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Abstract
Traffic classification is a technology for classify-

ing and identifying sensitive information from clut-
tered traffic. With the increasing use of encryption 
and other evasion technologies, traditional con-
tent-based network traffic classification becomes 
impossible, and traffic classification is increasingly 
related to security and privacy. Many studies have 
been conducted to investigate traffic classification 
in various scenarios. A major challenge to existing 
schemes is extending traffic classification technol-
ogy to a broader space. In other words, most traf-
fic classification work is not universal and can only 
show great performance on specific datasets. In 
this article, we present a systematic approach to 
optimizing feature selection for encrypted traffic 
classification. We summarize the optional encrypt-
ed traffic features and analyze the approaches 
of feature selection in detail for different data-
sets. The experimental result demonstrates that 
our scheme is more accurate and universal than 
other state-of-the-art approaches. More precisely, 
our mechanism provides a guideline for future 
research in the field of traffic classification.

Introduction
Encryption is an important means to protect 
privacy, which can protect our network traffic 
data from being peeped on, as well as prevent  
eavesdroppers from stealing our passwords or 
the usage habits of our applications. At present, 
more than half of the world’s traffic has been 
encrypted by encryption protocols, such as SSL/
TLS. Although this is good news for privacy-con-
scious users, network administrators face severe 
challenges. In the face of a large influx of traffic, 
without decryption technology, administrators will 
not be able to view the information contained in 
the traffic. This means that encryption is a dou-
ble-edged sword. While protecting privacy, it 
also provides opportunities for eavesdroppers. 
Encrypted traffic can hide malicious software like 
other information, resulting in a series of worms 
(as well as Trojans and viruses). As a result, how 
to classify large-scale encrypted traffic and detect 
abnormal information in time becomes an urgent 
problem that needs to be solved. 

These years, to address the classification prob-
lem of encrypted network traffic, many research-

ers have put forward a series of technologies and 
countermeasures. For instance, Feghhi and Leith 
[1] proposed an encrypted web traffic classifica-
tion attack adopting only timing information. Shen 
et al. [2] used only packet length information to 
classify encrypted webpage traffic based on the 
bidirectional interaction between clients and serv-
ers. However, a common problem is that these 
schemes can only perform well on specific data-
sets. If the datasets are replaced or not processed 
according to the methods required by research-
ers, most schemes may lose effectiveness. Con-
sequently, it is imperative to propose a universal 
encrypted traffic classification mechanism that can 
be effective for any traffic dataset.

To achieve this goal, we address two main 
challenges. The first challenge is to collect fea-
tures of encrypted traffic that may be efficient 
in traffic classification. Those features based on 
packet contents are not suitable for encrypted 
traffic analysis, and are beyond our consideration. 
The second challenge is the selection and optimi-
zation of features. When we get a large number 
of potentially effective features of encrypted traf-
fic, how to filter these features and optimize the 
combination of features according to specific sce-
narios is the most critical step to achieve universal 
encrypted traffic classification.

In this article, we present a systematic 
approach to optimizing feature selection for effi-
cient encrypted traffic classification. In the next 
section, we give a macro explanation of where 
encryption traffic classification work is carried out, 
and elaborate the state-of-the-art encrypted traf-
fic classification research. Then we point out the 
feature set of encrypted traffic. Following that, we 
describe how to evaluate and combine features 
for different datasets. Next, we show our exper-
iment performances. Finally, we propose future 
research directions and conclude our article.

Overview of Encrypted Traffic Classification
Traditional traffic classification techniques are usu-
ally based on the analysis of packet contents, such 
as port-based approaches and payload-based 
approaches. However, with the enhancement 
of people’s security consciousness, the usage of 
encryption protocols is growing rapidly, and the 
packet payloads are encrypted, thus leading to 
the traditional techniques being unusable. There-

Optimizing Feature Selection for Efficient Encrypted Traffic Classification: A Systematic 
Approach
Meng Shen, Yiting Liu, Liehuang Zhu, Ke Xu, Xiaojiang Du, and Nadra Guizani

This work is partially sup-
ported National Natural 
Science Foundation of China 
under Grants 61972039 and 
61872041, Beijing Natural 
Science Foundation under 
Grant 4192050, China 
National Funds for Distin-
guished Young Scientists 
under Grant 61825204, 
Zhejiang Lab Open Fund 
No. 2020AA3AB04, the 
Key Lab of Information 
Network Security (Ministry 
of Public Security), Beijing 
Outstanding Young Scientist 
Program with No. BJJW-
ZYJH01201910003011, 
Science and Technology 
Planning Project of Guang-
dong Province under Grants 
LZC0023 and LZC0024, 
PCL Future Greater-Bay 
Area Network Facilities for 
Large-scale Experiments and 
Applications (LZC0019), and 
Technology Innovation Pro-
gram of Beijing Institute of 
Technology (3052019023).

BIG DATA INTELLIGENT NETWORKING

Digital Object Identifier:
10.1109/MNET.011.1900366

Meng Shen is with Beijing Institute of Technology & Key Lab of Information Network Security & Peng Cheng Laboratory, Yiting Liu and Liehuang Zhu  
(corresponding author) are with Beijing Institute of Technology; Ke Xu is with Tsinghua University & BNRist & Peng Cheng Laboratory;  

Xiaojiang Du is with Temple University; Nadra Guizani is with Gonzaga University.

Authorized licensed use limited to: University of Illinois. Downloaded on August 07,2020 at 01:59:38 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Network • July/August 2020 21

fore, how to classify encrypted traffic effectively 
has become a research hotspot in the field of net-
work security [3–5]. A lot of research has been 
conducted in various scenarios. For instance, 
some researchers identify website fingerprints 
with traffic from Tor or other encrypted networks, 
others classify encrypted traffic generated by 
mobile applications, and some identify encrypted 
video traffic such as video titles and video types. 
Figure 1 shows the overall framework for encrypt-
ed traffic classification. Several common types 
of encrypted traffic classification studies are as 
follows.

Website fingerprinting. Feghhi and Leith [1] 
proposed a website traffic classification approach 
using only packet timing information on the link. 
They applied dynamic time warping (DTW) to 
classify traffic traces with time sequences.  Their 
approach does not need to achieve the start or 
end of web fetches.  Panchenko et al. [6] adopt-
ed cumulative packet length sequences as web-
site fingerprints and extracted a fixed number 
of discriminative features from traffic traces with 
different lengths. Wang et al. [7] calculated the 
distance between packet sequences to realize 
website fingerprinting.

Mobile application fingerprinting. Taylor et 
al. [8] proposed an Android app fingerprinting 
scheme applying packet length statistics fea-
tures, which is called AppScanner. It is capable 
of automatic fingerprinting and real-time identifi-
cation. Shen et al. [9] utilized second-order Mar-
kov chains to classify encrypted traffic generated 
by different mobile apps. Their program is based 
on the features of application attribute bigrams 
containing certificate packet length and the first 

application data size in SSL/TLS traffic. Mauro et 
al. [10] achieved the identification of user actions 
by analyzing an Android encrypted network. They 
adopted the DTW algorithm to calculate the 
sequence of data packets and extract features. 
After that, random forest was used to be their 
classifier. Finally, the classification of user actions 
is reached by clustering.

Video traffic classification. Ran et al. [11] 
proposed a scheme to classify video stream title 
by analyzing encrypted traffic. Support vector 
machine (SVM) and Nearest Neighbor were used 
as their classifiers. They can also identify the video 
titles not existing in the training set as unknown. 
Dong et al. [12] proposed a fine-grained classi-
fication method for video traffic based on the 
k-Nearest Neighbor algorithm. All these articles 
are summarized in Table 1.

Although many researchers have proposed a 
variety of encrypted traffic classification schemes, 
these schemes are not universal. In other words, 
all these schemes only have good effects on the 
specific dataset proposed by the researchers. 
When replacing the dataset, many approaches 
lose their effectiveness. Motivated by this situa-
tion, we show the candidate features that can be 
leveraged to discriminate encrypted traffic and 
propose a systematic approach to optimize fea-
ture selection for efficient encrypted traffic clas-
sification. 

Note that while some existing traffic analysis 
schemes [8] also considered evaluating feature 
contribution, there are several obvious differenc-
es between the proposed method in this article 
and the existing methods. First, we give a sys-
tematic method to summarize all the categories 

FIGURE 1. Overall framework of encrypted traffic classification.
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TABLE 1. State of the art of encrypted traffic classification.

Design goal Features Classifiers Traffic type Ref.

Website fingerprinting

Packet timing information k-NN and Naive Bayes VPN [1]

Cumulative packet length SVM Tor [6]

Distance between packet sequences k-NN Tor [7]

Mobile app fingerprinting
Statistical features of packet length Random Forest SSL/TLS [8]

Application attribute bigrams Second-order Markov Chains SSL/TLS [9]

User action identification Complete flow time series Random Forest SSL/TLS [10]

Video traffic classification

Total number of bits in a peak SVM and Nearest Neighbor SSL/TLS [11]

Statistical features of downlink packet length 
and time

k-NN SSL/TLS [12]
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and sub-classes of candidate features that can 
be extracted from encrypted traffic. While exist-
ing studies focus merely on concrete and limit-
ed numbers of features. Second, by considering 
the association relationships of features and their 
influence on the results, we make flexible feature 
selection according to the needs of different sce-
narios (objective and constraint). This framework 
does not exist in the existing approaches since 
existing papers usually have already set a fixed 
scenario in advance. Overall, our scheme is more 
universal and can effectively analyze any traffic 
datasets, thus providing a guide for future traffic 
classification work.

Feature Set of Encrypted Traffic
As illustrated in Table 1, a rich number of features 
of encrypted traffic can be used to train efficient 
classifiers. However, existing studies focus merely 
on concrete features that are proven to be dis-
criminative for the datasets they use, leaving the 
whole space of candidate features unexploited. 
Thus, we summarize the categories and sub-class-
es of candidate features that can be extracted 
from encrypted traffic.

For the sake of analysis, it is necessary to sort 
out the messy encrypted traffic into multiple flows 
based on the five-tuple: source/destination IP 
addresses, source/destination port numbers, and 
protocol (TCP/UDP).  For each flow, three types 
of packet series are considered: uplink packets 
only, downlink packets only and complete pack-
ets (i.e., both uplink and downlink packets).  Fur-
thermore, we define an uplink packet burst as a 
group of uplink packets in which there are no two 
adjacent downlink packets. 

Features Based on Packet Length
As packet length is an affiliated feature of network 
packets, packet length information becomes a 
kind of commonly used feature and has demon-
strated its effectiveness in encrypted traffic anal-
ysis.

Packet length sequence. For each flow, the 
packet length sequence of the first n packets can 
be used as an important feature. For instance, the 
first n packets may vary greatly in terms of packet 
length for individual websites due to the differenc-
es in their contents and protocol parameters such 
as those in the SSL/TLS handshake process.

Unique packet length. The existence of unique 
packet length in a flow is a significant feature, 
which is also mentioned in the literature [7]. It rep-
resents that in a traffic dataset, some packet lengths 
only appear in one type of traffic, but not in others. 
We are able to utilize the unique packet length to 
distinguish different types of traffic. However, it 
loses effect if there is packet padding, as on Tor.

Packet length box. The length of the pack-
ets in a flow is usually scattered over the packet 
length interval. In order to get statistical charac-
teristics of the packet length in a flow, we can 
aggregate the packet length into a fixed number 

of boxes. Assume that each box represents a cer-
tain range of packet length; it is straightforward to 
obtain the number of packet lengths that fall into 
each range.

Sequences of cumulative length. When con-
sidering the direction of flows, we can first set 
the length of uplink packets as negative and the 
length of downlink packets as positive. Then we 
accumulate the packet length forward to obtain 
a sequence of the cumulative lengths of the first 
n packets. When considering the flows as direc-
tionless, the length of both uplink and downlink 
packets can be set positive. The sequence of the 
cumulative lengths of the first n packets in a flow 
is captured as a discriminative feature [6].

Statistical features. For each flow, we are able 
to calculate statistical values of packet lengths, 
such as minimum, maximum, mean, median abso-
lute deviation, standard deviation, variance, skew, 
kurtosis, percentiles (from 10 to 90 percent), 
length summation, and number of packets [8]. 
We totally consider these 57 statistical values for 
the three packet series (uplink packets, downlink 
packets, and complete packets).

Features Based on Packet Ordering
In certain cases, the packet lengths are fixed or 
similar among different encrypted traffic flows, 
thereby making those features based on pack-
et length information less effective. For instance, 
Tor uses cell padding techniques to send data in 
fixed-size (512-byte) cells.  To deal with these situ-
ations, packet ordering information can be taken 
as important features.

Packet counts. Several types of packet counts 
can be considered. We can count the number 
of uplink and downlink packets for every n pack-
ets. Furthermore, the total number of packets 
before each uplink packet is also a useful feature. 
We could extract the feature that indicates the 
number of downlink packets between every two 
uplink packets. 

Burst counts. Burst is a significant feature as 
demonstrated in the literature [13]. Here, we 
focus on uplink packet burst as downlink pack-
ets are vulnerable to network delay. We regard a 
burst as a whole and count the number of bursts 
as well as the maximum and mean of burst length 
in each flow.

Features Based on Packet Timing
Several researchers also classify encrypted traf-
fic utilizing timestamps of packets. The features 
extracted from packet timing information are as 
follows.

Inter-packet delays. For each packet series, 
inter-packet delay is defined as the difference 
sequence of timestamps of two adjacent packets.

Combination of packet counts and timing. 
For each packet series, we calculate the number 
of packets in a certain time interval. This indicates 
the time period in which data packet transmission 
is concentrated.

Theoretically speaking, we treat all these fea-
tures equally. However, timing characteristics are 
usually not useful, because the distribution of tim-
ings in different websites is similar. In addition, 
timestamp information of packets is greatly affect-
ed by network fluctuations. As a result, in most 
cases, we prioritize other features.

When replacing the dataset, many approaches lose their effectiveness. Motivated by this situation, 
we show the candidate features that can be leveraged to discriminate encrypted traffic and propose a 

systematic approach to optimize feature selection for efficient encrypted traffic classification.
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A Systematic Approach for  
Optimizing Feature Selection

This section describes a systematic approach for 
optimizing feature selection. As shown in Fig. 2, 
the feature selection framework consists of three 
components: feature preprocessing, feature evalu-
ation, and feature combination.

The purpose of feature preprocessing is to pre-
liminarily remove traffic characteristics without 
discrimination. In these three steps, feature evalu-
ation is the most significant one. The evaluation of 
a feature is usually considered from two aspects: 
feature contribution and feature overhead. For 
different issues, the focus of feature evaluation 
may be different. More details are presented later.

After data preprocessing and feature evalua-
tion, we need to select and combine meaningful 
features and input these features into classifiers 
(e.g., machine learning models) so as to achieve 
traffic classification (e.g., website fingerprint-
ing). The main purpose of feature selection is to 
reduce the number and dimension of features, 
thus making the model more generalized and 
reducing over-fitting.

Feature Preprocessing
In order to find out the meaningful features for 
traffic classification more efficiently, we need to 
pre-process the traffic features with significance 
testing and remove those features of less signifi-
cance. It can be achieved by calculating the vari-
ance of features.

Assume that the feature values are only 0 and 
1, and the value is 1 in 95 percent of all input traf-
fic. Then it can be considered that the contribu-
tion of this feature is small. If 100 percent is 1, 
the feature is meaningless. Generally speaking, if 
the feature values of network traffic are discrete 
variables, we can calculate the variance of fea-
tures directly and remove those features with low 
variance. However, if the features are continuous 
variables, they need to be discretized before they 
can be used.

In the actual process of traffic classification, 
there are generally no more than 95 percent of 
characteristics that are the same values. Accord-
ingly, although this method is simple, it cannot 
be classified very accurately. As a result, we take 
it as the preprocessing of feature selection. We 
first remove those features with small change in 
values, and then select the appropriate features 

by the feature evaluation approaches mentioned 
below so as to better carry out traffic classifica-
tion.

Feature Evaluation
Through feature preprocessing, we initially 
remove some traffic features with low discrimina-
tion. Next, we need to further evaluate features 
from two aspects: feature contribution and fea-
ture overhead.

Feature Contribution Evaluation: Feature con-
tribution is an important index to measure wheth-
er a feature plays a role in traffic classification. The 
main approaches for obtaining feature contribu-
tion are as follows.

Chi-square test. The classical chi-square test is 
to test the correlation between qualitative inde-
pendent variables and qualitative dependent vari-
ables. In traffic classification, it is mainly used for 
evaluating feature contribution for binary clas-
sification problems; for example, distinguishing 
whether the encrypted traffic is generated by an 
anonymous communication system (e.g. Tor) or 
not. The main idea is that calculating chi-square 
values of the features of each dimension and 
ranking them. The chi-square values represent the 
feature importance.

Term frequency-inverse document frequency 
(TF-IDF). TF-IDF is a common weighting technique 
for information retrieval and data mining, where TF 
means term frequency and IDF means inverse doc-
ument frequency. It is mainly adopted to assess the 
importance of a word to a document set or one of 
the documents in a corpus. We are able to utilize 
this method to evaluate feature importance in traf-
fic classification. First of all, we expect to code the 
TCP packets. Packet encoding could be combined 
with the direction, length, and flag bit of the pack-
et. For instance, U_54_SY N represents an uplink 
SYN packet with a length of 54. Then we are able 
to calculate the value of TF and IDF of encoded 
packets. After that, we obtain the packets with 
TF-IDF frequency. When it comes to feature selec-
tion, we are able to remove those packets whose 
TF-IDF frequency is less than a certain threshold, 
and utilize the remaining packets for classification. 
Certainly, appropriate transformations are expect-
ed to be made for different problems.

Model-based ranking. A mainstream feature 
contribution evaluation method is based on a 
machine learning model. Some machine learning 
methods have their own scoring mechanism, or 

FIGURE 2. Process of feature selection.
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can easily be applied to feature evaluation tasks, 
including regression model, SVM, decision tree, 
random forest, and so on. Taking random forest 
as an example, we can measure the importance 
of features by the average impurity decay of all 
decision trees in the forest without considering 
whether the data is linear separable. More con-
veniently, random forests implemented in scikit-
learns have already collected information about 
the feature contribution for us. After fitting Ran-
domForestClassifier, we can get these contents 
through feature_importances. Besides, other 
machine learning models we have mentioned are 
the same. As a result, this method is convenient 
and useful, and it has been widely used in feature 
contribution evaluation.

Feature Overhead Evaluation: Feature over-
head mainly contains two aspects: the time 
complexity and space complexity of the feature 
extraction algorithm.

Time complexity. The time complexity of fea-
ture extraction reflects the increased magnitude 
of feature extraction time with the increase of traf-
fic scale. To a large extent, it can reflect the qual-
ity of a feature extraction algorithm. To calculate 
time complexity, we need to find out the basic 
statements in the feature extraction algorithm. The 
most frequently executed statements in the algo-
rithm are the basic statements. Then we expect 
to calculate the order of execution times of basic 
statements, which means that all the coefficients 
of the lowest power and the highest power can 
be ignored as long as the highest power in the 
function of the number of executions of the basic 
statement is correct. This simplifies algorithm anal-
ysis and makes us focus on the most important 
point: growth rate. After that, O is used to repre-
sent the time performance of the algorithm, and 
n represents the scale of the problem. We need 
to put the order of magnitude n of the number of 
executions of the basic statement into O.

Space complexity. Similar to the discussion of 
time complexity, the space complexity of the fea-
ture extraction algorithm is defined as the storage 
space consumed by the algorithm. The storage 
space occupied by a feature extraction algorithm 
in computer memory includes the storage space 
occupied by the algorithm itself, the input and 
output data, and the temporary storage space 
occupied by the algorithm in operation. The stor-
age space occupied by data is determined by the 
traffic scale, and it does not change with the dif-
ference of the algorithm. The storage space occu-
pied by the storage algorithm itself is proportional 
to the length of the algorithm writing. The tem-

porary storage space occupied by the algorithm 
varies with the algorithm.

Here, we summarize the time and space com-
plexity of each feature mentioned earlier, and 
exhibit it in Table 2.

Feature Combination
After feature preprocessing and feature evalu-
ation, we get the features with three attributes: 
contribution degree, time complexity, and space 
complexity. The last step is to select features and 
combine them into an optimal feature set for the 
corresponding dataset. The main aim of feature 
combination is to select a more representative 
subset from the original feature set.

In different scenarios of traffic classification 
applications, the features we need are different. 
Some traffic classification scenarios require rapid 
response; for instance, network management 
needs to quickly identify traffic generated by users 
using illegal anonymous software and block traffic 
in time. At this time, it can relax the requirement 
of traffic identification accuracy (e.g., not less than 
70 percent), but it needs to ensure the identifi-
cation speed. Conversely, for some offline traffic 
classification work, what we are more concerned 
about is the accuracy of classification, while we 
have greater tolerance for the storage and time 
consumption of classification.

Generally speaking, feature selection and com-
bination are required to consider the following 
two aspects:
•	 Minimizing overhead while guaranteeing cer-

tain accuracy
•	 Improving accuracy when overhead does not 

exceed a certain threshold
For those traffic classification tasks that require 

low time and space complexity, we first need to 
clarify the time and space complexity of each 
feature, and give priority to the features with low 
complexity. Then we need to evaluate feature 
contribution to further select valuable features 
from them. For those traffic classification tasks 
that require high accuracy, we need to extract 
traffic features and rank them by feature contribu-
tion. After that, we expect to pick up those traffic 
features with high contribution.

When we sort the features according to the 
demand, the simplest way to select the features 
is to add them into the feature set in turn and 
observe the accuracy of traffic classification until 
the highest accuracy is achieved. Also, we could 
first try those features that are ranked in the top 
50 percent and calculate the classification accura-
cy. Then adding or subtracting features in feature 
set until the highest accuracy is achieved.

Experiment Evaluation
In this section, universal traffic classification exper-
iments are performed on one self-collected data-
set and one representative dataset, provided by 
Panchenko et al. [6], to evaluate the performance 
of our proposed method UTA. The schemes 
called Appscanner [8] and CUMUL [6] are used 
for comparison.

Datasets
This section describes the datasets used in our 
experiments. An independent and representative 
dataset is of vital importance for significant exper-

TABLE 2. Feature overhead evaluation.

Features Time complexity Space complexity

Packet length sequence O(n) O(n)

Unique packet lengths O(n) O(1)

Packet length box O(n) O(1)

Cumulative length sequence O(n) O(n)

Statistical features O(n2) O(n)

Packet counts O(n2) O(n)

Burst counts O(n2) O(n)
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iment results. Here, we consider adopting one 
typical dataset provided by Panchenko et al. [6] 
called Panchenko16 and another dataset collect-
ed by ourselves called Website100.

The reason why we choose Panchenko16 as 
our experiment dataset is that it consists of the 
most extensive data in all public datasets. Instead 
of just collecting traffic from index pages of a lim-
ited number of websites, Panchenko16 contains 
more webpages of a site besides the index page 
and collects a large amount of website traffic, 
which is able to reflect the representative sam-
ples of the Internet. Cui et al. [14] also leveraged 
Panchenko16 to confirm the effectiveness of their 
approach. Specifically, it contains 1125 retriev-
able webpages’ traffic from 712 different web-
sites, and each webpage has 40 instances. This 
dataset includes information about the direction 
and size of each packet.

Most prior public datasets including Panchen-
ko16 lack part of the traffic information (e.g., 
port number or arrival time), which makes us 
unable to extract all the candidate features men-
tioned earlier. As a result, we collect our own 
dataset named Website100, which keeps the 
complete traffic information, so that we can 
extract all candidate features and further con-
duct feature selection. It is composed of the traf-
fic from the top 100 websites in China. For each 
website, we downloaded 200 instances. We 
divided the traffic into flows based on a five-tu-
ple representation: srcIP, dstIP, srcPort, dstPort, 
protocol (TCP/UDP), where srcIP represents the 
client IP address, dstIP represents the server IP 
address, srcPort represents the client port num-
ber, dstPort represents the server port number, 
and protocol represents the communication 
protocol established between the client and the 
server. Furthermore, we remove TCP retransmis-
sion packets because retransmissions are mostly 
caused by network conditions. 

In the following experiments, we apply UTA to 
these two datasets to demonstrate the universality 
of the proposed method.

Experimental Results
In this section, we first briefly introduce two typ-
ical website fingerprinting schemes. Then we put 
forward our solution, UTA, and take those two 
state-of-the-art methods for comparison to vali-
date the universality of UTA.

Comparison Scheme: Here, we take two state-
of-the-art website fingerprinting approaches into 
consideration as our comparison schemes:
•	 CUMUL is proposed by Andriy et al. [6]. This 

scheme has the highest website fingerprint-
ing accuracy known to date. They adopted 
cumulative packet lengths to represent the 
traffic traces and leverage SVM as their clas-
sifier.

•	 Appscanner is another typical traffic classi-
fication scheme proposed by Taylor et al. 
[8]. It is a robust method that was designed 
to identify smartphone apps using encrypt-
ed network traffic analysis. This method is 
also widely used in website fingerprinting. It 
utilizes 54 statistics features of uplink flow, 
downlink flow, and complete flow as their 
feature set and classify traffic based on ran-
dom forest.

Performance: According to the idea of UTA, 
we start with extracting all possible useful features 
from each dataset. The dataset is a collection of 
website traffic that has been grouped into flows. 
The features we extracted were shown earlier. We 
expect to pre-process the feature sets to remove 
meaningless features. We calculate the variance 
of each feature and filter out the features with 
low variance. After that, we count the contribu-
tion of the remaining features. In our experiments, 
we utilize the random forest algorithm implement-
ed in scikit-learn to calculate the importance of 
features. We chose the top 45 percent contri-
bution features. Table 3 shows the features we 
pick out for the two datasets: Panchenko16 and 
Website100. After combining these significant 
features, we apply random forest as our classifier 
and use 10-fold cross-validation to get website 
fingerprinting results.

We consider three metrics — precision, recall, 
and F1 — to measure the classification results. 
Figure 3 depicts the performance of these three 
methods (UTA, Appscanner, and CUMUL) on the 
two datasets. We can see that no matter which 
metrics, the performance of UTA is significant-
ly higher than that of the other two methods on 
both datasets. This result strongly proves that our 
feature combination scheme is effective and that 
UTA is more universal than other state-of-the-art 
schemes.

Challenges and Future Directions
We present a feature selection approach for 
encrypted traffic classification, and the experi-
mental results show that our method is effective 
for different datasets. However, several issues still 
need to be explored in order to further improve 

FIGURE 3. Website fingerprinting results with datasets of a) Panchenko16;  
b) Website100.
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our approach. The challenges and future direc-
tions are as follows.

Relationship between features and datasets.
In different traffic classification problems, we usu-
ally need to extract a large number of possible 
features and repeatedly attempt to find those 
features with significant discrimination for specif-
ic datasets. This process is time-consuming and 
labor-intensive with little effect. Therefore, one of 
the challenges at present is to find the relation-
ship between datasets and features. For a given 
dataset, we are able to find optimal features more 
quickly.

Based on our experience, we preliminarily 
summarize the possible relationship between fea-
tures and datasets. In terms of the bi-classifica-
tion problem, for instance, we need to distinguish 
whether the traffic in the dataset is generated by 
visiting the website when opening the encryption 
service application or by visiting the website nor-
mally. The encryption service application usually 
has a unique information exchange protocol, and 
this protocol is ordinarily reflected in the packet 
length information in the process of packet trans-
mission. Hence, based on experience, we gener-
ally analyze the packet length sequence for such 
problems.

For the multi-classification problems, the situ-
ation is usually complex, and we need to analyze 
it according to the datasets. Still using website fin-
gerprinting as an example, we need to determine 
which websites a user is visiting over an encrypt-
ed connection. If the traffic in a dataset is mostly 
composed of short flows (e.g., no more than 100 
packets), we could mainly consider the special 
packet length, the state transition characteristics 
of the packet length, and the statistical charac-
teristics of the packet length. For those datasets 
that are mostly composed of long streams, we 
give priority to consider cumulative packet length 
sequence and statistical characteristics. These are 
just preliminary summaries. We need to do further 
research to find the exact relationship between 
features and datasets.

Real-time detection. The traffic we analyze 
now is pure traffic after de-noising in the labora-
tory, but in the real world, traffic is complex and 
ever-changing. Furthermore, network administra-
tors need to detect abnormal traffic in real time 
and block it in time. As a result, we expect to 
analyze the real world traffic directly and achieve 
real-time detection in a future experiment, thus 

applying the universal classification model to a 
wider space.

To realize real-time detection, the most crucial 
step is to find traffic characteristics that can sup-
port it. Among the features summarized in this 
article, only the cumulative packet length feature 
can barely support real-time detection, and other 
features need to wait for all flow loads to be com-
pleted before they can be extracted. Therefore, 
we need to carry out more research to solve this 
problem.

Features compression. Although we have 
extracted meaningful features from a large fea-
ture set, these features still have the problem of 
information overlap or little contribution to some 
extent. Accordingly, a major challenge is feature 
compression. We look forward to finding effective 
algorithms to minimize feature dimension under 
the condition of guaranteeing accuracy, thus 
reducing the storage and computation overheads 
of traffic classification.

Principal component analysis (PCA) is a statis-
tical method for dimensionality reduction. It also 
has an effect on traffic feature compression [15]. 
However, this algorithm is sensitive to the scaling 
of the data, and there is no consensus as to how 
to best scale the data to obtain optimal results. As 
a result, using PCA for feature compression often 
results in loss of classification accuracy. It is of 
vital importance to explore a compression algo-
rithm that can minimize the loss of classification 
accuracy or even make it non-destructive, thus 
making the research on traffic classification more 
efficient and lightweight.

Conclusion
In this article, we propose a systematic approach 
to optimize feature selection for efficient encrypt-
ed traffic classification. We start by introducing 
an overview of encrypted traffic classification 
studies. Following that, we summarize the feature 
set of encrypted traffic and show how to select 
these features for different datasets, including 
feature preprocessing, feature evaluation, and 
feature combination. Then we exhibit the exper-
iment performance and prove that our feature 
selection scheme has the quality of universality 
in encrypted traffic classification. We also discuss 
the challenges and future directions in the traffic 
classification field.
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