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Adversarial example attacks have become a growing menace to neural network-based face recognition systems. Generated by
composing facial images with pixel-level perturbations, adversarial examples change key features of inputs and thereby lead
to misclassification of neural networks. However, the perturbation loss caused by complex physical environments sometimes
prevents existing attack methods from taking effect.

In this paper, we focus on designing new attacks that are effective and inconspicuous in the physical world. Motivated
by the differences in image-forming principles between cameras and human eyes, we propose VLA, a novel attack against
black-box face recognition systems using visible light. In VLA, visible light-based adversarial perturbations are crafted and
projected on human faces, which allows an adversary to conduct targeted or un-targeted attacks. VLA decomposes adversarial
perturbations into a perturbation frame and a concealing frame, where the former adds modifications on human facial images
while the latter makes these modifications inconspicuous to human eyes. We conduct extensive experiments to demonstrate
the effectiveness, inconspicuousness, and robustness of the adversarial examples crafted by VLA in physical scenarios.
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1 INTRODUCTION
Recent years have witnessed the growing popularity of face recognizers powered by neural networks [6, 37, 40, 41],
e.g., FaceNet [31] and SphereFace [24]. An increasing number of neural network-based face recognition systems
are being widely deployed in the physical world for access control and decision making [1, 17]. A wide range of
studies in ubiquitous computing have granted power from face recognition, e.g., from daily entertainment [5]
to e-health [42], mobile user authentication [8] to social assistance [18]. The security concerns for ubiquitous
computing applications have also attracted great public attention [12, 13, 20, 33, 34, 43]. Existing studies show that
neural networks can be vulnerable to potential attacks [25, 45, 46]. Among all kinds of security threats, adversarial
example attacks raise an increasing amount of attention from both academia and industry [16, 36, 38, 46].
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Fig. 1. An example illustrating perturbation loss of digital adversarial examples in physical conditions.

An adversarial example is an elaborately prepared input to neural networks for face recognition that can lead to
an incorrect output, i.e., an output that is basically different from the result of human sense [7, 21, 28, 29]. These
attacks can cause unexpected behaviors of neural networks, making the corresponding face recognition systems
unreliable. Generally, an adversarial example is derived by composing the original input with perturbations, which
change the values of some key features and thereby result in a misclassification.

Existing studies on adversarial example attacks against neural networks begin in the digital domain [22, 27, 44].
Digital attacks aim at crafting pixel-level perturbations directly in digital images such that the resulting adversarial
examples can mislead neural network based classifiers while being imperceptible to human eyes. In physical-world
face recognition systems, however, these attacks may lose efficiency, as the input images to neural networks
cannot be manipulated directly by an adversary [26]. Instead, the images for recognition are generally captured
by embedded cameras.
The inefficiency of migrating digital attacks in physical scenarios is demonstrated in Fig. 1. Digital attacks

generally work as exhibited in Fig. 1(a): given an original image labelled as dog with 97% confidence, a digital
adversarial example can mislead the neural networks into labeling the sample as cat with 99% confidence. To
simulate a real face recognition process in the physical world where an adversary cannot manipulate the input
image directly, the same adversarial example is first displayed on a screen before being captured by a camera and
finally fed to the recognizer. As illustrated in Fig. 1(b), the sample is classified as dog with 92% confidence. This is
because the modifications on digital objectives crafted by adversarial attack methods become less distinctive in
the physical world, which is referred as perturbation loss hereafter.
More recent research efforts are dedicated to physical, also known as practical, adversarial examples [11,

14, 23, 32, 49], where perturbations are physically added to the objectives themselves. Within the domain of
face recognition, Sharif et al. [32] showed the feasibility of physical adversarial examples by employing facial
decorations, where perturbations are printed on the frames of eyeglasses. Although effective, this attack is
observable to nearby people as the eyeglasses colored with generated perturbations are quite conspicuous.
Similarly, Zhou et al. [49] proposed adversarial examples based on an infrared mask, which is realized by
illuminating objectives with infrared perturbations. The elaborate attack is invisible to human eyes, but it can be
simply wiped out by infrared cut-off filters that are commonly equipped in solid state (e.g., CMOS) cameras to
block infrared wavelengths while passing visible light.
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Considering the limitations of existing methods, it is still a challenging task to craft adversarial examples
against face recognition systems in physical scenarios. On one hand, adversarial examples should be applied to
a human face in an imperceptible and inconspicuous way, which means that physical perturbations used in the
attack should not be detected by human eyes and unobservable by nearby people. On the other hand, adversarial
examples should make the physical perturbations sensitive to cameras in face recognition systems such that the
perturbed facial images captured by cameras can cheat the face recognition algorithms. It is also desirable that
physical perturbations are robust in various environmental conditions.

In this paper, we propose a visible light-based attack (VLA) method, which is a brand-new approach to generate
adversarial examples against neural networks in physical-world face recognition systems. The basic idea is to
project visible light based perturbations on human faces, leading to targeted or un-targeted misclassification on
faces. The adoption of visible light is motivated by the differences in image-forming principles between human
eyes and digital cameras: the persistence of vision (POV) which only exists for human eyes can mix the colors of
two image frames swapped in a high frequency while cameras cannot, which leads to various appearances from
perceptions of human eyes and cameras. POV provides an efficient way to expose specific images to cameras
while hiding them from human eyes.

In order to mitigate perturbation loss and make perturbations more sensitive to cameras embedded in face
recognition devices, we design region-level, instead of pixel-level, modifications to human faces. Pixel-level
perturbations are visually isolating pixel points with various colors, while region-level perturbations are more
like comparatively large regions each of which are filled with only one color.

As enlarged perturbations can be more effective against less sensible sensors, the newly generated perturbations
can be more noticeable. To ensure the inconspicuousness of region-level perturbations crafted by VLA, they are
decomposed into two frames: one is designed to change features of the current user, named the perturbation
frame, while the other frame is used to hide the perturbation frame from human views, named the concealing
frame. Both of the two frames are generated with only one environment-related parameter, which can be inferred
from the distance between an adversary and the camera.

Extensive experiments are conducted to evaluate the performance of VLA. The well-known face dataset LFW
[19] along with a custom dataset are utilized to investigate the attack success rate of VLA and a typical adversarial
example generation method FGSM [15]. The result shows that both methods could reach high attack success rate
in digital scenarios. While in physical scenarios, the effectiveness degradation of VLA is 7.6% vs. 57.3% for FGSM,
which is more tolerable. The robustness of VLA which is also revealed as the attack success rate is kept in high
level (i.e., less than 10% of success rate degradation) when changing environmental conditions. The experiment
shows the high attack success rate of VLA (i.e., 98.6%) when concealing frames are accidentally captured. In
addition, the inconspicuousness of generated perturbations for human senses is concluded from an on-spot
survey and gets quantified by comparing image differences, i.e., fused images of faces and perturbations perceived
by human eyes are similar with the appearance of original human faces.
We summarize the main contributions as follows:

(1) We estimate the feasibility of hiding perturbations using visible light based on differences in image-forming
principles for humans and cameras according to the chromatic color mixture model. (Section 3)

(2) We propose VLA to generate and present adversarial examples in physical scenarios. VLA is agnostic to
specific neural networks and requires only one input parameter. Each adversarial example can be generated
within 3 seconds, achieving high efficiency. (Section 4)

(3) We conduct an on-spot survey and extensive experiments, the results of which reveal the relatively high
attack success rate of VLA in physical scenarios. The inconspicuousness and robustness of perturbations
generated by VLA are also demonstrated. (Section 5).
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Table 1. Summary of typical physical adversarial example attacks

Target Method Perturbation presentation method Imperceptibility or inconspicuousness

Physical objects Kurakin et al. [23] Add perturbations onto images Not focused

Road signs
RP2 [14] Tie shapes onto road signs

Minimize the distance of adversarial
examples with original images

DARTS [35] Print colors onto road signs Minimize the p-norm of perturbations

Faces
Sharif et al. [32] Wear eye glasses with printed colors People wearing glasses is natural
IMA [49] Project infrared onto faces Infrared is not visible for human
VLA Project perturbations to human faces Hide perturbations according to POV

2 RELATED WORK
With the wide adoption of neural networks in various applications, the security and safety of neural networks
have attracted increasing research efforts. Adversarial example attacks were first proposed by Szegedy et al. [38],
aiming at crafting adversarial perturbations that deceive neural networks to label input objectives incorrectly.
Many different approaches have been proposed to generate adversarial examples for specific or general-purpose
applications. According to the objectives to which adversarial perturbations are added, existing approaches can
be classified into two categories: digital adversarial attacks and physical adversarial attacks. The summary of
several attack methods targeting physical scenarios is shown in Table 1.
Digital adversarial attacks. Methods within this category rely on an implicit assumption that attackers can

directly feed adversarial examples to machine learning classifiers. Thus, adversarial perturbations can be applied
to digital objectives, such as digital images.

Szegedy et al. [38] proposed an attack against neural networks and demonstrated the feasibility that modifying
an input x with a perturbation r can mislead the results given by DNN classifiers. Along the similar line,
different methods have been proposed to find r with the minimal modification to the original inputs, leading
to visual similarity between the original and perturbed samples. Papernot et al. [30] proposed a method to
find r by computing forward derivatives. Their method achieves a relatively high success rate while requiring
modifications on only a few features. Xie et al. [44] proposed a gradient descent algorithm to generate adversarial
examples, misleading an object detection system into outputting targeted labels. Carlini et al. [10] proposed
methods according to three different distance metrics to generate digital adversarial examples. Their methods are
significantly effective although being more computational expensive and requiring more time for generation.
Physical adversarial attacks. To better understand the impact adversarial examples have on the performance

of neural networks deployed in real-world applications, physical adversarial attacks have been proposed to
generate adversarial examples on real objectives, instead of digital ones.
Eykholt et al. [14] proposed a method to mislead the classification result of road signs in consideration of

specific challenges in the physical world. By attaching cropped papers with color printed to road signs, the
method succeeded in leading the classifier to produce incorrect results. Similarly, Sitawarin et al. [35] proposed
a method to deceive autonomous cars by printing adversarial examples onto road signs that are previously
generated by photos of road signs. These methods show automatic driving systems are vulnerable to potential
attacks. More importantly, they also revealed the feasibility of applying adversarial example attacks against
classifiers in physical applications.
In the scenarios of face recognition, the primary goal of physical adversarial examples is to add the minimal

perturbations to real faces in an inconspicuous and robust way under varying environmental conditions.
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Sharif et al. [32] presented a method to fool DNN-based face recognition systems by printing a pair of eyeglass
frames. Their method enables attackers to evade face recognition or impersonate another individual. However, the
adversarial examples can be conspicuous as the eyeglasses as well as the colors shown on the frames look unusual.
Zhou et al. [49] employed infrared to generate facial perturbations on real faces to deceive face recognizers. The
infrared is imperceptible to human eyes but not for cameras, which improves the stealthiness. However, the
infrared can be easily filtered out with low-cost lens, which blocks perturbations from being captured, making the
adversarial examples inefficient. In addition, the generation of perturbations relies on a white-box assumption,
where the attackers can fully access the face recognition algorithm. It also raises health concerns as an attacker
may get the eyes hurt if exposed in infrared for a long period of time (around 10 minutes).
Previous discussion reveals that the imperceptibility and robustness are requiring different grades between

digital and physical attacks. These two factors lead to conflicts between inconspicuous perturbations against
effective modifications of inputs. To reduce the effect of perturbation loss, we enlarge image modifications
from pixel level to region level. Perturbations are presented by projection using visible light. To enhance the
imperceptibility of adversarial example attacks, with projecting perturbation frames which in fact take a role
of changing facial features, we additionally introduce the concealing frames which unify the appearance of
perturbations by swapping two frames in a high frequency according to several differences in the imaging theory
between human eyes and cameras.

3 MOTIVATION
Research advances in communications have developed visible light wireless communication systems by employing
the differences in the image-forming principle between human eyes and cameras [39, 47]. Motivated by these
observations, we investigate the feasibility of generating adversarial perturbations using visible light for face
recognition, with special considerations on two critical factors: inconspicuousness to human eyes and sensitivity
to cameras.
Persistence of Vision (POV). When light changes faster than 25Hz, human brain does not directly process

these changes at the exact moment they occur. Instead, the brain will mix the last image with the newly changed
image, which is called persistence of vision [47]. However, for cameras with fast shutter speeds (i.e., 1/60s), there
is no such effect since pixels in an image are derived by reading instantaneous voltages of sensors. POV reveals
the feasibility of exposing certain shapes to cameras while making them less perceptible to human eyes. The
effect of POV, which is further demonstrated by a concrete example in Appendix A, can be used for generating
physical adversarial examples.
The chromatic addition rule. The effect of POV causes a fusion of colors, which is called color mixture

hereafter in this paper. The mixture of colors RA and RB , which produces a color RC for human eyes, is defined
as RA ⊕ RB = RC . Note that the fusion result of RA and RB is independent of the sequence of the two colors, thus
we have RA ⊕ RB = RB ⊕ RA.

For clarity, the main notations used in the rest of this paper are summarized in Table 2. One color R∗ can be
expressed as a 3-dimension vector R∗ = (x∗,y∗,Y∗) in the CIE 1931 color spaces, which were the first defined
quantitative links between distributions of wavelengths in the electromagnetic visible spectrum and physiologi-
cally perceived colors in human color visions. The mixture result can be expressed using the chromatic addition
rule [47]:

xC =
YA

YA+YB
xA +

YB
YA+YB

xB

yC =
YA

YA+YB
yA +

YB
YA+YB

yB

YC =
YA+YB

2

(1)
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Table 2. Notations used in this paper

Notation Description
R∗ A color usually expressed as a 3-dimension vector
PA The label of user A
IA An image containing the face of the user labelled as PA
[R∗] An image with all pixels rendered in color R∗

FR (IA) = PA An image IA is recognized by the face recognition system with a label PA
r A perturbation frame generated by VLA
r ′ A concealing frame generated by VLA
n0 A pre-defined threshold to filter color regions containing pixels less than n0

CIA ,IB A set of regions that make up the clustering result of images IA − IB

H
(
CIA ,IB

)
A function that recovers an image from a group of regions

The color mixture model has been validated through a series of experiments in the late 1920s. In Section 5.4,
our survey also demonstrates its effectiveness.

Then, we define the operation by which we extract color RB from the fused result RC and the other source RA.
The separation is denoted as RB = RC ⊖ RA. For ease of calculation, values in all of the three color channels are
normalized to [0, 1]. It is worth noting that there may not always exist a color RB such that RA ⊕RB = RC , making
the resulting channel values out of the range [0, 1]. In this case, any value out of the range is approximated to its
nearest bound (0 or 1).
Following the definition of color addition and subtraction, given two images IA and IB of the same size, we

define the image addition IA + IB as the color addition of pixels at the same position. Similarly, the image
subtraction IA − IB is defined as the color subtraction of pixels at the same position.

4 THE PROPOSED METHOD
In this section, we first describe the threat model which focuses on impersonating system users. Then, we present
the overview of the proposed visible light-based attack (VLA) and illustrate the methods of generating and
presenting adversarial perturbations for human faces.

4.1 Threat Model
Generally, a face recognition system would calculate the feature similarity of input facial image with faces that
are previously trained and stored in its model. We denote the face recognition algorithm as FR (IA) which returns
the identity detected from the input image of user PA. An ideal face recognition algorithm is always expected to
label the input image correctly, i.e., FR (IA) = PA.
In this paper, we focus on two types of impersonation attacks based on adversarial perturbations to prevent

identities from being correctly recognized.
Targeted impersonation attack. The goal of a targeted attack is to mislead the recognition result of an

image of user PA into the result of a specific user PB , by adding perturbations rA, i.e., FR (IA + rA) = PB (PA , PB ).
In real-world applications, such an attack enables an illegal user PA to pretend to be a legitimate user PB .
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Fig. 2. The architecture of face recognition systems and attacks in the physical world.

Un-targeted impersonation attack. Attacks in this category attempt to make the recognition result of an
image of user PA be any label other than PA by adding adversarial perturbations rA, i.e., FR (IA + rA) , PA. Such
an attack can block a legitimate user PA from being correctly recognized.

Theoretically, there exists a special case of un-targeted impersonation attacks, which makes the face recognizer
fail in detecting any human faces. In this paper, however, we focus on the more dangerous cases of un-targeted
impersonation attacks, where an illegal user can spoof face recognition systems by imitating legitimate users.

4.2 Overview of VLA
The key limitation of existing approaches to generate adversarial examples is the unresolved perturbation loss,
which becomes the main obstacle to migrating adversarial examples working well in digital attacks to physical
scenarios, as shown in Fig. 1. For instance, eye-inconspicuous perturbations can be invisible for cameras, whereas
camera-sensible perturbations are noticeable changes for human eyes.

To tackle the challenges of robustness and inconspicuousness in physical scenarios, VLA decomposes adversarial
perturbations into separate frames, namely perturbation frames and concealing frames.

To mitigate the effect of perturbation loss in physical scenarios, pixel-level image modifications are enlarged
into region-level. A perturbation frame r is employed for changing and imitating facial features and is generated
with exclusive color regions that fill up the whole frame. To hide the perturbation frame from human eyes, a
concealing frame r ′ is introduced according to the effect of POV discussed earlier.

That is, for each adversarial example, VLA generates a perturbation frame and a concealing frame and presents
the two frames alternatively. The former contains information of how to change facial features of user PA to the
features of a targeted or un-targeted user PB , while the latter aims at hiding the perturbations in the perturbation
frame from being observed by human eyes.
The architecture for presenting adversarial examples to face recognition systems in physical scenarios gen-

erally consists of three components: a user, a face recognition system, and a model for generating adversarial
perturbations. The workflow of VLA is shown in Fig. 2. A perturbation frame r is generated given the images of a
user PA and another user PB . When the user PA presents before the camera by which a face recognition system
gains its inputs, the perturbation frame r along with the concealing frame r ′ would be alternately projected to
the face of PA. The camera captures the composition results of face images and perturbations before feeding them
to neural networks for recognition.
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Adversarial examples come with the additive effects of faces and perturbations, where the projected frames
and human faces are captured together. Due to the existence of the perturbation frame r , the recognition result
can finally be PB for impersonation attacks. According to the color mixture model, by alternately projecting r
and r ′, the perturbed regions in r will take on the appearance of no special pattern or color for human eyes.
Since VLA introduces two separate frames to ensure the robustness and inconspicuousness of adversarial

examples, the generation of each adversarial example consists of two phases: 1) generation of perturbation frames,
and 2) generation of concealing frames.

4.3 Generation of Perturbation Frames
Given the facial images of an original user PA and a target user PB , which are denoted by IA and IB respectively,
an adversary needs to design a perturbation frame r such that IA + r would be labelled with a high probability as
IB . We refer to the image addition result of IA and r as I ′A, i.e., I

′
A = IA + r .

To imitate the features of IB with I ′A, a better adversarial example owns a lower image distance (e.g., pixel-level
Euclidean distance) between I ′A and IB . Intuitively, for the ideally best fit where I ′A = IB , we could get the
perturbation frame r as r = IB − IA. In this way, a perturbation frame can create an image I ′A exactly the same
with IB , which owns the highest probability of imitating PB .

However, such modifications can only be feasible at a pixel level. Since pixel-level modifications may lead to
perturbation loss in physical scenarios, we try to divide IB − IA into exclusive ranges based on the similarity of
containing color values. For simplicity, we denote Iω = IB − IA. Such a division can be described as a clustering
task, where nearby similar colors are divided into the same regions.
The first step is to reduce the number of different colors in Iω by performing a MeanShift clustering over all

colors. The algorithm finds several colors which are the center of corresponding clusters divided according to
color distances. These colors can be used to make up an image similar to Iω . Each group of nearby pixels with
the same color in the image is regarded as one perturbation region.

Then, the second step is to ensure each region is observable for cameras. As stated earlier, the resolution of the
image captured by the camera differs from the resolution of the image projected by the projector and small color
regions would get lost in the images captured in physical scenarios. One may come up with a simple solution
of resizing (e.g., upscaling or downscaling) the projected images. However, it is unable to address this problem,
as resizing cannot superpose the projected perturbation frame to the physical face of PA. Therefore, in VLA, a
clustering method and a region filtering strategy are utilized to ensure that all projected details in a perturbation
frame can be successfully captured by the camera.
Taking regions with the area less than n0 as ‘noises’, we remove these noises and replace them with their

neighbors owning the largest area. n0 is a pre-defined constant depending on the camera-user distance. Generally,
n0 is related to the scaling ratio of sizes between perturbation frames (with cp pixels in the diagonal line)
and captured facial regions (with cq pixels in the diagonal line). Regions containing n0 =

(
cp/cq

)2 pixels in a
perturbation frame could be recorded as one pixel by the camera. Considering the perceptive transformation
caused by facial depth, n0 is suggested to be higher than

(
cp/cq

)2. By filtering color details with n0, a region
containing n0 pixels is reflected as a single pixel in images captured by the camera. As a result, the number of
pixels in each region would be no less than n0.
Denoting a clustering and filtering result of the image IB − IA as CIA ,IB , we define CIA ,IB = {(Gi (p) ,Ri ) |0 ≤

i ≤ m} where Gi (p) indicates whether the color of a pixel p should be set as Ri , andm is the total number of
color regions. For each pixel p in the image CIA ,IB , Gi (p) = 1 if p lies within Ri , or Gi (p) = 0 otherwise. Finally,
we define a generation function H (·), which transforms the clustering result CIA ,IB into a perturbation frame r ,
as shown in Eq. (2):

r = H (CIA ,IB ) = [Ri if Gi (p) = 1] (2)
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where p is the position of a pixel in the generated perturbation frame r .
Since the generation of perturbation frames requires two images as input, one of which is the facial image of

the target person, an adversary can easily derive perturbation frames for targeted impersonation attacks. For
un-targeted attacks, it is also feasible as the attacker can randomly select a target user which is different from the
original user.

4.4 Generation of Concealing Frames
As stated earlier, perturbations should be robust and inconspicuous in physical scenarios. The robustness of
perturbations is provided by the perturbation frames proposed above. We now describe the generation of
concealing frames, which are employed in VLA to make perturbations inconspicuous to human eyes.
The rationale for designing concealing frames is the effect of POV. Remember that two different colors that

swap frequently can make human eyes perceive a new color. According to the color mixture model in Eq. (1),
we can hide the color RA in a background color RC by finding and alternately displaying a color RB where
RB = RC ⊖ RA. By changing the start time and swapping frequency, we can determine which color (e.g., RA or
RB ) is available to cameras.

Given a base color Rback , a straightforward way to hide color Ri from Rback is to find a color R′
i that R

′
i =

Rback ⊖ Ri . By displaying these two colors alternately, it can be difficult for human eyes to feel the color Ri .
Notice that the clustering result of image IB − IA is denoted by CIA ,IB , we have

C′
IA ,IB =

{
(Gi (p) ,Rback ⊖ Ri ) | (Gi (p) ,Ri ) ∈ CIA ,IB

}
(3)

Rback can be simply selected by calculating the gray color converted from the average of colors in a perturbation
frame r . The same image generation method can be applied to obtain the concealing frame r ′ as r ′ = H

(
C′
IA ,IB

)
.

By making the light source swap r and r ′ in a high frequency, a perturbation frame can be hidden from the
background as r + r ′ = [Rback ]. Thus, the resulting adversarial example can be inconspicuous to human eyes and
observable to cameras.

5 PERFORMANCE EVALUATION
The experiments aim at evaluating the effectiveness and efficiency of VLA, in terms of 1) the success rate of VLA
in physical scenarios, 2) to what extent VLA can reduce the perturbation loss, 3) the inconspicuousness of VLA,
and 4) the robustness of VLA in various environmental conditions.

5.1 Experimental Settings
Testbed. We select FaceNet [31], dlib [3], and SphereFace [24] as the state-of-the-art face recognition systems.
They are deployed on a PC with 8GB RAM and an Intel Dual-Core i5-2435M CPU. The camera captures images
with a size of 480 × 640 in pixels. To present adversarial perturbations, an LCD projector NEC ME-300X+ with a
lamp NP16LP-ME is used as the source of visible light. The projection resolution is 1366 × 768 with a frame rate
of 60fps.
The default values of the experimental parameters are set as follows: FaceNet as the face recognizer, camera

shutter speed of 1/60s, the user-projector distance of 40cm, environmental brightness of 350lux, and a head
pose of facing directly forward. The default device we used to present perturbations is an LCD projector. All the
experiments are conducted using the default setting unless otherwise noted.
As described previously, a lower camera resolution would require a larger n0, which loses more details of

adversarial examples and thereby makes attacks more likely to fail. In our experiment, we select a relatively
lower capturing resolution, i.e., 480 × 640, which helps to reveal the worst-case performance of VLA.
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Methods to compare. We select a widely-used digital adversarial example attack, Fast Gradient Sign Method
(FGSM) [15], as the baseline for comparison. Since FGSM focuses on un-targeted impersonation attacks by
generating pixel-level perturbations, we obtain two variants of VLA for targeted and un-targeted attacks, which
are referred to as VLAT and VLAU , respectively.

For VLAT , an attack is successful only when the recognition result is the same with the targeted label. While
for VLAU , an attack succeeds once the recognition result is different from the label of the original user.

Datasets. An open dataset LFW [19] is used as a large-scale dataset, which consists of 13,233 facial images
of 5,749 different persons. The trained recognition algorithms in FaceNet, dlib, and SphereFace can achieve an
accuracy of 99.7%, 99.4%, and 99.2% over LFW, respectively [4].

Since LFW contains different number of labelled facial images for individuals, the detection accuracy of FaceNet
may vary when being applied for different persons. In other words, the detection accuracy of the recognition
algorithm in FaceNet may vary over different subsets of LFW. To investigate the performance of different attacks
against face recognition systems with various detection accuracies, two subsets LFW4 and LFW8 are selected
from LFW, which contain individuals that have no less than 4 and 8 labelled facial images.
In addition, to simulate the recognition process on real faces, 9 volunteers from campus are involved in

collecting a small-scale dataset named CusFace, which contains 10 facial images for each volunteer.
For each dataset of CusFace, LFW4, and LFW8, half of the facial images are used for training FaceNet, while

the other half for validation. For the full set of LFW, the public available pre-trained FaceNet model [2] is used.
The accuracy of the recognition algorithm in FaceNet over different datasets is listed in Table 3.

Table 3. Detail of datasets

Dataset # Persons (Labels) # Total facial images Accuracy of FaceNet
CusFace 9 90 100%
LFW 5,749 13,233 99.7%
LFW8 217 4,822 92.2%
LFW4 610 6,733 71.4%

5.2 Evaluation of Impersonation Attacks
The experiments evaluating the success rate of VLA are conducted with the datasets listed in Table 3.

Evaluation with CusFace. For VLA, we generate several groups of origin-target attacks as follows: Each
volunteer acts as user PA in Fig. 2 and attempts to imitate one of the rest 8 individuals. Since each targeted
individual has 10 facial images in CusFace, 10 adversarial examples are generated for each origin-target pair.
Thus, there are altogether 9 × 8 × 10 = 720 adversarial examples for evaluation. For each adversarial example,
VLA generates a pair of perturbation frame and concealing frame that would be then alternately projected onto
the face of user PA, as shown in Fig. 2.

The success rate of VLAT can be simply calculated as the percentage of adversarial examples that successfully
impersonate the targeted individual. For un-targeted attacks, the success rate of VLAU is the percentage of
adversarial examples that make the face recognizer mislabel an original person as another individual.

As a counterpart for comparison, FGSM focuses on un-targeted attacks. The original implementation of FGSM
requires only a single image to generate adversarial perturbations. In our implementation, however, we use a
pair of images of the same individual so that the generated adversarial examples would be detected with labels
different from both images. Since each label (e.g., an individual) in CusFace has 10 facial images, there are 90
ordered image pairs for each label, among which 80 pairs are randomly picked for evaluation. Thus, we also have
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a total of 9 × 80 = 720 adversarial examples. The success rate of FGSM is counted as the percentage of adversarial
examples that lead to misclassification.

Table 4. Success rate against FaceNet with CusFace

Methods Physical scenarios Digital scenarios
FGSM 31.0% 88.3%
VLAU 84.5% 92.1%
VLAT 46.2% 90.0%

Table 5. Success rate against FaceNet with LFW

Methods
Dataset

LFW8 LFW4

FGSM 86.3% 87.9%
VLAU 90.5% 91.2%
VLAT 87.3% 89.2%

The experiments are conducted using FaceNet. The success rates of VLA and FGSM with CusFace are summa-
rized in Table 4. It is clearly shown that for the un-targeted attacks in physical scenarios, VLAU significantly
improves the success rate over FGSM. In addition, VLAT also achieves a moderate success rate for the targeted
attacks. The results can be explained that the region-level color areas in perturbation frames generated by VLA
are more robust that help to obtain more effective adversarial examples.

Although we focus on physical scenarios in this paper, we still compare the success rate of adversarial examples
in digital scenarios, as the results would provide more insights into the differences between the two scenarios.

In digital scenarios, attacks rely on a strong and somewhat unrealistic assumption that the generated adversarial
examples can be directly fed to the recognizer in FaceNet. From Table 4, we can find that there is a sharp decline in
the success rate of FGSM by 57.3%, which demonstrates that pixel-level perturbations experience sever degradation
when being applied in physical scenarios. For VLA, the success rate of un-targeted attacks reaches 92.1%, which
has only a slight decrease in physical scenarios. For targeted attacks, however, there is a significant drop of
success rate. We will further investigate the reasons behind the result in the next subsection.
Evaluation with LFW. Since FGSM requires pairwise facial images in a labelled dataset, it is unfeasible to

simulate the real-world face recognition using LFW. Therefore, we are concentrated on evaluating the effectiveness
of these methods in digital scenarios, where the results can shed a light on their performance in physical scenarios,
with a joint consideration of the results in Table 4.

VLA uses the image pair of two individuals to generate perturbations, which is previously named as origin-
target pair. We randomly select 20 and 30 labels from LFW8 and LFW4 as origins, respectively. For each origin
label, we randomly select 8 different labels as targets. Each origin-target pair is tested with 5 pairs of images. As a
result, there are 20 × 8 × 5 = 800 and 30 × 8 × 5 = 1200 adversarial examples for LFW8 and LFW4, respectively.

For FGSM, we randomly select 200 and 300 labels from LFW8 and LFW4, respectively. And for each label, we
randomly select 4 pairs of images to generate adversarial examples. Thus, we have 800 and 1200 samples with
LFW8 and LFW4, which have a same scale with those of VLA.

For these attack methods, we ensure that all of the selected images without perturbations are correctly labelled
by FaceNet. We summarize the success rates of these methods in Table 5. In general, VLA shows a higher
success rate than FGSM. Since a larger dataset (e.g., LFW4) usually decreases the detection accuracy of FaceNet,
impersonation attacks can achieve a higher success rate with a larger dataset.
Time efficiency. The time overhead for VLA to generate adversarial examples is evaluated in physical and

digital experiments with LFW. On average, VLA costs less than 3 seconds to generate a frame pair containing a
perturbation frame and a concealing frame. Also, since VLA requires only one parameter of n0 which can be
inferred by estimating the human-camera distance, the adversarial examples can be generated in advance.
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Table 6. Success rates against various face recognizers
with LFW

Methods
Face Recognizers

FaceNet dlib SphereFace
FGSM 32.6% 26.3% 26.5%
VLAU 85.6% 86.5% 86.1%
VLAT 32.2% 32.8% 33.0%

Origin user

Hillary 
Clinton

Target Camera photo Human sense

Spencer 
Abraham

Figure 3. Samples of a user mimicking Hillary Clinton
and Spencer Abraham.

5.3 Evaluation with Various Face Recognizers
FGSM is a white-box attack, indicating that the generation of perturbations depends on an acquaintance over
the structure of underlying neural networks. In contrast, VLA is a black-box attack model, as the details of the
targeted face recognition system is unnecessary for generating adversarial examples.

Targeting FaceNet, we generate the adversarial examples using FGSM and VLA separately. These examples are
also used to evaluate with other face recognizers, namely SphereFace and dlib.
Each of the 9 volunteers involved acts as a real user PA and tries to mimic each of the 60 targets randomly

selected from the full set of LFW. Each origin-target pair is tested 3 times, resulting in 9 × 60 × 3 = 1620 cases in
total. The attack success rates are summarized in Table 6.

The results of FGSM indicate that the attack success rate against dlib and SphereFace is less than that against
FaceNet, as FGSM is a white-box approach and the adversarial examples targeting FaceNet may not fit for other
recognizers. VLA is agnostic to face recognizers, exhibiting similar performance against the three recognizers.
The results also reveal that FGSM is less effective than VLAU for un-targeted attacks in real-world scenarios.

5.4 Inconspicuousness Evaluation of Adversarial Examples
The chromatic addition rule describes the mixture result of how human brains sense colors when affected by
POV. Concealing frames are generated according to Eq. (3) to weaken the appearance of projected perturbations
in human perceptions. Now, we investigate the inconspicuousness of the adversarial examples crafted by VLA.
As described before, the human sense of colors may last for about 1/16s after the colors get changed. Thus,

to simulate the human perceived appearances of adversarial examples (i.e., the fusion results of real faces with
crafted adversarial perturbations generated by an attack method), we use the corresponding images captured by
a camera with a slower shutter speed of 1/14s, which approximates the one in human image-forming principles.
Note that the default camera shutter speed is set to 1/60s.
To link the real-world original users with the targeted individuals in LFW, FaceNet is re-trained using the

combined dataset of CusFace and LFW. Two samples are shown in Fig. 3, where the original user, the target
user, and the adversarial examples sensed by the camera and human eyes are accordingly exhibited.
To evaluate the effectiveness of the color mixture model adopted in VLA as well as the methodology in

simulating human perceived adversarial examples (e.g., the 4th column in Fig. 3), we conduct the experiment
including two parts: 1) an on-spot survey on the effects of adversarial examples crafted by VLA, 2) a quantification
of human perceptual differences between adversarial examples and original facial images.
We conducted a survey oriented to 46 individuals without prior knowledge of the attack method. Each

participant was presented with 4 attack cases and finished the following questions: 1) whether they saw shining
lights on faces, 2) whether they observed any abnormal pattern projected on faces, 3) if choosing yes in 2), what
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Table 7. Human perceptual average distance between adversarial examples and original facial images

Metric SelfDis (SR , SR ) InterDis (SR , SR ) SelfDis (SR , ST ) SelfDis (ST , ST ) InterDis (ST , ST )
# Image Pair 15,930 129,600 32,400 15,930 129,600
Value 0.133 ± 0.03 0.456 ± 0.09 0.192 ± 0.02 0.135 ± 0.05 0.459 ± 0.02

they believe the pattern comes from (options are uncertain, meaningless color regions, a picture of something (e.g.,
a building), someone’s face), and 4) quantifying the similarity between the face perceived by their eyes and the
simulated human-sensed image as shown in Fig. 3, ranging from 0 (totally different) to 10 (exactly the same).
The survey shows that all participants can notice additional facial lights. In 10.8% of the total cases, the

participants can find something abnormal on faces, among which 40% are uncertain of the pattern source, while
the remaining 60% believe the patterns are meaningless color regions. Overall, nobody could tell if these exists
face resembles someone else’s face. The result demonstrates the effectiveness of the color mixture model used in
VLA.

The average similarity score derived from the 4th question in the survey reaches 8.2, which validates the
effectiveness of our methodology in simulating human perceptions.
To further quantify the inconspicuousness of adversarial examples, we use a distance metric proposed by

Zhang et al. [48] to quantify the similarity between the facial image of a real user (without any perturbation)
and the simulated image of the corresponding adversarial example. The metric reduces the effect of perspective
differences among images, by which extra image differences caused by changes of user positions and poses are
counteracted. We use D(I1, I2) to symbolize the distance between two images I1 and I2.

There are 9 volunteers (i.e., real users) involved in the experiment. For each volunteer, 60 facial images without
and with perturbations are respectively collected into image sets SR and ST . As a result, both of the two sets
contain 60 × 9 = 540 facial images from 9 volunteers. Accordingly, two types of image pair sets are generated: 1)
ΩS1,S2 contains image pairs belonging to the same volunteer selected from image sets S1 and S2, 2) ∆S1,S2 is made
up of image pairs of different volunteers selected from S1 and S2, respectively.

SelfDis (S1, S2) = Average
({

D (I1, I2) | (I1, I2) ∈ ΩS1,S2

})
InterDis (S1, S2) = Average

({
D (I1, I2) | (I1, I2) ∈ ∆S1,S2

}) (4)

As shown in Eq. (4), we employ two kinds of distance metrics to quantify the average image distances among
various image sets. SelfDis (S1, S2) is the average image distance of the same volunteer in the sets S1 and S2, and
InterDis (S1, S2) is the average image distance of two different volunteers in S1 and S2, respectively.
Human perceptual average distance between adversarial examples and original facial images is summarized

in Table 7. The image distance of a user with perturbations is closer to the image distance of the same user
without perturbations rather than the image distance of different users (c.f. SelfDis (SR, ST )-SelfDis (SR, SR ) vs.
SelfDis (SR, ST )-InterDis (SR, SR )-InterDis (ST , ST )), which means that the appearances of simulated images of a
user are similar with the original images of the same user.
Thus, by displaying a perturbation and a concealing frames alternately, the effect of POV could successfully

prevent perturbations from being sensed by humans, while these perturbations can be captured by cameras.

5.5 Effects of Perturbation and Concealing Frames
For human eyes, the effect of POV joins both the perturbation frame r and the concealing frame r ′ on forming
images of presented faces, from which features contained in r cannot be easily sensed as r + r ′ is designed to be
unified in color, i.e., r + r ′ = [Rback ].
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For cameras, as the perturbation frame r and the concealing frame r ′ are alternately displayed, only one frame
(either r or r ′) can be captured in a single image. If the perturbation frame r is captured, the perturbed facial
features in r can be successfully applied to the original face via projection.
Since there is a possibility that the camera captures the fusion result of the real face and the concealing

frame, we investigate 880 cases with FaceNet where only concealing frames are captured by the camera. The
experimental settings are the same as those in Fig. 3.

In 90% of the cases, the recognition system cannot detect any facial structure, as a concealing frame diminishes
the structural features of a real face. About 1.4% of the cases are labelled correctly as the original user, and the
rest 8.6% are mislabeled as other persons.

Affected by the concealing frame, the facial structure of a real user is damaged, making FaceNet fail in detecting
any faces. As a result, in 90% of the cases when facial structure cannot be detected with a concealing frame only,
the camera in face recognition systems will attempt to take another image again, which potentially provides
more chances for the attacker to adjust the projection sequence or add several pauses so that perturbation frames
can be captured by the camera.

5.6 Evaluation of VLA with Varying Influencing Factors
To investigate the performance of VLA in different conditions, we exploit the success rate of VLA by varying several
influencing factors, including the camera shutter speed, user-projector distance, head pose, and environmental
brightness level. We employ FaceNet as the face recognizer and evaluate 180 cases in each specific parameter
setting: 9 volunteers as original users, 10 individuals randomly selected from LFW as target users, and 2 adversarial
examples for each origin-target pair.

Table 8. Success rates of VLA with various camera shutter speeds and projector types

Shutter Speed (s) 1/8 1/14 1/20 1/30 1/40 1/60 1/80 1/125 1/180 1/250 1/500 1/1000
FaceNet acc. (%) 83.6 90.4 96.3 97.3 100 100 100 100 100 100 100 100

LCD
VLAU (%) 36.3 38.8 42.4 69.7 67.5 85.6 85.5 85.7 85.5 85.3 85.6 81.3
VLAT (%) 2.3 2.2 3.5 9.2 16.7 32.2 32.2 32.4 32.1 32.3 32.3 21.1

DLP
VLAU (%) 35.5 35.6 42.9 67.9 68.9 85.8 84.7 85.2 85.1 70.3 71.1 69.6
VLAT (%) 2.2 2.3 5.9 10.7 15.6 32.1 32.7 32.8 26.8 20.3 16.9 17.4

Camera Shutter Speeds. Camera shutter speed is a critical factor impacting the quality of captured images
and thereby affects VLA’s performance. We evaluate the success rate of VLA against FaceNet, by increasing the
shutter speed from 1/8s to 1/1000s.

To investigate the impact of different projection techniques on VLA’s performance, we leverage a DLP projector
(i.e., NEC NP-V302X+) in addition to the default LCD projector (i.e., NEC ME-300X+) in our experiments. The
results are summarized in Table 8. To better understand the impact of shutter speed on face recognition systems,
we also present the corresponding accuracy of the original FaceNet over facial images without perturbations.

Based on the results with the LCD projector, we make several observations corresponding to four types
of camera shutter speeds: 1) Slow shutter speeds (i.e., 1/8s and 1/14s), which allow camera sensors to detect
environmental lights with a longer duration, are employed to simulate human perceived images under the effect
of POV. The results demonstrate that a slow shutter speed can prevent the perturbations from being observed and
thus the success rate of VLA significantly decreases. Meanwhile, a slow shutter speed can result in blurred facial
images, leading to performance degradation of FaceNet. 2) Medium shutter speeds, ranging from 1/20s to 1/40s,
can gradually remove image blurring and improve the accuracy of FaceNet. Low-quality perturbations in these
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situations can be captured, making the success rate of VLA increase with the shutter speed. 3) Fast shutter speeds
(i.e., from 1/60s to 1/500s) can eliminate face blurring completely and make the perturbations firmly captured.
Thus, FaceNet maintains 100% accuracy and the VLA variants achieve their highest success rate. And 4) very fast
shutter speeds (i.e., 1/1000s) catch artifacts from the projector in the attack scenarios, which means that partial of
the perturbation frame is replaced by the content of the concealing frame. The resulting perturbed facial images
can maintain most of the expected perturbations, but they cannot completely imitate the facial features of a
targeted user. As a result, the success rate of VLAU decreases slightly, whereas that of VLAT drops significantly.
According to the results with the DLP projector, we can also categorize the shutter speeds into 4 types. The

main difference lies in that the range of fast shutter speeds shrinks with the DLP projector, staring from 1/60s to
1/180s. Cameras with a shutter speed of 1/250s begin to capture artifacts from the projector. This is basically
because that the color wheel of a DLP projector displays a single color segment in a short time interval and
thereby a whole frame cannot be captured entirely by the camera with a fast shutter speed. For example, assuming
that a 6-segment color wheel rotates at the speed of 120Hz (i.e., each color segment would be displayed 1/720s), it
requires 1/120s to display the whole frame. As a result, cameras with a shutter speed faster than 1/120s cannot
capture the expected perturbation frames. A color wheel with faster rotation speeds can enlarge the range of fast
shutter speeds.
Note that an attacker can carefully select a light source with more stable performance, e.g., using an LCD

projector instead of a DLP projector. In addition, we envision that increasing the refresh rate of a projector may
help mitigate the effect of artifacts. Due to time and device limitation, we leave these attempts as the future work.

Distances. In physical scenarios, an attacker can adjust the distance to a camera and make his face fit exactly
to the recognition area. Thus, we evaluate the success rate of VLA with typical user-projector distances of 40cm
(by default), 1m, 2m, 3m, and 4m. The results are shown in Table 9.

Table 9. Success rate with varying user-projector distances

Distance 40 cm 100 cm 200 cm 300 cm 400 cm
VLAU 85.6% 83.3% 82.2% 80.6% 80.6%
VLAT 32.2% 28.3% 28.1% 24.4% 23.2%

The distance is also an indicator of projector intensity, where a shorter distance allows stronger light projected
on human faces and thus leads to a higher success rate. When the distance increases, not only the strength of
projected light is weaken, but also a larger n0 has to be set, which reduces the textural detail in perturbations and
decreases the attack success rate.
Head Poses. As discussed above, the shape of facial surface would cause perspective transformation of

perturbations. We use several typical kinds of head poses to explore the effect: normal (NL, the default head
pose), turning the head to the right for 20deg (HR) or to the left for 20deg (HL), raising the head for 20deg (HT)
or lowering the head for 20deg (HB). The success rates with these head poses are shown in Table 10.

Table 10. Comparison of success rates in various head poses

Pose NL HL HR HT HB
VLAU 85.6% 81.3% 82.0% 77.3% 75.3%
VLAT 32.2% 26.7% 26.0% 25.3% 24.7%

Table 11. Comparison of success rates in various environ-
mental brightness levels

Brightness VLAU VLAT

25lux 85.7% 32.5%
150lux 86.0% 32.7%
350lux 85.6% 32.2%
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Generally, head poses would not significantly reduce the attack success rate. Vertical head movements may lead
to facial distortion in camera-captured adversarial images, and thus having a greater impact on the performance
of VLA than horizontal rotations.
Brightness Levels.We evaluate the success rate of VLA with a fixed user-projector distance of 40cm with

varying environmental brightness, i.e., 25lux, 150lux, and 350lux (by default). The results are shown in Table 11.
The environmental illumination has a trivial impact on the performance of VLA, because the projector would

provide enough light for the camera to successfully capture facial details. Although a dark environment may
make a light source (e.g., a projector) noticeable, the perturbation frame generated in VLA remains inconspicuous
to human eyes, which is guaranteed by POV.

6 DISCUSSION
The results of our study show that VLA is an effective tool for generating physical-world adversarial examples
against face recognition systems. Based on our observations during experimental evaluations, we now discuss
several directions in both improving the performance of VLA and exploring designs for powerful countermeasures.

Pose adjustment. As shown in Table 10, an irregular head pose of an adversary may degrade the success rate of
VLA, as it brings difficulties in aligning perturbations with facial components. As a result, image transformations
[9], e.g., rotating and skewing, can be applied to generate pose-aware perturbation frames.
Perturbation imperceptibility. We adopt a black-box threat model in this paper, where an adversary is

assumed to have no knowledge about the face recognition algorithms except their output. In certain situations,
however, a powerful adversary may get access to the implementation detail of a face recognizer. Thus, VLA can
be further optimized by generating perturbation frames with less crafted perturbations, which helps to improve
the imperceptibility of attacks.
Countermeasures. As shown in Table 8, a straightforward way to defend against VLA without involving

additional hardware is to reduce the shutter speed of cameras embedded in face recognition systems. However, a
slower shutter speed is a double-edged sword, which also reduces the recognition accuracy of legitimate users.
An alternative way is to employ multiple shutter speeds to detect the existence of perturbations by comparing
captured images. It requires that the face recognizer be capable of distinguishing between blurred faces and
polluted faces. Capturing and analyzing multiple images would also prolong the recognition duration, which has
a negative impact on user experience. Addressing these challenges would be interesting for future work.

7 CONCLUSION
In this paper, we proposed a method named VLA to automatically generate adversarial examples, misleading
the result of black-box face recognition systems in the physical world. We employed region-level perturbations
to deal with the perturbation loss in physical scenarios and introduced concealing frames to make crafted
perturbations imperceptible to human eyes. Extensive experimental results demonstrated that VLA can achieve
high effectiveness and robustness while keeping inconspicuous to human eyes in physical scenarios. In future
work, we will further investigate the methods to improve the effectiveness of VLA and explore powerful defenses.
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A THE DEMONSTRATION OF POV

(a) Simulated human perception (camera shutter speed is
1/14s)

(b) Appearance for cameras (camera shutter speed is 1/60s)

Fig. 4. An example illustrating the differences in image-forming principles between human eyes and cameras. Red and green
are alternately displayed at a frequency of 1/60 second. For human eyes, the appearance is brown, as revealed by the image
on the left. While the camera can only capture one color in a single image, as shown by the image on the right.

Existing work reveals that the human brain may have a color perception different from the appearance in
digital camera images when environmental lights get changed in a high frequency. Due to the effect of POV,
when color changes, the human brain would keep the perception of the last color for about 1/16s while accepting
the new environmental color [47]. For instance, one will not perceive complete darkness when he/she blinks,
even though there exists a moment when no light passes into his/her eyes. However, for cameras, since pixels in
an image are derived by reading instantaneous voltages of sensors, the camera may capture completely black
images when no lights passing into the camera lens.
In order to demonstrate the impact of POV on the appearance of objects, we conducted a simple experiment.

We first prepared two frames: a pink frame with a green rectangle area in the center, and a green frame with a
pink rectangle area in the center. Then, these two frames were displayed alternatively with a duration of 1/60
second on a computer screen. The effects perceived by human eyes and cameras are illustrated in Figs. 4 (a) and
(b), respectively. To help readers find the rectangle, the corresponding area is highlighted with a white dashed
box.
For human eyes, the whole frame is perceived as brown, which results from mixing green and pink. Fig. 4(a)

shows a simulated human perceptual effect, which is taken by the camera by setting the shutter speed similar
to that in human image-forming principles (i.e., 1/14s). While for the camera with a shutter speed of 1/60s, the
sensors can only capture one color at a time, and thus the rectangle can be clearly observed.

Also, the above simulation, as well as the experimental result revealed in Table 8 show the feasibility of cameras
getting similar perceptions to the current environment considering POV. The camera can extend its exposal
duration with a slower shutter speed (e.g., 1/14s) to simulate the effect of POV. However, a low shutter speed can
easily cause blur to human faces and lead to a degradation to the recognition accuracy for face recognizers.
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