Chen, Bo Yang, Chuan Zhao, and Mauro
Conti. 2018. Detecting Android Malware Leveraging Text Semantics of Network
Flows. IEEE Trans. Inf. Forensics Secur. 13, 5 (2018), 1096–1109.

[67] Jason Wei and Kai Zou. 2019. Eda: Easy data augmentation techniques for
boosting performance on text classification tasks. arXiv preprint arXiv:1901.11196
(2019).

[68] Jiayun Xu, Yingjiu Li, and Robert H. Deng. 2021. Differential Training: A Generic
Framework to Reduce Label Noises for Android Malware Detection. In NDSS.

[69] Teng Xu, Gerard Goossen, Huseyin Kerem Cevahir, Sara Khodeir, Yingyezhe Jin,
Frank Li, Shawn Shan, Sagar Patel, David Freeman, and Paul Pearce. 2021. Deep
entity classification: Abusive account detection for online social networks. In
USENIX Security. 4097–4114.

[70] Xu Yang, Cheng Deng, Kun Wei, Junchi Yan, and Wei Liu. 2020. Adversarial
learning for robust deep clustering. NeurIPS 33 (2020), 9098–9108.

[71] Kaichao You, Zhi Kou, Mingsheng Long, and Jianmin Wang. 2020. Co-Tuning for
Transfer Learning. In NeurIPS.

[72] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial examples:
Attacks and defenses for deep learning. IEEE transactions on neural networks and
learning systems 30, 9 (2019), 2805–2824.

[73] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. 2017.
mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412
(2017).

[74] Ming Zhang, Boyi Xu, Shuai Bai, Shuaibing Lu, and Zhechao Lin. 2017. A deep
learning method to detect web attacks using a specially designed CNN. In ICONIP.
Springer, 828–836.

[75] Yu Zhang and Qiang Yang. 2021. A survey on multi-task learning. IEEE Transac-
tions on Knowledge and Data Engineering (2021).

[76] Ya-Lin Zhang, Longfei Li, Jun Zhou, Xiaolong Li, and Zhi-Hua Zhou. 2018. Anom-
aly detection with partially observed anomalies. InWWW. 639–646.

[77] Panpan Zheng, Shuhan Yuan, Xintao Wu, Jun Li, and Aidong Lu. 2019. One-class
adversarial nets for fraud detection. In AAAI, Vol. 33. 1286–1293.

[78] Wenbo Zheng, Chao Gou, Lan Yan, and Shaocong Mo. 2020. Learning to classify:
A flow-based relation network for encrypted traffic classification. In WWW.
13–22.

[79] Zibin Zheng, Yilei Zhang, and Michael R Lyu. 2012. Investigating QoS of real-
world web services. IEEE transactions on services computing 7, 1 (2012), 32–39.

[80] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. 2020. Random
erasing data augmentation. In AAAI, Vol. 34. 13001–13008.

[81] Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, Hongwei Hao, and Bo
Xu. 2016. Attention-based bidirectional long short-term memory networks for
relation classification. In Proceedings of the 54th annual meeting of the association
for computational linguistics (volume 2: Short papers). 207–212.

Table 9: Performance comparisons when choosing different
base domains. The symbol “*” denotes that the base domain
is selected using our method.

Target
Domain Time Base

Domain Pre Rec F1

OV

5 min
SNS 0.896 0.929 0.912
SP 0.890 0.921 0.905

* IdM 0.901 0.926 0.913

1 day
SNS 0.932 0.885 0.908
SP 0.919 0.853 0.885

* IdM 0.921 0.884 0.902

IdM

5 min
* OV 0.868 1.000 0.929
SNS 0.895 0.864 0.879
SP 0.889 0.949 0.918

1 day
* OV 1.000 0.915 0.956
SNS 0.948 0.932 0.940
SP 0.963 0.881 0.920

A SELECTION OF THE BASE DOMAIN
We evaluate the impact of the selection of base domains on domain
OV and IdM. Specifically, we change base domains and compare
their performance. The results are shown in Table 9. It can be
seen that the selection of base domains has limited impacts on
the model performance, and the fluctuation of F1-scores is within
0.05. Moreover, our method selects the base domain with the best
performance in most cases.

1034

	Abstract
	1 Introduction
	2 Problem Statement
	3 Framework Overview
	4 Design Details
	4.1 Adaptive Preprocessing
	4.2 Multi-domain Representation
	4.3 Cross-domain Training

	5 Evaluation
	5.1 Settings
	5.2 Detection performance
	5.3 Development Overhead
	5.4 Ablation Study
	5.5 Robustness under Data Poisoning

	6 Real-World Deployment
	6.1 Real-World Deployment Experience
	6.2 Real-World Detection Performance

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Selection of the Base domain

