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Abstract— Deep neural networks (DNNs) have been
increasingly used in face recognition (FR) systems. Recent
studies, however, show that DNNs are vulnerable to adversarial
examples, which potentially mislead DNN-based FR systems in
the physical world. Existing attacks either generate perturbations
working merely in the digital world, or rely on customized
equipment to generate perturbations that are not robust in the
ever-changing physical environment. In this paper, we propose
FaceAdv, a physical-world attack that crafts adversarial stickers
to deceive FR systems. It mainly consists of a sticker generator
and a convertor, where the former can craft several stickers
with different shapes while the latter aims to digitally attach
stickers to human faces and provide feedback to the generator to
improve the effectiveness. We conduct extensive experiments to
evaluate the effectiveness of FaceAdv on attacking three typical
FR systems (i.e., ArcFace, CosFace and FaceNet). The results
show that compared with a state-of-the-art attack, FaceAdv
can significantly improve the success rates of both dodging
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and impersonating attacks. We also conduct comprehensive
evaluations to demonstrate the robustness of FaceAdv.

Index Terms— Adversarial examples, face recognition systems,
adversarial stickers.

I. INTRODUCTION

FACE recognition (FR) systems based on state-of-the-art
deep neural networks (DNNs) have been widely used

as a prominent biometric technique for authentication and
identification in many application scenarios, such as payment
authorization [36] and entry/exit management [34]. Compared
with other approaches of recognition (e.g., passwords, smart
cards, voiceprint, and fingerprints), facial characteristics of an
individual are relatively more difficult to be stolen, forgotten,
or replicated [41], and the recognition process can be carried
out without any physical contact.

DNN-based FR systems, however, have been proved to be
vulnerable to adversarial examples [6], which are derived from
composing original images with perturbations, resulting in
an incorrect output of FR systems. Adversarial attacks can
be divided into two categories: digital-world attacks, where
the attacker can feed manipulated digital images directly
into DNNs, and physical-world attacks, where DNNs only
accept inputs from a camera and the attacker can only present
adversarial images to the camera. Despite the fact that digital-
world attacks can achieve high performance, they cannot be
successfully transferred to the physical world because of the
dynamic physical conditions (e.g., different viewing angles and
distances) [28].

The desired properties of physical-world attacks are effec-
tiveness, robustness and easiness. Physical attacks aim at
successfully cheating target FR systems and resisting to the
variation of environmental conditions. The easiness means that
the attacks should be easily launched without using customized
equipment to generate perturbations in the physical world.
Recent studies are devoted to designing practical attacks in the
physical world [11], [26], [28], [43]. Based on the difference
in image-forming principles between cameras and human eyes,
some approaches [28], [43] can be used to avoid perturbations
being observed. Perturbations are projected by specialized
devices on faces (e.g., a cap with LEDs [43] or a projec-
tor [28]), which require considerable resources. Perturbations
projected by LEDs can be easily filtered with infrared cut-off
lens, making these attacks lose effectiveness. There are several
approaches that paste adversarial stickers to the eyeglasses [26]
or the cheek [11] and achieve a higher success rate. However,
the generated adversarial examples are not robust enough, e.g.
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their performance degrades significantly when the attackers do
not look directly at the camera.

Inspired by the attack utilizing adversarial stickers to target
at DNN-based recognition systems (e.g. traffic signs [6]) in
physical scenarios, we utilize stickers pasted on human faces
to attack FR systems. The sticker-based attacks are inher-
ently easy to launch, as they do not require any specialized
devices. We believe that although stickers are noticeable to
human eyes, the sticker-based attacks can still take effect in
unattended scenarios, such as unlocking a mobile phone or a
car [33].

It is challenging to design effective and robust sticker-based
attacks in the physical world. First, as an attacker needs to
paste one or multiple stickers on the faces to perform attacks,
it is of great importance to determine the critical regions where
these stickers can be attached, which is referred to as sticker
localization [13]. Adversarial examples placed only on the
nose fail to attack FR systems [22]. To make the digitally
designed stickers maintain effectiveness in the physical world,
the perturbed face images taken by cameras in FR systems
should be efficiently and accurately simulated. Second, in the
physical world, it is usually difficult to paste stickers exactly
on the same position as designed, and environmental condi-
tions (e.g., user-camera distance, brightness, and head poses)
always change, resulting in a severe impact on the performance
of attacks, which is referred to as perturbation loss [28], [38].

In this paper, we propose FaceAdv, a novel method to realize
effective, robust and easy physical-world attacks. FaceAdv
designs a specific generator to craft adversarial stickers that are
attached to regions chosen by the sticker localization. For the
easiness of FaceAdv, the sticker localization algorithm limits
the number and shape of stickers to reduce the preparation
time and avoid other facial organs (e.g. eyes) being covered
by the sticker corners.

For tackling the first challenge, we analyze the importance
of different regions of human faces and choose five candidate
positions (i.e., two superciliary arches, the nasal bone and
two nasolabial sulcus) to attach adversarial stickers. Hence,
FaceAdv will generate several stickers at a time and place
them on the chosen regions of human faces, which can
reduce the area of each crafted sticker while keeping the
effectiveness. When training the generator, the face images
with these stickers will be fed into the target FR system to
check whether they successfully cheat or not. Inspired by the
R-Net [5] to build accurate 3D face shape from a single image,
we propose a new convertor in FaceAdv to digitally paste
crafted adversarial stickers on human faces.

To deal with the second challenge, FaceAdv adopts three
measures: 1) drawing samples (i.e. face images) from a distri-
bution that models physical dynamics (e.g., varying distance,
angles and ambient brightness), 2) rotating, scaling and trans-
lating stickers in the convertor to simulate errors when pasting
them on real faces in the physical world, and 3) smoothing
stickers with the total variation loss to minimize differences
between adjacent pixels in stickers.

Extensive experiments are conducted to evaluate the perfor-
mance of FaceAdv. The well-known face dataset LFW [10]
along with a participant dataset VolFace are utilized to

Fig. 1. The typical workflow of FR systems.

investigate the success rate of FaceAdv and a state-of-the-art
method AGNs [27] on three typical FR systems (i.e., Arc-
Face [4], CosFace [35], and FaceNet [23]). The results show
that both methods could achieve high success rate in digital
scenarios. In physical scenarios, FaceAdv can significantly
improve the success rate by a round 50% over AGNs, for both
the dodging attacks and impersonating attacks. The robustness
of FaceAdv is also confirmed as its success rate is kept at a
high level when environmental conditions change.

We summarize the main contributions as follows:
• We propose FaceAdv to craft several adversarial stickers

with different shapes at a time. These stickers are flexibly
attached to special positions (e.g., the nasal bone and the
nasolabial sulcus) of human faces.

• We design a convertor to generate facial images with
adversarial stickers while training the generator for sim-
ulating the capture of human faces with stickers attached
in the physical world.

• We analyze three state-of-the-art FR systems (i.e. Arc-
Face, CosFace, and FaceNet) to find critical regions
of human faces and conduct extensive experiments to
demonstrate the effectiveness, robustness and transfer-
ability of the stickers in both the digital and physical
scenarios.

This study was approved by the Institutional Review
Board (IRB) of our university, and all the participants
were provided written informed consent. We summarize the
typical workflow of FR systems and existing attack algo-
rithms in Section II before describing the threat model
in Section III. After that, we introduce the overview of
FaceAdv in Section IV and describe the design details in
Section V. Next, we evaluate its effectiveness and robustness in
Section VI. Finally, we make brief discussions in Section VII
and conclude this paper in Section VIII.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce the typical workflow of
FR systems based on DNNs and describe the state-of-the-art
DNNs. Then, we summarize the recent achievements in the
digital- and physical-world attacks on FR systems.

A. Background of FR Systems

We introduce the typical workflow of FR systems as illus-
trated in Fig. 1. It generally consists of three steps: face
detection, feature extraction, and classification [7].

1) Face Detection: The camera embedded in an FR system
takes images of one’s face, which are then used to localize
the facial region. The purpose of this step is to determine
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TABLE I

SUMMARY OF TYPICAL ATTACKS ON FR SYSTEMS (FD FOR FEATURE DETECTION, FE FOR FEATURE EXTRACTION AND CF FOR CLASSIFICATION)

whether human faces exist in the image or not. When faces
are detected, systems pre-process each face in the image to
create the normalized and fixed-size input to the following
DNNs for feature extraction. Since MTCNN [40] produces
real-time and high-precision face detection results, we use it
as the face detector in this paper.

2) Feature Extraction: It plays an important role in FR
systems, which uses CNNs as the face embedding model to
craft embedding vectors [29], [32]. The input is the fixed-
size, frontalized face image and the output is the feature
vector that describes the prominent features of the face image.
Several state-of-the-art CNNs have been proposed for feature
extraction:

• FaceNet [23], which directly learns a mapping from face
images to a compact Euclidean space where the distance
is a measure of face similarity.

• CosFace [35], which uses large margin cosine loss to
maximize inter-class variance (i.e. the cosine distance
variance of different persons) and minimize intra-class
variance (i.e. the cosine distance variance of embedding
vectors of the same person) in the angular space.

• ArcFace [4], which borrows the idea of CosFace and
introduces an additive angular margin loss to obtain
highly discriminative features for FR systems.

3) Classification: A low-dimensional representation created
by the feature extractor can be efficiently used for clas-
sification. Based on application scenarios of FR systems,
this step can be divided into the binary classification (i.e.,
authentication) and the multi-class classification [14]. Several
classifiers are applied for either the binary classification, such
as SVM [7], or the multi-class classification, such as Multi-
Layer Perceptrons (MLPs) and K-Means.

B. Summary of Attacks on FR Systems

With the wide adoption of FR systems in various scenarios,
their security and safety have attracted increasing research
interests. Existing attacks on FR systems can be roughly clas-
sified into two categories: the digital attacks, which generate
imperceptible perturbations added on digital face images, and
the physical attacks, which design effective perturbations to
mislead FR systems in the physical world.

Existing typical attacks on FR systems are summarized
in Table I, which target at the different stages of an FR system.

An adversary targeting at the face detector aims to mislead
the face detector to avoid face locating. Attacks on feature
extractors can reduce the distance of low-dimensional vectors
of two images from different persons or enlarge the distance
of two images from the same person. The rest of the attacks
can also cheat classifiers to make incorrect decisions.

1) Digital Attacks: These methods directly manipulate the
pixel values of face images and feed the modified images into
FR systems. Besides the effectiveness, the imperceptibility of
pixel-level perturbations is also critical. Thus, these algorithms
always constrain the magnitude of perturbations to ensure the
perturbed images visually similar to the original images.

As illustrated in Table I, there are some approaches to craft
digital adversarial examples for the face detector [1], [39],
the feature extractor [3], [37] and the classifier [3], [7].

In most cases, however, an adversary cannot directly manip-
ulate the input images to FR systems [30], making these
attacks unapplicable in the physical world.

2) Physical Attacks: Due to spatial constraints (e.g., varying
ambient brightness and face posture), fabrication errors and
resolution changes, perturbations working well in the digital
world will lose effectiveness. Recent studies focus on design-
ing physical attacks to generate robust perturbations that can
survive in the physical world.

In order to achieve effectiveness and imperceptibility
simultaneously, several attacks utilize the difference in
image-forming principles between cameras and human eyes.
Zhou et al. [43] deceived the feature extractor by illuminating
the subject using infrared, as infrared-based perturbations are
invisible to human eyes but can be captured by cameras.
However, these perturbations are easily filtered out by infrared
cut-off filters that are commonly equipped in solid state
cameras (e.g., CMOS). Shen et al. [28] proposed VLA, which
leverages visible light to generate a perturbation frame and a
concealing frame that are alternately projected on human faces.
Its imperceptibility relies on a phenomenon called Persistence
of Vision: if the two frames change faster than 25Hz, human
brain will mix them together and thus cannot observe pertur-
bations. However, it requires certain kinds of equipment and
cannot be easily conducted in real-world scenarios.

Several studies pay much attention to improving the con-
venience and effectiveness of adversarial perturbations rather
than keeping their imperceptibility. Kaziakhmedov et al. [11]
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proposed different face attributes printed by an ordinary white
and black printer and attached them to either the medical face
mask or the real face to attack the MTCNN face detector.
Komkov et al. [13] elaborately designed an adversarial sticker
attached on the hat to cheat ArcFace the feature extrac-
tor. Unlike the two methods above, Sharif et al. [26], [27]
presented white-box attacks to generate adversarial stickers
attached on the eyeglasses to cheat the feature extractor and the
MLP classifier. They tried their best to make these adversarial
stickers inconspicuous, other than imperceptible, to human
eyes. However, colorful frames of eyeglasses still look unusual
because frames are generally in solid color in daily life.

FaceAdv proposed in this paper aims at generating effective
and robust adversarial stickers to cheat the feature extractors
and the MLP classifiers. To mitigate the perturbation loss,
FaceAdv applies several stickers (i.e., three in our implemen-
tation) attached on critical regions of human faces to attack
FR systems in dodging and impersonating attacks. FaceAdv
introduces a series of transformations to simulate the digital-
to-physical transformation process so as to resist the varia-
tion of environmental conditions (especially the head pose).
To make the stickers relatively normal, FaceAdv provides the
stickers with different shapes and the area of the stickers is
smaller than that of the ones crafted by Komkov et al. [13].

III. THREAT MODEL

In this section, we describe the threat model and design
goals of FaceAdv.

A. White/Black-Box Assumption

There are two typical scenarios for adversarial attacks:
white-box scenarios and black-box scenarios.

In white-box scenarios [26], [27], the adversary has full
knowledge of the target FR system, including the dimension of
input, the architecture and parameters of the feature extractor
and the MLP classifier. The adversary can analyze the vulnera-
bility of the operating system that FR systems are deployed in.
Further, the adversary hijacks these systems to obtain desired
models.

Black-box scenarios assume that the adversary has no access
to the target FR system. He can train a local substitute model
as the attacked model [20]. Then, adversarial examples can
be generated by attacking the substitute model to deceive the
target FR system.

We also assume the FR system accessed by the adversary is
already well trained so that the adversary cannot manipulate
the training process of the system. Thus, the poisoning attack,
which requires injecting adversarial images in the training set
of FR systems, is beyond our consideration in this paper.

We select three state-of-the-art FR systems with different
feature extractors as the target models, i.e., FaceNet [23],
CosFace [35], and ArcFace [4], as described in Section II-A.

B. Attack Goals

The goal of the adversary is to trick FR systems to mis-
classify the adversarial input. Given an FR system Fθ (·) with
parameters θ containing the feature extractor and the classifier,

Fig. 2. The physical-world attacks on FR systems using adversarial stickers
crafted by FaceAdv.

and an input facial image x with its ground truth label y
(e.g., identity), an ideal FR system can label x as y, which
is defined as Fθ (x) = y. However, the adversarial image can
cause the system to make an incorrect prediction. In this paper,
we consider two types of attacks.

1) Dodging Attacks: The adversary aims at crafting the
adversarial image x∗ = x + �x with the perturbation �x to
mislead the classification result, which can be expressed by
Fθ (x∗) �= y. For instance, the adversary can be a terrorist who
needs to bypass an FR system for biometric security checking.

2) Impersonating Attacks: The adversary attempts to mis-
lead the FR system by classifying the perturbed image x∗ =
x + �x as a target label y∗, i.e., Fθ (x∗) = y∗. In real-world
applications, y∗ can be a legitimate individual with a certain
authority. Such an attack enables the adversary to illegally
unblock authentication.

In this paper, our primary goal is to generate adversarial
examples on the effectiveness to deceive the state-of-the-art
FR systems rather than on the inconspicuousness of adver-
sarial examples. The latter might not be necessary in certain
unattended scenarios, such as unlocking a mobile phone or
a car [33], the face scan payment in unattended convenience
stores [17], and the access control of smart buildings [19].

IV. OVERVIEW OF FACEADV

In this section, we first describe the overview of FaceAdv
followed by a case study to show the adversarial examples
against the target FR systems.

When designing FaceAdv, we desire that it will be
launched easily in the physical world (i.e., easiness). There-
fore, we resort to adversarial stickers that can be simply stuck
onto human faces, which requires no special devices such as
the LEDs or projectors [28], [43]. Considering the perturbation
loss from the digital to the physical world, it is a challenging
task to make the sticker-based adversarial examples effective
and robust in varying environmental conditions.

The workflow of FaceAdv is illustrated in Fig. 2. The
adversary takes several photos of his own face in different
environmental conditions (e.g., user-camera distance, bright-
ness and head pose) and chooses the desired locations and
shapes of the stickers to train the generator. During this
training, the convertor generates facial images with stickers
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TABLE II

SAMPLES OF DODGING AND IMPERSONATING ATTACKS

to simulate the capture of human faces with stickers attached
in the physical world. Then, the adversary utilizes the trained
generator to craft adversarial stickers (including shapes, sizes
and positions) and prints these stickers on paper. Finally,
the adversary attaches the printed stickers to his own face and
launches an attack in front of the camera.

To achieve higher effectiveness, FaceAdv can craft several
stickers pasted on different regions of a human face. In general,
the more stickers pasted on a face, the higher success rate
FaceAdv has. In an extreme case, the entire face is covered
by crafted stickers, which looks like that the attacker wears
a mask. However, the face liveness detection in FR systems
can discover mask-based attacks [12]. Thus, we should limit
the area of stickers to pass the face liveness detection and to
increase the inconspicuousness of the attack.

Next, we give an example to launch dodging and imperson-
ating attacks on target FR systems using adversarial stickers
crafted by FaceAdv, as illustrated in Table II. In dodging
attacks, the victim is another person other than the attacker.
However, in impersonating attacks, stickers can ensure the
recognition result is the targeted victim (e.g., Keanu Reeves
in the 3rd column of Table II) other than the attacker.

V. DETAILS OF FACEADV

In this section, we introduce design details of FaceAdv,
including training the perturbation generator and digitally
attaching stickers to human faces.

A. FaceAdv Architecture

As mentioned above, stickers crafted by FaceAdv should
be pasted on human faces, which raises three challenging
problems. 1) Since traditional stickers are usually in the form
of rectangles and squares [13], [22], the four corners of a
sticker may cover facial organs when it is attached to specific
locations (e.g., the nasal bone). 2) It is crucial to determine the
positions where these stickers can be pasted. Pautov et al. [22]
place crafted adversarial stickers onto difference positions
of the human face (i.e., eyeglasses, forehead and nose) to
attack the FR system and find the positions of stickers have a
dramatic influence on the effectiveness. 3) How to efficiently
and accurately obtain the camera-perceived face images when
stickers are pasted on real human faces.

In this paper, we design a FaceAdv architecture to craft
adversarial stickers, which is composed of a sticker generator
G and a convertor C to separately tackle the first challenge

and the other two challenges mentioned above. The aim of the
generator is to craft stickers, while the convertor is utilized to
digitally paste stickers to human faces for imitation. The face
image with stickers is fed into the target FR system to find
the optimization direction during the training phase.

For the sake of easiness, FaceAdv limits the number and
shape of stickers to shorten the preparation time for an attack
and to avoid other facial organs (e.g., eyes) being covered by
the four corners of stickers. The sticker generator can generate
adversarial stickers and shapes with four corners cut off by
GANs. GANs, which casts generative modeling as the two-
player game between a pair of generator G and discriminator
D, are a powerful class of generative models. It generally
takes a lot of time to train the generator in the two-player
game. To address this issue, we divide the generator into a
sticker component and a shape component, where the former is
applied to craft the content of stickers while the latter generates
the shape of stickers. Further, we can use the shape datasets
to pre-train the sticker component and load the pre-trained
parameters to reduce the training time. The two components
share the parameters of the two previous layers, which further
lowers the computational complexity on the side of the user.

FaceAdv utilizes crafted shapes to tailor the stickers fabri-
cated by the generator and the convertor to digitally attach
them to the face images that are fed into the FR system.
Then the generator updates the parameters according to the
recognition results. In the next subsections, we will describe
the sticker generator and the convertor.

B. Sticker Generator

Inspired by producing adversarial stickers placed on eye-
glasses to cheat FR systems in the real world [27], we intro-
duce GANs to generate stickers. The difference lies in that we
resort to GANs to constrain the shape, rather than the con-
tent, of adversarial stickers. Since adversarial stickers crafted
by previous approaches are always square or rectangular
[13], [22], different shapes of stickers will probably reduce
the total size that, in turn, is harder to detect. In this work,
we employ GANs to craft adversarial stickers with different
shapes in Fig. 3. The notations used in the rest of this paper
are summarized in Table III.

Unlike traditional GANs, there are three networks in
FaceAdv. The generator consists of three branches, each of
which is utilized to generate a shape mask and an adversarial
sticker. The shape mask is a binary image that only has two
colors (black and white), which is used to tailor the original
square stickers so that the shape of the cropped stickers is the
same as that in the training datasets (specifically, the shape
template). The goal of the discriminator is to distinguish the
shapes crafted by the generator for constraining that the crafted
shapes are all in the training datasets. There is another network
(i.e., the target FR system F ) to obtain the recognition results,
whose parameters are frozen in the process of training the
generator and the discriminator. The aim of the target FR
system is to inform the generator of the effectiveness of the
crafted stickers so that it can adjust the optimization direction
in time during the training process.
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Fig. 3. The FaceAdv architecture. The generator is divided into three branches for crafting three stickers, and the discriminator is utilized to judge whether
the input shape is created by the generator or not. The stickers are fabricated by tailoring the original square rectangular according to the crafted shapes.
Then, the tailored stickers are digitally applied to human faces using the original images and auxiliary information, which are finally fed into the FR system
to obtain the recognition result.

TABLE III

NOTATIONS USED IN THIS PAPER

FaceAdv can generate multiple stickers at a time. The
number of stickers is the same as that of the branches in Fig. 3.
Based on our preliminary experiments, we set the number of
stickers as 3 (i.e., Branch 1 to 3) by default, because it can
achieve a better balance between effectiveness and easiness.
It is flexible to adjust the number of adversarial stickers in
FaceAdv: we can add (or remove) branches to (or from)
the generator and the discriminator and then alter the sticker
positions of the convertor.

Since FaceAdv tailors some parts of square stickers to form
stickers with different shapes, it is important to design a
reasonable mechanism to assure the cut part cannot largely
damage the effectiveness of stickers. In Fig. 3, the gradients
from the discriminator can place restrictions on the shapes of
stickers. Besides, the gradients from the target FR system are
applied to change the parameters of the generator containing
parts for crafting shapes and stickers. Apparently, the gradients
flowing into the part of creating stickers can alter the content

of stickers, and the gradients flowing into that of producing
shapes can also change the shapes of stickers. In this way,
if FaceAdv tailors some important regions, Ladv that indicates
the effectiveness of adversarial stickers will be larger and the
generator will realize this problem and update the parameters.

To improve the robustness of crafted stickers, when training
the generator, the face images are composed of multiple
images captured in different conditions so that stickers can
work in physical scenarios.

There Are Two Loss Functions: LG AN and Ladv , where
LG AN is utilized to train the shape branch of the generator
and the discriminator, and Ladv is applied to optimize the
sticker branch of the generator. They will be further discussed
in Section V-D.

There is another key part of FaceAdv to be elaborated: the
convertor, which connects the generator and the target FR
system. As mentioned previously, FaceAdv applies 3D face
shapes to digitally paste adversarial stickers to human faces
and the process of attaching stickers should be differentiable so
that the gradients from the target FR system can smoothly flow
into the generator. The auxiliary data is used in the convertor,
which includes the 3D face shape and the parameters of
illumination models as described in the next subsection.

C. Digital Transformation of Physical Sticker

As described above, the convertor digitally attaches adver-
sarial stickers to the critical regions of face images. In this
subsection, we will elaborate on the design of the convertor.

1) Sticker Localization: The locations of stickers on real
faces can largely affect the attack effectiveness. A natural idea
is to place the stickers on the positions where the target FR
system extracts discriminative features of human faces.

To investigate regions of human faces where each target FR
system extracts features, we leverage Guided Grad-CAM [24]
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TABLE IV

THE LOCALIZATION MAPS CRAFTED BY GUIDED GRAD-CAM

to analyze effective regions of the three FR systems, as illus-
trated in Table IV. The Guided Grad-CAM uses the gradient
information flowing into the last convolutional layer of the
feature extractor to analyze the importance of each region in
the image for a decision of interest.

The localization maps of four individuals1 in Table IV show
that these FR systems invariably focus on regions near to the
facial organs (e.g., eyes, nose, and mouth) to make a decision.
In ArcFace, the regions to extract features are not always near
to facial organs (e.g., temples of Schwarzenegger in Table IV).
CosFace and FaceNet extract valuable features near to the
nasolabial sulcus.

Due to the face liveness detection and the convenience of
tailoring adversarial stickers, it is important to balance the
number of stickers and the area of each sticker. When fixing
the total area of perturbed regions on human faces, if the num-
ber of stickers is larger, the area of each sticker will be smaller,
but the time to tailor stickers will be longer. We choose three
adversarial stickers to achieve a better balance.

The stickers crafted by FaceAdv cannot directly cover facial
organs, so FaceAdv tends to attach the stickers in regions near
to facial organs. Based on the observations above, we select
five regions (i.e., two superciliary arches, two nasolabial
sulcus, and the nasal bone) as the candidate regions for pasting
adversarial stickers generated by FaceAdv, as marked by the
blue circles in the last column of Table IV. Existing studies
have also shown the effectiveness of adversarial stickers pasted
on these regions, e.g., two superciliary arches are selected
by [13], [27] and the nasal bone is chosen by [22]. We will
describe the selection of the final regions to attach stickers for
each target FR system in Section VI-B.

2) Attaching Stickers: When training the generator, para-
meters will be updated according to the recognition results
of human faces with created stickers. Hence, the perturbed

1They are Arnold Schwarzenegger, George W Bush, Roh Moo-hyun and
Vladimir Putin.

Fig. 4. The implementation of the convertor C. It utilizes R-Net to generate
auxiliary information and applies the workflow of rendering texture images
to digitally paste adversarial stickers to human faces.

face images taken by cameras in the real world should be
effectively and accurately simulated.

Recent studies, which exploit stickers to deceive FR sys-
tems, proposed algorithms to digitally paste these stickers
to human faces or facial accessories, which simulates the
appearance of human faces with stickers in the real world [13],
[22], [27]. However, these algorithms have apparent limita-
tions: they can neither handle the situation where the attacker
does not face directly [22], [27], nor digitally attach different
shapes of stickers to human faces [13]. The stickers crafted
by FaceAdv have various shapes so that we have to design a
new method to attach stickers to faces digitally.

We employ the 3D face reconstruction method [5] to
estimate 3D face shapes, illumination model as well as the
camera model, as illustrated in Fig. 4(a), and leverage the
resulting face shapes to digitally attach adversarial stickers to
human faces. After getting these information, the differentiable
renderer can render the texture image according to the 3D face
shape while fusing the reckoned ambient brightness.

Motivated by the remarkable performance of R-Net [5],
we propose a new method named rendering stickers only
(RSO) to render the texture image with only stickers. The
proposed RSO method in Fig. 4(b) replaces the texture image
with the location image of stickers that indicates locations
to place these stickers. The conversion from texture image
to location image follows this rule: the pixel value in the
regions of the original texture image is set to 0 while that in
the regions for pasting stickers is equal to 255. After putting
these stickers on the chosen positions, the renderer can craft
an image containing the stickers only, and the resulting image
can cover the original face image to produce the face image
with stickers.
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The rendered face image created by RSO retains many
realistic details and thereby is more similar to the original face
image. FaceAdv adopts RSO to digitally attach adversarial
stickers to human faces in the convertor. To reduce time con-
sumption, FaceAdv generates the 3D face shape, the location
image of stickers and the parameters of the illumination model
using the R-Net in advance. The convertor gains the auxiliary
information from the input when training the generator.

D. Loss Functions

Having the architecture of FaceAdv, in this subsection,
we will design loss functions for the two attack modes
(i.e. dodging attacks and impersonating attacks) and formally
describe the training algorithm.

Although the GAN has achieved appealing results in the
image generation, training GANs stably is still a challenging
problem. To alleviate this problem, we resort to the Wasser-
stein GAN with gradient penalty (WGAN-GP) [8]. Essentially,
the goal of GANs is to transform the distribution of a random
noise n into the distribution of the input data (i.e. the shape
image in this paper). WGAN-GP utilizes the discriminator to
calculate the Wasserstein distance between the shapes crafted
by the generator and the shape templates, which is denoted
by LG AN in Fig. 3. LG AN can be logically decomposed as
LD(n, s) and Ls

G(n), which can be used to train the generator
for crafting different shapes.

The discriminator aims to distinguish between crafted
shapes and shape templates. When feeding a shape into the
discriminator, it will output a number: the smaller number is
more likely to be judged as a crafted shape; otherwise, it is
recognized as a shape template. Thus, the objective of the
discriminator is minimizing LD .

LD(n, s) = En∼Pn(D(G(n)))

−Es∼Ps (D(s))

+λEŝ∼Pŝ
[(‖ �ŝ D(ŝ)‖2 − 1)2] (1)

where Pn and Ps are the distribution of the noise n (i.e. the
normal distribution) and the distribution of the shape template
s, respectively. The last term of Eq. (1) is the gradient penalty,
which makes training more stable. Pŝ is sampling uniformly
between pairs of images sampled from the shape template
distribution Ps and the crafted shape distribution PG(n), which
can be formulated as:

ŝ = εs + (1 − ε)G(n) (2)

where s ∼ P(s), G(n) ∼ PG(n) and ε ∼ U [0, 1].
The goal of the generator is to mislead the discriminator

by labeling crafted shapes as shape templates, which can be
expressed in Eq. (3).

Ls
G(n) = −En∼Pn (D(G(n))) (3)

Next, we focus on the loss function Ladv , which repre-
sents either the opposite of the distance between predicted
and ground-truth classes in dodging attacks, or the distance
between predicted and target classes in impersonating attacks.
In black-box scenarios, transferability is a desirable prop-
erty for adversarial examples, which means that adversarial

examples generated for a certain FR system can fool the
other FR systems with different architectures. To improve the
transferability, we use the ensemble of source FR systems to
train the sticker generator [18].

In dodging attacks, the attacker PA aims to deceive the
FR system by misclassifying himself as another person
PB (PA �= PB). Thus, FaceAdv should reduce the probability
of class PA and make it less than the probability of another
class,

Ladv (x A, n,A, PA) = − 1

m

∑
i

Fi (C(x A,G(n),A), PA) (4)

where Fi (·, ·) represents the cross entropy that is commonly
used in image classification [27], m is the number of elements
in the ensemble of source FR systems and A is the auxiliary
data for the convertor. In particular, m is set to 1 in white-box
scenarios. By minimizing Eq. (4), the output of the cross-
entropy function will increase so that the probability of the
class PA can be reduced.

In impersonating attacks, we expect that FR recognizes the
identity of the attacker PA as the target class PB , which can
be formulated by Eq. (5).

Ladv(x A, n,A, PB ) = 1

m

∑
i

Fi (C(x A,G(n),A), PB ) (5)

The color change of neighboring positions in adversarial
stickers will affect the perturbation loss. These images cap-
tured by cameras in the real world comprise smooth and
consistent patches, where colors change gradually [26]. Due
to this phenomenon, extreme difference between adjacent
pixels in adversarial stickers cannot be accurately captured
by cameras. Consequently, we use the total variation loss to
smooth these stickers, which can be defined in Eq. (6),

Ltv (n) =
∑
i, j

(
(G(n)i, j − G(n)i, j+1)

2

+(G(n)i, j − G(n)i+1, j )
2) 1

2 (6)

where G(n)i, j is the pixel in G(n) at coordinates (i, j).
In practice, printers used for printing adversarial stickers

may only contain a subset of the [0, 1]3 RGB color space
(i.e., the color gamut P ⊂ [0, 1]3). Thus, we employ the non-
printability score (NPS) [26] to constrain the color of stickers
in the color gamut. The NPS Lnps is defined in Eq. (7),

Lnps(n) =
∑

p̂∈G(n)

⎡
⎣∏

p∈P

∣∣ p̂−p
∣∣
⎤
⎦ (7)

where p̂ is the pixel in G(n). If p̂ belongs to P , or is quite
close to a certain p ∈ P , Lnps will be minimized.

Since the generator aims to craft stickers with different
shapes to cheat the FR system, the entire loss of the generator
is defined in Eq. (8),

LG = Ls
G + αLadv + βLtv + γLnps (8)

where α, β and γ are weights that control the relative
importance of each objective. When α is large, the shape of
the crafted stickers will be uncontrollable and is difficult to be
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cut out in the real world. A larger β or γ means the color in
the generated stickers tends to be the same (i.e., printable).

VI. PERFORMANCE EVALUATION

In this section, we comprehensively evaluate the perfor-
mance of the proposed FaceAdv against three state-of-the-
art FR systems. We are dedicated to answering the following
questions: 1) How does FaceAdv generate appropriate stickers
for each target FR system? 2) Will FaceAdv outperform the
other methods when launching dodging attacks and imperson-
ating attacks? 3) How will potential influencing factors affect
the performance of FaceAdv? 4) Are the adversarial stickers
crafted by FaceAdv transferable in black-box scenarios?

A. Experimental Settings

1) Testbed: We select ArcFace [4], CosFace [35],
FaceNet [23] and VGGFace [21] as the state-of-the-art feature
extractors in FR systems. Given a specific feature extractor,
the corresponding MLP classifier of the target FR system
needs to be trained. We use a server with 32GB RAM, Nvidia
RTX 2070 GPU and AMD Ryzen 7 7200X CPU for all the
training tasks. The target FR systems are deployed on a PC
with 16GB RAM and Intel Core i7-9750H CPU. The camera
is Logitech C270 and captures images with 960 × 1280 in
pixels. The printer for making physical stickers is HP DeskJet
2677 and the printable colors consist of the same 30 colors
as Sharif et al. [26]. The light source is Philips 66135, which
can change the ambient light to 30lux, 130lux and 250lux,
accordingly.

The default values of the experimental parameters are set as
follows: user-camera distance of 50cm, sticker size of 90×90
in pixels, ambient brightness of 130lux, r = 5e−4, α = 100,
β = 1, γ = 10 and a head pose of facing directly forward.
All the experiments are conducted using the default settings
unless otherwise specified.

2) Baselines: The target stage of the two algorithms [13],
[22] in Table I is only the feature extractor, while that of
FaceAdv is the feature extractor and the classifier. Since the
target stage of FaceAdv is the same with AGNs [27], we
employ AGNs as the state-of-the-art physical-world attack
for comparison. Both FaceAdv and AGNs use sticker-like
perturbations and adopt the similar methodology (i.e., GANs)
in generating perturbations. According to the original paper,
the parameter κ is set to 0.25. AGNs is evaluated with
VGGFace and achieves the same performance as its original
paper [27] for both digital and physical attacks.

3) Datasets: The well-known face dataset LFW [10] is
a public benchmark for FR systems, which consists of
13, 233 images from 5, 749 individuals. For ArcFace [4],
CosFace [35], FaceNet [23] and VGGFace [21], their pre-
trained models are publicly available, achieving an accuracy
of 99.65%, 99.23%, 99.65%, 97.22% on LFW, respectively.
As mentioned above, we need to train an MLP classifier, which
follows a feature extractor to form a complete FR system.
However, we find that 4,069 labels in LFW only have a single
image and thus cannot be used to train the MLP classifier.
Therefore, we only select the labels with more than 10 images,

TABLE V

DETAILS OF DATASETS

Fig. 5. Sampled shapes in VShape.

which results in a subset LFW− containing 143 labels as the
victim dataset.

For launching physical-world attacks, there are 20 partici-
pants (including 12 males and 8 females) aged between 20 and
25 voluntarily participating in collecting the attacker dataset
VolFace, which contains 45 face images for each participant.
All the participants are Asian and wear no glasses or contact
lenses. Our study is approved by the university IRB and
we obtain written informed consent from all the participants.
Then, we randomly select 80% of the images of each person
in LFW− and VolFace to train the MLP classifier, and the rest
for testing the target FR systems. The accuracy of FR systems
is shown in Table V.

We also have a shape dataset VShape to train the generator
to fabricate different shapes, which contains five different
shapes (i.e., circle, square, pentagon, hexagon and heptagon).
This dataset consists of 15, 000 images and some samples in
VShape are illustrated in Fig. 5. There is a trick that there
should not be a big difference between the area of different
shapes in the shape dataset.

4) Performance Metrics: In real-world applications, it is
normal to record a video clip and extract several frames from
this clip at random to FR systems [27]. Consequently, for
each attack, we record a video of 25 seconds and randomly
select 135 frames on average to obtain the classification result
of the target FR systems. During face detection, only the
face with the maximal confidence in one frame is applied to
the recognition. For dodging attacks, the success rate is the
fraction of faces that are classified as a different person from
the attacker, and for impersonating attacks, it is defined as the
fraction of faces that are classified as the target person.

B. Evaluation of Sticker Settings

The settings of adversarial stickers (e.g., locations and sizes)
are critical to determine the performance of FaceAdv. Since
launching physical-world attacks are more time-consuming,
we resort to digital attacks in the following experiments:
the adversarial images are created by attaching stickers on
face images of the attackers in VolFace (i.e., 45 images for
each attacker) and then used to cheat the target FR systems.
Only the impersonate attack mode is involved as it is more
challenging than the dodging attack mode.
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Fig. 6. Success rates of different location combinations.

TABLE VI

SUCCESS RATES (%) WITH VARYING STICKER SIZES

1) Locations of Stickers: As mentioned in Section V-C.1,
we use Guided Grad-CAM to select five critical regions for
attaching adversarial stickers. Since FaceAdv can generate
three different stickers at a time, there are 10 combinations2 of
candidate positions to paste stickers. We randomly select five
attackers from VolFace and two victims from LFW−, and test
each combination in turn for each attacker-victim pair. Thus,
there are altogether 4,500 tests for each target FR system.
In these experiments, the sticker size is fixed to 90px × 90px.

The success rates of FaceAdv are summarized in Fig. 6.
In general, FaceNet is more vulnerable than the other two FR
systems. We also observe that the combination that achieves
the highest success rates varies a lot among different FR
systems. Based on the results, we opt combination #8 (i.e., left
superciliary arch, nasal bone, left nasolabial sulcus), #3 (i.e.,
right superciliary arch, left superciliary arch, left nasolabial
sulcus), and #1 (i.e., right superciliary arch, left superciliary
arch, nasal bone) as the best choices for attacking ArcFace,
CosFace and FaceNet, respectively.

This result can be explained by the localization maps
in Table IV. FaceNet always pays more attention to facial
organs (e.g., the eyes, the nose and the mouth) and ignores
the nasolabial sulcus, which is exactly the positions of com-
bination #1. In contrast, both ArcFace and CosFace obtain
information from the nasolabial sulcus. ArcFace tends to
extract face features from partial face regions, which reduces
the effectiveness of stickers. In the rest of the experiments,
we regard these position combinations as the default settings.

2) Size of Stickers: We investigate how the size of stickers
affects the performance of FaceAdv. Since the face size of
each person is not necessarily the same and faces of different

2We name these combinations from #1 to #10, which consists of taking three
from five candidate positions (i.e., right superciliary arch, left superciliary
arch, nasal bone, right nasolabial sulcus and left nasolabial sulcus) from left
to right in turn.

persons will be scaled to the same resolution in the sticker
template, we measure the sticker size by pixel (i.e., px). The
size of stickers in the final face images will vary with the head
pose, as illustrated in Fig. 4(b), and thus sticker size refers to
the size in the sticker template. We use the same attacker-
victim pairs as those in the locations of stickers in Fig. 6,
and consider three sizes: 80px × 80px, 90px × 90px and
100px×100px. For each target FR system, we totally conduct
1,350 tests.

In our implementation, the size of sticker templates is
600px×600px. Therefore, the total area of adversarial stickers
accounts for less than 10% that of sticker templates.

The results are shown in Table VI. In general, a larger
sticker helps to improve the success rate. In the physical world,
however, the length of nasal bone and the distance between
facial features limit the size of stickers. If the size of stickers
pasted on the nasal bone is too large, it will cover eyes and
cannot commendably handle the arc between the nasal bone
and the glabella, which will significantly degrade the easiness
of FaceAdv. Due to this limitation, we select 90px × 90px as
the default sticker size.

3) Time Efficiency: In order to reduce the training time of
the generator, we apply VShape to pre-train the generator
and the discriminator only through LG AN so that the shape
component of the generator can generate different shapes
before the generator is trained to attack FR systems.

With the fixed location and size of stickers, FaceAdv can
train the generator only once to generate adversarial stickers
for a specific FR system. In our tests, FaceAdv takes less
than 26 minutes on average to train the generator and less
than two seconds to craft adversarial stickers. When upgrading
GPU to Nvidia RTX 2080Ti, the corresponding time is reduced
to less than 20 minutes and less than one second, respectively.

C. Evaluation of Dodging and Impersonating Attacks

In Table II, we give several adversarial examples for dodg-
ing and impersonating attacks against the target FR systems.
In this subsection, we will conduct extensive experiments to
evaluate the effectiveness of FaceAdv.

The method AGNs utilizes 7 green marks to indicate the
location of eyeglasses, and it cannot work well when an
attacker does not look straight ahead, because the green marks
may be cut off by the face detector. To make a fair comparison,
we take another 45 face images for each participant who looks
straight ahead, and these images are only used to calculate
the success rate in the digital world. In the physical world,
the user-camera distance is 50cm, the ambient brightness is
130lux, and the head pose is straight ahead.

1) Dodging Attacks: We evaluate the success rates of dodg-
ing attacks with two methods in the digital and physical world,
as shown in Table VII.

In digital scenarios, we use FaceAdv or AGNs to generate
stickers and digitally attach them to the 45 face images of each
attacker, which results in a total of 900 tests for each target FR
system. In physical scenarios, each attacker has 135 images
captured from a video clip, and we have 2,700 tests for each
target FR system.
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TABLE VII

SUCCESS RATES (%) IN DODGING OR IMPERSONATING ATTACKS

We have two key observations from the attack results.
1) The success rate in the digital world is higher than that

in the physical world. When attacking ArcFace in the physical
world, the success rate of FaceAdv drops approximately 10%.
As for AGNs, the success rate is reduced by 30% on average.
This confirms that there is the perturbation loss reduces the
effectiveness of adversarial examples.

2) FaceAdv achieves higher success rates in both digital
and physical scenarios. Compared with FaceAdv, AGNs has
severe perturbation loss in physical scenarios, which results
in significant performance degradation (a round 30%) in the
physical world. This demonstrates that the sticker generator
and the convertor in FaceAdv successfully simulate perturbed
images with stickers pasted on real human faces.

2) Impersonating Attacks: For launching impersonating
attacks, we employ all the participants in VolFace as attackers
and randomly select three victims from LFW− for each
attacker. For each target FR system, there are altogether
2,700 tests in digital scenarios and 8,100 tests in physical
scenarios.

The attack success rates are summarized in Table VII. There
are four key observations from the results.

1) The success rates of FaceAdv are higher than those of
AGNs by a large margin in both digital and physical scenarios.
It demonstrates the proposed method is superior to AGNs.

2) Compared with the digital world, the success rate of
FaceAdv in the physical world reduces by 50% on average.
Launching impersonating attacks is more difficult than per-
forming dodging attacks, as the recognition result is the pre-
determined victim.

3) The performance of FaceAdv on ArcFace is worse than
that on the other two systems (i.e., CosFace and FaceNet).
As illustrated in Table IV, ArcFace tends to extract facial fea-
tures from regions other than facial organs, which reduces the
effectiveness of crafted stickers and degrades the performance.

4) AGNs can successfully attack FR systems in the digital
world but fail in the physical world. The reason is two-
fold: first, the area of eyeglass frames is too small to attack
FR systems, as the size of stickers can greatly affect the
performance (Section VI-B.2); second, the feature extractor
is trained on the large-scale dataset (e.g. MS-Celeb-1M [9])
so that it can resist potential adversarial attacks.

VGGFace has been proved to be inferior to the other
three FR systems (i.e., ArcFace, CosFace and FaceNet) in
the large-scale dataset [9]. Table VII also shows that both

AGNs and FaceAdv perform well in VGGFace compared to
the other three FR systems in both dodging and impersonating
attacks. Thus, we will focus on the other three systems for the
evaluation in the following experiments.

A surprising observation is that attackers, when facing
directly the camera, can hardly attack ArcFace. This reveals
that a normal head pose may not achieve the highest success
rate, which motivates us to conduct further investigation on
the influence of head poses in Section VI-D.

3) Inconspicuousness of Stickers: Currently, there is no
literature that proposes a measure of inconspicuousness of
adversarial examples in the physical world. To quantitatively
evaluate the inconspicuousness, which is actually a quite
subjective characteristic, we borrow the idea of impercep-
tibility in the digital world and utilize the Euclidean norm
(the L2 norm) [6], the structural similarity index measure
(SSIM) [15] and the learned perceptual image patch similarity
(LPIPS) [42] based on AlexNet to calculate the difference
between the benign and adversarial examples in the physical
world. Adversarial examples are facial images with adversarial
perturbations (stickers for FaceAdv or eyeglass frames for
AGNs). Note that adversarial examples and benign examples
are captured under the same environmental conditions, e.g.,
user-camera distance, brightness and head pose.

Notably, a smaller value of the L2 norm and LPIPS or
a larger value of SSIM indicates that the adversarial exam-
ple seems more likely to be the original face image and
thus achieves better inconspicuousness. In our experiments,
the averaged distance values for FaceAdv and AGNs in the
L2 norm, SSIM and LPIPS are 29.81 vs. 36.75, 0.87 vs.
0.84 and 0.21 vs. 0.23, respectively. The results show that the
inconspicuousness of FaceAdv is relatively lower than that of
AGNs. In the future, we will try to propose more effective
approaches for evaluating the inconspicuousness.

D. Evaluation on Influencing Factors

To investigate the performance of FaceAdv in different
conditions, we investigate the success rate of FaceAdv by
varying several influencing factors, including the user-camera
distance, the ambient brightness, and the head pose. In the
following experiments, we also use the 20 participants of
VolFace as attackers and the 3 individuals from LFW− as
victims for each attacker. For each target FR system, there are
8,100 tests in physical scenarios when evaluating each value
taken for each influencing factor.

1) User-Camera Distance: In physical scenarios, attackers
(i.e., users) cannot precisely control the distance to the camera,
which requires crafted stickers should work with different
distances. Thus, we evaluate the success rates of FaceAdv
with the user-camera distance of 30cm (e.g. unlocking mobile
phone or laptop), 50cm (e.g. passing the access control of
buildings) and 70cm (e.g. using face scan payment). The 50cm
is the default setting. The results are shown in Table VIII.

From these results, we can find that adversarial stickers
crafted by FaceAdv work stably in both digital and physical
scenarios. This is mainly because each time when training the
generator, FaceAdv attaches adversarial stickers to multiple
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TABLE VIII

SUCCESS RATES (%) WITH VARYING DISTANCE

TABLE IX

SUCCESS RATES (%) WITH VARYING AMBIENT BRIGHTNESS

face images captured at different distances, as described in
Section V-B.

In the physical world, the size of face images is different
with varying distances so that the FR system will rescale face
images to the resolution of input images. FaceAdv re-samples
the final face images with stickers to the certain resolution
when training the generator, which ensures stickers are robust
with the image re-sampling.

2) Brightness Level: The ambient brightness can also influ-
ence the performance of adversarial stickers. We evaluate the
success rates of FaceAdv with varying ambient brightness,
i.e., 30lux, 130lux (by default) and 250lux. They represent
weak indoor light, sunny day, and strong indoor light, respec-
tively. The results are shown in Table IX.

In general, the performance of FaceAdv changes slightly
with varying ambient brightness. This is because we employ
R-Net to estimate the ambient brightness in Section V-C.2.
When digitally attaching crafted stickers to face images,
FaceAdv will change the brightness of stickers to fit that of
face images according to the parameters of illumination model
acquired in advance. The aim of this process is to simulate the
appearance of stickers in different ambient brightness so as to
improve the robustness of adversarial stickers.

3) Head Pose: As discussed earlier, FaceAdv achieves
lower success rate of attacking ArcFace when the participants
face the camera directly. We conduct a series of experiments
to investigate the success rates with varying head poses.

We select typical head poses: normal (HN, the default head
pose), turning head to the left by 20 deg (HR) or to the right
by 20 deg (HL), raising up head by 20 deg (HU) or lowering
head by 20 deg (HB). The success rates with these head poses
are shown in Table X.

FaceAdv achieves the highest success rate (30.06%) on
ArcFace when the head pose is HR. In Section VI-B, we select
the combination #8 (i.e., left superciliary arch, nasal bone

TABLE X

SUCCESS RATES (%) WITH VARYING HEAD POSE

TABLE XI

SUCCESS RATES (%) IN THE TRANSFERABILITY OF STICKERS

left, nasolabial sulcus) to attach stickers, which achieves the
best average performance under different conditions. However,
the locations of the combination #8 are mainly on the left
side of the face. Thus, when the head pose of participants
turns to HR, the stickers attached on the left side are totally
exposed to the camera, and the success rate becomes higher
than that in the other directions. Apparently, the stickers are
basically invisible to the camera in HL, resulting in the worst
performance.

The performance of FaceAdv is relatively stable for attack-
ing the other two FR systems. This is because we adopt two
measures to improve the robustness of FaceAdv with varying
head poses. First, we propose the new method based on 3D
face reconstruction to digitally attach stickers to face images.
Second, each time when training the generator, FaceAdv
attaches these stickers onto images captured from different
head poses and then feeds them into the target FR system.

E. Evaluation on Transferability of Stickers

The transferability of adversarial stickers means that the
stickers crafted against an FR system can cheat the other FR
systems, which is critical for black-box scenarios. We utilize
the ensemble of source FR systems to train the sticker genera-
tor and update the loss function to improve the transferability
in Section V-D. In this subsection, we will investigate the
transferability of the crafted stickers by FaceAdv.

We employ the 20 participants of VolFace as attackers and
the three individuals as victims for each attacker. For attacking
a target FR system (e.g., ArcFace), we utilize the other two
FR systems (i.e., CosFace and FaceNet) to train the sticker
generator. For each target FR system, there are 2,700 tests in
digital scenarios and 8,100 tests in physical scenarios.
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We also evaluate the influence of the number of stickers on
the performance. We regard FaceAdv in white-box scenarios
as the baseline (i.e., FaceAdv-W), and separately use three (i.e.
FaceAdv-B-3) and five (i.e., FaceAdv-B-5) stickers to attack
FR systems for comparison. Since the combination #1 achieves
the best performance as shown in Fig. 6 and the target FR
system is unknown to the adversary in black-box scenarios,
we select the combination #1 for each target FR system in
FaceAdv-B-3. The results are listed in Table XI.

We have three key observations from the results.
1) The transferability of crafted stickers assists FaceAdv in

successfully fooling FR systems. Compared with FaceAdv-
W, the performance of FaceAdv in black-box scenarios (i.e.,
FaceAdv-B-3 and FaceAdv-B-5) degrades, but it is still better
than that of AGNs in white-box scenarios in some cases. For
impersonating attacks against CosFace, the success rate of
FaceAdv-B-3 is much higher than that of AGNs in white-box
scenarios (18.91% vs. 2.85%).

2) The number of stickers is positively related to success
rate. For instance, in impersonating attacks against FaceNet,
the success rate of FaceAdv-B-5 is higher than that of
FaceAdv-B-3 (44.73% vs. 24.47%). This is because a larger
number of stickers generally indicates the larger area of faces
to be perturbed, making the perturbations more effective.

3) In these three FR systems, FaceNet is more vulnera-
ble to the crafted stickers, while ArcFace is more resistant.
As illustrated in Table IV, FaceNet and CosFace mainly focus
on facial organs to extract information while ArcFace does
not. Due to this difference, when using CosFace and FaceNet
to train the sticker generator, the performance of FaceAdv on
ArcFace drops a lot, especially in the physical world.

VII. DISCUSSION

The results of our study show that FaceAdv is an effective
algorithm for generating physical-world adversarial examples
against the state-of-the-art FR systems. Now, we discuss the
limitations of FaceAdv as well as the future directions.

A. Liveness Detection

FaceAdv can limit the size and the shape of crafted stickers,
which can help the attacker pass the liveness detection. The
detection systems always employ the eye and mouth move-
ment [31] for the presentation attack detection. The stickers
are relatively small and do not block the eyes so that these
systems will not alert.

B. Face Detection

The adversarial stickers will not influence the performance
of face detector. When training the sticker generator, the fea-
ture extractor and the MLP classifier are applied to produce the
recognition result. Therefore, the face detector is unknown to
the crafted stickers. In our experiments, the percentage of the
frames in which faces cannot be detected is less than 0.01%.

C. Sticker Size

The size and location of printed stickers will affect the
performance. Ideally, stickers should be the same as those

in the digital world. However, face images are captured in
different directions and the sizes of human faces are also
different, making the size of printed stickers hardly estimated.
We refer to this gap as fabrication error.

We randomly re-sample stickers before feeding them into
the convertor to simulate the difference of sticker size and the
location between digital and physical scenarios. Specifically,
we stochastically scale (0.9 to 1.1), rotate (−10deg to 10deg)
and translate (−10px to 10px) stickers to imitate the error,
which improves the robustness of FaceAdv.

D. Convertor

The performance of the convertor determines the difference
of face images with stickers between digital scenarios and
physical scenarios. A more effective algorithm for 3D face
reconstruction improves the performance of FaceAdv.

An alternative choice is to abandon the convertor and
directly place stickers on face images. In that case, the renderer
calculates the sticker template in reverse and cuts physi-
cal stickers out. However, the shape of physical stickers is
irregular because of the radian of face, which enhances the
difficulty of tailoring stickers. If the convertor is removed,
the fabrication error will cause the significant performance
degradation. Therefore, we use the methodology described
in Fig. 3 rather than this alternative choice.

E. Black-Box Scenarios

As shown in Table XI, the performance of FaceAdv for
attacking ArcFace in black-box scenarios is relatively poor
by simply transferring from the other FR systems. Critical
regions where ArcFace extracts information are different with
the other two FR systems, as illustrated in Table IV, which
leads to performance degradation.

In order to improve the performance, when FaceAdv opti-
mizes parameters of the sticker generator, the gradient of
face images with stickers must be estimated to point out the
direction of optimization. In the future work, we can utilize the
Monte Carlo gradient estimation and the prior-guided random
gradient-free method [2] to estimate the gradient.

F. Countermeasures

There are two possible defenses against FaceAdv,
i.e., adversarial training [25] and sticker detection [16]. Adver-
sarial training, in which a network is trained on facial images
with crafted stickers, is a general approach to defend against
adversarial attacks. Unfortunately, FaceAdv spends 20 minutes
to train the sticker generator for each attacker in dodging
attacks or each attacker-victim pair in impersonating attacks,
which makes adversarial training impractical in large-scale
datasets. The core idea of sticker detection is that, when
removing the critical regions from the input images, the rank-
ing changes of adversarial labels will be larger than those of
benign labels. However, FaceAdv manipulates several regions
at the same time and removing one region that cannot make
significant ranking changes of adversarial labels. We will
explore effective countermeasures in the future work.
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VIII. CONCLUSION

In this paper, we proposed a method named FaceAdv to
automatically generate adversarial stickers, misleading the
results of FR systems in the physical world. We employed
an architecture of GANs to train a generator to craft adver-
sarial stickers so as to fabricate a large number of stickers
with different shapes after training, and proposed a novel
method RSO to digitally attach these stickers to face images.
Extensive experimental results demonstrated that FaceAdv can
achieve high success rate in physical scenarios with different
environmental conditions. In future work, we will further
investigate techniques to improve the effectiveness of FaceAdv
and explore powerful defenses.
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