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Abstract— Decentralized Applications (DApps) are increas-
ingly developed and deployed on blockchain platforms such
as Ethereum. DApp fingerprinting can identify users’ visits
to specific DApps by analyzing the resulting network traffic,
revealing much sensitive information about the users, such as
their real identities, financial conditions and religious or political
preferences. DApps deployed on the same platform usually adopt
the same communication interface and similar traffic encryption
settings, making the resulting traffic less discriminative. Existing
encrypted traffic classification methods either require hand-
crafted and fine-tuning features or suffer from low accuracy.
It remains a challenging task to conduct DApp fingerprinting
in an accurate and efficient way. In this paper, we present
GraphDApp, a novel DApp fingerprinting method using Graph
Neural Networks (GNNs). We propose a graph structure named
Traffic Interaction Graph (TIG) as an information-rich represen-
tation of encrypted DApp flows, which implicitly reserves multiple
dimensional features in bidirectional client-server interactions.
Using TIG, we turn DApp fingerprinting into a graph classi-
fication problem and design a powerful GNN-based classifier.
We collect real-world traffic datasets from 1,300 DApps with
more than 169,000 flows. The experimental results show that
GraphDApp is superior to the other state-of-the-art methods
in terms of classification accuracy in both closed- and open-
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world scenarios. In addition, GraphDApp maintains its high
accuracy when being applied to the traditional mobile application
classification.

Index Terms— Decentralized applications, encrypted traffic
classification, deep learning, graph neural networks, blockchain.

I. INTRODUCTION

W ITH the recent development of blockchain technology,
the number of decentralized applications (DApps) are

increasing dramatically. Unlike regular mobile or web applica-
tions deployed on centralized servers, DApps run their backend
codes on a decentralized peer-to-peer (P2P) network without
the control of a single entity. Among the blockchain platforms
on which DApps are hosted, such as EOS, NEO, Stellar, and
Tron, we focus on Ethereum [1] in this paper, as it attracts the
largest developer community, where more than 3,200 DApps
are deployed on Ethereum and the number of daily active users
has reached nearly 110,000 by 2020 [2].

The prosperity of DApps is attributed greatly to their
resistance to censorship [3], [6]. Compared with the traditional
mobile or web applications, DApps are completely open-
sourced and autonomously managed without a single authority
to manage all codes and data. Once a piece of information in
DApp is added to the underlying blockchain, it gets stored
permanently and thus cannot be removed or modified. In
addition, blockchain technology naturally provides anonymity
to each participant and thus can potentially protect identity
privacy of DApp users. These features make DApps trustable
to censorship and governance.

Although these service-level enchantments provide users
with safety and security, the network traffic generated when
individual users visit DApps can still reveal plenty of sensitive
information of users. Passive adversaries (e.g., campus net-
work administrators, residential network service providers, or
malicious eavesdroppers) could conduct DApp fingerprinting
to identify the specific DApps that a user visits by analyzing
the resulting network traffic. An adversary can infer users’
financial conditions from their usage of gambling DApps
or learn their religious preferences and political views from
their visits to social DApps. DApp fingerprinting can also be
conducted by governors to deanonymize DApp users or even
block access attempts to certain DApps without affecting visits
to the rest DApps on the same platform (e.g., Ethereum).
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A question naturally arises in this scenario is to what
extent DApps can be identified from the traffic generated by
user visits. Due to the adoption of SSL/TLS protocols in
DApps, traditional traffic classification methods (e.g., Deep
Packet Inspection) lose efficacy. Encrypted traffic analysis
is not a new research area and a number of methods have
been proposed for website fingerprinting [18], [26], mobile
application fingerprinting [27], and user action identification
[9], but few efforts have been made on DApp fingerprinting.

It remains a challenging task to accurately and efficiently
identify DApps via traffic analysis. Unlike regular mobile
applications or websites, DApps deployed on Ethereum imple-
ment the same frontend interface, adopt similar settings
of SSL/TLS protocols, and share the same decentralized
blockchain network for running their backend codes and
managing their data. As a result, the traffic of different DApps
has lots of common features, leading to low accuracy of
existing fingerprinting methods employing SSL/TLS packet
flags [15], [23] or packet length statistics [16], [17], [27]
(Section IV-A). Efficiency is also of importance to construct
a DApp fingerprinting method. Existing studies that employ
machine learning classifiers usually resort to hand-crafted fea-
tures (e.g., fusing multiple dimensional features [25]), or even
require compute-intensive feature processing (e.g., dynamic
time warping of packet time series [17]). It is more desirable to
simplify the sophisticated feature selection process and reduce
the computational overhead for training classifiers.

In this paper, we extend our previous work [25] and pro-
pose GraphDApp, a DApp fingerprinting method using Graph
Neural Networks (GNNs). We are motivated by an observa-
tion that each traffic flow, consisting of a series of packets
resulting from client-server interactions, can be represented by
an information-rich graph structure named Traffic Interaction
Graph (TIG). The benefit of TIG lies in that it is capable
of reserving as much information as the original flow, such as
packet direction, length, ordering, and bursts without selecting
features explicitly by hand.

With TIG, we convert the encrypted flow classification prob-
lem into a graph classification problem. As deep learning has
shown its superiority over traditional machine learning tech-
niques, we design a GNN-based classifier using multi-layer
perceptions. The classifier can automatically extract features
from input TIGs and distinguish different graph structures by
mapping them to different representations in the embedding
space. We conduct extensive experiments using real-world
datasets to evaluate the performance of GraphDApp in the
closed- and open-world settings.

Compared with our previous work [25], the novelty of
this paper includes the new graph-based representation of
encrypted flows and the new classifier using GNNs. We further
extend performance evaluation by conducting a comprehen-
sive comparison with the state-of-the-art on real-world traffic
datasets. The additional contributions beyond the original
paper [25] are as follows:

1) We propose Traffic Interaction Graph (TIG) to represent
each individual encrypted flow, where vertices in a TIG
represent packets and edges represent the packet-level
interactions between a pair of client and server. We also

provide quantitative measures to demonstrate the advan-
tages of representing flows using TIGs over the tradi-
tional packet length sequence.

2) We design GraphDApp, a powerful GNN-based classi-
fier using Multi-Layer Perceptions (MLPs) and a fully-
connected layer. It maps TIGs of different DApp flows
to different representations in the embedding space and
does not require hand-crafted features so that the clas-
sification can be conducted in an effective and accurate
way.

3) We collect real-world traffic datasets from 1,300 DApps
on Ethereum with more than 169,000 flows. We demon-
strate the accuracy and efficiency of GraphDApp in
closed- and open-world settings. Compared with the
state-of-the-art methods, GraphDApp has the highest
classification accuracy with the shortest training time.
In addition, it is also applicable to traditional mobile
application classification.

To the best of our knowledge, this is the first study that
addresses the encrypted traffic classification problem using
graph classification techniques. The rest of this paper is
organized as follows. Section II introduces the background
of DApps and summarizes the related work. Section III
presents the rationale of representing DApp flows using graph
structures, and Section IV builds the GNNs-based classifier.
Section V evaluates the performance of GraphDApp and
makes a comprehensive comparison with the state-of-the-art
methods. After a brief discussion of GraphDApp in Section VI,
Section VII concludes this paper.

II. PROBLEM DESCRIPTION AND RELATED WORK

In this section, we describe the DApp fingerprinting prob-
lem, briefly review existing studies, and emphasize the differ-
ences between our work and the existing methods.

A. Problem Description

DApp fingerprinting is a traffic analysis attack that aims
at identifying users’ visits to a certain collection of monitored
DApps. To be able to perform this attack, an adversary needs to
observe the traffic when a victim is visiting DApps. Following
the common assumption on threat model in existing literature,
we assume that the potential adversary is local and passive,
which means that the adversary exists in the local network of
victims (e.g., campus network administrators) and performs
merely traffic collection without any active attacks such as
traffic hijacking, as shown in Fig. 1.

In this paper, we focus on DApps deployed on the popular
platform Ethereum, as it has the largest developer community.
Most DApps on Ethereum provide browser plug-ins so that
they can be visited via browsers (e.g., Chrome). The frontend
of a DApp implements user interfaces uniformly defined by
Ethereum to render pages. The backend is smart contracts
connecting to Ethereum blockchain network, which is com-
pletely different from that of a web application that connects
to a centralized database.

To initialize a visit, a DApp client (short for client) sends
a request to the server equipped with the corresponding smart
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Fig. 1. Typical Workflow of DApps on Ethereum.

contracts, whose IP address can be obtained by DNS query.
The smart contracts are the functionalities that determine the
outcomes for each operation in DApp conducted by clients.
All data records of these operations and outcomes are then
packaged in the form of blocks by the miners on the underlying
blockchain platform and stored on the distributed ledger.
The client also gets a list of blockchain servers from the
smart contract server, through which it can acquire updated
information from the ledger to render webpages.

SSL/TLS protocols are used to encrypt the transmission
data between clients and the blockchain platform. There are
mainly two layers: the Handshake layer and the Record
layer [23]. The former is used to negotiate secure parameters
of an SSL/TLS session, while the latter is responsible for
transferring encrypted data under the secure parameters.

Different from traditional mobile and web applications,
DApps on Ethereum implement the same frontend interface,
adopt similar settings in SSL/TLS implementation, running
their backend codes and storing their data in the same decen-
tralized blockchain network. These common features make the
resulting traffic of different DApps less discriminative [25].

B. Related Work

Recent studies resort to machine learning techniques to deal
with encrypted traffic classification. Here, we only review
those that are closely related to our work, which can be
roughly classified into three categories as shown in Table I.

1) Web Application Classification Methods: The goals of
this category mainly focus on website fingerprinting and
webpage fingerprinting. Website fingerprinting aims to identify
the traffic generated from visits of certain websites. In prac-
tice, homepages are usually used as representatives of the
corresponding websites. Panchenko et al. [17] leveraged the
accumulated sum of packet lengths as features that were fed to
a Support Vector Machine (SVM) classifier. Wang et al. [28]
used a large feature set and adopted a k-Nearest Neighbor
(k-NN) model to classify different websites. Recent studies
attempted to use deep neural networks, such as Convolutional
Neural Networks (CNNs) [18], [19], [26] and Long-Short
Term Memory (LSTM) [19] to construct more accurate fin-
gerprints.

The webpage fingerprinting aims to construct traffic finger-
prints at the granularity of webpage, which can be viewed
as a fine-grained version of website fingerprinting. Existing

studies leverage either time information [10] or packet length
information [20], [21] to build effective classifiers.

2) Mobile Application Classification Methods: The goals of
this category mainly contain mobile application classification
and user action identification. Taylor et al. [27] proposed
Appscanner that combined statistical features of packet length
with the random forest classifier to identify applications on
smartphones. Several studies resorted to SSL/TLS flags in
encrypted traffic and applied Markov Models to classify dif-
ferent smartphone applications [15], [23], [24]. User action
identification attempts to recognize certain user operations on
smartphone applications [9], [11], such as sending mail and
replying a message in social network applications.

3) DApp Fingerprinting Methods: DApps are emerging
as a new service paradigm that relies on the underlying
blockchain platform. In our previous study [25], we obtained
several key observations. First, statistical features of packet
length are similar among DApps, e.g., the statistics of a
DApp named Kitty are similar to those of Origin Protocol.
Second, the adoption of the same blockchain platform makes
the SSL/TLS message types of different DApps quite similar.
The observations indicate that the classifiers built based merely
on these features lose their efficacy for DApp fingerprinting.
As a result, we proposed a feature fusion method, which
leveraged mixed features of packet length, timestamp and
burst, to build a classifier using Random Forest [25].

4) Summary: The limitations of existing methods lie in
two aspects. First, the methods using traditional machine
learning classifiers (e.g., [17], [22], [25], [27], [28]) rely on
carefully-selected features, which become less discriminative
for DApp classification and require a time-consuming process
of feature extraction (see Section V). Second, the methods
using deep neural networks (e.g., [19], [26]) generally employ
packet direction sequence or packet length sequence as their
input, which are not expressive enough to achieve high
accuracy.

C. Differences From Existing Work

Our goal is to achieve high classification accuracy of
DApp flows and avoid the exhausting process of feature
selection. This paper tackles these challenges from a novel
angle. Our observations on DApp traffic interactions motivates
the graph representation of DApp flows, which naturally con-
verts DApp fingerprinting into a graph classification problem.
Then, GNNs are employed to build a powerful classifier
that automatically extracts multi-dimensional features from
the raw input. The evaluation results show that the proposed
method is superior to the state-of-the-art methods metioned
in Section V. We also demonstrate that the proposed method
can be generalized to other classification problems, such as
the traditional mobile application classification.

III. GRAPH STRUCTURE ABSTRACTION FOR DAPP FLOWS

In this section, we first elaborate on the rationale for
representing DApp flows by graph structure before for-
mally describing the graph construction process. We also
present case studies to illustrate the differences of the graphs
abstracted from different DApps.
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TABLE I

SUMMARY OF ENCRYPTED TRAFFIC ANALYSIS METHODS

A. Traffic Interaction Graph

According to the problem description in Section II, we can
collect all the traffic (i.e., a sequence of incoming and outgoing
packets) when a client visits a certain DApp. Since the packet
sequence usually consists of multiple flows, we first partition
the whole sequence into individual flows, where each flow
is defined as a series of packets with the same 5-tuple (i.e.,
source/destination IP addresses, source/destination ports, and
protocol). The definition of flows is also commonly used in the
literature. More details of flow partitioning will be described
in Section V-B.

We take a specific flow as an example to illustrate the
client-server interactions in terms of packet lengths and direc-
tions, as shown in Fig. 2(a). From the perspective of client,
we set the length of upstream packets as negative and that of
downstream packets as positive. The gray and white blocks
in Fig. 2(a) represent the Handshake stage and the Record
stage in SSL/TLS protocols, respectively. It is worth noting
that the timestamp of packets is not considered in this paper,
as it is easily affected by varying network conditions and the
alignment of time series for different flows is proved to be
time-consuming [20].

In the existing literature [17], a flow P consisting of n
packets is usually represented by a packet length vector. It
can be expressed as P = (p1, p2, . . . , pn), where pi is the
signed length of the i -th packet (i.e., negative for upstream
and positive for downstream). However, this vector has lim-
ited representational capacity of the client-server interactions.
Inspired by information-rich graph structures, we attempt to
represent a traffic flow by a graph, which is referred to as
Traffic Interaction Graph (TIG).

We first describe TIG construction process with the example
in Fig. 2 before presenting the formal definition of TIG.

Vertex. Given a specific flow, a vertex of the corresponding
TIG represents a packet in the flow. Each vertex is also
associated with the length of the packet. To reflect packet
direction, we maintain the signed value of each packet length.

When vertices are determined, edges should be added to
connect these vertices together. A flow typically contains
multiple bursts, where a burst is usually defined as a sequence

Fig. 2. Graph-based Representation of DApp Flows.

of consecutive packets transmitted along the same direction
during a short time interval [7]. Here, we misuse the terminol-
ogy burst to define a series of consecutive packets transmitted
along the same direction, even if there is only a single packet.
As shown in Fig. 2(a), the arrows in orange and blue represent
different bursts in the flow.

Edges. There are two types of edges in TIG: intra-burst
edges and inter-burst edges. Intra-burst edges sequentially
connects the consecutive vertices (i.e., packets) in each burst.
For instance, for the burst [-118, -140, -330], two edges
are used to connect the three vertices. Inter-burst edges are
used to connect a burst with its preceding burst, i.e., starting
from the second burst, the first and the last vertices in each
burst are connected to the corresponding first and last vertices
in its preceding burst. Note that at most one edge can be
added between each pair of vertices in case that only one
packet exists in a burst. Figure 2(b) shows the resulting TIG
corresponding to the flow in Fig. 2(a).

Definition 1 (Traffic Interaction Graph): A TIG is repre-
sented by a three-tuple, TIG = (V , E, L), such that:
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Fig. 3. TIG Samples of Three Different DApps.

• V is a set of vertices. Each vertex v ∈ V is associated
with a signed non-zero integer lv ∈ L representing the
packet direction and length.

• E is a set of edges. Each edge e ∈ E is either an intra-
burst edge connecting two consecutive vertices in a burst
or an inter-burst edge connecting the starting or ending
vertices of two consecutive bursts.

• L is the set of non-zero integers, where the absolute value
of each integer is limited by the summation of packet
header length and Maximum Transmission Unit (MTU).

B. TIG Samples of DApps

With an intuitive description of TIG in the last subsec-
tion, we formally present the construction process of TIG,
as depicted in Algorithm 1.

The construction process considers the packet length
sequence of a specific flow as the input and starts with an
initialization of the vertex set V and edge set E . Then,
it constructs the vertex set (lines 2-3) and obtain the bursts
(line 4). After that, it iteratively adds intra-burst edges (lines
5-8) and inter-burst edges (lines 9-13). Finally, the resulting
G is the desired TIG.

To get a better understanding of the representation capacity
of TIG, we select 3 kinds of DApps (i.e., Aigang, Aragon
and AaveProtocol) and visualize the corresponding TIGs
constructed with Algorithm 1, as shown in Fig. 3. Since it
is impossible to enumerate the TIGs for all the flows, we
randomly select a flow for each DApp and use Matplotlib
[4] to draw the corresponding TIG. It is clear to observe the
differences in terms of graph structure: Aigang owns spindle-
shaped TIGs for its flows, Aragon has simple and compact
TIGs, while AaveProtocol exhibits complex and fish-shaped
TIGs.

C. The Benefits of TIG

The following explains why TIG is a powerful representa-
tion of DApp flows. In general, TIG can extract features of
DApp flows from four aspects, each of which has been proven
to be valuable for traffic classification.

1) Packet direction information. The direction informa-
tion is revealed by the sign of the vertex in TIG,
where positive values indicate downstream packets while
negative for upstream packets.

2) Packet length information. The packet length
sequence, as well as its mathematical variants, are often

Algorithm 1 Construction of Traffic Interaction Graph
Input: A packet length sequence P = (p1, . . . , pN )
Output: The corresponding traffic interaction graph G =

(V , E)
1: Initialize V and E as empty sets
2: for pi ∈ P do
3: Add a vertex with a length value of pi in V

4: Separate V into bursts B = (b1, . . . , bK ) according to
packet direction

5: for bi ∈ B do
6: if len(bi) > 1 then
7: for v j ∈ bi do
8: Add an edge between v j and v j+1 in E

9: for bi ∈ B do
10: if len(bi ) = 1 and len(bi+1) = 1 then
11: Add an edge between bi and bi+1 in E
12: else
13: Add two edges between bi and bi+1 in E

14: return G

used as the key features in encrypted traffic classification
[17]. Vertices in TIG are associated with the corre-
sponding packet lengths, which can be naturally used
by classifiers.

3) Packet burst information. The vertices of the same
layer in TIG represent the packets composing an indi-
vidual burst. The burst-level behaviors for different
applications can vary significantly and thereby act as
discriminative features learned by classifiers.

4) Packet ordering information. TIG can represent the
order of packets from the beginning of SSL/TLS session
negotiation to the end of application data transmission.
In addition, TIG also reflects the interaction between the
server and the client.

We resort to quantitative measures to demonstrate that
TIG is more informative than other representations. An ideal
representation should make a flow similar to flows from the
same DApp while distinctive from those of different DApps.
We select packet length sequence as a baseline representation
for comparison, as it is commonly used in the literature
[17]. We employ graph edit distance [5] and the Euclidean
distance as the similarity metrics for TIGs and packet length
sequences, respectively. Note that a smaller distance indicates
more similarity.
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Fig. 4. Similarity Measurements with Metrics of Euclidean Distance (a) and Graph Edit Distance (b) among 40 DApps.

We randomly select 100 flows from each of the 40 DApps
in Table III and calculate the pairwise distance of flows. When
calculating the graph edit distance, we follow the setting in [5],
i.e., the node substitution cost is set to the Euclidean distance,
the node insertion and deletion cost is set to 90, and the edge
insertion and deletion cost is set to 15.

The distance measurements are shown in Fig. 4. For
each DApp, the blue marker represents the average distance
between flows in the same DApp (i.e., intra-class distance),
and each boxplot represents typical distances from other
DApps (i.e., inter-class distances), i.e., the maximum values,
75th percentile, 50th percentile, 25th percentile, and the min-
imum values. We can obtain the following observations by
comparing Figs. 4(a) and 4(b):

1) With packet length sequence, only 4 DApps have their
intra-class distances smaller than the minimum value of
their inter-class distances; while TIG makes 21 DApps
have this property.

2) With packet length sequence, there are 15 DApps whose
intra-class distance are larger than the median (i.e.,
the 50th percentile) of inter-class distances; while there
is only one such case with TIG.

Through quantitative measures, we demonstrate that TIG-
based representation exhibits high similarity for flows of the
same DApp and is more discriminative across different DApps.

IV. THE PROPOSED GRAPHDAPP

With the help of TIG, the classification of DApp flows is
turned into a graph classification problem. GNNs become a
natural solution to this problem, as they can automatically
extract features from input graphs and distinguish between
these graph structures [29]. In this section, we present the
design details of the proposed GNN-based classifier named
GraphDApp.

A. GraphDApp Overview

The overview of training GraphDApp is presented in Fig. 5.
In the training process, we first collect encrypted traffic of
DApps and parse the packet sequences into flows. Using
Algorithm 1 described in Section III, we can obtain the
corresponding TIGs for all the DApp flows. Then, the TIGs are
fed into GNNs to learn a powerful classifier. We employ MLPs

TABLE II

LIST OF NOTATIONS

and a fully-connected layer to construct GraphDApp, as they
do not require selection and fine-tuning features by hand and
can effectively classify different graph structures [29]. In the
testing stage (not shown in Fig. 5), the well-trained classifier is
used to label the TIGs abstracted from unknown DApp flows.

B. GNN Architecture

Given a set of TIGs {G1, . . . , GN } ⊆ G and their labels
{y1, . . . , yN } ⊆ Y , GNNs aim to learn a representation vector
hG that can predict the label of each TIG, i.e., ŷN = g(hG).
The main body of GNNs used in GraphDApp consists of
MLPs and a fully-connected layer, where MLPs are used to
extract features from the TIGs for training while the fully-
connected layer is used to make a classification decision.
GNNs try to gradually reduce the value of a loss function
L, which quantitatively measures the differences between the
predicated and the actual labels. The notations used in this
paper are shown in Table II.

1) Multi-Layer Perceptions: In GraphDApp, MLPs are used
to learn the representation vector hG for each TIG G. We
employ n layers of perceptions, and each layer acts as a
recursive neighborhood aggregation scheme, in which a feature
vector hv of each node v ∈ G is calculated by aggregating the
features of its neighbors. Thus, the feature vector hv can store
the feature information of its neighbor nodes in the graph.
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Fig. 5. Structure of Neural Networks in GraphDApp.

More specifically, each layer of MLPs consists of a Linear
function and a BatchNorm function. The Linear function
performs linear transformation that is required to learn the
weights and biases in the learning process. The BatchNorm
function is used to make sure that the input of each layer of
MLPs has the same distribution during the training process.
We use a dropout function to avoid over-fitting when neural
network forward propagates. Finally, the representation of
the entire graph is obtained through a concatenation of the
Readout function across all the layers of MLPs. We defer the
design detail of MLPs in the next subsection.

2) Fully-Connected Layer: Following MLPs, Graph-
DApp uses a linear function to perform linear transformation
on the output data of MLPs. Again, a dropout function is
used to avoid over-fitting. For each TIG Gi , we refer to the
output of the linear function as its feature representation vector
hGi . To facilitate the following prediction process, we need to
map hGi into a new latent space HGi ∈ R

C , where C is the
amount of distinct elements in Y (i.e., the number of DApps
to identify). Then, a softmax function is used to obtain the
predicted probability vector ŷic indicating the likelihood that
Gi belongs to each type of DApp, as shown in Eq. (1).

ŷic = Sof tmax
�
HGi

�
(1)

3) Loss Function: GraphDApp leverages the cross entropy
function as the loss function, as it is commonly used in
multi-classification problem to calculate the loss between the
predicted labels and the ground truth, as defined in Eq. (2),

L = − 1

|X |
|X |�
i=1

C�
c=1

yiclog
�
ŷic

�
(2)

where |X | is the number of instances (i.e., TIGs) for training
and yic is the ground truth label. In our multi-classification
scenario, it has better convergence properties than the Mean
Squared Error (MSE) loss function.

4) Optimizer: We adopt the Adam optimizer in Graph-
DApp. Adam is a stepwise optimization algorithm based on
a stochastic objective function of adaptive low-order moment
estimation. It is an effective stochastic optimization method
that requires only first-order gradients and little memory.

C. Design of MLPs

The design of MLPs is motivated by the fundamental goal of
a GNN-based model. Ideally, GraphDApp should distinguish

different graph structures, which means that it should be
able to map different graphs to different representations in
an embedding space. This implies that the ability also solves
the graph isomorphism problem, where non-isomorphic graphs
should be mapped to different representations [8].

Recent advances [29] in theoretical analysis of GNNs char-
acterize the expressiveness of GNNs by the Weisfeiler-Lehman
(WL) graph isomorphism test, which is a powerful heuristic to
address the graph isomorphism problem. It has been proved
that GNNs are at most as representational as the WL test
in distinguishing different graph structures [8]. Following the
theoretical basis for establishing a GNN as powerful as WL,
we should make sure that the sufficient conditions should be
satisfied, i.e., node feature aggregation and the graph-level
readout in GNNs should be injective [29].

To map different graphs to different representations, GNNs
should have an injective neighbor aggregation method. The
update method of node feature vectors [29] is expressed as
shown in Eq. (3),

h(k)
v = ø

�
h(k−1)

v , f
��

h(k−1)
u : u ∈ N (v)

���
(3)

where h(k)
v is the feature vector of node v at the k-th iteration

(i.e., layer), N (v) is the set of nodes adjacent to node v.
On each layer, the function f is responsible for aggregating
neighbor nodes of v and the function ø updates node features.
In addition, ø and f should be injective.

Note that these aggregation functions should work on the
multiset that allows multiple instances of each distinct element.
Some popular injective functions, such as mean aggrega-
tion, are not injective on multisets. As a concrete example,
the summation function is injective over multisets [18]. Many
aggregation schemes can potentially satisfy the injectivity over
multisets. Theorem 1 provides a simple and concrete formula
in many of these aggregation schemes [29].

Theorem 1 (Aggregation [29]): Assume � is countable.
There exists a function f : � → R

n so that for infinite choices
of ε, including all irrational numbers, h (c, X) = (1 + ε) ·
f (c) + 	

x∈X f (x) is unique for each pair (c, X), where
c ∈ � and X ⊂ � is a multiset of bounded size. Moreover, any
function g over such pairs can be decomposed as g (c, X) =
ϕ

�
(1 + ε) · f (c) + 	

x∈X f (x)
�

for some function ϕ.
This theorem shows that for any (c, X) �= �

c�, X �� with
c, c� ∈ � and X, X � ⊂ �, h (c, X) �= h

�
c�, X �� holds, if ε

is an irrational number. Here we provide an intuition of the
correctness of Theorem 1, where a rigorous proof can be found
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in [29]. In general, there are two cases with (c, X) �= �
c�, X ��:

1) c = c� but X �= X �, and 2) c �= c�. In the first case,
the injectivity of f (x) makes

	
x∈X f (x) �= 	

x∈X � f (x) and
thus the conclusion holds. In the second case, since the left part
of h () is irrational and the right part is rational, the differences
of two parts for c and c� never counteract with each other and
thus the conclusion holds.

MLPs are able to model and learn f and ϕ in Theorem 1
according to the universal approximation theorem [13], [14].
Since MLPs can represent the composition of functions,
we model f (k+1) ◦ ϕ(k) for one MLP. As the summation of
the input features with one-hot encoding is naturally injective,
MLP is not required in the first iteration. Then, GNNs update
node representations as shown in Eq. (4):

hk
v = M L Pk

⎛
⎝�

1 + �(k)
�

· hk−1
v +

�
u∈N (v)

h(k−1)
u

⎞
⎠ (4)

where � is a learnable parameter.
The node representation of subtree structure becomes more

refined and global with the increment of the number of itera-
tions. It is crucial to have a sufficient number of iterations for
achieving good discrimination. To extract enough information
form the neural networks, information from all the iterations
(i.e., layers) of the model should be reserved. We use an
architecture similar to Jumping Knowledge to achieve this goal
as shown in Eq. (5),

hG = Con
�

Readout
��

h(k)
v |v ∈ G

��
|k ∈ [0, K ]

�
(5)

where graph representation in each layer is obtained by
Readout and then concatenated across all layers of MLPs.

With all the designs above, GraphDApp captures the similar-
ity of graph nodes and structures through training, which will
be demonstrated by experimental results in the next section.

V. PERFORMANCE EVALUATION

In this section, we are devoted to evaluating the effec-
tiveness of GraphDApp. We first introduce the experimental
settings and the datasets for evaluation before tuning the hyper-
parameters of GraphDApp and comparing the performance
of GraphDApp with the state-of-the-art in closed-world and
open-world scenarios. In addition, we also demonstrate the
applicability of the proposed method on the classification of
traditional mobile applications.

A. Preliminary

1) Methods in Evaluation: To fully understand the perfor-
mance of GraphDApp, we leverage 6 typical methods for
comparison, which are briefly described as follows. To make
a fair comparison, all the methods are fine tuned to achieve
their best accuracy on the datasets used for evaluation.

• Markov Model (MARK), which uses Markov chains to
model the sequences of message types in SSL/TLS ses-
sions and feeds the state transition features into machine
learning classifiers. The Maximum Likelihood principle
is used to identify the application from which encrypted
flows are generated [15].

TABLE III

DATASETS FOR CLOSED-WORLD EVALUATION

• AppScanner (APPS), which captures statistical features
from a sequence of packets, such as mean, minimum,
maximum, standard deviation of incoming packets, out-
going packets, and bi-directional packets. It uses a Ran-
dom Forest classifier to identify encrypted or unencrypted
traffic flows from mobile applications [27].

• Feature Fusion (FEAF), which is the method proposed
in our previous conference version [25]. It fuses different
dimensional features (e.g., packet length, burst, packet
timestamps) by kernel functions and uses a Random
Forest classifier to identify encrypted flows from DApps.

• DeepFingerprinting (CNN+D), which uses the informa-
tion of packet direction to construct Convolutional Neural
Networks (CNNs) to classify the encrypted traffic of
different websites [26].

• CNN+L, which uses the same CNN structure as CNN+D
but takes the packet length sequence as input to build
classifiers.

• LSTM+L, which takes packet length sequence as input
and uses a double-layer LSTM [19] to learn fea-
ture representations and a fully-connected layer for
classification.

2) Cross-Validation: The 10-fold cross-validation is used
to evaluate the performance of each method. We randomly
divided the dataset into 10 mutually exclusive subsets of
similar sizes. Then, we conducted 10 times of training and
tests, using 9 subsets as the training set and the rest one as
the test set each time. The average value of the 10 tests is
used as the final result. All the experiments are conducted on
a server with an Intel Core Duo 3.60GHz and 16GB memory.
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Fig. 6. Process of Network Traffic Collection.

B. Dataset Collection

Figure 6 shows the dataset collection process in our exper-
iments. The network traffic capture tools are deployed on the
routers of laboratories located in different university campuses
in China. When users visit a certain DApp through a Chrome
browser on PCs, the resulting network traffic is captured by
WireShark and saved on data servers. All visits use Chrome,
as it is the designated browser by some DApps. Network flows
are then exported to a Comma Separated Value (CSV) file,
each row of which contains the information obtained from the
packets, including time, source/destination IP addresses, ports,
protocols, packet lengths, and TCP/IP flags. The encrypted
payload of each packet is not used for classification.

Closed- and Open-World Settings: In the closed-world set-
ting, an adversary aims at identifying victims’ visits to a
certain collection of monitored DApps, which can be viewed
as a multi-classification problem. The open-world setting
considers a more realistic scenario, where victims not only
visit the monitored DApps, but also visit a larger amount of
unmonitored DApps. The goal is to identify monitored DApps
from unmonitored DApps, which is usually treated as a binary-
classification problem [26].

To construct the closed-world dataset, we select the top
40 DApps on Ethereum with the most users [2] as the mon-
itored DApps. The categories include social communication
applications, finance, online shopping, etc. The number of
flows for each monitored DApp is summarized in Table III.
In total, we collect 155,500 flows.

To build the background traffic for open-world evaluation,
we randomly select 1,260 DApps on Ethereum as the unmon-
itored DApps and collect 14,000 flows in total. Following the
strategy in the literature, each unmonitored DApp is accessed
only once [26].

C. Parameter Tuning of GraphDApp

In this subsection, we will introduce the hyperparameters
used in GraphDApp and evaluate the trade-offs between clas-
sification accuracy and efficiency. Note that all the experiments
are conducted in the closed-world setting.

1) Hyperparameter Selection: An important step in
training GNNs is to tune the hyperparameters, which adjusts
the trade-offs between variance, bias and classification
performance. Due to the large number of training instances
and hyperparameters in GraphDApp, it is a challenging task
to find the optimal setting of hyperparameters. Therefore,
we search the hyperparameters from an interval and select

TABLE IV

HYPERPARAMETERS SELECTION FOR GRAPHDAPP

TABLE V

IMPACT OF THE NUMBER OF TRAINING EPOCHS ON CLASSIFIER TRAINING

TIME (CTT), TESTING ACCURACY, AND DIFFERENCE BETWEEN THE
TRAINING AND TESTING ACCURACY OF GRAPHDAPP

the best combination. More specifically, at the training stage,
we change each hyperparameter to estimate the gradient
of the parameters and decide whether the hyperparameters
should be increased or decreased. After completing this
process, we select the best top-k values for each parameter
and use them as the candidates for selecting the final best
combination of all the hyperparameters. We use accuracy as
the performance metric, which is defined as the proportion
of all the DApps flows that are classified correctly.

The hyperparameter search ranges and the selected values
are shown in Table IV. GraphDApp is set with the learning
rate of 0.0005, the training epoch of 10 and the batch size
of 150. It uses MLPs to extract features and a fully-connected
layer to output the predicted results.

Next, we investigate the impact of parameters on trade-offs
between classification accuracy and time consumption.

2) Epochs: Table V shows the Classifier Training Time
(CTT) and testing accuracy with different epochs. Graph-
DApp can reach a testing accuracy of around 0.83 with
only one epoch (25.27s). In general, increasing the number
of epochs helps improve classification accuracy. When the
number is larger than 10, the accuracy increment becomes
trivial while CTT increases significantly. Therefore, we use
10 epochs to achieve a better balance between accuracy and
training efficiency.

The difference between training accuracy and testing
accuracy of neural networks is usually used to determine
whether the classifier is over-fitting [26]. Table V also shows
that GraphDApp keeps the difference less than 0.02, indicating
that it can avoid over-fitting. The reason is we use dropout
and BatchNorm to prevent over-fitting: The dropout function
randomly selects hide units and temporarily removes them
from training the neural networks, and BatchNorm normalizes
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TABLE VI

IMPACT OF NUMBER OF PACKETS USED IN EACH FLOW ON FEATURE
EXTRACTION TIME (FET), CLASSIFIER TRAINING TIME (CTT) AND

ACCURACY OF GRAPHDAPP

TABLE VII

IMPACT OF DATASET SCALE ON FEATURE EXTRACTION TIME (FET),
CLASSIFIER TRAINING TIME (CTT) AND ACCURACY OF GRAPHDAPP

the fully-connected layer and the output of the MLPs, which
helps accelerate learning process and reduce over-fitting.

3) Packet Number: The number of packets in each flow used
to construct the corresponding TIG also has an impact on the
performance of GraphDApp. To take a deeper look at the time
consumption, we roughly divide the training process into two
stages: feature extraction (i.e., constructing TIGs from flows)
and classifier training (i.e., learning graph representation from
TIGs), as shown in Fig. 5.

The FET and CTT of GraphDApp, as well as its accuracy,
with a varying number of packets used in each flow are shown
in Table VI. When only the first 6 packets of each flow are
used, the accuracy of GraphDApp can reach 0.8532. With the
increase of the number of intercepted packets, both FET and
CTT become larger accordingly but are with different growth
trends: a slowdown in the growth of FET and an accelerated
growth of CTT, because a larger amount of packets leads to
more complex TIGs, requiring much more time to learning
their representations in the classifier training stage. At the
same time, the accuracy is also improved when provided
with more packets to construct TIGs. We set the packet
number as 25 to achieve higher accuracy with moderate time
overhead.

4) Dataset Scale: To investigate the impact of dataset scale
on the performance of GraphDApp, we vary the proportion of
our original dataset (see Table III). Given a proportion value,
e.g., 20%, we randomly select 20% flows of each DApp and
constitute a new dataset, over which the 10-fold cross-
validation strategy is applied to evaluate the time consumption
and accuracy. The results are summarized in Table VII.

GraphDApp can achieve 0.8764 accuracy when only 20%
samples are used, indicating that it can learn sufficient graph
representations from limited training data. When provided with
more training samples, GraphDApp can further improve its
accuracy. An interesting observation is that a lager dataset
does not lead to a significant increase of CTT, which shows
that graph representation learning is not severely affected by
redundant TIGs. In the following experiments, we use the
entire dataset in Table III unless otherwise specified.

Fig. 7. Closed-world: Confusion Matrix of GraphDApp.

D. Closed-World Evaluation

In this subsection, we investigate the effectiveness and
time efficiency of different classifiers in the closed-world
setting. In this scenario, all the visits to DApps are limited
to the monitored DApps (i.e., those listed in Table III) and
DApp identification is a multi-classification problem.

1) Accuracy: We also use accuracy to measure the perfor-
mance of all the methods. The average accuracy and the stan-
dard deviation in cross-validation are exhibited in Table VIII.
We can obtain several major observations:

1) GraphDApp outperforms the rest methods, with the
highest accuracy (0.8922) and the smallest standard
deviation (0.0011). Figure 7 shows the confusion matrix
of GraphDApp. The accuracy of 5 DApps reaches
1.0 and the accuracy of 67.5% DApps reaches above 0.9,
while the accuracy of only 3 DApps is lower than 0.6.

2) Traditional machine learning methods with statistical
features (e.g., FEAF and APPS) are comparable to deep
learning methods with packet length sequences (e.g.,
CNN+L). MARK results in low accuracy, because the
Markov state transition features used in MARK are
quite similar for flows from the same platform (i.e.,
Ethereum).

3) Packet length sequence cannot work well with LSTM,
as the accuracy of LSTM+L is around 20% less than
CNN+L. The reason is most packets of DApps are
transmitted with the fixed maximum length, making the
temporal information in packet length sequence less
distinguishable. It is consistent with the conclusion in
previous literature [19].

The results demonstrate the superiority of representing traf-
fic flows using TIGs and transforming the traffic classification
problem into the graph classification.

2) Time Overhead: We evaluate the time cost of all the
methods from two aspects: training time and testing time.
Tables IX and X present the results of different methods in
the closed-world scenario.

Training Time: In general, the training process of each
method in comparison can be divided into two stages: feature
extraction from encrypted flows and classifier training using
these features. The time on each stage and the total time are
reported in Table IX. Note that all the methods are trained on
the same dataset.
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TABLE VIII

CLOSED-WORLD: ACCURACY OF THE STATE-OF-THE-ART METHODS

TABLE IX

TRAINING TIME OF DIFFERENT METHODS

TABLE X

TESTING TIME OF DIFFERENT METHODS

FEAF takes the longest time in training, because it needs
to first calculate features from packet length, timestamps
and bursts using a kernel function and then merge features
by selecting features with relatively high contribution before
finally training the Random Forest classifiers. APPS calcu-
lates statistical features from packet length, which is a time-
consuming process. Even though it takes the least time to train
classifiers, APPS eventually becomes the second most time-
consuming method.

Compared with the deep learning methods (i.e., LSTM+L,
CNN+D and CNN+L), GraphDApp takes slightly longer time
to construct TIGs from flows. However, it has more powerful
learning capabilities and needs less iterations to achieve the
desirable accuracy. Thus, GraphDApp has the highest time
efficiency in terms of the total training time.

Testing Time: The testing time refers to the time spent
on classifying an unknown flow by a well-trained classifier,
which includes two parts: feature extraction time to obtain
required features from the flow and prediction time to label this
flow.

In general, the testing time of all the methods are no more
than 0.03 seconds. FEAF takes the longest time to make a
decision, as it needs more time to fuse multi-dimensional
features from a flow. Similarly, the time of feature extraction
makes APPS the second most time-consuming method in
testing. Compared with FEAF and APPS, the deep learning
methods are much more efficient in labeling an unknown flow.
GraphDApp has a more complex neural network structure, so it
takes slightly longer time for prediction.

3) Summary: The closed-world evaluation demonstrates
that GraphDApp can achieve the most accurate classification
results with the shortest training time.

E. Open-World Evaluation

In this subsection, we will evaluate the performance of
different methods in a more realistic open-world scenario.
Existing studies usually treat this problem as a binary classifi-
cation [12], [26]. Following this standard model, the classifier
in open-world evaluation aims at distinguishing between flows
of the monitored and unmonitored DApps. Note that if a flow
is determined to be monitored, we can further use the multi-
class classification (i.e., the closed-world setting) to identify
to which monitored DApp it belongs.

1) Dataset: We randomly select an average of 800 flows
for each monitored DApp from those listed in Table III and
obtain a total of 32,000 monitored flows.

To conduct cross-validation, we partition the unmonitored
flows at the granularity of DApps. Given a certain number of
unmonitored DApps, e.g., 1,260, we divide these DApps into
10 subsets, where each subset has 126 unique unmonitored
DApps. Each time 9 subsets are used for training and the
rest subset is used for testing. By this way, we can make
sure that there is no overlap between the training and testing
datasets in terms of unmonitored DApps. In other words, all
the unmonitored DApps for testing are not learned in advance.

2) Criteria: We use the prediction probability output by
the classifier to label unknown flows. If a flow of monitored
DApp has a prediction probability greater than a certain
threshold, we will record it as True Positive (TP), or False
Negative (FN) otherwise. Similarly, if a flow of unmonitored
DApp is correctly labeled, it will be considered True Negative
(TN), or False Positive (FP) otherwise.

To evaluate the performance of classifiers on the two-class
classification, we use True Positive Rate (TPR), False Positive
Rate (FPR), precision, recall and Area Under Curve (AUC)
as criteria. TPR is calculated by T P/(T P + F N) and FPR
equals to F P/(F P + T N). Precision and recall are defined
as T P/(T P + F P) and T P/(T P + F N), respectively. AUC
refers to the area under the ROC curve, which is a performance
indicator to measure the pros and cons of a classifier. With
these criteria, we can evaluate to what extent a method can
solve the open-world binary classification problem.

3) Results: Figure 8 shows the TPR and FPR of different
methods with a varying number of unmonitored DApps. In
general, TPR and FPR of all the methods decrease with the
increase of the number of unmonitored DApps. When the
number of unmonitored DApps reaches 720, the TPR and FPR
of GraphDApp tend to be stable, which are 0.99 and 0.05,
respectively. In contrast, TPR of other methods still tends to
decrease when the number of unmonitored DApps reaches to
1,260, as more flows of monitored DApps are mislabeled.
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Fig. 8. Open-world: Impact of the Number of Unmonitored DApps on TPR
and FPR.

Fig. 9. Open-world: ROC Curves.

The reason is TIGs are stable and discriminative represen-
tations of DApp flows, which can accurately identify flows
of monitored DApps from all the background flows, while
the other representations (e.g., statistical features and packet
length sequences) are not distinguishable enough to differen-
tiate between monitored and unmonitored DApp flows. The
results show that GraphDApp outperforms the rest methods,
especially when the background noise (i.e., the unmonitored
DApps) becomes larger.

Next, we fix the number of unmonitored DApps as 1,260 to
evaluate the performance of different methods. In this set of
experiments, the number of monitored and unmonitored flows
are 32,000 and 14,000, respectively.

The ROC curve helps us to investigate the trade-offs
between TPR and FPR for each classifier [18]. Taking Graph-
DApp for example, we can optimize GraphDApp either for
high TPR or for low FPR. Figure 9 shows the ROC curves of
different methods. The ROC curve of GraphDApp completely

Fig. 10. Open-world: Precision-Recall Curves.

TABLE XI

OPEN-WORLD: AUC FOR STATE-OF-THE-ART METHODS

covers the curves of other methods, which can also be quan-
titatively measured by the AUC values in Table XI. The AUC
value of GraphDApp is the largest among all the methods,
which can reach 0.9973 and is quite close to the maximum
value of 1.

Figure 10 presents the precision-recall curves for different
methods in the open-world scenario. We calculate the precision
and recall by varying the prediction threshold from 0.0 to
1.0 with a step of 0.1. This curve indicates that each classifier
can be tuned to achieve different goals. For example, if we
want to reliably recognize the monitored flows, a classifier can
be optimized to achieve higher precision at the cost of lower
recall; whereas if we aim at identifying as many potential
visits to the monitored DApps as possible, the classifier can
be parameterized to pursue higher recall.

As it can be seen from Fig. 10, GraphDApp is highly
effective for any threshold. When the threshold is set to 0.1
(i.e., the recall of all methods is 1.0), the precision of Graph-
DApp can reach 0.96, while the precision of other methods
is lower than 0.8. When we adjust the threshold to 1.0 to
achieve high precision (i.e., approaching 1.0), the recall of
GraphDApp can reach 0.93, which is much higher than that of
other methods (all below 0.6). The precision-recall curve also
demonstrates that GraphDApp outperforms the other methods.

F. Evaluation on Mobile Application Identification

Although GraphDApp is designed to identify encrypted traf-
fic of specific DApps, it is still applicable to the classification
of mobile applications, which is of great interest to recent
studies [15], [24], [27]. To evaluate the generalizability of
GraphDApp on mobile application classification, we conduct
experiments using the datasets in our previous work [23]. This
dataset contains the encrypted traffic of 15 popular mobile
applications, such as Facebook, Twitter and Alipay. There
are more than 54,000 flows in the datasets. Note that only
dowstream flows are involved. As a closed-world evaluation,
we also use accuracy as the metric to provide the overall
performance of all methods.
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Fig. 11. Classification Results with Different Methods on Mobile
Applications.

Figure 11 presents the classification accuracy with different
methods. APPS, FEAF, LSTM+L, CNN+L have relatively
high accuracy, indicating their features are discriminative
enough to distinguish these mobile applications. Compared
with the results shown in Table VIII, the accuracy of CNN+D
significantly reduces to 0.627. The reason lies in that CNN
can only extract limited information (i.e., one-way packet
direction sequence) from the downstream flows in the dataset.
The accuracy of GraphDApp reaches nearly 1.0. Although the
graph structure of these flows reduces to sequential lines due
to the absence of upstream packets, TIGs can also extract
enough information for building powerful GNN-based classi-
fiers. GraphDApp outperforms the other methods in terms of
classification accuracy, indicating that GraphDApp can also be
applied for mobile application fingerprinting.

VI. DISCUSSION

There are mainly two limitations with our method. The first
limitation is that GraphDApp needs a relatively long time to
label an unknown flow. This can be solved by appropriately
reducing the number of packets in TIGs to shorten feature
extraction time, and employing less MLP layers and hidden
units to accelerate the prediction speed. The second limitation
is that, as a fingerprinting solution, when the fingerprints of
an application changes, the accuracy will decrease accordingly.
To address this problem, we can regularly update the TIGs of
the application and fine-tune the parameters in the classifier.
In the future work, we will further investigate techniques to
make GraphDApp more adaptable to traffic changes.

VII. CONCLUSION

In this paper, we proposed GraphDApp, which can identify
encrypted traffic of DApps using GNNs. We constructed the
TIGs of encrypted flows based on the packet length and packet
direction and turned the DApp identification into a graph clas-
sification problem. Then, we employed multi-layer perceptions
to build a GNN-based classifier. Experiments are conducted
to evaluate our method on real traffic datasets collected from
DApps on Ethereum, including 40 monitored DApps and
1,260 unmonitored DApps. The experimental results show that
GraphDApp can improve the accuracy by at least 10% over
the state-of-the-art. We also demonstrated the effectiveness of
GraphDApp on mobile application fingerprinting. In the future

work, we plan to make GraphDApp more adaptable to traffic
changes and further improve its time efficiency.
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