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Abstract—Depending on large-scale devices, the Internet of
Things (IoT) provides massive data support for resource sharing
and intelligent decision, but privacy risks also increase. As a
popular distributed learning framework, Federated Learning
(FL) is widely used because it does not need to share raw data
while only parameters to collaboratively train models. However,
Federated Learning is not spared by some emerging attacks, e.g.,
membership inference attack. Therefore, for IoT devices with lim-
ited resources, it is challenging to design a defense scheme against
the membership inference attack ensuring high model utility,
strong membership privacy and acceptable time efficiency. In this
paper, we propose MemDefense, a lightweight defense mechanism
to prevent membership inference attack from local models and
global models in IoT-based FL, while maintaining high model
utility. MemDefense adds crafted pruning perturbations to local
models at each round of FL by deploying two key compo-
nents, i.e., parameter filter and noise generator. Specifically, the
parameter filter selects the apposite model parameters which
have little impact on the model test accuracy and contribute
more to member inference attacks. Then, the noise generator
is used to find the pruning noise that can reduce the attack
accuracy while keeping high model accuracy, protecting each
participant’s membership privacy. We comprehensively evaluate
MemDefense with different deep learning models and multiple
benchmark datasets. The experimental results show that low-
cost MemDefense drastically reduces the attack accuracy within
limited drop of classification accuracy, meeting the requirements
for model utility, membership privacy and time efficiency.

Index Terms—IoT, Federated Learning, membership inference
attack, defense, pruning perturbations.

I. INTRODUCTION

W ITH an immense proliferation of IoT devices, it is
important to capitalize on the accelerated Internet

speed and the unprecedented potential for an exponentially
larger number of endpoints facilitated by the advent of 5G/6G
technology [1], [2]. However, as a growing multitude of IoT
devices support numerous applications and services, signifi-
cant challenges emerge in the form of high communication
and storage costs, together with privacy concerns of user data
[3], [4]. Federated Learning (FL) has emerged as the foremost
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Fig. 1. The membership inference attacks in IoT-based Federated Learning.

and promising alternative approach to address the predicament,
which can protect the privacy of participants by sharing local
models rather than original data [5]. Although FL has been
widely used in many IoT application scenarios, such as smart
medical treatments [6], smart home [7] and smart city [8],
recent studies [9]–[13] have shown that FL still suffers from
privacy attacks, e.g., membership inference attacks [14]. Ad-
ditionally, the limited computing resources of IoT devices also
place certain requirements on defense methods against privacy
leakage. Therefore, in the IoT-based FL scenario, it is still
challenging to implement a lightweight defense scheme that
achieves high model utility and strong membership privacy,
considering the limited computing resources of IoT devices.

Membership inference attacks mean an adversary can infer
whether a specific data record is the member of the target
models’ training dataset or not. According to the different
phases in which it is launched, membership inference attacks
can be classified into the local-model-based attack and the
global-model-based attack [14], [15], as illustrated in Fig. 1.
In the training phase of FL, with the local-model-based attack,
the adversary (e.g., the curious server or participants) can
obtain membership privacy from the local models based on
data collected from IoT devices [14], [16], which results in
severe privacy leakage and dampens individuals’ enthusiasm
to participate in FL. In the prediction phase, with the global-
model-based attack, the adversary attempts to extract member-
ship privacy from the well-trained global model, which is the
aggregation of local models from many IoT devices.
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The existing defenses [10], [11], [17]–[19] in the centralized
machine learning can resist the attacks to the global model by
preventing the model overfitting, but some of which are not
well transferred to protect the local models. Additionally, the
defenses of protecting local models using the secure aggrega-
tion [20]–[23] bring heavy computation and communication
overhead, which conflicts with the limited resources of IoT de-
vices. Moreover, the defenses using differential privacy [24]–
[26] bring poor trade-off between the model utility and mem-
bership privacy. Recently, some schemes [27], [28] use model
pruning techniques to resist membership inference attacks, but
they still focus on the centralized neural network training or
incur the huge overhead due to retraining. Therefore, in this
paper, we focus on achieving high model utility, defending
membership privacy against local-model-based and global-
model-based attacks and ensuring acceptable overhead for IoT
devices with limited computation resources.

In this paper, we propose MemDefense to defend against
the membership inference attack in the both training and
prediction phase of FL. Since the pruning technique can
advance in the limited storage and bandwidth in the scenario
of IoT, our scheme introduces the idea of model pruning [29],
[30]. Considering that model overfitting and model parameter
exposure are two main factors leading to the membership
inference attack, model perturbations can not only introduce
randomness and uncertainty to alleviate overfitting, but also
hide the original model parameters. From this perspective,
model pruning is equivalent to adding noise to some model
parameters so that their values become 0 to resist membership
inference attacks. Therefore, we design two new components,
parameter filter and noise generator for our pruning perturba-
tion method. Specifically, the parameter filter attempts to find
some model parameters that have less impact on the model
accuracy and have greater influence on the attack accuracy.
The noise generator generates the pruning perturbations, which
are added to make selected model parameters zero. The
proposed scheme thereby protects membership privacy, while
maintaining high model utility and low resource overhead.

We evaluate MemDefense extensively on four real-world
datasets and compare it with the state-of-the-art defenses,
including dropout [11], L2 regularization [19], adversarial
regularization [10], differential privacy [25] and homomorphic
encryption [20]. Our experimental results show that MemDe-
fense can effectively defend against the white-box membership
inference attacks to local models in FL and also protect the
global model, while guaranteeing the model utility. Addition-
ally, MemDefense does not bring the significant overhead to
devices, making it suitable for the IoT scenario. Compared
with no defense, MemDefense achieves similar classification
accuracy, while obtaining the outstanding reduction in attack
accuracy among existing defenses.

In summary, our contributions are as follows.

• We propose MemDefense to defend against the local-
model-based and global-model-based membership infer-
ence attacks via pruning perturbations, while ensuring

TABLE I
THE MAIN NOTATIONS USED IN THIS PAPER

Notations Descriptions

θ Target model of FL
h The attack model
m The number of selected participants at each iteration
L The loss function
T The iterations of FL
D The dataset in FL
Di The local dataset of i-th participant
G The gain of the membership inference atack model
N The number of total participants in FL
Θ The global model of FL
θi The local model of i-th participant
θ∗i The noisy local model of i-th participant
θselei The selected local model parameters of i-th participant
n The pruning noise of MemDefense
ni The pruning noise added to local model of i-th participant
γ The pruning threshold of MemDefense
γi The pruning threshold of i-th participant
|.| The number of variables

high model utility and strong membership privacy, as well
as supporting for IoT devices with limited resources.

• We design the parameter filter and noise generator to
select parameters which have little impact on the model
accuracy of the training task and contribute more to
membership inference attacks and generate pruning per-
turbations to make selected parameters zero.

• We evaluate its performance on four real-world datasets
CIFAR-10, CIFAR-100, MNIST and FashionMNIST.
The experimental results demonstrate that lightweight
MemDefense can defend against the local-model-based
and global-model-based membership inference attacks
effectively, with limited loss of classification accuracy.

The remainder of this paper is organized as follows. We
introduce the background and the related work in Section II.
Next, we describe the problem formulation in Section III and
present the design of MemDefense in Section IV. Then, we
describe the datasets and model architectures for evaluation in
Section V, and present the evaluation results in Section VI.
Finally, we conclude this paper in Section VII.

II. BACKGROUND AND RELATED WORK

In this section, we present the background of FL and
review the existing membership inference attacks and the
corresponding defense methods.

A. Federated Learning

FL is a computing paradigm for distributed learning with
multiple participants [5]. We focus on typical horizontal Feder-
ated Learning [31], where the participants upload local models
trained over their private data with the same feature space, and
then the server aggregates the local models and updates the
global model. Table I shows the main notations used in this
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TABLE II
SUMMARY OF DEFENSES AGAINST MEMBER INFERENCE ATTACKS

Defense Ideas Solutions Defense
methods Attack modes Descriptions

Mitigating overfitting

Shokri et al. [19] L2
regularization

White-box and
black-box

Use L2 regularization to generalize models, leading to more
than 70% attack accuracy with acceptable accuracy loss.

Nasr et al. [10] Min-max game Black-box Modify the loss function using the attack model, getting
more than 10% accuracy loss with 50±5% attack accuracy.

Salem et al. [11] Dropout,
Model stacking Black-box Leverage model stacking and dropout to train models and

provide similar trade-off with L2 regularization.

Shejwalkar et al. [18] Knowledge
distillation

Black-box and
white-box

Use knowledge distillation to train models, which cannot
protect membership privacy of shared gradients of FL.

Wang et al. [27] Model Pruning Black-box Use model pruning technique to train models, which is not
considered to defend against local model privacy in FL.

Jia et al. [17] Adversarial
examples Black-box Add well-designed noises to the predictions of well-trained

models, which is limited to defend against black-box attacks.

Hiding the original
model

Aono et al. [20] Homomorphic
encryption

Black-box and
white-box

Use secure model aggregation to protect local models, bring-
ing huge computation and communication overhead.

Wei et al. [25] Differential
privacy White-Box Use NbAFL to train models, providing poor trade-off be-

tween the privacy and utility on well-generalized models.

Both MemDefense
(This paper)

Pruning
perturbations White-box Adding pruning noises to local models, providing better

trade-off between the membership privacy and model utility.

paper. Assuming the number of participants is N and each
participant i has the private dataset Di. The objective of each
participant i is to minimize the loss function in Eq. (1).

Li(θi) =
1

|Di|
∑
j∈Di

lj(θi), (1)

where θi is the local model of participant i and lj(θi) is the
loss function of participant i on data record (xj , yj). Define
the global dataset as D = ∪Ni=1Di, the objective of FL is to
train a global model θ to minimize the global loss function
L(θ), as shown in Eq. (2).

L(θ) =
1

|N |
∑
i∈N
|Di|Li(θi) (2)

B. Membership Inference Attacks

According to the different prior knowledge of adversaries,
the membership inference attacks can be divided into the
black-box membership inference attacks (e.g., using the out-
puts of the target models as features) and white-box mem-
bership inference attacks (e.g., using the prediction loss, the
outputs of layers and the gradients as features) [9], [16]. The
reason for the success of membership inference attacks is
that certain features can be used to distinguish member data
from non-member data. Therefore, the overfitting model are
more likely to be the target of the membership inference
attack. Besides, the exposed original model parameters can
also be exploited by the white-box membership inference
attack. No matter in the scenario of black-box setting or white-
box setting, the majority of popular membership inference
attacks require the construction of the attack model, which
is used to extract features from the target models.

In FL, the participants and the server have access to the
model architectures, which means that they can perform the
white-box membership inference attacks. Consider a FL model
θ and target data record (x, y). The goal of the membership
inference attack is to infer whether (x, y) is the training data
of participants. The state-of-the-art white-box attack [14] is to
train an attack model h using the target model’s gradients, the
loss of target model, and the outputs of model’s hidden layers.

Let θ be the target model and h: F (X,Y,θ) → [0, 1]
be the attack model. In the white-box membership inference
attack setting, given a data record (x, y), the attack model
computes F (X,Y,θ) to infer whether the data record (x, y)
is a member of training data or not. The input features of
attack model h is a combination of different features of target
model θ related to (x, y), e.g., θ’s prediction on (x, y), θ’s
gradients on (x, y), etc, denoted by F (X,Y,θ). The output
of h is the probability that (x, y) is a member of θ’s training
dataset based on the input vector F (X,Y,θ). Let PrD(X,Y )
and PrD̄(X,Y ) be the conditional probabilities of the member
and non-member, respectively. Given the above setting, the
expected gain of attack model can be computed as:

Gθ(h) = 0.5× E(x,y)∼PrD(X,Y )[log(h(F (x, y,θ)))]

+ 0.5× E(x,y)∼PrD̄(X,Y )[log(1− h(F (x, y,θ)))]
(3)

For the adversary, the objective of attack model h is to
maximize the privacy gain Gθ(h).

C. Pruning Techniques

Considering that the SOTA (state of the art) deep learning
networks consist of multiple layers and millions of param-
eters [32], pruning techniques play a popular role in the
distributed deep learning for the sake of low computation
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and communication cost. According to the different pruning
objects, the pruning techniques are regarded as two types,
i.e., model pruning and gradient sparsification. The main
idea of the former is to prune unimportant model parameters
based on their magnitudes [29], [30], while the main idea
of the latter is to filter out some ignorable gradients based
on their magnitudes [33]. Additionally, the pruning technique
is considered as an effective privacy protection method. For
instance, Wang et al. [27] proposed the defend scheme with the
deep neural network (DNN) weight pruning against the black-
box membership inference attack in the scenario of traditional
centralised deep learning.

D. Defenses against Membership Inference Attacks

Related defending schemes perform two main ideas against
the membership inference attack, namely mitigating overfitting
and hiding the original model. Several solutions [10], [11],
[17]–[20], [25] to resist the membership inference attack have
been proposed, as shown in Table II.

Defenses based on mitigating overfitting. Many defenses are
designed to reduce overfitting using regularization methods
to protect membership privacy, since overfitting is one major
reason why black-box membership inference attacks against
the target global model are effective [34]. For instance, Shokri
et al. [19] used conventional L2 regularization to mitigating
membership privacy leakage from the global model. Nasr
et al. [10] presented the machine learning with membership
privacy using the min-max game, which is also called ad-
versarial regularization. In addition, dropout [11], [35] and
model stacking [11] have been also used to prevent overfit-
ting to defend against the black-box membership inference
attacks. Shejwalkar et al. [18] use knowledge distillation to
defend against white-box and black-box membership inference
attacks. However, some of these defenses e.g., adversarial
regularization are not suitable for the resource-limited IoT
scenario owing to the heavy computation overhead.

Defenses based on hiding the original model. Some defenses
aim to hide the original models so that the membership
inference attacker cannot infer useful information based on
known knowledge. Several defenses [20], [21], [23] use cryp-
tography techniques, i.e., Paillier, Learning with Error (LWE)
to encrypt intermediate parameters and outputs in the training
process of FL, preventing membership privacy leaks from
local models through secure aggregation. Additionally, Wei
et al. [36] design a FL framework with privacy guarantee for
large-scale IoT devices with the secret sharing. However, these
defenses introduce high communication and computation over-
head to the scenario of IoT. Moreover, other defenses [24]–
[26] leverage differential privacy (DP) [37] to perform privacy
preservation. For instance, Wei et al. [25] introduce a novel FL
framework with differential privacy called NbAFL, which adds
artificial noise satisfying the Gaussian distribution to the local
models before model aggregation. However, multiple studies
[17], [18], [38] reveal that training models with differential
privacy has a negative impact on the model accuracy.

Since FL based on IoT devices with limited resources re-
quires high model accuracy, strong privacy protection and low
overhead, these related defenses have certain flaws. Specifi-
cally, some i.e., differential privacy hurt the model accuracy.
Some i.e., homomorphic encryption can only protect the local
model in the training phase, ignoring the membership infer-
ence attack against the global model. Some i.e., adversarial
regularization and homomorphic encryption result in heavy
communication or computation overhead.

Novelty of proposed defense. MemDefense aims to defend
against membership privacy leakage from local models and
global model in IoT-based FL by adding crafted pruning
perturbations during the training process. Since the added
pruning perturbations make some model parameters zero and
thus make the model sparser, our scheme achieves defense
against the membership inference attack from the perspective
of both mitigating overfitting and hiding the original model.
With lower overhead, MemDefense drastically reduces the
accuracy of membership inference attacks, while maintaining
limited loss of test accuracy of target models. Compared with
other defenses, it provides an excellent trade-off between the
model utility, membership privacy and resource consumption.

III. PROBLEM FORMULATION

In this section, we present a detailed description of the threat
model and design goals.

A. Threat Model

In this paper, we assume that an adversary aims to infer
the membership privacy from the shared local gradients in
the training phase of FL. Following the common assumptions
in the literatures [9], [14], [21], [23], [39], we consider the
server and participants are considered to be honest-but-curious
(i.e., semi-honest), meaning that they will execute the program
according to the agreement but try to infer other participants’
data privacy as much as possible. It is noted that we allow the
server to collude with participants, getting the most offensive
capabilities. Specifically, we summarize the adversary into
three types, i.e., participant-only adversary, server-only ad-
versary, and participants-server collusion adversary [23]. The
capabilities of the three types of adversaries are as follows.

Type I: Server-only adversary. Due to the server’s mission
of aggregating local models received from all participants , the
adversary that compromises the semi-honest server obtains the
local models’ gradients of all participants during the training
phase of FL. It also knows the structure of the target models,
meaning that the adversary can launch white-box membership
inference attacks.

Type II: Participant-only adversary. The adversary that
compromises the semi-honest participant has access to an
auxiliary dataset with similar distribution to other participants’
private datasets. It also knows the structure of the target
models, meaning that the adversary can launch white-box
membership inference attacks.
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Type III: Participants-server collusion adversary. The ad-
versary compromising the semi-honest server and p (p ∈
[1,m − 1]) semi-honest participants has the most offensive
attacking capabilities. It obtains the local models’ gradients
from all participants during the training phase of FL, knows
the structure of the target models (i.e., can launch white-
box membership inference attacks), and has access to semi-
honest participants’ auxiliary datasets with similar distribution
to other participants’ private datasets.

To defend against the membership inference attacks, the
defender considers the attack scenarios with maximum mem-
bership privacy leakage, i.e., the adversary compromises the
semi-honest server and p (p ∈ [1,m − 1]) semi-honest
participants. It is noted that if the defense mechanism can
defend against the membership inference attacks by a strong
adversary, it can effectively defend against the membership
attacks by weaker adversaries.

B. Design Goals

An ideal defense should protect against the white-box mem-
bership inference attacks as depicted in Threat Model, while
preserving the quality of the main task models. Therefore, the
design goals can be described as follows.
• High model utility. In FL, the participants and the server

are required to update the global model according to
the local models to obtain a high-utility target model.
Therefore, little accuracy loss should be considered.

• Strong membership privacy. The attack accuracy rep-
resents the membership privacy leakage risks. For the
defender, the goal is to minimize the attack accuracy,
namely, improving the privacy defense.

• Acceptable time efficiency. For the sake of alleviating any
potential resource burden on IoT devices, it is crucial for
MemDefense to ensure the time efficiency.

IV. DESIGN OF MEMDEFENSE

In this section, we introduce the MemDefense that defends
against the local-model-based membership inference attacks
in the training phase of FL and the global-model-based mem-
bership inference attacks in the prediction phase.

A. Overview

We present a high-level overview of MemDefense in Fig. 2.
As mentioned above, the defender aims to add the pruning
perturbations that can protect the membership privacy to the
selected parameters of uploaded local models, while maintain-
ing the high-utility of aggregated global models of FL.

To find the part of the model parameters that have little
impact on the accuracy of the training task but have a large
impact on the performance of membership inference attack,
the participants filter model parameters in each training epoch,
according to the local model update magnitude, which means
the difference between the updated local model and the global
model of last round. Instead of previous pruning techniques
commonly used in other learning framework, namely, selecting

Algorithm 1 MemDefense Training
Input: The local model θ, the pruning threshold γ
Output: Noisy global model θT

1: for t = 0 to T do
2: Server selects m participants and sends the current

global model θt−1 to them
3: for i = 1 to m do
4: θit ←LocalUpdates(θt−1,i)
5: /* Filtering the model parameters */
6: θi sele

t ←ParamFiltering(θt−1,θ
i
t, γi)

7: /* Generating the pruning noise */
8: ni

t ← NoiseGenerating (θi sele
t , |θit|)

9: Participants upload local update θit +ni
t to Server

10: end for
11: θt = 1

m

∑m
i=1(θit + ni

t)
12: end for
13: Return θT

gradients based on gradient magnitude [33] or selecting param-
eters based on parameter magnitude [27], our scheme selects
parameters based on gradient magnitude. We focus on the
traditional FL with FedAvg [5] as the aggregation rule, which
is widely adopted by recent studies [5], [14], [24]. In this
setting, the noise of aggregated global model is the average of
the sum of local noises generated by all participants. To more
strongly defend against the local-model-based membership
inference attacks, each participant adds pruning noise to the
locally selected model parameters, and then upload their noisy
local model parameters to the server.

The MemDefense training algorithm is shown in Algo-
rithm 1. Initially, the server selects m participants and sent
the initialized model to them. During the T epochs of the
training phase in FL, each participant independently trains
the local model with its own local dataset. Then the local
model and the global model last epoch are fed into function
ParamFiltering with the pruning threshold γ to select the
model parameters which need to be added noise. After filtering
the parameters, the function NoiseGenerating are used to
generate the pruning noise in order to make the selected
model parameters zero. The reason why the selected model
parameters are changed to 0 is to eliminate their influence on
model training and membership inference attack as much as
possible. Finally, participants upload the noisy local model to
the server for the model aggregation. Formally, θ∗i = θi +ni

denotes the noisy local model and ni denotes the generated
noise for i-th participant. The global model added noise θ∗ at
each iteration of FL is calculated by the following Eq. (4):

Θ∗ =
1

m

m∑
i=1

θ∗i =
1

m

m∑
i=1

(θi + ni) (4)

The training process is iterated until convergence, so the final
output is the noise-added global model.

For such scenario, we design two components performing
the functions ParamFiltering and NoiseGenerating re-
spectively to defend against the local-model-based and global-
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Fig. 2. The overview of the MemDefense.

model-based membership inference attacks, i.e., parameter
filter and noise generator.

Parameter filter: the component finds some model param-
eters, which have little impact on the model accuracy of the
training task, and contribute more to member inference attacks,
according to the local model update magnitude. The pruning
threshold γ is introduced to control the scaling of the filtering
parameters. The detailed description about the parameter filter
is given in the following subsection.

Noise generator: the component generates the pruning
noises according to the parameters chosen by the parameter
filter, to protect membership privacy. Specifically, it makes the
noisy model parameters zero. The pruning noise can weaken
the contribution of selected parameters to membership infer-
ence attacks in each training epoch without compromising the
classification accuracy of tasks. The detailed noise generation
algorithm is described below.

B. Parameter Filter

In this section, we first select some parameters, which do
not affect the minimization of the loss function in the training
task, but also ensure the maximization of the gain of member
inference attacks. That is, if noise is added to these parameters,
the accuracy of the training task will not be negatively affected,
and the performance of membership inference attacks will also
be greatly weakened. Therefore, we can formalize it as an
optimization problem in the following:

min
θ\θsele

L(θ \ θsele) (5)

s.t.|θsele| = min
|θsele|

{maxGθ\θsele
(h)},θsele ⊂ θ,

where θ is the model trained on participant’s local dataset and
θsele means the selected model parameters. Therefore, θ\θsele
means unselected original model parameters. Considering that
it is unselected model parameters θ \θsele that have influence

on model training, Eq. (5) shows the goal to minimizes
the loss function of the training task. To some degree, less
selected parameters mean more unselected parameters, which
means less negative impact on model training. Therefore,
in the constraint of Eq. (5), the variable is the attack gain
Gθ\θsele

(h) described by Eq. (3) and the value is the minimum
number of selected model parameters |θsele|. We should find
the minimum number of model parameters that meet the re-
quirements while maximizing the membership inference attack
gain and ensure they are from the local model. Enlightened
by the model pruning techniques [29], [30], we define the
pruning threshold γ to control the number of selected model
parameters. Instead of a specific model parameter value, γ
represents the proportion of filtered parameters.

In order to choose the appropriate model parameters, we
design a filter criterion by comparing the difference between
the updated local model and the global model of last round for
each participant, that is, the local model update magnitude, as
is shown in Eq. (6):

∆θt = |θt−1 − θt|, (6)

where ∆θt and θt respectively represent the local model
update magnitude and the local model in the t-th epoch, and
θt−1 is the global model of last epoch.

The details of function ParamFiltering are shown in
Algorithm 2. During the training phase in FL, after training the
local models on their own privacy datasets, participants calcu-
late the local model update magnitudes ∆θt with the new local
models in this round (i.e., t-th round) and the global model
last round (i.e., (t− 1)-th round). Then, model parameters are
sorted by model update magnitude in ascending order. Next,
depending on the pruning threshold γ, the participant selects a
proportion of the desired model parameters. The lottery ticket
hypothesis [40] proposes that a sub-network exists in a well-
trained neural network model which can achieve performance
comparable to that of the original model, according to the
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Algorithm 2 ParamFiltering
Input: The last epoch global model θt−1, the local model θt,

pruning threshold γ
Output: The selected model parameters θselet

1: /* Calculating the local model update magnitude */
2: ∆θt ← |θt−1 − θt|
3: /* Sorting the parameters by model update magnitude in

ascending order */
4: θt ← sort(θt)
5: /* Selecting the model parameters */
6: for k = 0 to γ|θt| do
7: θselet ← [θkt ]
8: end for
9: Return θselet

phenomenon that the compression technique can remove 90%
of the model parameters while maintaining the same accuracy.
Therefore, in the main experiments in Section VII, we set
the pruning threshold to 0.9. Finally, the selected model
parameters θselet for t-th epoch can be obtained.

In this stage, we choose the part of the parameters with
small update magnitudes, because the small change means
the parameters are not active during the model training. Even
if we inadvertently hurt an important parameter in a certain
epoch, it will still resume its role in the next epoch with a
more substantial change. By filtering out the model parameters
meeting the requirements that the parameters are helpful to the
membership inference attacks and have little impact on the
training task model accuracy, we can design a more precise
defense scheme with parameter-wise pruning perturbations.

C. Noise Generator

In this section, we then generate the pruning perturbations
which are added to the local models trained by participants.
Our goal is to find a noise vector n such that the utility loss of
the target model is minimized and the accuracy of membership
inference attack model h is around 50%, which means that the
attack model cannot determine whether a target data record is
a member or not. Formally, we aim to generate the noise via
solving the following optimization problem:

min
n

d(θ,θ + n) (7)

s.t.|h(θ + n)− 0.5| ≤ ε,

where θ is the model trained on participant’s private data; Eq.
(7) represents that the noise added to the θ minimizes the
model accuracy loss. Meanwhile, we should ensure that the
attack model outputs are around 0.5 (i.e., close to the random
guessing), namely, the attack model cannot determine whether
the target data record is a member of the training dataset or
not. ε is the threshold that defenders can customize, which is
set to 0.1 in this paper.

Therefore, in order to achieve the goals mentioned above,
we design the pruning noise, aiming to make the model param-
eters selected by the parameter filter zero. With the pruning

Algorithm 3 NoiseGenerating
Input: The selected model parameters θsele, the number of

model parameters |θ|
Output: The pruning noise n

1: for k = 0 to |θ| do
2: if k in idx(θsele) then
3: nk = −θselek

4: else
5: nk = 0
6: end if
7: end for
8: n = [nk]
9: Return n

noise, we minimize the membership inference attack gain and
maximize the utility of the training model. More details are
described in Algorithm 3. In the training phase of FL, at
each iteration t, the participant i trains the local model on
their private data. According to the selected model parameters
θsele and the number of model parameters |θ|, the defender
generates a pruning noise vector n by judging whether the
model parameters belong to the set selected by the parameter
filter or not. Specifically, if a model parameter belongs to the
selected model parameters, then its corresponding noise value
is the opposite number of the parameter itself, otherwise the
corresponding noise is 0. Finally, for each participant, a noise
vector n is generated.

The pruning perturbations are added to local model param-
eters to reduce the attack accuracy while keeping high model
utility, which achieve strong membership privacy protection.
The experimental results in Section VII also verify this point.

V. DATASETS AND MODEL ARCHITECTURES

In this section, we describe the datasets used to evaluate
MemDefense and introduce the architectures of the target
models and the membership inference attack models. Addi-
tionally, we present the experimental setting of other defenses.

A. Datasets

CIFAR-10. CIFAR-10 is an image dataset and contains 60,000
color (RGB) images. The number of training images is 50,000
and the number of testing images is 10,000. The image size is
32× 32 pixels. In this dataset, the main task is to train a deep
model for image recognition. Each class has 5,000 training
and 1,000 test images.

CIFAR-100. CIFAR-100 is an image dataset which is widely
used for evaluating image classification. It contains 60,000
color (RGB) images, including 50,000 images for training and
10,000 images for testing. The image size is 32 × 32 pixels.
In this dataset, the main task is to train a deep learning model
which can cluster the images into 100 classes. Each class has
500 training and 100 test images.

MNIST. MNIST is a digital image dataset and contains 70,000
greyscale images with 10 classes from number 0 to 9. The
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TABLE III
DATASETS STATISTIC

Datasets
Target model Global Attack model Local Attack model

Training Data Testing Data Member Data Non-member Data Member Data Non-member Data

CIFAR-10 50,000 10,000 5,000 5,000 1,250 1,250
CIFAR-100 50,000 10,000 5,000 5,000 1,250 1,250

MNIST 60,000 10,000 5,000 5,000 1,500 1,500
FashionMNIST 60,000 10,000 5,000 5,000 1,500 1,500

number of training images is 60,000 and the number of testing
images is 10,000. The image size is 28 × 28 pixels. In this
dataset, the main task is to train a deep learning neural network
model for image recognition.

FashionMNIST. FashionMNIST is a fashion product image
dataset and contains 70,000 greyscale images with 10 classes.
The number of training images is 60,000 and the number of
testing images is 10,000. The image size is 28× 28 pixels. In
this dataset, the main task is to train a deep neural network
model for image recognition.

B. Model architectures

Target models. For the CIFAR-10 and the CIFAR-100 classi-
fication tasks, we use the AlexNet model that is widely used
for image classification. For the MNIST and FashionMNIST
datasets, we use the LeNet-5 model, which is also a popular
deep learning network. For all datasets and model architecture
combinations (i.e., AlexNet model trained on the CIFAR-10
dataset, AlexNet model trained on the CIFAR-100 dataset,
LeNet-5 model trained on the MNIST dataset, and Lenet-
5 model trained on the FashionMNIST dataset), we set the
learning rate to 0.1, 0.01, 0.001 for 0-60, 60-90, 90-100
rounds accordingly. We set up five epochs for participants’
local training at each round of FL. We use the ReLU as the
activation function and Stochastic Gradient Descent (SGD)
learning algorithm as optimizer for all models. The batch size
is set to 128 for all models. There are 20 participants involved
in the FL training in each round for all kinds of datasets.

Membership inference attack model. We use the state-of-
the-art membership inference attack model proposed by Nasr
et al. [14] and implement the white-box membership inference
attacks based on a public code1, which can attack the local
models and global model in FL. For all target models to be
attacked, we use the gradients of their last layer and the output
of their last two layers as the input features of the attack
model. The label is set to 1 if a piece of data is a member
of the target model’s training dataset, otherwise the label is
0. Following the settings of Nasr et al. [14], the gradients are
fed into a convolutional neural network and a fully connected
network to get 64-dimensional features and the output of last
two layers is fed into a fully connected network to get two 64-
dimensional features. Then we concatenate these features to

1https://github.com/SPIN-UMass/MembershipWhiteboxAttacks

get a 192-dimensional feature vector and feed it into a fully
connected network with three hidden layers of sizes {256,
128, 64} to get the final prediction result. We use the ReLU as
activation function, and Adam optimizer for all attack models.
The learning rate is 0.0001 and the output of the attack model
is a sigmoid layer. Additionally, when the local models are
the targets of the membership inference attack, we choose the
local models in the 5 epochs [40, 60, 80, 90, 100] in the
training phase of FL. Therefore, the input of the attack model
is correspondingly enlarged 5 times.

C. Experimental settings of other defenses

Dropout. In all experiment tasks based on the datasets CIFAR-
10, CIFAR-100, MNIST and FashionMNIST, the dropout rate
is set to 0.5.

L2 regularization. In all experiments based on the datasets
CIFAR-10, CIFAR-100, MNIST and FashionMNIST, the L2
generalization factor is set to 0.001.

Adversarial regularization. Adversarial regularization (Adv-
Reg) is implemented based on a public code2, for which the
Adv-Reg factor λ is set to 3 in terms of the tasks based on all
the datasets. Considering that the adversarial regularization is
suitable for the centralized scenario, it cannot protect local
models in the training phase of FL. Therefore, we cannot
obtain the local model attack accuracy Aatt l with Adv-Reg.

Differential privacy. Differential privacy (DP) adopts an
open-source version of NbAFL’s implementation3. To find
proper parameter settings of NbAFL, we set the parameter δ to
0.00001 and clipping threshold C to 30 firstly according to the
official recommendation. Then, with the Gaussian noise, we
try different global privacy budgets ε, which are finally set to
8000, 8000, 25 and 30, for the tasks based on datasets CIFAR-
10, CIFAR-100, MNIST and FashionMNIST, respectively.

Homomorphic encryption. In all experiments with homo-
morphic encryption (HE), we use Paillier as the cryptography
algorithm in the phe4 and set the secret key length to 1024
bit. Since local models from participants are transmitted to
the server in ciphertext, which cannot be used by attackers to
perform membership inference attacks, the local model attack

2https://github.com/SPIN-UMass/ML-Privacy-Regulization
3https://github.com/AdamWei-boop/Federated-Learning-with-Local-

Differential-Privacy
4https://github.com/conda-forge/phe-feedstock
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TABLE IV
THE EXPERIMENTAL RESULTS OF NO DEFENSE, MEMDEFENSE AND COMPARISON DEFENSES

Defenses
CIFAR-10 CIFAR-100 MNIST FashionMNIST

Atrain Atest Aatt g Aatt l Atrain Atest Aatt g Aatt l Atrain Atest Aatt g Aatt l Atrain Atest Aatt g Aatt l

No Defense 98.58% 88.68% 63.56% 61.64% 95.14% 48.61% 77.78% 68.28% 98.96% 98.61% 53.46% 62.50% 91.62% 88.69% 53.90% 53.87%

Dropout [11] 91.52% 87.77% 63.83% 59.48% 79.79% 54.40% 62.77% 58.08% 99.69% 99.24% 52.54% 61.87% 90.60% 88.14% 50.94% 51.20%

L2 [19] 97.31% 91.56% 60.71% 60.40% 91.72% 60.88% 66.47% 63.28% 98.88% 98.52% 53.66% 63.97% 94.39% 89.91% 53.05% 51.77%

Adv-Reg [10] 96.78% 82.37% 60.22% − 99.83% 57.54% 64.58% − 100.00% 99.20% 53.75% − 94.31% 88.83% 51.47% −
NbAFL [25] 97.95% 91.31% 57.88% 59.44% 84.75% 64.41% 59.60% 62.72% 96.02% 96.47% 53.11% 64.57% 85.28% 84.18% 51.87% 50.30%

HE [20] 99.09% 88.54% 60.43% − 96.52% 48.58% 78.77% − 99.69% 98.61% 53.30% − 91.84% 88.32% 53.82% −
MemDefense 95.83% 89.78% 56.23% 59.24% 79.66% 52.56% 59.12% 59.76% 99.23% 98.89% 50.74% 59.07% 89.36% 87.97% 50.54% 51.10%

TABLE V
THE EXPERIMENTAL RESULTS OF THE TIME COST WITH MEMDEFENSE,

OTHER DEFENSES AND NO DEFENSE

Training time(s) CIFAR-10 CIFAR-100 MNIST FashionMNIST

No Defense 4.58 5.11 2.32 2.91

Dropout [11] 5.25 (1.1×) 5.12 (1.0×) 2.38 (1.0×) 2.58 (0.9×)

L2 [19] 5.26 (1.1×) 5.12 (1.0×) 2.35 (1.0×) 2.65 (0.9×)

NbAFL [25] 6.21 (1.4×) 5.99 (1.2×) 2.52 (1.1×) 2.87 (1.0×)

HE [20] 13114.20 (2863.4×) 13124.50 (2568.4×) 100.40 (43.3×) 94.22 (32.4×)

MemDefense 6.36 (1.4×) 6.16 (1.2×) 2.98 (1.3×) 2.89 (1.0×)

accuracy Aatt l cannot be obtained. However, the homomor-
phic encryption focuses on protecting the local models of the
participants in the training process, which cannot protect the
global model in the prediction phase.

To evaluate the membership leakage risk, we use the global
model attack accuracy Aatt g (i.e., the percentage of the
corrected labels predicted by the attack model when the attack
goal is the global model) and the local model attack accuracy
Aatt l (i.e., the percentage of the corrected labels predicted by
the attack model when the attack goal is the local models) as
the evaluation metrics.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of MemDefense
and compare our scheme with other current popular defenses.
The detailed experimental settings for the dataset allocation
about the target model and attack model are described in
Table III. The member data and non-member data of the attack
model belong to the target model’s training dataset and testing
dataset, respectively. Specifically, the adversary labels the data
samples used for training target model as member and the
data samples used for testing as non-member. After that, the
adversary trains the attack model using both member and non-
member data samples to launch the membership inference.

We carry out our experiments on four typical datasets with
the four main aims: (i) evaluating the effectiveness and time
efficiency of MemDefense with reference to no defense; (ii)
comparing the performance of MemDefense with existing
other defenses; (iii) analyzing the reason why MemDefense
works; (iv) assessing the performance of MemDefense with
different parameter settings.

A. Comparison with No Defense
In this section, we evaluate MemDefense on the effective-

ness and time efficiency by comparing it with no defense.

Effectiveness. As Table IV shows, compared with no defense,
MemDefense can protect the membership privacy of partici-
pants, while maintaining high model utility. Therefore, we can
conclude them in two points:

1) MemDefense keeps the model utility within a high level.
Compared with the global model trained without defense,
the test accuracy Atest of the global model trained with
MemDefense is only reduced by a maximum of 0.72%
(FashionMNIST).

2) MemDefense achieves strong defense ability. With
MemDefense, the global model attack accuracy Aatt g

and the local model attack accuracy Aatt l can be respec-
tively reduced to 50.54% and 51.10% (FashionMNIST)
at most, greatly close to the result of random guessing.

It is noted that the global model attack results are obtained by
attacking the final model aggregated by the central server, and
the local model attack results are obtained by attacking the
local models sent to the server by the participants. Obviously,
since the defense scheme imposed on the local models further
affect the global model, MemDefense robustly defends against
the membership inference attacks in both the training phase
and the prediction phase, showing an excellent ability to
protect the membership privacy of participants in FL.

Time efficiency. Table V shows the time costs per training
epoch for each participant in different classification tasks with
different methods, which demonstrates that the time overhead
of MemDefense is 1.2× that of no defense on average,
acceptable to all participants.

B. Comparison with Other Defenses
In this section, we compare MemDefense with the state-of-

the-art defense methods, i.e., dropout [11], L2 regularization
[19], adversarial regularization (Adv-Reg) [10], differential
privacy (NbAFL) [25] and homomorphic encryption (HE) [20]
on the effectiveness and time efficiency.

Effectiveness. As shown in Table IV, the experimental results
on various datasets with MemDefense and other existing
defenses present several critical observations:
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(a) MT, CIFAR-10, No defense (b) MT, CIFAR-10, Memdefense

(c) MIA, CIFAR-100, No defense (d) MIA, CIFAR-100, MemDefense

Fig. 3. The t-SNE projection of data representations of the model training
and the membership inference attack, where different color represents different
classes of datasets.

1) MemDefense can maintain high model utility, similar
to most existing defenses. Specifically, compared with
the accuracy loss from 0.03% to 6.31% with other de-
fenses, resulting in a loss of only 0.72% on FashionM-
NIST, MemDefense brings zero accuracy loss on datasets
CIFAR-10, CIFAR-100 and MNIST.

2) The defensive effect of MemDefense is similar to that
of the existing defenses, and even better than them. In
detail, Memdefense outperforms the existing defenses
on datasets CIFAR-10 and MNIST, in terms of both
the global model attack and the local model attack.
On CIFAR-100, the local attack accuracy Aatt l using
MemDefense is close to that using dropout (59.76% vs.
58.08%) and on FashionMNIST, the local attack accuracy
Aatt l using MemDefense is similar to that using NbAFL
(51.10% vs. 50.30%).

3) The performance of MemDefense is hardly affected by
the degree of model generalization. For instance, for the
CIFAR-100 dataset with models that generalize poorly,
MemDefense can keep the trade-off between model ac-
curacy and privacy preservation. For the MNIST dataset
with the well-generalized models, MemDefense can still
keep high test accuracy Atest and effectively achieve the
lowest global model attack accuracy Aatt g (50.74%) and
local model attack accuracy Aatt l (59.07%), while the
defensive capabilities of dropout, L2 regularization and
NbAFL are mediocre.

4) MemDefense achieves the maximum span of reducing

the attack accuracy. Specifically, the global model attack
accuracy Aatt g is decreased by 18.66% (CIFAR-100).

Time efficiency. We compare the time overhead of MemDe-
fense with that of other defense methods. Since the adversarial
regularization [10] is used in the centralized scenario and its
costs are considerably heavy, for fair comparison, we only
compare the time overhead of MemDefense with that of
dropout [11], L2 regularization [19], differential privacy [25]
and HE [20]. Table V show that our scheme has similar time
overhead to other schemes except homomorphic encryption.
Moreover, since the homomorphic encryption requires a large
amount of ciphertext calculations and consumes considerably
time and computing power, which brings a burden to IoT
devices with limited resources, our solution is far superior to
homomorphic encryption in terms of cost.

C. The Reason Why MemDefense Works

In this section, we analyze the reason why MemDefense
works and use the technique t-SNE (t-Distributed Stochastic
Neighbor Embedding) [41] to visualize the results.

The research [42] shows that in the distributed SGD al-
gorithm, most gradient exchanges are redundant. Intuitively, a
larger parameter update magnitude means that the parameter is
more active during the model training, which contains more
information. Instead, a smaller parameter update magnitude
means that the corresponding parameter is likely to be unim-
portant in the training phase. Therefore, adding noise to most
parameters with smaller update magnitudes to make them
zero will have no impact on the minimization of the loss
function during the training process. Furthermore, a small
parameter update magnitude may also indicate that the model
has effectively learned from the training data. However, the
situation also raises the possibility of overfitting, where the
model becomes overly specialized to the training data, making
it easier to distinguish between the training and test data.
The distinction, in turn, benefits potential adversaries aiming
to successfully perform the membership inference attack.
Therefore, setting the model parameters with small update
magnitudes to zero can be regarded as a measure to mitigate
the execution of membership inference attacks.

To prove the above statements, we use the visualization
technique t-SNE [41] to present the impact on the model
training and the membership inference attack after adding
noise to the parameters with small update magnitudes to make
them zero. As shown in Fig. 3, the results describe two
important observations:

1) MemDefense has no negative impact on minimizing the
loss function of the classification task. As shown in
Fig. 3(a) and Fig. 3(b), the representation clustering
result of MemDefense based on the model training (MT)
with dataset CIFAR-10 is similar to that of no defense,
proving that MemDefense do not damage the indicative
representations of data features.

2) MemDefense has a curbing effect on maximizing the gain
of the membership inference attack (MIA). As shown
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(a) Test accuracy Atest (b) Global model attack accuracy Aatt g (c) Local model attack accuracy Aatt l

Fig. 4. The impact of different pruning thresholds on the test accuracy, global model attack accuracy and local model attack accuracy.

in Fig. 3(c) and Fig. 3(d), compared with no defense,
MemDefense blurs the boundaries between member and
non-member data clusters based on CIFAR-100, proving
that MemDefense protects member features.

D. The Impact of the Parameter Settings

In this section, we evaluate the impact of other parameter
settings, namely, the pruning thresholds and the number of
participants, on the performance of MemDefense.

The impact of pruning thresholds. In MemDefense, we
choose a series of pruning thresholds γ from [0, 1] to select
the local model parameters with the parameter filter. Then,
we evaluate the impact generated by the different pruning
thresholds γ on the performance of MemDefense, including
the test accuracy Atest, the global model attack accuracy
Aatt g and the local model attack accuracy Aatt l.

The experimental results are shown in Fig. 4, which describe
three important observations:

1) The pruning threshold γ has influence on the model accu-
racy with MemDefense. As is shown in Fig. 4(a), within
a reasonable range, as the pruning threshold increases,
the model test accuracy Atest will not be compromised.
However, when the pruning threshold is more than 0.9
and gets closer to 1, the model accuracy decreases.

2) The pruning threshold γ has an impact on the defense
effect of MemDefense against the membership inference
attacks. According to Fig. 4(b) and Fig. 4(c), on different
datasets, the attack accuracy Aatt g and Aatt l decrease
as the pruning threshold increases, especially when the
threshold γ is smaller than 0.9.

3) When the pruning threshold γ is set to 0.9, the trade-
off between the model utility and defense capability is
optimal. Specifically, on different datasets, MemDefense
with γ = 0.9 achieves outstanding model test accuracy
with low attack accuracy.

The impact of the number of participants. We show
the evaluation of MemDefense with changing the number
of participants, namely 10, 20 and 50. In order to evaluate
the effectiveness and low-accuracy overhead of MemDefense
with various numbers of participants involved in the training

phase of FL, we separately measure the train accuracy Atrain,
the test accuracy Atest, the global model membership infer-
ence attack accuracy Aatt g and the local model membership
inference attack accuracy Aatt l without defense and with
MemDefense for all experiment tasks based on the datasets
CIFAR-10, CIFAR-100, MNIST and FashionMNIST.

From the related experiment results in Table VI, two key
observations can be concluded:

1) MemDefense ensures the acceptable model utility, with
the number of participants increasing. Specifically on the
MNIST dataset, compared with no defense, MemDefense
maintains the model test accuracy Atest above 98%,
bringing no loss of accuracy to the model.

2) MemDefense achieves defending against membership in-
ference attacks with different numbers of participants
participating in the training phase and prediction phase in
FL. Especially, on the FashionMNIST dataset, regardless
of the number of participants, MemDefense makes the
global model attack accuracy Aatt g and local model
attack accuracy Aatt l as close to 50% as possible.

VII. SUMMARY AND FUTURE WORK

In this paper, we proposed MemDefense that leveraged
crafted pruning perturbations to defend against the member-
ship inference attacks in the training and prediction phase
of FL. Additionally, considering the practical constraints of
large-scale devices and limited resources in the IoT scenario,
our scheme can achieve both practicality and lightweight.
The experimental results showed that MemDefense could
effectively defend against the local-model-based and global-
model-based membership inference attacks, while keeping
high model utility and ensuring time efficiency.

In the future, there are still some open problems in the
IoT-based Federated Learning to be solved. We will focus
on the novel noise design and defense scenario expansion.
Specifically, it is still challenging to conceive theory-oriented
and efficient noise generation methods. Moreover, besides the
membership inference attack, other privacy threats i.e., data
reconstruction attack should also be considered as the target
for designing the defense mechanism.
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TABLE VI
THE IMPACT OF THE NUMBER OF PARTICIPANTS

CIFAR-10
N = 10 N = 20 N = 50

Atrain Atest Aatt g Aatt l Atrain Atest Aatt g Aatt l Atrain Atest Aatt g Aatt l

No Defense 99.48% 90.27% 58.55% 63.40% 98.58% 88.68% 63.56% 61.64% 94.96% 89.28% 57.16% 55.90%

MemDefense 97.69% 90.11% 56.97% 60.68% 95.83% 89.78% 56.23% 59.24% 91.02% 86.16% 54.52% 52.80%

CIFAR-100
N = 10 N = 20 N = 50

Atrain Atest Aatt g Aatt l Atrain Atest Aatt g Aatt l Atrain Atest Aatt g Aatt l

No Defense 98.68% 50.57% 76.60% 68.88% 95.14% 48.61% 77.78% 78.28% 78.51% 41.53% 73.78% 60.10%

MemDefense 76.88% 57.00% 59.50% 58.92% 79.66% 52.56% 59.12% 59.76% 42.54% 33.57% 55.93% 55.20%

MNIST
N = 10 N = 20 N = 50

Atrain Atest Aatt g Aatt l Atrain Atest Aatt g Aatt l Atrain Atest Aatt g Aatt l

No Defense 99.49% 98.62% 52.73% 60.08% 98.96% 98.61% 53.46% 62.50% 99.18% 98.58% 52.77% 66.00%

MemDefense 99.31% 99.06% 51.65% 57.20% 99.23% 98.89% 50.74% 59.07% 99.11% 98.71% 51.81% 56.17%

FashionMNIST
N = 10 N = 20 N = 50

Atrain Atest Aatt g Aatt l Atrain Atest Aatt g Aatt l Atrain Atest Aatt g Aatt l

No Defense 92.28% 88.49% 54.56% 54.77% 91.62% 88.69% 53.90% 53.87% 93.60% 88.49% 52.48% 53.50%

MemDefense 86.44% 85.30% 50.23% 51.25% 89.36% 87.97% 50.54% 51.10% 89.66% 88.03% 50.88% 50.67%
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