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Abstract—Machine learning (ML) techniques are expected to be
used for specific applications in Vehicular Social Networks (VSNs).
Support vector machine (SVM) is one of the typical ML methods
and widely used for its high efficiency. Due to the limitation of
data sources, the data collected by different entities usually contain
attributes that are quite different. However, in some real-world
scenarios, when training an SVM classifier, many entities face
the same problem that they are lacking in data with adequate
attributes. Thus multiple entities are required to share data to
combine a dataset with diverse attributes and then jointly train
a comprehensive classifier. However, data privacy concerns are
raised because of data sharing. To sovle the problem, we propose a
privacy-preserving SVM classifier training scheme over vertically-
partitioned datasets posessed by multiple data providers. In our
scheme, we utilize consortium blockchain and threshold homo-
morphic cryptosystem to establish a secure SVM classifier training
platform without a trusted third-party. We keep lots of training
operations locally over original data and necessary interactions
between participants are protected by the threshold Paillier and
consortium blockchain. Security analysis proves that our scheme
can preserve the privacy of the original data and the training in-
termediate values. Extensive experiments indicate that our scheme
has high efficiency and no accuracy loss.

Index Terms—Privacy Preserving, Vehicular Social Networks,
support vector machine, consortium blockchain.

I. INTRODUCTION

NOWADAYS, the development of cloud computing and
edge computing has led to a surge in the amount of

data generated in different scenario including Vehicular Social
Networks (VSNs) [1]–[6]. Efficient methods are in urgent need
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to optimize the performance of VSNs from the aspects of safety,
amenity, convenience and entertainment [4]. Machine learning
(ML) and deep learning have drawn the attention of reseach-
ers from many domains [7]–[11]. Thus, related technologies
especially machine learning and deep learning are gradually
applied to VSNs data analysis. Among the frequently-applied
methods, with its efficient performance and high robustness,
support vector machine (SVM) has a wide range of applications
in many scenarios. For example, SVM is employed to detect
negative communication conditions [1].

In the field of VSNs, data are collected by different enti-
ties [12], [13] such as vehicular manufacturers, vehicle man-
agement agencies, and social network application companies.
Data held by those entities usually differ in attributes due to the
different data sources. Because of the limitation of data sources,
a single entity in VSNs seldom has a training dataset with
comprehensive attributes. For example, most of the attributes
about vehicle locations and mobility traces are held by vehicle
network service platforms, and user preference attributes may
be mainly owned by social network application companies. It is
obvious that the performance of an SVM classifier is determined
by the dataset. Thus, when training an SVM classifier for VSNs
applications, entities share data to aggregate a dataset with
sufficient attributes, before obtaining a more efficient classifier.
From another perspective, the dataset owned by each entity can
be treated as a vertically-partitioned part of the merged dataset.

However, there exist several serious security challenges when
entities share data to train an SVM classifier. On one hand,
since VSNs data contains much private information (e.g., ve-
hicle location, user preference), data sharing is limited by the
constantly enacted regulations, which restrict companies from
using and sharing user’s private information worldwide. On
the other hand, VSNs data contains rich information with high
value, making data providers reluctant to share their original
data directly. Without a suitable privacy-preserving mechanism,
data are captured by other entities, leading to value loss of
shared data for data owners. Security challenges in intelligent
and connected vehicles have been researched [14], and data
sharing between entities should also be well studied.

For a long time, privacy disclosure isuue raised in diverse
scenarios has been highly concerned [15]–[26]. Among those
scenarios, many researches pay attention to train a machine
learning classifier securely over both horizontally and vertically
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partitioned datasets. Many existing solutions adopt secure
multi-party computation (SMC) to prevent privacy disclosure.
Firstly, in those schemes, how to balance security and efficiency
issues still faces big challenges. Then, one or more aided servers
are essential with the assumption that they are trusted or semi-
trusted during the training process. Obviously, in a real-world
scenario, it is impractical to provide such aided servers for the
participants. To deal with the two challenges of applying the
privacy protection scheme to real-world scenarios, we propose
an efficient and secure SVM classifier training scheme based
on consortium blockchain where no third party is introduced.

Firstly, our scheme addresses the first challenge of how to
preserve privacy in an effective way. Since differential privacy
is unable to guarantee the high-level security and may get an in-
correct classifier as well, threshold homomorphic cryptosystem
is exploited in our scheme [27]. Considering there are many
time-consuming operations in the process of encryption and
decryption of homomorphic cryptosystem, to bridge the gap
between efficiency and security, in our scheme, each partici-
pant keeps most calculations during the SVM training process
locally with original data, and necessary intermediate values are
encrypted to be shared with other entities. To further reduce the
sharing frequency of the intermediate values, we use gradient
descent as the optimization algorithm. At each iteration, each
participant only needs to share their intermediate values for one
time which means one participant needs to encrypt and decrypt
for only one time.

The second challenge is how to preserve the data privacy
without introducing a trusted-third party (aided server) during
the training process. We apply the threshold Paillier to avoid
introducing a trusted third-party and both encryption and de-
cryption operations can be done among those participants [28].
In the threshold Paillier, the private key is divided into several
sub-private keys and the participants whose number exceed the
threshold can decrypt the encrypted messages. At the same
time, relying on consortium blockchain, our scheme builds up a
secure and public data sharing platform which provides secure
communication for participants when they share intermediate
values. By this way, in one interaction, a participant can share
data with others or get all the other participants’ shared data
instead of building and keeping several peer to peer secure
communication channels between any two participants. Last
but not least, consortium blockchain’s authority management
schemes and access control mechanisms protect data from being
obtained by entities outside the participants [29], [30].

The main contributions of this paper are as follows:
1) Based on blockchain techniques, we propose an efficient

and secure SVM training scheme between several VSNs
data providers whose data have different attributes. Our
scheme is capable of providing an open, reliable and
transparent decentralized data sharing platform, and it runs
without a trusted third-party.

2) With the introduction of threshold homomorphic cryp-
tosystem, we establish a privacy-preserving intermediate
value sharing platform in a decentralized condition. In our
scheme, most training calculations are performed locally
by VSNs data providers using their original data, and thus
much encryption calculation cost is avoided.

3) Our scheme can tolerate arbitrary subset of participants
to collude with noncritical information disclosure. Mean-
while, extensive experiments are conducted on VSNs
datasets and the results demonstrate that the classifier
trained by our scheme has no accuracy loss compared with
the classifier trained in general conditions.

The remainder of this paper is organized as follows. In
Section II, we sort out the related work and review the prelimi-
naries in Section III. In Section IV, we describe the problem to be
solved, before giving the threat model and design goal. Then, we
introduce our scheme in detail in Section V. After that, security
analysis is conducted in Section VI and experiments are carried
out to evaluate our scheme in Section VII. At last, we present a
short conclusion in Section VIII.

II. RELATED WORK

Existing researches on privacy preserving machine learning
are involved in many ML methods including traditional methods
such as linear regression, SVM, naive bayes classifier, and logic
regression. Deep learning [31] is also focused in the last few
years.

Gascon et al. [32] train a linear regression classifier with
vertically partitioned datasets by a hybrid protocol. In this pro-
tocol, garbled circuits are used in the two-party computation.
A crypto service provider is needed in two-party cases, and a
crypto service provider and an evaluator is needed at the same
time in multi-party case.

Nikolaenko et al. [24] design a privacy-preserving ridge
regression algorithm which can be divided into two phases
and each phase uses homomorphic encryption and Yao garbled
circuits separately. In the algorithm, an evaluator and a crypto
service provider are essential to realize the algorithm.

Mohassel et al. [17] present a protocol for privacy preserving
machine learning and this protocol is able to support several
machine learning algorithms such as linear regression, logistic
regression and neural network. In this scheme, two servers
collect data from data providers and train a model in a secure
way by two-party computation. At the same time, the two servers
cannot collude.

Mohassel et al. [19] construct a framework where three
servers are necessary to train linear regression, logistic
regression and neural network models based on three-party
computation.

Abadi et al. [33] use differential privacy to protect sensi-
tive information in datasets during deep learning. Although
differential privacy is an efficient method of privacy protec-
tion, the introduction of perturbations has a negative impact
on the accuracy of the final trained classifier. In contrast, ho-
momorphic encryption is a more accurate privacy protection
scheme.

Since homomorphic encryption is computationally intensive,
some homomorphic encryption operations only support either
addition or multiplication. In some schemes using homomorphic
encryption, a trusted third party is introduced. Francisco-Javier
et al. [34] use a two-server model based on partial homomor-
phic encryption to solve the privacy protection problem when
multiple data providers train SVM models.
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TABLE I
NOTATIONS

III. PRELIMINARIES

A. Notation

Consider dataset D is combined with several VDPs who have
its own dataset Dp p ∈ A,B, . . .N , where xp

i represents the
i-th instance in Dp, and yi is shared as a data label between all
the related i-th instance xX

i . When training an SVM classifier,
we define w as the model parameter, Δt as gradient in the t
iteration, and λ as the learning rate. Meanwhile, we assume
[[M ]] as the encryption of message M under Paillier. Table I
shows the notations used in this paper.

B. Classifier of SVM

SVM also known as support vector machine, is a two-category
model [35]. The main idea is to find a hyperplane in the instance
space and the hyperplane can classify different types of test
instances. The hyperplane can be expressed as y = wTx+ b,
(xi, yi)∈D. Ify = wTxi + b≥1,yi = +1; Else ify = wTxi +
b ≤ −1, yi = −1; The optimization problem of the primary of
SVM is shown as follows:

min
w,b

1
2
||w||2

s.t. yi(w
Txi + b) ≥ 1, i = 1, 2, . . .,m. (1)

C. Blockchain

Consortium Blockchain: The blockchain is essentially a
public ledger running on a peer-to-peer network. This technique
is famous for its capabilities of decentralization, transparency,
reliability and so on [36]. Blockchain can be divided into three
categories according to the degree of decentralization, the size of
blockchain nodes and many other characteristics. They are pub-
lic blockchain, consortium blockchain, and private blockchain.

1) The public blockchain is completely open. Users can join
the blockchain network at any time to access the data
recorded on the public ledger. The most typical application
of public chains are Bitcoin and Ethereum.

2) The consortium blockchain is less open than the public
blockchain. Only authenticated members can join the net-
work and get access to the data recorded on the ledger.
Fabric is the most popular consortium blockchain.

3) The private blockchain is generally applied within a single
enterprise or organization. It is equipped with the lowest
degree of openness, with a high level of access control and
authority management.

From the classification of the blockchain, consortium
blockchain agrees with the requirements of application across
multiple organizations in terms of suitable degree of openness
and high security.

Smart Contract: A smart contract is a set of code that runs
on a blockchain. It can be called by the blockchain nodes, before
automatic execution without human intervention. The emer-
gence of smart contracts has enabled blockchain application
extend from the digital currency field to other domains. With
smart contracts, many traditional applications are able to remove
the third party, greatly simplifying the running procedures of
the centralized system, improving the operation efficiency and
reducing the running cost.

D. Threshold Paillier

Threshold Paillier [27], [28] with additively homomorphic
properties is an effective methods of constructing an SMC
protocol. The homomorphic properties can be described as fol-
lows: [[M1 +M2]] = [[M1]][[M2]] and [[kM1]] = [[M1]]

k The
following steps are the main operations of Threshold Paillier.

Key Generation: At the step of key generation, several pairs
of keys are generated and each pair contains a public key and a
sub-private key, where all the public keys are the same and the
sub-private keys are the shares of the private key. Firstly, integer
n is chosen which satisfies that n = p ∗ q, where p and q are two
strong primes. Based on these two primes, the private key sk is
chosen. By the secure-sharing protocol [37], sk is shared among
several participants, and the i-th of which achieves a sub-private
key ski. Meanwhile, the public key pk composed of n, g and gsk

is sent to all participants as well, where g = (1 + n)abm mod
n2 and a, b are randomly selected values.

Encryption: Given a message m, the encryption function
c = gmrn mod n2 is used to encrypt m and get the encrypted
value c. In this function, r is a randomly picked value.

Share Decryption: At this step, all the participants compute a
decryption share by its own ski. For the i-th participant, function
ci = cski is used for the calculation. Then, the decryption shares
are sent to the curator.

Combination: If the number of decryption shares is less than
the threshold t, the curator is unable to get the final decryption
result. On the contrary, the decryption shares are combined to
get the final decryption value.

IV. PROBLEM DESCRIPTION

In this section, we give a description of the system model.
Based on the model, we build the threat model and establish
design goals.

A. System Model

We divide our system into three components based on their
relationships with the data. As shown in Fig. 1, they are VSNs
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Fig. 1. System model.

device (VD), VSNs data provider (VDP) and blockchain service
platform (BSP).

1) VSNs Device: Raw data in VSNs are from multiple VSNs
devices such as vehicle sensors, mobile devices, roadside
units. The raw data contains valuable information which
helps VDPs to get an overview of the VSNs. The VSNs
devices transmit a variety of data to VDPs every moment
and the data is the basis of almost all VSNs applications.

2) VSNs Data Provider: VSNs data providers are the entities
who collect, store and process raw VSNs data. Different
data providers always have different types of data in vol-
umes, sources, and especially attributes, this explains why
they have to work together to train an efficient classifier.
Thus we can also treat VSNs data providers as the SVM
classifier trainer. At each iteration in the training process,
most calculation operations are done locally using data
with the attributes of their own. Then the intermediate val-
ues are recorded on the blockchain after being encrypted
by Paillier.

3) Blockchain Service Platform: In our proposed scheme, a
data sharing platform is established through blockchain
to maintain a unified data interaction mechanism, which
greatly improves efficiency. It is a service platform running
on a consortium blockchain. On one hand, it provides
VDPs with a decentralized and transparent data shar-
ing platform which allows VDPs to acquire all the data
recorded on BSP. Meanwhile, nobody can change the
data recorded on BSP. On the other hand, BSP possesses
strong security protection and keep the data invisible for
entities outside VDPs. Moreover, the communication data
between BSP and VDPs are also encrypted to prevent data
disclosure.

B. Threat Model

In our scheme, when training an SVM classifier, there are
several interactions between VDPs and BSP, and there ex-
ist potential threats among these interactions. In our security

model, we consider VDPs are honest-but-curious. It means that
all VDPs cooperate to train an SVM followed by the correct
protocols, but some of them are curious about the information
contained in others’ shared data. There are two main types of
threat models we pay attention to.

1) Known Ciphertext Model. The BSP is open for all VDPs,
and thus each VDP has access to all the public data
recorded in BSP. Those data include encrypted interme-
diate values of calculation, decrypted values using sub-
secret keys of all VDPs.

2) Known Background Model. We assume that some of the
VDPs collude to analyze the shared data on BSP. In
this model, more valuable information may be obtained
compared to the upper threat model.

C. Design Goals

Based on the system model and threat model, to satisfy the
specific requirement of data sharing in VSNs, we aim to design
a both efficient and privacy-preserving SVM classifier. The
following are the design goals.

1) The data privacy can be well preserved. To achieve this
goal, we have to prevent data disclosure from two aspects
according to the threat model. Firstly when faced with
the honest-but-curious adversaries, the data recorded on
BSP has no risk of privacy disclosure. Secondly, if there
exits VDPs colluding with each other, the privacy of data
recorded on BSP is still confidential.

2) The classifier’s high accuracy can be maintained. No nega-
tive impact should be brought because of the high security.
To guarantee that the classifier is usable and useful, the
accuracy of whether an SVM classifier trained by our
scheme is as high as that trained by normal approaches
should be our second design goal.

3) The low training overhead can be achieved. When train-
ing an SVM classifier in a secure way, the encryption
operations and communication between participants are
usually necessary. Considering the data volume in the real
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Fig. 2. System overview.

scene and the computational efficiency of homomorphic
encryption itself, our proposed scheme should have low
training overhead including less encryption calculations
and low communication time overhead.

V. THE PROPOSED SCHEME

In this section, we present our proposed scheme in detail from
five parts: system overview, system initialization, local training
process, privacy-preserving gradient update judge algorithm and
data sharing on BSP.

A. System Overview

To describe our proposed scheme in a clear way, we assume
that three VDPs aim to train an SVM classifier together where
the training dataset is combined by the data of themselves with
different attributes. As shown in Fig. 2, at each iteration, each
of the three VDPs trains a partial model locally using their own
original data. Before computing the gradient, all VDPs have to
encrypt their own intermediate values using the same public key
and generate three random aided parameters.

Then, for each VDP, the encrypted intermediate values and
the three processed random parameters are recorded in BSP to
make all VDPs able to get access to them. Meanwhile, when
the three VDPs acquire another two VDPs’ shared data, they
can judge how to update the three partial models securely and
update the models. During one iteration, each VDP has only two
encryption operations and one decryption operation.

Finally, after several iterations, all the VDPs record their own
partial model parameters on BSP. By acquiring all the partial
model parameters, each VDP is able to build up an integral
model.

B. System Initialization

Our scheme is established on the threshold Paillier cryp-
tosystem. Therefore before our scheme runs, three pairs of keys
should be generated for three VDPS, where the public keys are
the same and each sub-private key is a share of the private key.

Existing threshold key management schemes can be introduced
to help negotiate such multiple key pairs via secret-sharing
protocols.

After that, to provide VDPs with a secure and reliable data
sharing platform, three VDPs need to join the consortium
blockchain system as a node so as to share data with the BSP.
Any entity that wants to join the blockchain needs to be authen-
ticated firstly, and unjoined entities cannot get access to the data
recorded on the consortium blockchain ledger.

Finally, all the VDPs need to negotiate the parameters of their
initial partial model before training the model, negotiate the label
of each data instance and determine the order of all instances.

C. Local Training Process

In our proposed scheme, most training computations are
carried out locally by the VDPs during the training process
and the original data are kept locally. During one iteration,
intermediate value sharing between VDPs is required to perform
a comparison before the gradient is updated. The result of the
comparison determines how the gradients are updated. After
comparison, VDP calculates the gradients and updates their own
partial model parameters. The following part explains the local
training process.

1) Stochastic Gradient Descent for SVM: The SVM opti-
mization algorithm based on stochastic gradient descent (SGD)
is simple and efficient. Generally, only one training instance is
used for per iteration and the running time is unrelated with the
size of the training dataset, so the algorithm is especially suitable
for big data analysis. In the VSNs, the size of data is large,
and the data update frequently and stochastic gradient descent
optimization methods can satisfy the application requirements.
SVM based on stochastic gradient descent can be expressed in
the following form:

f(w) =
1
2
wTw + C

m∑

i=1

max
(
0, 1 − yiw

Txi

)
(2)

The right part of the equation is the hinge-loss function, where
C is the misclassification penalty and 1

m is taken as its value.
At each iteration, we can calculate the gradient by formula as

shown in Eq. (3).

Δt = λwt − I [(wxi < 1)]xiyi (3)

If I|(wxi < 1)| is true, it means (wxi < 1), I[wxi < 1)] = 1;
Otherwize, I[(wxi < 1)] = 0.

Then we can update the w by Eq. (4).

wt+1 = wt − λΔt (4)

2) Partial SVM Classifier Training Based on SGD: In our
scheme, the attributes of the training dataset consist of the
attributes of all partial datasets provided by each VDP. Dur-
ing the SVM classifier training process based on SGD, we
observe that most training calculations can be performed
locally.

For example, an instance with three attributes xi= [attr1,
attr2, attr3] is vertically-partitioned into three parts on av-
erage and we generate them into three VDPs A,B,C each
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Algorithm 1: SVM Based on SGD.
Input: Training set D, learning rate λ, maxIters T .
Output: Trained model w∗.

1: for t = 1 to T do
2: Select it from D randomly.
3: Update Δt+1 by Eq. (2).
4: Update wt+1 by Eq. (3).
5: end for
6: return w∗.

Algorithm 2: Partial Model Training Process.

Input: Training set DA, DB , DC , learning rate λ,
maxIters T .

Output: Trained model w∗.
1: All VDPs perform the following operations

simultaneously. Take VDP A to describe in detail.
2: for t = 1 to T do
3: Select it randomly.
4: Calculate y

∑dA

i=1 wixi.
5: Cooperate with other VDPs to judge how to update

gradient by Eq. (5).
6: Update Δt+1 by Eq. (2).
7: Update wt+1 by Eq. (3).
8: end for
9: Get several partial model parameters and combine

them.
10: return w∗.

of which holds [attr1], [attr2], [attr3]. At the t+ 1 iteration,
the model parameter is defined as wt+1 = [v1, v2, v3] where
each of v1, v2, v3 is seperately held by A,B and C. Before
calculating the gradient, the training can be performed locally
using A,B,C’s own training data and model parameters. For
VDP A, VDP B and VDP C, they calculate the intermediate
values of v1attr1, v2attr2 and v3attr3, respectively. Then we use
Eq. (5) where I[(wxi < 1)] is defined to judge how to update the
gradient. In the above case, the three intermediate values need
to be shared between the three VDPs to calculate the sum of
them and then compare the sum with 1. After the comparison,
the gradient and the partial model parameters of each VDP are
updated locally. We representwxi by a in the following sections.

Through one iteration of the training process, only when
calculating I , data exchange between multiple VDPs is required.
The rest of the training operations are performed locally.

I =

{
1 yi

(
wAxA

i + wBxB
i + wCxC

i

)
< 1

0 otherwize
(5)

After a predetermined number of iterations, each VDP obtains
the final partial model, and they share partial models to build up
an integral model which is the final SVM classifier. The complete
content is described in Algorithm 2.

Obviously, this comparison operation requires the participa-
tion of three VDPs. In the process of privacy protection, we will
also introduce the details in the following two sections.

Algorithm 3: Privacy-Preserving Gradient Update Judge.

Input A: [[ai]] from VDP i.
Input B: ri1, [[ri2]], r

i
3 from VDP i.

Output: a > 1 or a < 1.
1: Each VDP i picks three positive integers ri1, ri2, ri3,

where |ri3 − ri2| < ri1, and encrypts ri2 to get [[ri2]].
2: Each VDP i uploads [[ai]], ri1, [[ri2]], r

i
3.

3: Each VDP i downloads all the other VDPs’ [[ai]], ri1,
[[ri2]], r

i
3.

4: Each VDP i calculates [[a]], [[r2]] by Eq. (6) and
Eq. (7), and calculates r1 and r3 where r1 =

∑n
i=1 r

i
1

and r3 =
∑n

i=1 r
i
3.

5: Each VDP i calculates [[ar1 + r2]] by Eq. (8).
6: Each VDP i decrypts [[ar1 + r2]] by sub-private key

SKi and uploads it to BSP.
7: Each VDP i downloads all other decrypted values

from VDPs to recover (ar1 + r2), and compares
(ar1 + r2) with (r1 + r3).

8: If (ar1 + r2) > (r1 + r3), a > 1; Else a < 1.
9: return a > 1 or a < 1.

D. Privacy-Preserving Gradient Update Judge

To protect the privacy of intermediate values from being
leaked, we implement a privacy-preserving gradient update
judge scheme based on the threshold homomorphic encryption
algorithm without introducing a third party. Each VDP hides the
calculation results for each step through threshold Paillier. By
threshold Paillier’s homomorphic property, we can perform ad-
dition operations securely. To judge how to update the gradients,
here we use additively homomorphic encryption to construct
Eqs.(6), (7) and (8).

[[a]] =

[[
n∑

i=1

ai

]]
=

n∏

i=1

[[ai]] (6)

[[r2]] =

[[
n∑

i=1

ri2

]]
=

n∏

i=1

[[ri2]] (7)

[[ar1 + r2]] = [[ar1]][[r2]] =

[[
r1∑

i=1

a

]]
[[r2]]

=

r1∏

i=1

[[a]][[r2]] = [[a]]r1 [[r2]] (8)

During judgment, the most critical step is to compare the
encrypted calculation result with the constant 1. In Algorithm 3,
we perform the comparison operation securely by three random
numbers computed by random positive integers provided by
each VDP.

The three partial random values selected by each VDP satisfy
the condition described in Algorithm 3 and it is not hard to prove
that the combined random value r1, r2, and r3 still satisfy the
condition. For integer a, if (ar1+ r2)> (r1 + r3), we can derive
that a > 1, otherwise a < 1.
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Fig. 3. Formats of IVs and DVs.

E. Data Sharing on BSP

The core function of BSP is to provide a secure and open
data sharing platform for VDPs. BSP replaces the complex
and direct communication between VDPs with the communi-
cation between VDPs and BSP by smart contracts. VDPs run
blockchain nodes to share data and query data by calling smart
contracts running on the blockchain. During an iterative process,
each VDP needs to record data twice: its own intermediate values
(IVs) and decrypted values (DVs). At the same time, the data
recorded on the public ledger will be read twice, which are the
IVs and DVs of other VDPs. The data formats of the two types
of data recorded on the ledger are as shown in Fig. 3:

1) The Format of IVs
Iteration Round: During the training process, obviously there

are several iterations at which the IVs are needed to share
between VDPs. The IVs of each iteration are different. This
field can mark the current training round of the model, avoiding
using different rounds of data in one calculation. Iteration Round
is maintained by smart contracts.

VDP ID: A unique identifier distinguishing a VDP from
others. When a VDP node calls the smart contracts, its address
is recorded in this field automatically.

Training Intermediate Value: It is encrypted by VDP before
uploaded. The sum of all training intermediate values will be
compared with 1 to determine how to update the model.
r1: A random positive integer helps during the comparison

process. It is unencrypted.
r2: A random positive integer helps during the comparison

process. It is encrypted.
r3: A random positive integer helps during the comparison

process. It is unencrypted.
Random Positive Integer: It is generated randomly between 1

and m which determines the data instances selected in the next
iteration.

2) The Format of DVs
Iteration Round: Similar function described in IVs.
VDP ID: Similar function described in IVs.
Decrypted Value: The decrypted value represents the de-

crypted shares of all VDPs. The result of the final decryption
result can be obtained by combining all of these values.

VI. SECURITY ANALYSIS

The most rigorous definition currently widely accepted is
described in Goldreich’s paper [38], which establishes a trusted
third-party T as the ideal model that can communicate securely
with other participants. Because the ideal model is in the most
secure state, if the simulated output of the ideal model is indistin-
guishable from the real protocol, it proves that the real protocol

has the same security as the ideal protocol. The adversary in the
ideal model can conduct the same attack with the adversary in
the real model.

In the ideal protocol, all the calculations are done by T ,
and there is no interaction between the n participants. All the
information obtained by the attacker is the input and output of
the corrupter. In the real protocol, since there is no trusted third
party, the participants need to interact with each other. Therefore,
in addition to obtaining the input and output of all the corrupters,
the attacker also obtains interactive data of the corrupter in the
calculation process. If we can prove that the data is worthless,
it can show that the attacker gets the same information in the
real and ideal protocols. By constructing a simulator S in the
ideal model, all the intermediate data obtained by the attacker
in the real protocol is simulated under the premise that all the
corrupters’ inputs and outputs are known. If the simulator can
simulate the data in real protocols in polynomial time, it can
prove that the attacker obtains the same information under the
two models, and thus demonstrating security.

The computational security definition of a secure multi-party
computing protocol is given below.

Definition 1: The multi-party computation protocol with n
participants under the cryptography model is considered to
be computational secure, if for any attacker A, there exists a
corresponding simulator S in the ideal model interacting with
A, and satisfying the following conditions:

1) The running time of S is the polynomial of A’s running
time.

2) For any input set, the n + 1 outputs produced by the
multi-party computation protocol are computationally in-
distinguishable from the n + 1 outputs produced by the
ideal model.

To prove the security of our proposed solution under the
known ciphertext and background models, we conducted a
security analysis based on the above idea. Thus we acquire the
information which an attacker can get from the ideal model and
the real protocol. Then we compare them and prove they are
indistinguishable.

In our scheme, n VDPs are involved to share their encrypted
intermediate values to calculate F : F ([[a]]1, . . . , [[a]]n, 1, r1

1,
[[r1

2]], r
1
3, . . . , r

n
1 , [[r

n
2 ]], r

n
3 ).

Assume that the attacker has corrupted a set of VDPs A =
Pi1, . . ., Pi|A|. Then all the data the attacker gets in the ideal
model is the input ([[a]]i1, . . ., [[a]]i|A|, 1, ri11 , [[ri12 ]], ri13 , . . .,

r
i|A|
1 , [[r

i|A|
2 ]], r

i|A|
3 ) and the output F of the VDPs. We construct

a simulator S that simulates all the data the attacker gets in the
real model based on the data the attacker obtained in the ideal
model. Firstly, we analyze the information that the attacker can
get in the real protocol.

Input Phase: Since all the VDPs share their encrypted input
[[a]]1, . . ., [[a]]n, 1, r1

1, [[r
1
2]], r

1
3, . . ., r

n
1 , [[r

n
2 ]], r

n
3 , the attacker is

able to get all of them. Especially for the corrupted VDPs, the
attacker also gets ai1, . . ., ai|A|, r1

2, . . ., r
|A|
2 .

Computation Phase: At each step of the calculation phase,
the attacker obtains data [[x+ y]] based on [[x]] and [[y]].

Output Phase: In the output phase, the attacker gets the result
F ([[a]]1, . . ., [[a]]n, 1, r1

1, [[r
1
2]], r

1
3, . . ., r

n
1 , [[r

n
2 ]], r

n
3 ).
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Then we construct the simulator S of the polynomial time. S
takes ai1, . . ., ai|A|, r1

2, . . ., r
n
2 and F as the input. The following

step S0 simulates the information calclulated based on the input.
Step S0: S generates the encrypted data [[ai1]], . . ., [[ai|A|]],

[[ri12 ]], . . ., [[r
i|A|
2 ]] and [[F ]] based on ai1, . . ., ai|A|, r1

2, . . ., r
n
2

and F . Then, S can simulate the calculations based on those
encryted data such as [[ai1 + ai2]] and [[ri12 + ri22 ]].

Step S1: After step S0, we can simulate part of the cal-
culated intermediate values which are defined as [[aj1]], . . .,
[[aj|r|]], [[rj1

2 ]], . . ., [[rjr2 ]]. Then for the remaining intermediate
values that cannot be directly simulated byS0,S simulates them
by selecting the random numbers to generate the corresponding
ciphertext. According to the threshold cryptosystem’s security,
these simulations are successful.

Step S2: Based on steps S0 and S1, we can simulate all the
values calculated in the computation phase.

Step S3:F is one ofS’s input, soS can easily get a simulation
of F .

From the above simulation process, the information obtained
by the attacker from the ideal model and the information ob-
tained from the real model are computationally indistinguish-
able. The security of our scheme can be proven.

VII. PERFORMANCE EVALUATION

In this section, we conduct experiments to evaluate the per-
formance of our scheme in terms of accuracy and efficiency.
By the result of classification accuracy, we aim to verify that
the privacy preserving methods introduced in our scheme have
no negative effect on the classifier’s accuracy. Meanwhile, how
features related to efficiency affect the efficiency is analyzed,
including the dataset, the number of participants and the number
of iterations.

A. Experimental Settings

In our scheme, several participants cooperate to train a classi-
fier with their own dataset securely. We implement the training
operations for each participant by Java and Go. The Java program
runs on a PC (AMD Ryzen 5 2600X Six-Core processor at
3.60 GHz and 32 GB RAM) to simulate the whole training
process. The Go program runs as chaincode on the consortium
blockchain (fabric 1.3) in a virtual machine set with 4 GB
memory.

Threshold Paillier’s operations are performed in the integer
space, but there are a large number of floating point number
calculations during the SVM training process. Therefore, to
process the values in the original dataset, we have to represent
the floating point values with an integer format. According to
the international standard IEEE 754, any binary floating point
number D can be expressed as D = (−1)S ×M × 2E , where
S represents a sign bit,M represents a significant number, andE
represents an exponent bit. We use the same method to solve the
floating point number problem in the program implementation.
On the other hand, we set threshold Paillier’s key N to 256 bits
and the threshold t is set to be the number of all sub-private
keys. To evaluate the performance of our scheme, we use the
real-world datasets Breast Cancer Wisconsin Data (BCWD) [39]

TABLE II
STATISTICS OF DATASETS

TABLE III
PERFORMANCE OF CLASSIFIER ACCURACY

and Australian Credit Approval Data (ACAD) [40]. The detailed
information about the two datasets is listed in Table II. To
simulate the operation of the scheme under real-world scenarios,
we partition every dataset vertically into three parts on average,
each of which has one third of the attributes of the dataset on
average and is held by a single VDP.

The parameters used to train the model are set as follows: the
maximum number of iterations for training is 1500, the learning
rate is 0.00095 and the number of samples selected from the
training data set in each iteration is 1.

B. Accuracy

Two criterions (precision P and recall R) are adopted to
evaluate the SVM classifier trained by our scheme. We can
compute P by equation P = tp/(fp + tp) and compute R by
equation R = tp/(fn + tp), where tp is the amount of positive
instances that are classified correctly, fp is the amount of nega-
tive instances that are classified correctly and fn is the amount
of positive instances that are classified incorrectly.

We need to prove in the experiments that the accuracy of
the SVM classifier under our scheme will not reduce. Thus in
this experiment, we compare the result of the SVM classifier
(PP-SVM) based on our privacy-preserving scheme with the
SVM classifier (SVM) trained generally under the same training
parameters.

As shown in Table III, we can observe our PP-SVM classifier
sufferes no accuracy loss compared with general SVM classi-
fiers. Theoretically, although threshold Paillier is introduced in
our scheme, the encryption and decryption operations do not
result in any calculation accuracy loss, which guarantees the
final classifier’s effectiveness.

C. Efficiency

We evaluate the efficiency of our proposed scheme from two
criterions: time overhead and scalability. The evaluation results
show whether our scheme is efficient and practical enough when
applied into real-world scenarios.
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TABLE IV
PERFORMANCE OF CLASSIFIER EFFICIENCY

Fig. 4. Time calculation.

1) Time Overhead Evaluation: The total time overhead in
our scheme mainly consists of two parts: calculation time over-
head and communication time overhead, where the calculation
time is related to local training time (LTT) and gradient update
judge time (GUJT). The communication time is related to the
latency of calling smart contracts to share and query data. To
evaluate the total time consumption during the training process
of our scheme, we carry out another experiment.

For the three VDPs involved in the experiment, they parallelly
train the partial models over their own partial dataset during
one iteration. During this process, there are no time-consuming
operations such as encryption or decryption and we name the
time cost in this process LTT. Then, essential encryption and
decrytion operations are performed to update the gradient and
the model. The calculation time cost during this process is named
GUJT. Meanwhile, two communications are necessary to share
the intermediate values. The detailed time cost information is
shown in Fig. 4.

The results of time cost statistics are shown in Table IV.
Over both datasets, the total time cost is low enough where
the communication time overhead takes up a large proportion
compared with calculation time overhead.

Although the training process can be finished in a short time,
the communication time cost is still a little high. As we introduce
consortium blockchain as the data sharing platform, extra time
needs to be spent on consensus algorithms between nodes and
it cannot be avoided.

2) Scalability Evaluation: In the above experiments, there
are three VDPs training an SVM classifier. We conduct more
experiments to evaluate the scalability of our scheme when the
amount of VDPs increases. In these experiments, the dataset is
divided into 3 to 5 parts vertically, and each VDP holds one of
them. The result is shown in Figs. 5 and 6.

It can be concluded from the Fig. 5 that the number of VDPs
has no effect on the classifier’s accuracy. However, in Fig. 6,
we observe that the increase of VDP amounts brings negative
effects on calculation time overhead. Theoretically, compared
to experiments with three VDPs, experiments with four VDPs
spend more time on encrytion and decryption during the gradient

Fig. 5. Accuracy with different numbers of VDPs.

Fig. 6. Time consumption of dataset BCWD with different numbers of VDPs.

update judge process. Nevertheless, the total communication
time does not have obvious increase. The way we define the
communication time during a round of iterations is the time
interval between the time when the data is first uploaded to the
BSP and the time when the data is last queried by a VDP. On one
hand, since the workload performed before each VDP uploads
data is basically the same, all VDPs almost simultaneously
upload data and receive the returned data. When the number of
VDPs increases from 3 to 5, the communication time does not
change much. For communication time, it mainly depends on the
number of iterations which is fixed at 1500 in all the experiments.

VIII. CONCLUSION

In this paper, we proposed an efficient and secure SVM train-
ing scheme which helps multiple VSNs data providers to train
an SVM classifier over vertically partitioned dataset together.
Our scheme combines consortium blockchain techniques with
threshold Paillier to build up a decentralized and secure SVM
training platform. To achieve a high performance, most training
operations are performed locally over the original data, only

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 20,2020 at 02:26:03 UTC from IEEE Xplore.  Restrictions apply. 



5782 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 6, JUNE 2020

a few intermediate values are essential to be shared on the
platform. Extensive experiments are conducted and the results
demonstrate that our scheme can train an accurate SVM classifier
with low time cost. In the future work, we will focus on the
optimization of communication overhead and the expansion of
machine learning methods. Although the total time cost of the
training process is not high in the current scheme, the communi-
cation time between VDPs and BSP is still worth optimizing. In
addition, the current algorithm is only designed for SVM based
on stochastic gradient descent. To cope with the expansion of
machine learning algorithms in different scenarios, the future
work will focus on creating a framework that supports multiple
algorithms.

REFERENCES

[1] N. Cheng et al., “Big data driven vehicular networks,” IEEE Netw., vol. 32,
no. 6, pp. 160–167, Nov./Dec. 2018.

[2] Y. Zhang et al., “BDS: A centralized near-optimal overlay network for
inter-datacenter data replication,” in Proc. 13th EuroSys Conf., ACM,
2018, p. 10.

[3] Z. Ning, F. Xia, N. Ullah, X. Kong, and X. Hu, “Vehicular social networks:
Enabling smart mobility,” IEEE Commun. Mag., vol. 55, no. 5, pp. 16–55,
May 2017.

[4] A. M. Vegni and V. Loscri, “A survey on vehicular social networks,” IEEE
Commun. Surveys Tut., vol. 17, no. 4, pp. 2397–2419, Oct.–Dec. 2015.

[5] L. Lv et al., “Communication-aware container placement and reassign-
ment in large-scale internet data centers,” IEEE J. Sel. Areas Commun.,
vol. 37, no. 3, pp. 540–555, Mar. 2019.

[6] G. Xu, H. Li, S. Liu, M. Wen, and R. Lu, “Efficient and privacy-preserving
truth discovery in mobile crowd sensing systems,” IEEE Trans. Veh.
Technol., vol. 68, no. 4, pp. 3854–3865, Apr. 2019.

[7] N. Kato et al., “The deep learning vision for heterogeneous network traffic
control: Proposal, challenges, and future perspective,” IEEE Wireless
Commun., vol. 24, no. 3, pp. 146–153, Jun. 2017.

[8] Z. M. Fadlullah et al., “State-of-the-art deep learning: Evolving ma-
chine intelligence toward tomorrow’s intelligent network traffic control
systems,” IEEE Commun. Surveys Tut., vol. 19, no. 4, pp. 2432–2455,
Oct.-Dec. 2017.

[9] G. Xu, H. Li, H. Ren, K. Yang, and R. H. Deng, “Data security issues
in deep learning: Attacks, countermeasures and opportunities,” IEEE
Commun. Mag., vol. 57, no. 11, pp. 116–122, Nov. 2019.

[10] M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu, “Efficient and privacy-
enhanced federated learning for industrial artificial intelligence,” IEEE
Trans. Ind. Inform., to be published, doi: 10.1109/ TII.2019.2945367.

[11] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “VerifyNet: Secure and verifiable
federated learning,” IEEE Trans. Inf. Forensics Secur., vol. 15, no. 1,
pp. 911–926, 2020.

[12] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proc. IEEE S&P, 2000, pp. 44–55.

[13] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning clas-
sification over encrypted data,” in Proc. Netw. Distrib. Syst. Secur. Symp.,
2015, vol. 4324, p. 4325.

[14] Y. Li, Q. Luo, J. Liu, H. Guo, and N. Kato, “TSP security in intelligent and
connected vehicles: Challenges and solutions,” IEEE Wireless Commun.,
vol. 26, no. 3, pp. 125–131, Jun. 2019.

[15] M. Shen, B. Ma, L. Zhu, X. Du, and K. Xu, “Secure phrase search for
intelligent processing of encrypted data in cloud-based IoT,” IEEE Internet
Things J., vol. 6, no. 2, pp. 1998–2008, Apr. 2019.

[16] H. Li, D. Liu, Y. Dai, T. H. Luan, and S. Yu, “Personalized search over
encrypted data with efficient and secure updates in mobile clouds,” IEEE
Trans. Emerg. Topics Comput., vol. 6, no. 1, pp. 97–109, Jan.–Mar. 2018.

[17] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in Proc. IEEE Symp. Secur. Privacy, 2017,
pp. 19–38.

[18] H. Li, Y. Yang, Y. Dai, J. Bai, S. Yu, and Y. Xiang, “Achieving secure and
efficient dynamic searchable symmetric encryption over medical cloud
data,” IEEE Trans. Cloud Comput., vol. 8, no. 2, pp. 484–494, Apr.–Jun.
2020.

[19] P. Mohassel and P. Rindal, “ABY 3: A mixed protocol framework for
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
ACM, 2018, pp. 35–52.

[20] M. Shen, M. Wei, L. Zhu, and M. Wang, “Classification of encrypted traffic
with second-order Markov chains and application attribute bigrams,” IEEE
Trans. Inf. Forensics Secur., vol. 12, no. 8, pp. 1830–1843, Aug. 2017.

[21] K. Xu, H. Yue, L. Guo, Y. Guo, and Y. Fang, “Privacy-preserving machine
learning algorithms for big data systems,” in Proc. IEEE 35th Int. Conf.
Distrib. Comput. Syst., 2015, pp. 318–327.

[22] M. Shen, B. Ma, L. Zhu, R. Mijumbi, X. Du, and J. Hu, “Cloud-based
approximate constrained shortest distance queries over encrypted graphs
with privacy protection,” IEEE Trans. Inf. Forensics Secur., vol. 13, no. 4,
pp. 940–953, Apr. 2018.

[23] H. Ren, H. Li, Y. Dai, K. Yang, and X. Lin, “Querying in Internet of Things
with privacy preserving: Challenges, solutions and opportunities,” IEEE
Netw., vol. 32, no. 6, pp. 144–151, Nov./Dec. 2018.

[24] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft,
“Privacy-preserving ridge regression on hundreds of millions of records,”
in Proc. IEEE Symp. Secur. Privacy, 2013, pp. 334–348.

[25] G. Xu, H. Li, Y. Dai, K. Yang, and X. Lin, “Enabling efficient and geometric
range query with access control over encrypted spatial data,” IEEE Trans.
Inf. Forensics Secur., vol. 14, no. 4, pp. 870–885, Apr. 2019.

[26] M. Shen, X. Tang, L. Zhu, X. Du, and M. Guizani, “Privacy-preserving
support vector machine training over blockchain-based encrypted IoT data
in smart cities,” IEEE Internet Things J., vol. 6, no. 5, pp. 7702-7712,
Oct. 2019.

[27] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Boca Raton:
Chapman and Hall/CRC, 2014.

[28] P.-A. Fouque, G. Poupard, and J. Stern, “Sharing decryption in the context
of voting or lotteries,” in International Conference on Financial Cryptog-
raphy, Berlin, Germany: Springer, 2000, pp. 90–104.

[29] W. Jiang, H. Li, G. Xu, M. Wen, G. Dong, and X. Lin, “PTAS: Privacy-
preserving thin-client authentication scheme in blockchain-based PKI,”
Future Gener. Comput. Syst., vol. 96, pp. 185–195, 2019.

[30] M. Shen, Y. Deng, L. Zhu, X. Du, and N. Guizani, “Privacy-preserving
image retrieval for medical IoT systems: A blockchain-based approach,”
IEEE Netw., vol. 33, no. 5, pp. 27–33, Sep.–Oct. 2019.

[31] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., ACM, 2015,
pp. 1310–1321.

[32] A. Gascón et al., “Secure linear regression on vertically partitioned
datasets,” IACR Cryptology ePrint Archive, vol. 2016, p. 892, 2016.

[33] M. Abadi et al., “Deep learning with differential privacy,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., ACM, 2016, pp. 308–318.

[34] F.-J. González-Serrano, Á. Navia-Vázquez, and A. Amor-Martín, “Train-
ing support vector machines with privacy-protected data,” Pattern Recog-
nit., vol. 72, pp. 93–107, 2017.

[35] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20,
no. 3, pp. 273–297, 1995.

[36] M. Iansiti and K. R. Lakhani, “The truth about blockchain,” Harvard Bus.
Rev., vol. 95, no. 1, pp. 118–127, 2017.

[37] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[38] O. Goldreich, Foundations of Cryptography: Basic Tools. Cambridge,
U.K.: Cambridge University, 2001.

[39] O. L. Mangasarian and W. H. Wolberg, “Cancer diagnosis via linear pro-
gramming,” Department of Computer Sciences, University of Wisconsin-
Madison, Tech. Rep., 1990.

[40] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online].
Available: http://archive.ics.uci.edu/ml

Meng Shen (M’14) received the B.Eng. degree
from Shandong University, Jinan, China, in 2009,
and the Ph.D. degree from Tsinghua University,
Beijing, China, in 2014, both in computer science.
Currently he is with the Beijing Institute of Tech-
nology, Beijing, China, as an Associate Professor.
His research interests include privacy protection for
cloud and IoT, blockchain applications, and encrypted
traffic classification. Dr. Shen received the Best Paper
Runner-Up Award at IEEE IPCCC 2014.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 20,2020 at 02:26:03 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1109/ ignorespaces TII.2019.2945367
http://archive.ics.uci.edu/ml


SHEN et al.: SECURE SVM TRAINING OVER VERTICALLY-PARTITIONED DATASETS USING CONSORTIUM BLOCKCHAIN 5783

Jie Zhang received the B.Eng. degree in computer
science from the China University of Mining and
Technology, Jiangsu, China, in 2018. Currently, he is
working toward the master’s degree with the Depart-
ment of Computer Science, Beijing Institute of Tech-
nology, Beijing, China. His research interests include
the application of blockchain and privacy-preserving
machine learning.

Liehuang Zhu (M’16) is a Professor with the De-
partment of Computer Science at the Beijing Institute
of Technology. He is selected into the Program for
New Century Excellent Talents in University from the
Ministry of Education, China. His research interests
include Internet of Things, cloud computing security,
Internet and mobile security.

Ke Xu received the Ph.D. degree from Tsinghua
University, Beijing, China, where he serves as a Full
Professor. He has published more than 100 technical
articles and holds 20 patents in the research areas
of next-generation Internet, P2P systems, Internet of
Things (IoT), and network virtualization and opti-
mization. He is a member of ACM and has guest
edited several special issues in IEEE and Springer
Journals. Currently, he is holding Visiting Professor
position with the University of Essex, U.K.

Xiangyun Tang received the B.Eng. degree in com-
puter science from the Minzu University of China,
Beijing, China, in 2016. Currently she is working
toward the Ph.D degree with the Department of Com-
puter Science, Beijing Institute of Technology. Her
research interests include differential privacy and se-
curity multi-party computation.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on June 20,2020 at 02:26:03 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


