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Abstract—Federated Learning (FL) is a machine learning ap-
proach that enables multiple users to share their local models
for the aggregation of a global model, protecting data privacy by
avoiding the sharing of raw data. However, frequent parameter
sharing between users and the aggregator can incur high risk of
membership privacy leakage. In this paper, we propose LiPFed,
a computationally lightweight privacy preserving FL scheme us-
ing secure decentralized aggregation for edge networks. Under
this scheme, we ensure privacy preservation on the aggregation
side, and promote lightweight computation on the user side. By
incorporating blockchain and additive secret sharing algorithm,
we effectively protect the membership privacy of both local models
and global models. Furthermore, the secure decentralized aggrega-
tion mechanism safeguards against potential compromises of the
aggregator. Meanwhile, smart contract is introduced to identify
malicious models uploaded by edge nodes and return trustwor-
thy global models to users. Rigorous security analysis shows the
effectiveness of this scheme in privacy preservation. Extensive
experiments verify that LiPFed outperforms the state-of-the-art
schemes in terms of training efficiency, model accuracy, and privacy
preservation.

Index Terms—Federated learning, privacy preservation,
decentralized aggregation, consortium blockchain.

I. INTRODUCTION

F EDERATED learning (FL) has emerged as a highly promis-
ing paradigm for machine learning [1], experiencing re-

markable growth in recent years. It facilitates collaborative
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model training among multiple users, each possessing local
datasets. During each training iteration, users independently
train local models on their respective datasets, and subsequently,
these local model updates are aggregated to construct a global
model, which is then broadcast to users for subsequent iteration.
Unlike traditional centralized training methods, FL fosters the
sharing of model updates instead of raw training data, thereby
ensuring data privacy for individual users. As a result, FL has
been widely applied by widespread applications in various fields,
such as mobile computing, the Internet of Vehicles, and the
Internet of Things [2], [3].

FL enhances user experience in various scenarios while
ensuring privacy protection. For instance, Google Keyboard
(Gboard) [4] utilizes FL to predict the following input phrase
by training a model with user preference data. In the Internet
of Things (IoT), information sensing devices gather extensive
data for efficient completion of downstream tasks [3]. Similarly,
in the Internet of Vehicles (IoV), intelligent cars leverage FL
to train on collected data, enhancing traffic pattern predictions
and optimizing information interaction [2]. Local model updates
from mobile phones, information sensors, cars, and other devices
are transmitted to an aggregator for the optimization of a global
model, promoting collaborative intelligence while maintaining
data privacy.

However, there are certain limitations when it comes to model
sharing in such scenarios. First, despite the training data being
kept local, adversaries can potentially infer membership pri-
vacy by analyzing local and global models. Second, the noise
introduced to protect the model adversely affects model conver-
gence, making it less suitable for training tasks that require high
model accuracy. Last, limited computational resources in these
scenarios make it challenging to employ complex encryption
methods. Additionally, due to restricted cross-domain network
communication capabilities, users prefer to communicate with
nearby servers.

Membership refers to whether specific data has been used to
train a machine learning model. This paper focuses on two at-
tacks on membership: membership inference attacks [5], [6], [7],
[8], [9] and isolating attacks [5] to enhance membership privacy
leakage in FL. In membership inference attacks, an adversary
aims to train an attack model to infer whether a data record exists
in the user’s training dataset by leveraging the discrepancy in
the model’s behavior on training and non-training data. In FL
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TABLE I
COMPARISON OF REPRESENTATIVE PRIVACY PRESERVING FL METHODS

TABLE II
NOTATIONS USED IN THIS PAPER

scenario, aggregation diminishes the contribution of the local
model of an individual user, leading to negative influence on the
accuracy of membership inference attacks. Isolating attacks can
be employed to isolate the target user, preventing the local model
of the target user from getting aggregated with the local models
of other users. Thus, more information about the training dataset
within the model is stored.

Centralized FL can incur membership privacy leakage, which
has prompted significant research efforts in developing defen-
sive measures. Recent studies have proposed several privacy
preserving FL schemes, as summarized in Table I, which mainly
resort to three types of privacy preserving techniques, including
Shamir secret sharing, differential privacy (DP), and homomor-
phic encryption (HE).

Specifically, PSA [11] and VerifyNet [10], which rely on
Shamir secret sharing techniques, may not always provide com-
prehensive defense against membership inference attacks as they
expose the plaintext of the global model in certain scenarios.
VerifyNet, while offering the ability to verify global models
through homomorphic encryption-generated proofs, imposes
computational burden on users. DP-based methods are divided

into Local Differential Privacy (LDPFed) and Central Differen-
tial Privacy (CDPFed). In LDPFed [13], [14], participants add
noise to their local models. They aim to ensure privacy by adding
as much noise as possible to their local gradients, which can
result in accumulated errors in the global model. CDPFed [12],
on the other hand, involves a trusted aggregator adding noise.
This method achieves acceptable accuracy only in scenarios
with a large number of participants. HyDPFed [15] is a hybrid
differential privacy method that combines local and centralized
differential privacy. The HE-based method, Partially-HE [16],
[17], supports additive homomorphism and effectively protects
the privacy of local models. However, it comes with an increased
computational overhead on the user side. Fully-HE [18], [19]
ensures homomorphism for both addition and multiplication
operations but introduces noise, which can diminish the usability
of the model.

In centralized FL, membership privacy can be inferred
through shared local models or aggregated global models, and
existing privacy preserving schemes for centralized FL have
some drawbacks. There is currently no specific attack targeting
membership privacy in decentralized FL. Therefore, we propose
LiPFed, a computationally lightweight and privacy preserving
FL scheme using secure decentralized aggregation. It integrates
FL with edge network and blockchain to achieve accurate and
trustworthy global models while protecting membership privacy
of users.

In contrast to centralized FL, our approach utilizes multiple
edge nodes located at the user’s edge to establish a secure
decentralized aggregation platform, enabling collaborative ag-
gregation of local models. In edge networks, the dominant
central aggregator in FL is weakened as multiple distributed
edge nodes participate. We employ blockchain as the under-
lying infrastructure due to its decentralized, immutable, and
consensus-driven characteristics, which make it suitable for
constructing a decentralized FL scheme. The shared ledger of
the blockchain records all intermediate aggregation results from
the edge nodes, providing the ability to detect any malicious
aggregation attempts by compromised edge nodes.

In LiPFed, each user possessing private data can connect
with multiple edge nodes. To protect the membership privacy of
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users while guaranteeing the accuracy of the global model, we
design Additive Secret Sharing (Add-SS) algorithm and Secure
Aggregation algorithm. Within this scheme, all local models
and aggregated global models appear in the form of ciphertext
throughout the FL process. The models cannot be recovered by
either a single edge node or a group of collusive edge nodes
under the byzantine assumption [20].

To summarize, the contributions of this article are as follows:
� We propose LiPFed, a novel decentralized scheme for edge

networks, which protects the membership privacy of users’
training data, and enables verification towards aggregation
of edge nodes by smart contracts on blockchain.

� We design an Additive Secret Sharing algorithm based on
one-time padding to protect local and global models. This
algorithm reduces the computational overhead of privacy
preservation on the user side, and ensures high usability of
the global model without any compromise on accuracy.

� We conduct a rigorous security analysis to prove the se-
curity of the proposed scheme. Simultaneously, extensive
experiments are carried out to validate that LiPFed out-
performs state-of-the-art approaches in terms of computa-
tional efficiency, model accuracy, and privacy protection
against membership inference attacks.

The rest of this article is organized as follows. We describe
the preliminaries in Section II. We present the system model,
threat model and design goals in Section III. Then, we describe
LiPFed in detail in Section IV. After that, we present rigorous
security analysis in Section V and evaluate the performance of
the proposed scheme in Section VI. We sort out the related work
in Section VII. We conclude this paper in Section VIII.

II. PRELIMINARIES

A. Federated Learning

The concept of FL was originally proposed by Google. The
main idea is to establish a machine learning model based on
the data set distributed on multiple devices, while users’ data
is stored locally. In an iteration of FL, the users first download
the global model from the server. Then they use the local data
to train the model and upload the parameters to the server. The
server aggregates the parameters of each user to update the global
model. Finally, the users get the updated model from the server
and update their local models.

Suppose there areN users in the FL training process, and user
i has a local training dataset Di. The objective of each user i is
to minimize the loss function:

Li(θi) =
1

|Di|
∑
j∈Di

lj(θi) (1)

L(θ) =
1

|N |
∑
i∈N

∑
j∈Di

(2)

where N is the number of users and |.| denotes the size of
datasets. Li(θi) is a specific loss function. In this paper, we
take cross entropy as the loss function.

The advantage of FL is that the users only need to share the lo-
cal model with the server while the training data is saved locally

from beginning to end. Compared with centralized training, FL
can protect the user’s privacy information against leakage. How-
ever, attackers can still carry out some privacy attacks through
shared parameters (such as membership inference attacks), and
the server can return well-constructed but incorrect models to
users.

B. Pseudorandom Generator

Pseudorandom generator (PRG) is used to create random
sequences of numbers in deterministic devices. All computer
algorithms are strictly deterministic. PRG allows the encryption
of many data blocks using data generated from secret keys that
have only a few bits.

Definition 1: Pseudorandom generator (PRG) is an efficient
and deterministic function, which returns a longer pseudoran-
dom output sequence based on the received shorter input:

G : {0, 1}s → {0, 1}n, n � s

PRG has to be unpredictable. There must not be any efficient
algorithm that after receiving the previous output bits from PRG
would be able to predict the next output bit with probability
non-negligibly higher than 0.5.

PRG is used for creating pseudorandom functions and permu-
tations, which are widely used in cryptography (for example, for
the implementation of block ciphers).

C. Blockchain

Blockchain is a new distributed infrastructure and computing
paradigm that uses a series of blocks to verify and store data [21],
[22]. It uses distributed node consensus algorithm to generate
and update data, uses cryptography technology to ensure the
security of data transmission and access control, and uses a smart
contract composed of automated script code to program and
operate data. A smart contract is a piece of code deployed on
blockchain network. Once an event triggers the terms in the
contract, the code will be executed automatically. Smart contract
provides LiPFed with functions for uploading, querying, and
detecting malicious edge nodes.

To achieve a balance between the publication of blockchain
and the protection of data privacy, we apply consortium
blockchain in LiPFed, which ensures both security and efficient
data processing. The consortium blockchain used in LiPFed is
maintained collectively by multiple edge nodes that share re-
sources and responsibilities, ensuring the stability and reliability
of the entire system.

III. SYSTEM OVERVIEW

In this section, we present a novel and computationally
lightweight privacy preserving FL scheme (LiPFed), which
achieves effective privacy preservation, high training efficiency,
and high accuracy.

A. System Model

As shown in Fig. 1, three types of entities are participating in
the system model: users for local training, edge nodes for secure
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Fig. 1. System overview of LiPFed.

aggregation, and blockchain for data sharing. Three parts divide
and conquer to complete the FL process.

1) Users: Users serve as data collectors and holders, utilizing
their local data to train local models. As an example, within
LiPFed, multiple users collaborate to train an image classifier.
They utilize local models built on convolutional neural networks
(CNNs) or ResNet to train this classifier, continually updating
the model through stochastic gradient descent (SGD) [23]. Then,
they employ PRG to generate random numbers for masking and
verification, respectively. Each user connects to multiple edge
nodes (e.g. access point, base station), where honest ones among
these nodes should exceed the total number of Byzantine nodes.
Users split their parameters into shares using additive secret
sharing and distribute them to the edge nodes.

2) Edge Nodes: Edge nodes serve as both local model aggre-
gators and blockchain consensus nodes, working together to pro-
vide users with secure decentralized aggregation of local models.
Edge nodes can be aggregation service platforms built at the edge
of the user network, provided and supported by service providers
offering storage, computing, and networking resources. Edge
nodes reach consensus and collectively construct a blockchain
shared ledger to facilitate decentralized aggregation.

3) Shared Ledger: Shared ledger is a data sharing and su-
pervision platform aiming at helping accomplish decentralized
model aggregation. A pre-written smart contract is deployed
on the consortium blockchain to assist in the aggregation and
detect the malicious global model. With a certain degree of
access control security strategy, entities outside the edge nodes
are unable to access the transactions on the ledger.

B. Threat Model

In this paper, we use a fixed number of edge nodes from the
blockchain to act as aggregators, so we assume edge nodes are
adversaries in the threat model. We consider Honest but Curious
Security [24] in LiPFed, which means edge nodes are semi-
honest. Each edge node honestly executes the smart contract
specified in advance, but tries to infer useful private information
of users through the shared parameters as much as possible.
Here, we describe two types of attacks in our proposed LiPFed
as follows:
� Type-I Attack: Type-I Attack is an isolating attack. The

adversary refers to multiple semi-honest edge nodes. After
completing decentralized aggregation, multiple edge nodes

collude to jointly send the same well-constructed fake
global model to the victim user. By exploiting the victim’s
local model updated based on the fake global model, the
adversary expects to infer more membership privacy about
training data.

� Type-II Attack: Type-II Attack is a membership inference
attack. The adversary refers to multiple semi-honest edge
nodes. Edge nodes are responsible for aggregating local
models from multiple users to obtain a global model.
Multiple semi-honest edge nodes collude to acquire shares
of both local models and global random numbers as much
as possible, and expect to infer the membership privacy
about training data.

C. Design Goals

To meet the privacy training needs of computationally
resource-constrained devices, LiPFed has three design goals:

1) Privacy Preservation: To defend against membership in-
ference attacks [7], [25] that infer the users’ privacy and isolating
attacks [5] that aggravate the leakage of user’s membership
privacy, LiPFed employs privacy preserving methods to ensure
the confidentiality of both local models and global models. To
prevent edge nodes from computing fake global models to isolate
users, the system needs to verify the aggregation results of global
models and return the benign one to the user. For security, we
require indistinguishability under ciphertexts of models. Assum-
ing an adversary selects two plaintexts and receives one of their
corresponding ciphertexts, if the adversary cannot distinguish
which plaintext corresponds to the received ciphertext, then the
goal of security satisfies indistinguishability.

2) Training Efficiency: Considering the different computing
power of each user, the lightweight privacy training time cost
on the user side should be guaranteed. A large number of time-
consuming operations such as lots of complex encryption and
decryption operations should be avoided. We evaluate training
efficiency by analyzing the time complexity of encryption on
user side and comparing time overhead on both user side and
aggregation side for different methods.

3) Model Accuracy: While the privacy preserving scheme
is introduced, the accuracy of the trained model should not be
significantly reduced. At the same time, the accuracy is less
affected by the number of iterations of model training, ensuring
that the accuracy is still kept in a large scale scenarios that

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on May 04,2024 at 01:09:16 UTC from IEEE Xplore.  Restrictions apply. 



SHEN et al.: SECURE DECENTRALIZED AGGREGATION TO PREVENT MEMBERSHIP PRIVACY LEAKAGE 3109

Fig. 2. High-level protocol of LiPFed. Before the protocol, the setup opera-
tions have been finished. This figure just shows the process per training iteration.
iterations.

require a large number of training iterations. Model accuracy
is calculated by equation R = tp/(fn + tp), where tp is the
amount of positive instances that are classified correctly, and fn
is the amount of positive instances that are classified incorrectly.
We expect the model accuracy under LiPFed to be as close
as possible to FedAvg [1], which is a FL aggregation strategy
without privacy preserving methods.

IV. THE PROPOSED LIPFED

LiPFed is designed to protect users’ membership privacy.
Meanwhile, LiPFed protects users from isolating attacks by
verifying aggregated global models. In this part, the detailed
protocol shows how to combine additive secret sharing and
decentralized aggregation to achieve the design goals.

A. Overview of LiPFed

The high-level protocol of the LiPFed is summarized in Fig. 2.
It contains three steps in each iteration of training, which are
referred to as Setup Phase, LocalTraining and SecAggregation.

1) Setup Phase: The setup phase is shown in detail in Fig. 3.
For users, some parameters about the training process and mod-
els need to be negotiated in advance. For blockchain shared
ledger, LiPFed adopts a consortium blockchain to facilitate the
decentralized aggregation process. This begins with the selec-
tion of edge nodes designated to participate in the consortium
blockchain, collectively responsible for maintaining the integrity
of the blockchain network. Edge nodes have to communicate
with each other to build a consortium blockchain and begin to
consensus, with LiPFed’s preference being the Byzantine Fault
Tolerance algorithm. Following this, the blockchain is meticu-
lously configured to restrict access solely to authorized entities,
bolstering security. To streamline operations, smart contracts are
deployed onto the blockchain, enabling automated execution of
model updates and the recording of intermediate results.

Fig. 3. Setup phase and local training of LiPFed.

A single user is connected to several edge nodes which can
promise a byzantine-tolerant training system. Meanwhile, each
user chooses a fixed number of edge nodes and generates global
random numbers for each iteration of the following training
process. These global random numbers are split into shares by
Algorithm 1 and sent to the connected edge nodes separately,
which can be used to mask the global model.

2) LocalTraining: As shown in Fig. 3, selected users train
local models using their local datasets and get {(w)i | i ∈ [1,m]}
in this round. LiPFed is not concerned with the method of model
training. Each user in LiPFed can train an image classifier based
on CNNs or ResNet and adopt SGD [23] to update their local
models.

3) SecAggregation: As shown in Fig. 4, in this round, LiPFed
performs secure decentralized aggregation on local models from
the selected users. In all, user ui splits local model (w)i through
an additive secret sharing algorithm Add-SS described in
Algorithm 1 to obtain {(w)ij | j ∈ [1, l]}. Then they are sent
to l connected edge nodes separately. Decentralized edge nodes
perform two aggregation operations on the shares of local mod-
els and global random numbers and finally get the global model
masked by global random numbers. All intermediate calculation
results (i.e., (g)

′k
j and (g)kj ) are recorded in blockchain shared

ledger. The smart contract detects the malicious models recorded
in the shared ledger and eventually returns a benign global model
to the user. Once a suspected malicious edge node is detected, the
smart contract can mark it and replace the connection between it
and the user, otherwise the connection state remains unchanged.

B. Additive Secret Sharing

We design an additive secret sharing algorithm and employ
it in LiPFed to achieve three design goals, through which the
shares will not disclose any information about plaintexts, and
aggregation under ciphertexts is convergent.
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Fig. 4. SecAggregation of LiPFed.

Arithmetic sharing [26] is a low-cost secret sharing and it ori-
ents two-party secure computing. The main idea is to randomly
split a number into two or more numbers. The split numbers
belong to different calculation parties. Each calculation party
can carry out arithmetic calculations under privacy protection
according to the shared data. As an extension of this idea, we
designed an additive secret sharing algorithm, through which we
can share parameters to multiple edge nodes and perform secure
aggregation.

Additive secret sharing allows multiple participants to per-
form additional operations without exposing their private inputs.
This typically involves splitting a number or value into multiple
parts and distributing them to different entities, ensuring that
the final addition result can only be obtained when all parts
are collected. This approach ensures that at no point during the
process can any single participant gain insight into the private
inputs of others. Complete information about the original value
is revealed only when the final result is reconstructed. This
enhances privacy protection, particularly in scenarios involving
sensitive data in multi-party computations.

Additive secret sharing algorithm is based on additively shar-
ing of private values between multiple parties as follows.

Shared Parameters: For a sharing value v, we have v1 + v2 +
· · ·+ vn ≡ v.

Algorithm 1: Additive Secret Sharing: Add-SS().
Input: Parameter: v, number of shares: n, pseudorandom

number seed: seed, pseudorandom number
generator: PRG

Output: A set of shares: {vi | i ∈ [1, n]}
1: Generate a set of pseudorandom number using

PRG(seed) and get {r1, r2, . . ., rn}
2: v∗ = v/n
3: for i = 1, 2, . . ., n− 1 do
4: vi = v∗ + ri − ri+1

5: end for
6: vn = v∗ + rn − r1
7: return {vi | i ∈ [1, n]}

Splitting: Add-SS(v) computes v∗ = v/n, generates a set
of pseudorandom numbers {r1, r2, . . ., rn}, sets vi using the
formula below, then sends vi to the ith connected edge node.{

vi = v∗ + ri − ri+1, i �= n
vn = v∗ + rn − r1, i = n

(3)

Recovery: For all edge nodes aggregated, v =
∑n

i=1 vi, all
random numbers can be cancelled out.

We apply the above algorithm to LiPFed, each weight wi

in local model (w)i is split into several shares and masked with
well-constructed pseudorandom numbers by Algorithm 1 Add-
SS(wi). When a set of shares wi

j from several users needs to
be aggregated, local model can be reconstructed without any
accuracy loss. The security of Algorithm 1 and the correctness
of secret recovery are proved in Section V.

Additive secret sharing involves linear mapping and has lower
computational complexity. Compared to FedAvg [1], LiPFed
performs additive secret sharing on local models with a time
complexity of O(1). The time complexity of other privacy
preserving methods is greater than or equal to LiPFed. Time
complexity of Shamir secret sharing is O(n log n), where n
is the number of shares. Time complexity of differential pri-
vacy relying on Gaussian noise to protect local models is
O(1). Paillier algorithm is a partially homomorphic encryption
algorithm that supports additive homomorphism, time com-
plexity of Paillier is O(k3), where k is the length of secret
key.

C. Secure Decentralized Aggregation

Secure Local Model Aggregation: In SecAggregation, user
ui splits local model(w)i through the additive secret sharing
algorithm (Algorithm 1) as {(w)i1, (w)

i
2, . . ., (w)

i
l} and sends

them to multiple connected edge nodes. l is the number of
connected edge nodes. To guarantee security, the value of l needs
to be greater than n/3.

To protect the membership privacy of global model and
enable global model verification, they are masked with a spe-
cific number. For all selected users for next iteration, user
uk generates a pseudorandom number (R)k, and splits it into
l parts as {(R)k1 , (R)k2 , . . ., (R)kl } using Add-SS((R)k) in
Algorithm 1. Then they are sent to l edge nodes, respectively.
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Thus edge node ej holds a shares of local models from p users:
{(w)1j , (w)

2
j , . . ., (w)

p
j} and a shares of q global random num-

bers: {(R)1j , (R)2j , . . ., (R)qj}. Then LiPFed aims to compute
the partial aggregated models for the users selected in the next
training iteration.

In the first aggregation, each edge node aggregates all shares
of local models kept by itself and gets

∑p
i=1(w)

i
j . Then a subset

of them is covered with the shares of global random numbers
{(R)1j , (R)1j , . . ., (R)qj}. If edge node ej has the share of global
random number of the selected user ui in the next iteration,
the aggregated result is (g)

′k
j =

∑p
i=1(w)

i
j + (R)kj , otherwise

(g)
′k
j =

∑p
i=1(w)

i
j . For all selected users in the next iteration,

the same sum operations are performed. Then edge nodes create
transactions to record the partial aggregated model set on the
shared ledger. With the aid of blockchain, each edge node queries
all other edge nodes’ data. For edge node ej , it aggregates the
relevant masked partial aggregated models for the selected users
connected to it.

In the second aggregation, edge node ej aggregates par-
tial aggregated models (g)

′k
j from all edge nodes and

get (g)kj =
∑n

j=1(g)
′k
j for user uk. Algorithm 1 promises

that (g)kj =
∑n

j=1(g)
′k
j =

∑m
y=1

∑l
x=1(w)

y
x +

∑l
x=1(R)kx =

(g) + (R)k is correct. Edge nodes create transactions to record
the final computation results. For user ui, l masked global
models from different edge nodes are recorded on the shared
ledger. After all edge nodes complete uploading aggregated
results, a smart contract deployed on the blockchain is triggered
to determine the existence of an isolating attack in the system.
Finally, the smart contract selects benign masked global model
(g)k for user uk and returns it to each user. User uk removes
(R)k and gets the plain global model (g). Selected users start
the next training iteration.

Offline Optimization: In each training iteration, all selected
users in next training iteration have to share their global random
numbers with the edge nodes. To reduce the calculation and
communication overhead during the training process on the user
side, the global random numbers of each user in each iteration
are generated and shared in setup phase. It is in the offline phase
and we call it offline optimization.

Specifically, for user ui, it generates a random number set
{(R)it=1, (R)it=2, . . ., (R)it=T } as the global random numbers
in the next t training iteration. Then the values in the set are
split by Algorithm 1 and then sent to several edge nodes. In this
way, edge nodes can directly use these shares of global random
numbers in each iteration without extra online communication.
In the experimental part, we pre-test the expected number of
iterations for the model to reach convergence and use it as an
initialization parameter.

Robustness to Users Dropping Out: LiPFed takes dropped
out users into consideration. We claim that LiPFed can perform
smoothly even some users drop out during the training process.
In LiPFed, each user independently completes local model
training, local model protection, and global random number
elimination. Dropping out of users does not affect the operations
of other users. Additionally, since additive secret sharing is

Fig. 5. Formats of the uploaded data.

only applied to the local model of each individual user, user
dropping out does not affect the partial aggregation or the global
aggregation at the edge nodes.

D. Data Format on Blockchain

The edge nodes calculate the partial aggregation model in
the first aggregation, and then create transactions to record the
above calculations. In the consortium blockchain, we deploy a
pre-written smart contract to assist decentralized aggregation,
which implements the following functions: partial aggregated
models sharing and training user selection. As shown in Fig. 5,
the following content is the format of the uploaded data.

Iteration Round: During the training process, there are sev-
eral iterations at which the data needs to be shared between
blockchain nodes.

Edge Node ID: An unique identifier distinguishing an edge
node from others. When an edge node calls the smart contracts,
its address is automatically recorded in this field.

Masked Partial Aggregated Models Set: It is a variable set of
the sum of the pseudorandom numbers of one user and the partial
local models of all connected users. So the partial aggregation
model is masked with random numbers which can guarantee
data security when shared on the blockchain.

Users ID: It randomly selects k users in U to determine
users participated in training in the next iteration. The chaincode
sorts out all the uploaded user’s ID number to achieve that.
The mobile users selected in the next iteration are determined by
the last contract. In this way, the edge nodes have the knowledge
of for which users to do the partial aggregation without extra
communication.

V. SECURITY ANALYSIS

In this section, we make a comprehensive security analysis
of LiPFed. We first analyze the convergence of decentralized
aggregation. Then, we demonstrate the security of LiPFed under
two types of attack defined in threat model as Type-I Attack and
Type-II Attack.

A. Convergence Under Decentralized Aggregation

The convergence of FedAvg [1] has already been proved.
Decentralized aggregation ensures privacy protection for models
through additive secret sharing. Consequently, we demonstrate
its convergence by proving that this method does not introduce
accumulated noise when compared to FedAvg [1].

Lemma 1: Assuming that the Additive Secret Sharing process
is executed correctly under the semi-honest setting, then for any
number v, and its shares of variables v1, v2, . . . , vn calculated
by Add-SS(v) using any set of pseudorandom numbers, we
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have:

v =
n∑

i=0

vi (4)

Proof: Assuming that there is a private variable v, which is
divided into multiple shares by additive secret sharing algorithm,
and no information can be disclosed by each part. The combi-
nation of all shares can remove the disturbance and restore the
variable. For example, there are n different edge nodes that each
user intends to connect which means v will be split into n parts.
The user needs to calculate the shares of variable vi by following
equation.

{
vi = v∗ + ri − ri+1, i �= n
vn = v∗ + rn − r1, i = n

(5)

where v∗ = v/n, and {r1, r1, . . . , rn} are pseudo random num-
bers generated at the same time.

For an entity that has all the shares of variables vi, he can
recover the user’s private variable v by

vrec =
n∑

i=0

vi (6)

According to (5) and (6), we achieve:

vrec =
n∑

i=0

vi

= v∗ + r1 − r2 + · · ·+ v∗ + rn − r1

= v∗ + · · ·+ v∗ + r1 − r1 + · · ·+ rn − rn

= v (7)

From (7), we prove n shares can recover v correctly. �
Theorem 1: Assuming each user executes Additive Secret

Sharing correctly and edge nodes adhere to decentralized aggre-
gation protocol in a semi-honest setting. (g) is a global model
aggregated of p local models by FedAvg, which means (g) =∑p

i=1(w)
i and (g)rec is aggregated by LiPFed. For any local

models (w)i of user ui, and its shares of (w)i1, (w)
i
2, . . . , (w)

i
l ,

then:

(g)rec = (g) (8)

Proof: There are l different edge nodes that each user intends
to connect which means (w)i is split into l parts. Edge node ej
holds (w)ij of user ui, which is a share of (w)i calculated by
additive secret sharing algorithm. Edge node ej holds (R)kj of
user uk, which is a share of (R)i by an additive secret sharing
algorithm. According to the decentralized aggregation protocol,
useruk can calculate global model (g)rec by following equation.

(g)rec = (g)k − (R)k (9)

According to Lemma 1, (9) and decentralized aggregation pro-
tocol, we achieve:

(g)rec = (g)k − (R)k

=

n∑
j=1

p∑
i=1

(w)ij +

n∑
j=1

(R)kj − (R)k

=

p∑
i=1

(w)i + (R)k − (R)k

= (g) (10)

Through (10), we prove that global model (g)rec in LiPFed is
equal to global model (g) in FedAvg. Therefore, they share the
same convergence properties. �

B. Defense Against Isolating Attacks

Type-I Attack. We analyze the ability of LiPFed to defend
against Type I Attack as defined in our threat model. The attack
is most offensive when multiple edge nodes collude to infer
membership privacy and return the same well-constructed global
model to a specific user.

Assumption 1: There exists c compromised edge nodes {Ai}
under the isolating attacks who send the fake global model
(w)fakei to the victim uvictim.

Assumption 2: The isolating attack is the strongest when
all compromised edge nodes collude, and send the same well-
constructed global model (g)fake to the victim uvictim.

Theorem 2: Suppose Assumptions 1 and 2 hold. There are a
total of n edge nodes, with c being the number of compromised
edge nodes. When c < n/2, for any well-constructed global
model (g)fake, users can successfully defend against Type-I
Attack isolating attacks.

Proof: In LiPFed, there is a user connecting to n edge nodes,
and the maximum compromised edge nodes c is n/2− 1. After
edge nodes aggregate the global model, assuming that these c
compromised edge nodes {E1, . . ., Ec} send same fake global
model (g)fake to user uvictim connected with them. Meanwhile,
some real global models (g)real are sent from honest edge nodes
to uvictim. Thus, uvictim has received two kinds of different
global models in this iteration which prove that he may be under
an isolating attack. Then, the victim will accept the majority of
the two global models. Therefore, if and only if c ≤ n/2− 1 is
met, the user will choose the real model (g)real as the global
model. �

C. Defense Against Membership Inference Attacks

Type-II Attack. We analyze the security of LiPFed under
Type-I Attack as defined in our threat model. The most rigorous
definition currently widely accepted is described in Goldreich’s
paper [27], which establishes a trusted third-party T as the ideal
model that can communicate securely with other users. Because
this ideal model is in the most secure state, if the simulated output
of the ideal model is indistinguishable from the real protocol, it
proves that the real protocol has the same security as the ideal
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protocol. The adversary in the ideal model can conduct the same
attack with the adversary in the real model.

Definition 2 (Semi-honest Security): There is a Protocol Π
between one user and multiple edge nodes to perform an ag-
gregation operation. Protocol Π is secure when satisfying the
following guarantees:

1) For one semi-honest edge node, any share (w)ij of local
model (w)i is computationally indistinguishable with a
random number r.

2) For c < n edge nodes colluding, the summation of shares
of variables from them is computationally indistinguish-
able with a random value r, which means the compromised
edge nodes cannot recover (w)i. Where n represents the
number of shares.

Then, we prove that multiple semi-honest edge nodes col-
lude, the adversary can not infer membership privacy about the
training dataset.

Theorem 3: Suppose there is a probabilistic polynomial time
(PPT) adversary A, who has a PPT simulator SIM, then for
all n, c, wU , U,E,Ec, and C such that C ⊆ EC ⊂ E, the out-
put of simulator SIM is indistinguishable from the output of
REALU ,n,c

C , formulated as:

REALU ,n,c
C ((w)U ,U ,Ec) ≡c SIM

U ,n,c
C ((w)C ,U ,Ec).

Proof: We use a standard hybrid argument to prove Theo-
rem 3. We construct a simulator SIM that makes a series of
modifications to LiPFed. Finally the view SIMU ,n,c

C is indistin-
guishable from the real view REALU ,n,c

C . The simulator runs as
follows:

1) SIM chooses a uniform random tape for C.
2) SIM receives {(w)ij | i ∈ [1, p], j ∈ [1, c]}, {(R)kj | k ∈

[1, q], j ∈ [1, c]} from C, which are the shares of values
of local models and the shares of global random number
respectively.

3) SIM simulatively executes partial aggregation of
{(w)ij | i ∈ [1, p], j ∈ [1, c]} and add split global random
number in {(R)kj | k ∈ [1, q], j ∈ [1, c]} ∪ ∅

4) SIM calculates the sum of all partial aggregation results to
obtain a global model (g)masked with {(R)k | k ∈ [1, q]}.

In the following hybrid argument, through the modification
of the original protocol, the simulator is computationally indis-
tinguishable from the distribution of the real world execution.
� Hyb1: SIM has the input of all compromised edge nodes:
{(w)ij | i ∈ [1, p], j ∈ [1, c]} and {(R)kj | k ∈ [1, q], j ∈
[1, c]}. This corresponds to the real world distribution.

� Hyb2: In this hybrid, instead of sending data masked with r
generating by PRG to edge nodes in SecAggregation, the
simulator generates some random values whose distribu-
tion is identical with (r) by PRG. Note that, (w)i is split
as: {

(w)ij = (w)i/l + (r)i − (r)i+1, i �= l
(w)il = (w)i/l + (r)l − (r)1, i = l

(11)

Since {(r)i | i ∈ [1, l]} are all generating by PRG,
(w)i/l + (r)i − (r)i+1 are also random numbers. We re-
place them with uniformly random numbers. The security

of the PRG makes this step computationally indistinguish-
able from the previous one.

� Hyb3: The compromised edge node Ec then gets all
other edge nodes’ (including honest and compromised
edge nodes) aggregated data from blockchain ledger. They
are all masked with uniformly global random values
{(R)kj | k ∈ [1, q], j ∈ [1, c]}. The procedure for splitting
(R)k is the same as that for (w)i, which means SIM
can easily generate an indistinguishable random value like
the previous. Then SIM simulates the aggregated masked
global models. Same as the previous step, this step is
computationally indistinguishable from the previous.

Based on hybrid 1 to 3, the output of SIM is indistinguishable
from REAL, completing the proof. �

VI. PERFORMANCE EVALUATION

In this section, image classification is used as a task to evaluate
the performance of LiPFed from three aspects: the accuracy
of the final model, the ability to defend against attacks, and
training efficiency. We make a comparison with five methods to
prove that the scheme is comparable in the above three aspects,
especially the training efficiency.

A. Experimental Setup

FL has a broad range of applications, from training Gboard
with a user base of tens of thousands to data collection and
training utilizing several hundred IoT devices. In response to
diverse scenario requirements, we categorize our user base into
three groups: large-scale (10,000 users), medium-scale (1,000
users), and small-scale (100 users). Furthermore, to ensure FL
doesn’t disrupt a device’s primary tasks, we select users whose
devices are in an idle state for training. Typically, the percentage
of users in an idle state fluctuates around 10%. As such, we’ve
set the proportions of idle users at 5%, 10%, and 15% to
accommodate these variations.

To demonstrate the superior performance of the LiPFed,
we compared LiPFed with existing methods, mentioned in
Section I, which all aim at protecting data privacy in FL pro-
cess. FedAvg [1] is with no privacy preservation measure.
Partially-HE [16] exploits Paillier cryptosystem to protect
privacy. CDPFed [12] adds noise to models. PSA [11] and
VerifyNet [10] cover local models with random numbers.

1) Experiment Environments: Several users cooperate to
train an image classifier with their local dataset securely. Ma-
chine learning models are implemented by Python 3.9 and
Pytorch 1.9. The program runs on a PC (AMD Ryzen 5 2600X
Six-Core processor at 3.60 GHz and 32 GB RAM) to simulate
the training process. Meanwhile, we implement the chain code
by Go to run them on the consortium blockchain (Fabric 1.3) in
a virtual machine set with 4 GB memory.

2) Criterions: Model accuracy, attack accuracy and
training efficiency are adopted to evaluate LiPFed. We compute
model accuracy by equation R = tp/(fn + tp) as described in
our design goals. Besides the security analysis to prove LiPFed
theoretically, we train an attack model to verify the security
of LiPFed. Isolating attack can be detected by comparison of
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Fig. 6. Value of loss function of MNIST classifier trained by CNNs model when selecting different proportions of users among different scales of users. (a)
shows results in small scale (i.e., m = 100), with the increase of training iterations. (b) shows results in medium scale (i.e., m = 1, 000), with the increase of
training iterations. (c) shows results in large scale (i.e., m = 10, 000), with the increase of training iterations.

Fig. 7. Value of loss function of CIFAR-10 classifier trained by ResNet18 when selecting different proportions of users among different scales of users. (a) shows
results in small scale (i.e., m = 100), with the increase of training iterations. (b) shows results in medium scale (i.e., m = 1, 000), with the increase of training
iterations. (c) shows results in large scale (i.e., m = 10, 000), with the increase of training iterations.

aggregation results, which has been proved in Section V-A. We
use the membership inference attack model proposed in [5]
to verify the security of LiPFed experimentally, which is the
mainstream attack model of FL privacy issues. We evaluate the
efficiency of LiPFed from the time cost of total training and
blockchain communication.

3) Dataset: To evaluate the performance of LiPFed, we used
two datasets in the experience: MNIST1 and CIFAR-10 .2 The
MNIST is a handwritten digit dataset of 60,000 28x28 grayscale
images of the 10 digits, along with a test set of 10,000 images.
The CIFAR-10 consists of 60,000 32x32 color images in 10
different classes, with 6,000 images per class, and 10,000 images
reserved for testing. To ensure the consistency of the LiPFed and
other comparison methods in the training process, experiments
about accuracy and time-consuming are implemented on the
MNIST dataset. To evaluate the ability of different methods
to defend against membership inference attacks, we carried
out attack experiments on the CIFAR-10 dataset. We assume
that the classification task requires a total of 50,000 to 60,000
data for training, which are either independently and identically
distributed (IID) or non-IID across different users. For IID data,
we randomly and equally distribute all data to all users, while
for non-IID data, the label and amount distribution is different
among different users.

B. Performance of LiPFed With Varying Parameters

In this section, we evaluate the performance of LiPFed by
changing various parameters to obtain the accuracy and training
efficiency of LiPFed in various cases.

1) Accuracy: We set the percentage of users whose devices
are idle at 5%, 10% and 15% respectively. We explore the
relationship between accuracy and user scale, the percentage of
selected users, and the quality of datasets (IID or non-IID). We
use Convolutional Neural Networks (CNNs) and ResNet18 [28]
to train classifiers for MNIST and CIFAR-10 respectively. The
accuracy of experimental results is as follows.
� Figs. 6 and 7 show the loss of MNIST classifier and

CIFAR-10 classifier during training process, respectively.
Accordingly, Fig. 8(a) and (b) show the accuracy of the
model. We observe LiPFed performs well in small and
medium scale cases, where the model is trained well with
only a few iterations. In large scale case, more training
iterations are needed and the final model accuracy is not
as high as that in the other cases, because each user holds
fewer data examples. The more users participate in training,
the more data examples are involved.

1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/kriz/cifar.html
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TABLE III
TRAINING TIME (S) ON USER SIDE (US) AND AGGREGATION SIDE (AS)

Fig. 8. Accuracy of model under different scenarios. (a) shows the accuracy of
MNIST classifier trained on CNNs under different user scales, with the increase
of training iterations. (b) shows the accuracy of CIFAR-10 classifier trained on
ResNet18 under different user scales, with the increase of training iterations. (c)
shows the accuracy under non-iid MNIST, with the increase of training iterations.
(d) shows the accuracy under different proportions of users dropping out, with
the increase of training iterations.

� We consider the case of Non-IID data, which often exists
in reality. Fig. 8(c) shows the results on Non-IID MNIST
datasets. Although the model accuracy rises in the fluctu-
ation, LiPFed is still practical and the accuracy maintains
at a high level, no matter in which scale case.

� LiPFed takes into dropped users which means that it does
not require users to be online all the time. Fig. 8(d) shows
the model accuracy under different proportions of dropped
users. Even if there are dropped users, the impact on the
final accuracy of the model can be almost ignored.

As we can see, LiPFed trains high-accuracy models in scenar-
ios of users of different scales, the existence of Non-IID datasets
and dropped users, which means that it can be widely applied in
various fields.

2) Efficiency: We evaluate training time overhead of LiPFed
from training time on user side and aggregation time on the
aggregator side (edge node side). Besides, we evaluate the
communication time overhead in blockchain, which is related

TABLE IV
BLOCKCHAIN COMMUNICATION TIME (S) PER ITERATION

to the latency of invoking smart contracts to share and query
data and communication between users and edge nodes.
� From Table III we can infer that the percentage of the

selected users has little effect on the training time of both
the user and aggregator side. This is because the process
of additive secret sharing by a user does not require com-
munication with other entities. It is evident that user side
training is conducted with minimal time cost. Additionally,
in all scenarios, the time cost generated by the aggregation
process on the Aggregation side is also very low. This is
primarily because the edge nodes solely focus on aggre-
gating without performing resource-intensive tasks such
as decryption or decoding.

� From Table IV, when the number of edge nodes increases,
the overhead of both uploading and querying increases,
which is caused by the characteristics of the consortium
blockchain. However, since the local aggregation process
of each blockchain node is independent of each other in
parallel, there will be no significant changes in time.

C. Comparison With Existing Methods

We compare the LiPFed with the existing methods from three
aspects: ability to defend against attack, model accuracy, and
training efficiency. The comparison results are as follows:

1) Comparison Results in Defense of Membership Inference
Attack: Membership inference attacks can attack both the local
and global models. Therefore, comparative experiments include
testing the attack accuracy of the membership inference attack
on the local model and the attack accuracy on the global model.
We employ a membership inference attack proposed in [5] to
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TABLE V
ATTACK ACCURACY (%) OF MEMBERSHIP INFERENCE ATTACK ON LOCAL MODEL (LM) AND GLOBAL MODEL (GM) ON DIFFERENT DEFENSE SCHEMES

TABLE VI
ACCURACY (%) OF GLOBAL MODELS OF DIFFERENT FL SCHEMES

infer the membership privacy of LiPFed and five comparative
methods. It is a white-box membership inference attack that ex-
ploits privacy vulnerabilities in SGD algorithm. The architecture
combines gradients extracted from different layers of the target
model to compute the membership probability of the target data
point. The results are summarized in Table V. In CDPFed, since
the distortion is allocated by the server, the server obtains the
plaintext of each user’s local model and obtains a high attack
accuracy as unprotected FedAvg. Similarly, iVerifyNet and PSA
ignore the protection of the global model. In Partially-HE, the
attack accuracy is at a low level as the attacker can only get
encrypted the local and global model. In LiPFed, the attack
accuracy remains low on both local and global models, which
indicates LiPFed’s defense is comprehensive and effective. This
is because LiPFed provides protection for both local and global
models, and the attacker can only obtain the perturbed models.

2) Comparison Results in Accuracy: We conduct experi-
ments to compare the accuracy of the final model trained by
LiPFed with other protection methods and the FedAvg without
protection. We get the highest accuracy and list the results in
Table VI. The accuracy of the model protected by the LiPFed
has the same level as Partially-HE, VerifyNet, and PSA. The
commonness of these methods is that the methods they employed
will not cause any loss of model accuracy. It is worth noting that
the training effect of the CDPFed model is not ideal. We set the
same privacy budget in our experiment with CDPFed in [12].
The only difference from [12] is that we replace the training
model with a CNNs model which is the same as other methods.
Experiments show that when the differential privacy budget is
exhausted, the model accuracy has not reached convergence.

TABLE VII
COMPARISON OF COMPUTATIONAL TIME (S) ON USER SIDE (US) AND

AGGREGATION SIDE (AS)

3) Comparison Results in Efficiency: We present time over-
head of different methods on user side and aggregation side
respectively in Table VII. Specifically, CDPFed continues train-
ing until the privacy budget boundary is reached. LiPFed has
obvious advantages in time overhead on user side. It outperforms
Partially-HE which needs complex homomorphic operations on
user side. Compared with VerifyNet and PSA, LiPFed still has
less computation time on user side. Time overhead on aggrega-
tion side is comparable to other methods. With the scale of users
getting larger, LiPFed has a small increase in total time cost, but
the total time overhead of Partially-HE, DPFed, VerifyNet, and
PSA increases significantly in large-scale scenarios

Summary: Through extensive experimental results on the per-
formance of the LiPFed and the comparison with other privacy
preserving methods, we can claim that LiPFed shows superiority
over the existing schemes in terms of privacy protection against
membership inference attacks, model accuracy, and especially
training overhead on the user side.

VII. RELATED WORK

Attacks on membership privacy and defense have attracted
increasing research attention in recent years. In this section, we
briefly review the existing attacks and defenses.

A. Attacks on Membership Privacy in FL

Membership inference stands as one of the most severe secu-
rity threats in FL today. Based on the attacker’s knowledge and
access to the target model, membership inference attacks can
be classified into two types: white-box attacks and black-box
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attacks. Nasr et al. [5] first introduce white-box membership
inference attacks, where attackers have complete access to the
structure and parameters of the FL model. This level of access
allows attackers to compute gradients of the objective function
with respect to the information source input. They can analyze
model outputs, weights, and other information to determine
whether a specific training sample is included in the model.
Leino and Fredriksonden et al. [6] point out that the capabilities
of attackers proposed in [5] are too strong and deviate from
realistic scenarios. Therefore, in [6], attackers are assumed to
know a significant portion of the target model’s private training
dataset and possess a shadow dataset about the private training
data.

Shokri et al. [7] conduct membership inference attacks in a
black-box environment, where attackers can only observe the
input and output of the target model without accessing its internal
details or gradients. Attackers infer whether the model contains
a specific training sample by observing the model’s outputs and
other publicly available information, such as prediction results.
Shokri et al. initially focus on attacks against binary classifiers.
Ye et al. [8] provide interpretability to membership inference
attacks. Liu et al. [9] judge member and non-member data by
evaluating the sensitivity of different data to the target model.

The aggregation of local models reduces the contribution of
individual user’s local model. To enhance the inference of user’s
membership privacy in FL, the aggregator launches isolating
attacks [5] by individually sending carefully crafted fake models
to victim users. This approach allows attackers to gain more
information about local models, increasing the success rate of
membership inference attacks in FL.

B. Privacy Preserving FL

To defend against privacy attacks in FL, various privacy
preserving methods have been proposed. Differential Privacy-
based FL protects sensitive information by introducing per-
turbations to the model, offering lightweight computation but
potentially impacting convergence and availability of global
model. Centralized differential privacy [12] involves the ag-
gregator adding noise to local models, while local differential
privacy methods [13], [14] have users add noise to their own
local models. Hybrid differential privacy [15], [29] integrates
local and centralized differential privacy, wherein the role of
adding perturbations to local models is chosen based on the cred-
ibility from users to the aggregator. Homomorphic Encryption
(HE)-based FL [16], [17], [18], [19], [30] allows computations
on encrypted models or parameters without decryption, but
incurs substantial computational and communication overhead.
Efficient algorithms and hardware support are crucial to maintain
performance. Commonly used secret sharing schemes (SSS)
include Shamir Secret Sharing and Additive Secret Sharing.
Shamir Secret Sharing-based FL [10], [11] utilizes non-linear
mapping for model reconstruction. Model parameters are par-
titioned into multiple shares and distributed to other users. The
original local model can only be reconstructed when a sufficient
number of shares are collected. Additive Secret Sharing-based
FL involves linear mapping for model reconstruction. For exam-
ple, ABY [26] supports two-party secure computation. Trusted

Execution Environment (TEE) [31], [32] provides a hardware-
level protected execution environment for FL. It safeguards
the privacy of local model training and parameter aggregation,
ensuring that the code and data running within it are highly
isolated and protected.

VIII. CONCLUSION

In this article, we proposed LiPFed, a computationally
lightweight privacy preserving FL scheme by secure decentral-
ized aggregation. LiPFed introduced consortium blockchain to
decentralize the authority of a central server to multiple edge
nodes. It designed and employed an additive secret sharing
algorithm to protect the privacy of both local and global mod-
els throughout the FL process. Security analysis theoretically
proved the security of this approach. Extensive experiments
demonstrated that LiPFed can ensure model’s accuracy, protect
data sufficiently, and improve efficiency significantly.

In our future works, we plan to extend our work in two aspects.
First, we will reduce communication overhead between users
and edge nodes. Second, we will enhance the robustness to
defend against malicious participants.
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