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Abstract—With the prosperity of graph-based applications, it
is increasingly popular for graph nodes to have labels in terms of
a set of keywords. The top-k nearest keyword (k-NK) query can
find a set of k nearest nodes containing a designated keyword
to a given source node. In cloud computing era, graph owners
prefer to outsource their graphs to cloud servers, leading to severe
privacy risk for conducting k-NK queries. The current studies fail
to support efficient and accurate k-NK query under the premise
of privacy protection.

In this paper, we propose a new graph encryption scheme
Aton, which enables efficient and privacy-preserving k-NK
querying. Based on the symmetric-key encryption and particular
pseudo-random functions, we construct a secure k-NK query
index. Aton is built on a ciphertext sum comparison scheme
which can achieve approximate distance comparison with high
accuracy. Rigorous security analysis proves that it is CQA-2
secure. Experiments with real-world datasets demonstrate that it
can efficiently answer k-NK queries with more accurate results
compared with the state-of-the-art.

Index Terms—Cloud computing, privacy, graph encryption,
top-k nearest keyword query

I. INTRODUCTION

Recent years have witnessed a growing application of graph
in a variety of fields, such as social networks, road networks
and web networks [1]. There are many systems (e.g., Hdrf [2])
and engines (e.g., PowerGraph [3] and Snap [4]) to analyze
and query massive graphs. To make graph data more expres-
sive, many graphs in real-world applications have their nodes
(a.k.a vertices) associated with labels, where a label is usually
represented by one or multiple keywords [5]. For instance, in
social networks like Facebook, each node representing a user
may contain labels such as one’s work or hobbies. In this
paper, we focus on the top-k nearest keyword (k-NK) query
on graphs. Given a graph G with edge weights, a k-NK query,
consisting of a source node v, a keyword w, and an integer k,
returns the k nodes closest to the source node with the desired
keyword. For example, in social networks, a k-NK query can
find for a given user, who likes hiking, the most closely related
friends with the same hobby.

As the scale of graph data grows, graph owners are accus-
tomed to outsource their data to cloud servers to provide high-
quality services for geographically distributed users. However,
plain graphs containing sensitive information in the cloud are
facing severe risk of privacy leakage, due to the existence of

TABLE I: Comparison of Existing Solutions

[9, 10] [12] [14] [16] [18] Aton

Privacy protection X X X X
General graphs X X X X X

Weighted graphs X X X X

malicious attackers and semi-honest servers [6–8]. Therefore,
it is meaningful to study the privacy-preserving query over en-
crypted graphs. There are many algorithms that support k-NK
queries on plain graphs [9–11]. However, these algorithms will
lose the ability to query in the encrypted graph environment
without a special design.

To protect graph privacy on cloud, recent studies focus on
k-NK queries over encrypted graphs, which can be roughly
classified into two categories. The first category is concerned
with queries on spatial data, where nodes in graphs are
represented in the form of coordinates [12]. However, these
schemes work only on graphs with coordinates, such as road
networks, and are not applicable to general graphs without
coordinates. The second category aims at enabling k-NK query
over general graphs [13–16]. In these schemes, keyword search
and adjacent node search are usually carried out one after the
other, resulting in low inefficiency. Another limitation is that
many schemes apply only to unweighted graphs because they
cannot compare distance values over encrypted graphs. Several
solutions [16–19] enable summation and comparison over
ciphertexts, but they still have apparent limitations, in terms of
insecurity [16], low efficiency [17, 18], and low accuracy [19].
Therefore, it is still a challenging task to conduct efficient and
accurate k-NK query while ensuring data security.

In this paper, we propose a novel graph encryption scheme
Aton, which enables efficient and privacy-preserving k-NK
query over encrypted graphs. Due to the barrier imposed by
data encryption, we resort to approximate solutions to answer
k-NK query. Meanwhile, Aton can still achieve high accuracy
compared with the exact answers. We calculate the shortest
distance through the 2-hop labeling (2HL) index [20], which
can answer shortest distance queries efficiently, and achieve
keyword matching through keyword-lookup tree (KT ) index
[10]. Based on these two indexes, we build a secure k-NK
query index, where nodes and keywords are encrypted by
the symmetric-key encryption (SKE) and particular pseudo-978-0-7381-3207-5/21/$31.00 © 2021 IEEE



random functions (PRFs), respectively. To achieve secure
distance comparison of ciphertexts, we propose a simple and
efficient ciphertext sum comparison scheme by using order-
revealing encryption (ORE) [21].

The overall differences of Aton from previous solutions are
summarized in Table I, where Privacy refers to the distance
between nodes. The main contribution of this paper are as
follows:

1) We propose a novel graph encryption scheme Aton,
which can realize the approximate top-k nearest keyword
(k-NK) query over encrypted graphs. It can answer a k-
NK query in a privacy-preserving and time-efficient way.

2) We design a linear efficient ciphertext sum comparison
scheme based on the order-revealing encryption, which
can compare the sum of two different integers to a great
extent at the ciphertext level only through one interaction
with no need of additional server.

3) We conduct rigorous security analysis of Aton and prove
that it achieves CQA-2 security. Detailed experiments
with real-world datasets demonstrate that Aton is linearly
efficient and more accurate than existing schemes with the
same security guarantees.

The rest of this paper is organized as follows. We describe
the background of k-NK query in Section II and define the
privacy-preserving k-NK query problem in Section III. We
present design details of Aton in Section IV and describe
the novel ciphertext sum comparison scheme in Section V.
After that, we exhibit the security analyses in Section VI and
evaluate the proposed scheme through experiments in Section
VII. Finally, we review the related work in Section VIII and
conclude this paper in Section IX.

II. BACKGROUD

This section presents the formal definition of the k-NK
query and introduces the index structure used in the query.

A. k-NK Query

Given an undirected graph1 G = (V,E), where V is the set
of nodes and E contains all the edges in G. The number of
nodes and edges in G are denoted by n = |V | and m = |E|.
Each edge e(s, t) ∈ E is associated with a positive length
dst. We use dG(v, u) to denote the shortest distance between
node v and u. In the undirected graph we have dst=dts and
dG(v, u)=dG(u, v). Let the set of keywords on the graph G be
W = {w1, w2, . . . , w|W |}, where |W | represents the number
of different keywords. Each node v ∈ V contains a set of one
or more keywords which is denoted by Wv . Let Vw be the
set of nodes containing the keyword w. The set of all (v, w)
pairs in G is denoted by doc(V ). Some of notations used in
this paper are listed in Table II.

Definition 1. (k-NK QUERY). Given a graph G = (V,E), a
k-NK query (v, w, k) contains three elements where v ∈ V is
the query node, w is a keyword, and k is a positive integer and

1We refer to G as an undirected graph in this paper, unless otherwise
specified. The extension to directed graphs will be described later.

TABLE II: List of Notations

Notation Meaning
G = (V,E) Input graph

n,m Number of nodes and edges in G

dst Distance of the edge e(s, t)

λ Security parameter

dG(v, u) Shortest distance from v to u

I Secret k-NK index structure

∆, ∆̃ Plain and secret 2-hop label index

Ψ, Ψ̃ Plain and secret 2-hop label backward index

Θ, Θ̃ Plain and secret low frequency keyword index

Υ, Υ̃ Plain and secret keyword-lookup tree index

doc(V ) Keywordlist of G

returns a set R of k nodes, all of which belong to Vw. There
does not exist a node u ∈ Vw, u /∈ R such that dG(v, u) <
maxy∈RdG(v, y).

Example 1. Fig. 1 shows a simple graph G, where the dis-
tance of each edge and the keyword of each node are marked
alongside it. For example, given a k-NK query (v1, w2, 2) then
the answer will be {v6, v5}. Because Vw2

= {v3, v4, v5, v6}
and dG(v1, v6) < dG(v1, v5) < dG(v1, v3) = dG(v1, v4).
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Fig. 1: A graph G with keywords.
B. Constructing Index

The encrypted index designed in this paper is mainly con-
structed based on the k-NK query index, which contains three
parts: 2-hop labeling (2HL) index, 2-hop labeling backward
(BL) index and keyword-lookup tree (KT ) index.

2-hop labeling index. In order to speed up distance query,
many 2HL index construction schemes are proposed [20].

Given a graph G = (V,E), we denote its 2HL index as
∆. Each node v ∈ V has a 2HL index ∆(v). For any entity
(u, dvu) ∈ ∆(v), dvu is the shortest distance between node
u and v. When we want to query the shortest distance from
node s to t, we need to find the common node in ∆(s) and
∆(t) first and then select the shortest distance from s to t.

Example 2. Take the graph G in Fig. 1 for example, the
2HL index ∆ of G is shown in Fig. 2. If we want to get
the shortest distance from node v4 to v5, we fisrt find the
common nodes {v1, v2} in ∆(v4) and ∆(v5), which is shown
on the left in Fig. 3. Then calculate dv4v1 + dv1v5 = 12 and
dv4v2 + dv2v5 = 6 separately. So dG(v4, v5) = 6 .

2-hop labeling backward index. The BL index is designed
to achieve efficient k-NK query under high frequency key-
words. We denote the BL index as Ψ which is built based on
2HL index ∆. For each v ∈ V , if and only if (v, duv) ∈ ∆(u),
there have (u, dvu) ∈ Ψ(v). Each entity in Ψ(v) is sorted in
non-ascending order of distance.
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Fig. 2: The 2HL index and BL index of G.
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Fig. 3: Query on the 2HL index and BL index.

Example 3. The BL index Ψ of G is shown in Fig. 2. Given
a k-NK query (v4, w2, k), as shown on the right in Fig. 3, we
find ∆(v4) first. Since (v2, 4) ∈ ∆(v4), (v5, 2) ∈ Ψ(v2) and
v5 ∈ Vw2

, node v5 with a distance of 6 might be one of the
answers.

Keyword-lookup tree index. Since BL index may contain
nodes that don’t contain the keyword w, we need KT index,
which is denoted by Υ, to efficiently find entries for nodes that
do. Υ consists of keyword-lookup tree index Υ(v) for each
node v ∈ V . For (u, dvu) ∈ Ψ(v), Υ(v) divides the entries in
Ψ(v) into fragments. Each leaf node contains the hash value
of all keywords for a node, and each tree node contains the
hash value of a subset of keywords. A hash function H is used
in this process. For each keyword w, the hash function H(w)
sets exactly one of the h bit hash value to 1. Given a node
set X and a keyword w, if H(X)∧H(w) = 0, no node in X
contains the keyword w, otherwise may contain w.

We store Υ(v) for Ψ(v) in an array of length 2 |Ψ(v)| − 1.
The number of unused spaces in the array that stores Υ(v)
is bit(|Ψ(v)|) − 1, where bit(x) is the number of 1’s in the
binary representation of x. We refer the reader to [10] for more
construction and search details.
Example 4. Fig. 4 shows the Υ(v1) of node v1 in G. The leaf
node n2 contains the hash value H(n2) = H(w1)∨H(w2) of
all keywords in Wv4 , while the non-leaf node n1 contains the
hash value H(n1) = H(n0) ∨ H(n2) of tree nodes n0 and
n2. Given the keyword w1, we compute H(w1) first. Since
H(n1)∧H(w1) 6= 0, a node in {v7, v1} may contain w1. We
calculate that 2 |Ψ(v1)| − 1 = 13 and bit(|Ψ(v1)|) = 3. As
shown in Fig. 5, the unused space denoted by ` is 2.

III. PROBLEM FORMULATION

This section presents the system model and the security
model of the privacy-preserving k-NK querying.
A. System Model

We adopt the general system model [22] for the secure k-
NK querying. As shown in Fig. 6, our model contains two
entities, named a user and a cloud sever (sever for short).

The user is the owner of graph data, who constructs the
secure searchable index for the graph and outsources the
encrypted graph and index to the sever. When the user wants
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Fig. 4: An example of Υ(v1).
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Fig. 5: The array for keeping the forest of Υ(v1).

to perform a k-NK query, he first generates the corresponding
token and sends it to the sever. Upon receiving user’s query
token, the sever queries on the encrypted index according to
the pre-designed query algorithms. The user decrypts the result
returned by the sever to get the final answer. We define the
framework of the graph encryption scheme as follows:

Definition 2. (GRAPH ENCRYPTION). A graph encryption
scheme Π is a collection of three polynomial-time algorithms
Π = (KeyGen, Setup,Query) that work as follows:
• K ← KeyGen(λ): is a secret key generation algorithm

that takes as input a security parameter λ and outputs a
secret key K .

• I ← Setup(K,G, doc(V )): is a graph encryption algo-
rithm that takes as input a secret keys K, a graph G and
a keyword list doc(V ), and outputs the secure index I .

• R ← Query(I, (K, q)): is a twoparty protocol between
a user who holds (K, q) and a server who holds I . After
executing this protocol, the server returns an encrypted
result R. The user decrypts R to get Ans.

B. Security Model

We define the security of our graph encryption scheme using
the standard simulation-based model which has been widely
adopted by secure computation works [22–25]. In this paper,
we consider an honest-but-curious adversary who has access to
all encrypted data and queries from the user. Now, we present
the formal CQA2-security definitions as follows.

Definition 3. (CQA2-security model). Let Π = (KeyGen,
Setup,Query) be a graph encryption scheme and consider
the following probabilistic experiments where A is a semi-
honest adversary, S is a simulator, and LSetup and LQuery
are leakage functions which capture the leaked information
during Setup and Query, respectively.

RealΠ,A(λ):
• A outputs a graph G.
• The challenger begins by running KeyGen(λ) to create

a secret key K, and then computes the encrypted index
I by Setup(K,G, doc(V )). The challenger sends the
encrypted index I to A.

• A adaptively issues k-NK queries. For each query q, A
and the challenger execute Query(I, (K, q)).

• A computes a bit b ∈ {0, 1} as the output of the
experiment.
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Fig. 6: The system model of secure k-NK query scheme.
IdealΠ,A,S(λ):
• A outputs a graph G.
• Given the leakage function LSetup(G), S simulates a

secure graph index I∗ and sends it to A.
• A adaptively issues k-NK queries. S is given the leakage

function LQuery(G,Q) for each query q. A and S
execute a simulation of Query.

• A computes a bit b ∈ {0, 1} as the output of the
experiment.

We say that the graph encryption scheme Π =
(KeyGen, Setup,Query) is (LSetup,LQuery)-secure against
the adaptive chosen-query attack, if for the adversary A, there
exists a PPT simulator S satisfying

|Pr[RealΠ,A(λ) = 1]− Pr[IdealΠ,A,S(λ) = 1]| ≤ negl(λ),

where negl(λ) is a negligible function.

IV. CONSTRUCTION OF ATON

In this section, we introduce the verifiable graph encryption
scheme Aton for the secure k-NK queries.

In our design, we use four particular pseudorandom func-
tions g, h, f and F and a symmetric-key encryption (SKE)
scheme. The parameters of g, h, f and F are illustrated in (1),

g : {0, 1}λ × {0, 1}∗ → {0, 1}λ (1a)

h : {0, 1}λ × {0, 1}∗ → {0, 1}z+2λ (1b)

f : {0, 1}λ × {0, 1}∗ → {0, 1}2r+2λ (1c)

F : {0, 1}λ × {0, 1}∗ → 2i(i ∈ t) (1d)

where λ is the security parameter, z and r are the output
lengths of the SKE and ORE encryptions and F is the PRF
that sets exactly one of the t bit hash value to 1.

A. Secure k-NK Index Construction

In the key generation phase, given the security parameter
λ, the user randomly generates three secret key K1,K2, K3

and K4 for PRFs, ORE, SKE and OE respectively.
According to the index structure introduced in Section II,

the k-NK query can be divided into forward query (FQ) and
forward backward query (FBQ) for keywords of different
frequencies. To implement a k-NK query, we need to pre-
compute a secure index structure, which consists of four parts:
low-frequency keyword (LF ) index, secure 2-hop labeling
(SL) index, 2-hop labeling backward (SBL) index and key-
word tree (SKT ) index.

Given a k-NK query (v, w, k) in FQ, since w is not frequent,
we can first find all the nodes containing w in Vw before

Algorithm 1: LF Index Generation Algorithm
Input: A secret key K, and low frequency keyword set W
Output: A secure LF index Θ̃

1 Initialize a dictionary Θ̃
2 for each w ∈W do
3 Set T 1

w = g(K1, w||1), T 2
w = g(K1, w||2)

4 Initialize a counter c = 0
5 for each v ∈ Vw do
6 Compute V =SKE(K3, v||1)
7 Set T 1

wv = g(T 1
w, c), T 2

wv = h(T 2
w, c)

8 Set T 1
v = g(K1, v||3), T 2

v = g(K1, v||4)
9 Set Θ̃[T 1

wv ] = (V ||T 1
v ||T 2

v )⊕ T 2
wv

10 Set c = c+ 1

11 return Θ̃

Algorithm 2: SL Index Generation Algorithm
Input: A secret key K and an graph G = (V,E)
Output: A secure SL index ∆̃

1 Generate the 2HL index ∆ of G
2 Initialize a dictionary ∆̃
3 for each v ∈ V do
4 Set T 1

v = g(K1, v||3), T 2
v = g(K1, v||4), T 3

v = g(K1, v||5)
5 Initialize a counter c = 0
6 for each (u, d) ∈ ∆(v) do
7 Compute U =SKE(K3, u||2), (D, D̂) =OE(K2, d,K4)
8 Set T 1

u = g(K1, u||6)
9 Set T 1

vu = g(T 1
v , c), T 2

vu = f(T 2
v , c), T 3

vu = h(T 3
v , c)

10 Set ∆̃[T 1
vu] = (U ||D||D̂||(T 1

u ⊕ T 3
vu))⊕ T 2

vu
11 Set c = c+ 1

12 return ∆̃

calculating the distance value. We do this by constructing two
dictionaries LF and SL indexes, which are denoted by Θ̃ and
∆̃ as described in Algorithm 1 and 2. To prevent leaking the
size of keyword list and sketch before querying, we separate
each entry in the plain index and ensure that they are stored
separately in the dictionary, with a size of one. More precisely,
we utilize a counter c and generate the unique T 1

w and T 2
w for

each keyword w (line 3) and the unique T 1
v and T 2

v for each
entity in ∆(v) (line 8). The T 1

w (or T 1
v ) indicates the position

that the entity will be stored in Θ̃ (or ∆̃). T 1
v and T 2

v (line 8)
are used to link to ∆̃, because the same encryption is used in
∆̃. Similarly, T 1

u in Algorithm 2 (line 9) is also used to connect
to another index, as we will explain later. T 2

w (or T 2
v , T 3

v ) is
used for second-round encryption of the encrypted value by
XOR operation. Through these operations, we guarantee that
the size of each Vw and sketch, the link to ∆̃ in Θ̃, the number
of common nodes in different sketches and order information
of distance in ∆̃ will not be disclosed before the query.

If |Vw| is large, FQ becomes inefficient because there are
many candidates in Vw need to be checked. In addition to SL
index, we achieve FBQ by constructing two dictionaries SBL
index and SKT index, which are denoted by Ψ̃ and Υ̃. To
ensure that FBQ on encrypted graphs can be implemented, we
still store Ψ̃ and Υ̃ in arrays. The encryption process of BL
index is shown in Algorithm 3. For any u ∈ V, (x, d) ∈ Ψ(u),
use SKE to encrypt node x and OE to encrypt d where OE
is introduced in Section V. T 1

u (line 5) is where each term
Ψ̃(u) is stored in Ψ̃. SKT index Υ̃ is constructed similarly
to Υ, but we use the PRF F instead of H when encrypting



Algorithm 3: SBL Index Generation Algorithm
Input: A secret key K and 2-hop label index ∆ of G
Output: A secure SBL index Ψ̃

1 Generate the BL index Ψ of G
2 Initialize a dictionary Ψ̃
3 for each u ∈ V do
4 Initialize an array Ψ̃(u)
5 Set T 1

u = g(K1, u||6)
6 for each (x, d) ∈ Ψ(u) do
7 Compute X =SKE(K3, x||1), (D, D̂) =OE(K2, d,K4)
8 Insert (X||D||D̂) into Ψ̃(u) in the original order

9 Set Ψ̃[T 1
u ] = Ψ̃(u)

10 return Ψ̃

keywords. We also store each term Υ̃(u) in Υ̃ in location
T 1
u . In Setup algorithm, we finally get the secret k-NK index

structure I = (Θ̃, ∆̃, Ψ̃, Υ̃).

B. Secure k-NK Querying

Query contains two different algorithms FQ and FBQ. The
FQ algorithm in Algorithm 4 works as follows. Given a k-
NK query (v, w, k), the user first generates the corresponding
query token τ and sends it to the sever (lines 1-2). After
receiving τ , the sever finds the Θ̃(w) of the keyword w through
T1 and T2 (lines 4-10), and constructs ∆̃(T ) by finding ∆̃(u)
according to T 1

u and T 2
u in Θ̃(w) (lines 11-20). Then the sever

finds ∆̃(v) of node v in Θ̃ according to T3 and T4 (lines 21-
27). For each ∆̃(u) ∈ ∆̃(T ), the sever calculates the shortest
distance dGvu and puts it into C (lines 28-31). Finally, the
sever finds the k items with the smallest distance in C to form
the query result R and returns R to the user. The Algorithm
7 is used in both calculating the shortest distance and sorting.

Next, we introduce how to answer a k-NK query by FBQ
algorithm in Algorithm 5. Similar to Algorithm 4, the user
generates a token τ and sends it to the sever (lines 1-2). After
receiving τ , the cloud first obtains ∆̃(v) of node v and the
link Tu to the relevant Ψ̃(u) and Υ̃(u) according to T2, T3 and
T4 (lines 4-11). Then sever initializes a double-ended priority
queue PQ of size k to store candidates (line 12). For each
item in ∆̃(v), given Xj−1, sever finds the next shortest term
(Xj , D3||D4) containing the keyword w in Ψ̃(u) through the
function KTnext (line 14). KTnext traverses Υ̃[Tui ] and
checks whether there has the j-th node containing the keyword
w through the bitwise AND operation with T1.

The function KTnext in this paper is the same as the
function KTsearchNext in [10], except we use PRF F
instead of hash function H when checking the keywords.
Therefore, we skip further details due to space limitations. The
sever then inserts some candidates to PQ (line 16). InsertPQ
is shown in Algorithm 6. After PQ is initialized, the sever
pops the minimum item (U∗, X∗j , D1∗||D2∗||D3∗||D4∗) from
PQ, and inserts X∗j into R. When an item is popped, the sever
looks for the next Xj+1 for each item linked to it (lines 17-
26). When |R| = k or PQ is empty, the sever stops the above
process and returns R. Finally, the user decrypts R to get Ans,
which contains the identifier for each node and is sorted by
distance in non-descending order.

Algorithm 4: Forward Query Algorithm
Input: The user’s inputs are K and the query(v, w, k). The

sever’s input is the encrypted index I
Output: The sever’s output is R and the user’s output is Ans

1 user generates T1 = g(K1, w||1), T2 = g(K1, w||2),
T3 = g(K1, v||3) and T4 = g(K1, v||4)

2 user sends τ = (T1, T2, T3, T4, k) to sever
3 sever parses τ as (T1, T2, T3, T4, k)
4 sever initializes a set Θ̃(w) and a counter c=0
5 sever sets T 1

w = g(T1, c), T 2
w = h(T2, c)

6 while Θ̃[T 1
w] 6= ⊥ do

7 sever computes V ||T 1
u ||T 2

u = Θ̃[T 1
w]⊕ T 2

w

8 sever inserts V ||T 1
u ||T 2

u into Θ̃(w)
9 sever sets c = c+ 1

10 sever sets T 1
w = g(T1, c), T 2

w = h(T2, c)

11 sever initializes a set ∆̃(T )
12 for each V ||T 1

u ||T 2
u ∈ Θ̃(w) do

13 sever initializes a set Ψ̃(u) and a counter c=0
14 sever sets T 1

uv = g(T 1
u , c), T 2

uv = g(T 2
u , c)

15 while ∆̃[T 1
uv ] 6= ⊥ do

16 sever computes V ||D||D̂ = ∆̃[T 1
uv ]⊕ T 2

uv

17 sever inserts V ||D||D̂ into ∆̃(u)
18 sever sets c = c+ 1
19 sever sets T 1

uv = g(T 1
u , c), T 2

uv = g(T 2
u , c)

20 sever inserts ∆̃(u) into ∆̃(T )

21 sever initializes a set ∆̃(v) and a counter c=0
22 sever sets T 1

v = g(T3, c), T 2
v = f(T4, c)

23 while ∆̃[T 1
v ] 6= ⊥ do

24 sever computes V ||D||D̂ = ∆̃[T 1
v ]⊕ T 2

v .
25 sever inserts V ||D||D̂ into ∆̃(v).
26 sever sets c = c+ 1.
27 sever sets T 1

v = g(T3, c), T 2
v = f(T4, c)

28 sever initializes a set C and a set R
29 for each ∆̃(u) ∈ ∆̃(T ) do
30 sever inserts (V, dGvu) into C that dGvu contains

D1||D̂1||D2||D̂2 where (V1||D1||D̂1) ∈ ∆̃(v),
(V2||D2||D̂2) ∈ ∆̃(u), and V1 = V2

31 sever sorts C according to dGvu and inserts the top-k item into R
and returns R to the user

32 user decrypts R with K
33 return decrypted value of R as Ans

Combining FQ and FBQ. Since FQ and FBQ are effective
for low-frequency and high-frequency keywords respectively,
a frequency threshold t needs to be set to effectively combine
the two schemes. The setting of threshold t means that the t-
most frequent keywords are processed by FBQ, and others are
processed by FQ. The selection of the threshold on plaintext
data is analyzed in detail in [10] ans it is considered that the
top

√
|W | keywords are expected to contain about half of the

|doc(V )| keyword occurrences. Similarly, in this paper, we
set threshold t to

√
|W |, but specific analysis is needed for

different datasets in order to make the combined scheme have
the highest efficiency.

Extend to directed graphs. Our scheme can also support
k-NK queries on directed graphs. First we adopt 2HL index ∆
that supports directed graphs. The underlying ∆ of a directed
graph is divided into ∆in and ∆out. Therefore, BL index Ψ
is built based only on ∆in. We calculate the distance by ∆in

and ∆out in FQ , and in FBQ we calculate by ∆out and Ψ.

V. CIPHERTEXT SUM COMPARISON SCHEME

In this section, we introduce the ciphertext sum comparison
scheme used in Section IV.



Algorithm 5: Forward Backward Query Algorithm
Input: The user’s inputs are K and the query (v, w, k). The

sever’s input is the encrypted index I
Output: The sever’s output is R and the user’s output is Ans

1 user generates T1 = F (K1, w),T2 = g(K1, v||3),
T3 = g(K1, v||4) and T4 = g(K1, v||5)

2 user sends τ = (T1, T2, T3, T4, k) to sever
3 sever parses τ as (T1, T2, T3, T4, k)
4 sever initializes a set ∆̃(v) and a counter c=0
5 sever sets T 1

v = g(T2, c), T 2
v = f(T3, c), T 3

v = g(T4, c)
6 while ∆̃[T 1

v ] 6= ⊥ do
7 sever computes U ||D||D̂||T 1

u = ∆̃[T 1
v ]⊕ T 2

v
8 sever computes Tu = T 1

u ⊕ T 3
v

9 sever inserts U ||D||D̂||Tu into ∆̃(v)
10 sever sets c = c+ 1.
11 sever sets T 1

v = g(T2, c), T 2
v = f(T3, c), T 3

v = g(T4, c)

12 sever initializes a double-ended priority queue PQ where the
minimum item is represented by ∗ and the maximum item by #
and a set R

13 for each Ui||D1||D̂1||Tui ∈ ∆̃(v) do
14 sever sets (X1, D2||D̂2 ) = KTnext(T1, Tui ,∞)
15 if (X1, D2||D̂2) 6= ⊥ then
16 sever executes InsertPQ(U,X1, D1||D̂1||D2||D̂2)

17 while |R| < k and PQ 6= ⊥ do
18 sever pops (U∗, X∗

j , D
∗
1 ||D̂∗

1 ||D∗
2 ||D̂∗

2) from PQ
19 sever inserts X∗

j into R

20 for each (Ui, Xj , D
′
1||D̂

′
1||D

′
2||D̂

′
2) linked to Xj = X∗

j do
21 while j < k do
22 sever sets j = j + 1
23 sever sets

(Xj , D
′′
2 ||D̂

′′
2 ) = KTnext(T1, Tui , Xj−1).

24 if (Xj , D
′′
2 ||D̂

′′
2 ) 6= ⊥ and Xj 6∈ R then

25 sever executes
InsertPQ(Ui, Xj , D

′
1||D̂

′
1||D

′′
2 ||D̂

′′
2 )

26 break.

27 sever returns R to the user
28 user decrypts R with K
29 return decrypted value of R as Ans

Algorithm 6: InsertPQ
Input: U,X,D1||D̂1||D2||D̂2
Output: PQ

1 if ∃(U ′
, X,D

′
1||D̂

′
1||D

′
2||D̂

′
2) ∈ PQ then

2 if CMP (D
′
1||D̂

′
1||D

′
2||D̂

′
2, D1||D̂1||D2||D̂2) == 0 then

3 replace (U
′
, X,D

′
1||D̂

′
1||D

′
2||D̂

′
2) with

(U,X,D1||D̂1||D2||D̂2)

4 link (U,X,D1||D̂1||D2||D̂2) with X
5 else
6 if |PQ| < k − |R| then
7 PQ = PQ ∪ (U,X,D1||D̂1||D2||D̂2)

8 else
9 if CMP (D#

1 ||
ˆ
D#

1 ||D
#
2 ||

ˆ
D#

2 , D1||D̂1||D2||D̂2) == 0
then

10 replace (U#, X,D#
1 ||

ˆ
D#

1 ||D
#
2 ||

ˆ
D#

2 ) with
(U,X,D1||D̂1||D2||D̂2)

Given a k-NK query, we need to compare the different
sum of two ciphertexts when calculating the shortest distance
and obtaining the top-k value. Since the value is stored in
ciphertext, we need a scheme to compare the different sum
of two ciphertexts. There are some solutions can solve this
problem, however they still face great limitations [16, 17, 19].

Algorithm 7: Comparison Algorithm CMP

Input: D1||D̂1||D2||D̂2 and D3||D̂3||D4||D̂4
Output: 0 or 1

1 if D1 ≤ D3 and D2 ≤ D4 or D1 ≤ D4 and D2 ≤ D3 then
2 return 1
3 else if D3 ≤ D1 and D4 ≤ D2 or D3 ≤ D2 and D4 ≤ D1 then
4 return 0
5 else
6 Assume that D1 ≤ D3 ≤ D4 ≤ D2

7 if D4 ≤ D̂2 or D̂4 ≤ D1 and D3 ≤ D̂2 then
8 return 0
9 else

10 return 1

The scheme [16] based on OPE has been proved to be
unsafe. The comparison scheme proposed by Lu et al. [17]
requires multiple additional interactions and is very inefficient
due to the use of homomorphic encryption and the scheme
[19] has low accuracy. To keep the search process efficient
and accurate, we need a secure scheme that can compare
ciphertexts sum.

When we want to compare the sum of a and b and the sum
of c and d, if a < c and b < d (or a > c and b > d), we
know a + b < c + d (or a + b > c + d) obviously. Based on
this observation, most of the candidates can be filtered out.
In order to improve the accuracy of the results, our scheme
is introduced for comparison in the case of a < c < d < b.
Our scheme takes any safe order-revealing encryption (ORE)
algorithm to encrypt the distance value. In an ORE scheme,
the encryption algorithm produces ciphertexts that preserve the
order of their plaintexts. Our scheme is defined as follows:

Definition 4. (Order Encryption (OE)). Given a private key
KORE of the ORE scheme, a private key K and a distance
d, OE(KORE , d,K) will return (enc, ˆenc), where enc =
ORE.Enc(Kd+ r1) and ˆenc = ORE.Enc(Kd−r22 ). r1 and
r2 are two random numbers that satisfy r1 ≤ r2 and r2 � K,
where the symbol “�” means much greater than.

By listing, we know that for the case of a < c < d < b,
there are 14 kinds of sorting about a, b, c, d, a/2, b/2, c/2, d/2
such as a/2 < a < c/2 < c < d/2 < d < b/2 < b and so on.
We find that when satisfying d < b/2, or both d/2 < a and
c < b/2, there must be a+b > c+d. The above conditions are
satisfied in 6 out of 14 cases, so the probability of comparing
a + b and c + d with certainty is 3

7 . In theory, there is a
2
3 + 1

3 ∗
3
7 = 80.98% chance that our scheme will produce

an exact comparison in each comparison. The existence of K,
r1 and r2 can expand ciphertext domain and make inference
attack difficult.

Now we prove that the existence of K, r1 and r2 will not
affect the accuracy of the scheme. For four integers a, b, c and
d, if d < b/2, then Kd+ rd1 −

Kb−rb2
2 = K(2d−b)+(2rd1+rb2 )

2 .
Becuase 2d− b < 0, rd1 ≤ rb2 and rb2 � K, we have Kd+

rd1 <
Kb−rb2

2 . Therefore, encd = ORE.Enc(Kd + rd1) <

ˆencb = ORE.Enc(
Kb−rb2

2 ), which means that the result of
the comparison on encrypted data is the same as the result on
plaintext. In the case of d/2 < a and c < b/2, we can prove



that encd < ˆenca and encc < ˆencb in the same way, and skip
the proof here.

When we want to compare D1+D2 and D3+D4, as shown
in Algorithm 7, we judge whether D1 ≤ D3 and D2 ≤ D4

(or D3 ≤ D1 and D4 ≤ D2) (lines 1-4) to do the first filter.
If it fails, D̂1, D̂2, D̂3 and D̂4 are used for the second filter
(lines 6-10). The CMP returns 1 if D1 + D2 ≤ D3 + D4,
otherwise returns 0.

VI. SECURITY ANALYSIS

This section presents the security analysis on Aton. We first
describe the leakage functions of it and then prove that our
scheme is secure under the CQA2-security model.

Setup leakage. The leakage function LSetup leaks informa-
tion from static index I of graph G, where I = (Θ̃, ∆̃, Ψ̃, Υ̃).
Given a graph G, the leakage function

LSetup = (|Θ̃|, |∆̃|, n, tv, t
′

v, InfΥ̃(v), Ord)

where |Θ̃| and |∆̃| are the size of LF and SL indexes
consists of all entities in Θ̃ and ∆̃, n is the total number of
nodes in G, tv and t

′

v are the size of Ψ̃(v) and Υ̃(v), InfΥ(v) is
a list that contains the number of 1 of each node u ∈ Υ(v) and
Ord is a n×n matrix represents the distance order relationship
leaked in the Ψ̃ with each entry (i, j) being 2, 1, −1 or −2. For
each pair of distances di||d̂i and dj ||d̂j , its order relationship
of di ≤ d̂j , d̂j < di ≤ dj , dj > di > d̂j and di > dj can be
represented by 2, 1, −1 and −2, respectively. Since we use the
private key K and random numbers to confuse distances, the
server cannot infer the real values from their order information
revealed by Ord.

Note that we don’t carry out second-round encryption on
SBL index, so Ord gets leaked. However, this leak doesn’t
reveal the order information of SL index because we encrypt
the nodes in a different way when constructing SBL and SL
indexes (line 7 of Algorithm 2 and 3).

Query leakage. The query leakage LQuery consists of the
query pattern leakage and the sketch pattern leakage. The
query pattern leakage reveals the repetition information among
all queries and the sketch pattern leakage reveals information
between sketches associated with query nodes. Note that k in
each k-NK query only affects the size of the returned set R
and doesn’t reveal other information, so we don’t discuss it.

Definition 5. (QUERY PATTERN LEAKAGE). Let q =
(q1, q2, . . . , qr) be a non-empty query sequence containing
r queries. Set each query qi to (vi, wi, k). For two queries
qi = (vi, wi, k) and qj = (vj , wj , k), define Sim(qi, qj) =
(vi = vj , wi = wj), i.e., whether each qi and qj matches.
The query pattern leakage function LQP (q) returns an r × r
matrix, in which each entry (i, j) equals Sim(qi, qj). Note
that LQP (q) does not leak the identities of the queried nodes.

Definition 6. (SKETCH PATTERN LEAKAGE). Given an
index I = (Θ̃, ∆̃, Ψ̃, Υ̃) and a query q = (v, w, k), the sketch
pattern leakage function LSP (I, q) is defined as (Γ,Ω,Λ). Γ
is a quad containing lists A,B,C, and D where A is the
doc(v) about w, B is the sketch associated to v, and C and

D are entries in Ψ̃(u) and Υ̃(u) associated to B. Ω is a pair
(Y,Z), where Y = SKE(K1, v||2):(v, d, d̂) ∈ ∆̃ and Z =
SKE(K1, v||2):(v, d, d̂) ∈ ∆̃ are multi-sets. Λ is a (U,X)
pair, where U = SKE(K1, u||2):(u, d, d̂) ∈ ∆̃ and X =
SKE(K1, u||1):(u, d, d̂) ∈ Ψ̃ are multi-sets.

Thus, LQuery = (LQP (q),LSP (I, q)).
Theorem 2. If the cryptography primitives g, h, f , F , ORE

and the SKE are secure, then the proposed graph encryption
scheme Π = (KeyGen, Setup,Query) is (LSetup,LQuery)-
secure against the adaptive chosen-query attack.

Proof. The key idea is constructing a simulator S who uses
LSetup and LQuery to construct a fake encrypted index I∗ =

(Θ̃∗, ∆̃∗, Ψ̃∗, Υ̃∗) and a list of query q∗. If no PPT adversary
A can distinguish between the two games Real and Ideal, we
can say that our graph encryption scheme is (LSetup,LQuery)-
secure against the adaptive chosen-query attack.

Simulating I∗. S first generates fake secret keys K∗. S ran-
domly selects R1 as the number of low-frequency keywords.
Given leakage function LSetup, for each keyword wi (1 ≤ i ≤
R1), S randomly chooses ri for wi with

∑R1

1 ri = |Θ̃| and
samples li ← {0, 1}λ and ηi ← {0, 1}λ uniformly without
repetition. Then for all 0 ≤ i < ri, S computes lri = g(li, ri)
and ηri = h(ηi, ri), where g and h are two particular pseudo-
random functions. S encrypts each node v in the Vwi of wi
by computing V ∗ = SKE(K∗3 , v||1), T 1∗

v = g(K∗1 , v||3),
and T 2∗

v = g(K∗1 , v||4). Set Θ̃∗[lri ] = ηri ⊕ (V ∗||T 1∗
v ||T 2∗

v ).
Similarly, for each node vi (1 ≤ i ≤ n), S randomly chooses
r
′

i for vi with
∑n

1 r
′

i = |∆̃| and samples l
′

i ← {0, 1}λ,
η

′

i ← {0, 1}λ and ρ
′

i ← {0, 1}λ uniformly without repe-
tition. For all 0 ≤ i < r

′

i, S computes l
′

ri = g(l
′

i, r
′

i),
η

′

ri = f(η
′

i, r
′

i) and ρ
′

ri = h(ρ
′

i, r
′

i). For each vertex u in the
L(vi), S encrypts it by computing U∗ = SKE(K∗3 , u||2), and
generates a random distance value d and obtains ciphertexts
D∗||D̂∗ by OE. It computes T 1∗

u = g(K∗1 , u||6) and sets
∆̃∗[l

′

ri ] = (U∗||D∗||D̂∗||(T 1∗
u ⊕ ρ

′

ri)) ⊕ η
′

ri . Now, S has
obtained fake SKL∗ and ∆̃∗.

To simulate fake Ψ̃∗ and Υ̃∗, for each node ui (1 ≤
i ≤ n), S computes T 1∗

u = g(K∗1 , u||6). For all 0 ≤
j < tui

it encrypts each node xj ∈ BL(ui) by computing
X∗ = SKE(K∗3 , xj ||1). Then, it generates integers d and
obtains ciphertexts D∗||D̂∗ by OE according to Ord. Set
Ψ̃∗[T 1∗

ui
] = Arr[ui] where Arr[ui] is an array that holds

tui ciphertexts X∗||D∗||D̂∗. Similarly, for each node xj , S
computes Hxj =

∨num
o=1 F (wo) where num is obtained from

InfΥ(ui). Set Υ̃∗[T 1∗
ui

] = Arr
′
[ui] where Arr

′
[ui] is an array

that holds t
′

ui
ciphertexts Hxj

. S finally obtains the fake
I∗ = {SKL∗, ∆̃∗, Ψ̃∗, Υ̃∗}.

Simulating q∗. Given the leakage function LQuery =
(LQP (q),LSP (I, q),LDP (I, q)), S first checks if either of
node v or keyword w appeared in any previous query. If
v or w appeared previously, S sets Tokenv or Tokenw to
the values that were previously used. Otherwise, it computes
Tokenv based on some previously unused l

′

i, η
′

i and ρ
′

ri and
then remembers the association among l

′

i, η
′

i, ρ
′

ri and v. It



TABLE III: The Graph Datasets Used in Our Experiments

Dataset |V | |E| |doc(V )| |W |
D1: ego-Facebook 4,039 88,234 74,522 1,311

D2: Twith-DE 9,498 153,138 193,725 3,169
D3: Facebook LPPN 22,470 171,002 314,583 4,714

computes Tokenw according to some previously unused li
and ηi. It then remembers the association among l

′

i, η
′

i, and
w. Given the query token (Tokenv, T okenw), S first checks
if the query has been queried before. If yes, S returns the
value that was previously used as the query result. Otherwise,
S simulates the query procedure according to the information
in LSP (I, q) and returns the query result.

Since the cryptography primitives g, h, f , F , ORE and SKE
are secure, the fake index structure I∗ and the query sequence
q∗ are indistinguishable from the real ones. Therefore, no PPT
adversary A can distinguish the two games Real and Ideal.
Thus, we have

|Pr[RealΠ,A(λ) = 1]− Pr[IdealΠ,A,S(λ) = 1]| ≤ negl(λ),

where negl(λ) is a negligible function.

VII. PERFORMANCE EVALUATION

In this section, we present the evaluation of the proposed
Aton through experiments on real-world datasets.

A. Experimental Setup

Testbed. All test programs are written in C++ and run on a
64-bit Windows machine with Intel Core i7-9700K (3.60GHz)
CPU and 32GB RAM. We construct the 2HL index mentioned
in [20], the BL and KT indexes mentioned in [10]. The ORE
in our implementation follows the methods described in [21].
SKE and PRFs are implemented using AES and HMAC from
the OpenSSL library. To ensure basic safety, we set the security
parameter λ = 128.

Graph datasets. The real datasets used in our experiments
are listed in Table III, which are publicly available from the
Standford SNAP website2. Ego-Facebook is a social network,
where each node with keywords such as ID represents a user
and each edge represents friendship between users. Twith-DE
is a twitch user-user network of gamers where node keywords
are extracted based on the player’s location and streaming
habits, etc. Facebook LPPN is a page-page graph, where nodes
represent pages and node keywords are extracted from the site
descriptions. We generate a distance for each edge, the value
of which follows a uniform distribution between 1 and 100.

Query sets. For each dataset, we randomly generate 500
queries. In a query (v, w, k), the node v is randomly picked
from the node set, the keyword w is selected following the
keyword distribution and k varies from 1 to 128. Take social
network as an example, people are more concerned about
several people nearby, so setting k from 1 to 128 is enough.

Methods to compare. First, we compare Aton with the one
over unencrypted graphs. Since GREK [16] and PPknk [18]
are the only two methods that can directly solve the k-NK

2http://snap.stanford.edu/data/

TABLE IV: Comparison of Index Construction Overheads

Metrics D1 D2 D3

Plain Graph Size (MB) 15.16 67.10 493.93
Time (mins) 3.24 53.72 686.70

GREK [16] Size (MB) 19.716 59.41 698.25
Time (mins) 3.75 55.91 694.10

PPknk [18] Size (MB) 48.37 200.89 1,304.83
Time (mins) 3.59 54.02 691.13

ENPS [19] Size (MB) 33.32 105.63 708.67
Time (mins) 4.97 58.69 710.51

Aton Size (MB) 35.15 110.62 749.87
Time (mins) 5.45 60.29 717.51

querying problem over encrypted graphs, we make an overall
comparison between Aton and them. To achieve shortest
distances querying over encrypted graphs, ENPS proposes an
OPE scheme, which solves the problem of ciphertext sum
comparison just like OE in Aton. Therefore, we compare the
two ciphertext sum comparison schemes. To enable ENPS to
solve k-NK querying, we replace the index structure of ENPS
with that of Aton while preserving OPE.

B. Evaluation of Index Setup

The index size and construction time for each scheme are
shown in Table IV.

Index size. The index size of GREK, Aton and ENPS vary
according to the value of thresholds. Through continuous ex-
periments, we select the best thresholds. For different datasets,
we set the thresholds for GREK as 120, 150 and 200, and the
Aton and ENPS as 30, 40 and 50. According to Table IV,
we can see that the index size of PPknk is the largest. The
index size of Aton is larger than GREK and ENPS, because
additional |Ψ(v)|-1 space is required when building the BL
index Ψ(v) into the keyword tree index. It is noted that storage
problem is no longer a bottleneck now with the development
of the cloud computing.

Construction time. The index construction time of Plain
Graph is the index generation time, where building the 2HL
index takes up most of the time. The most important ob-
servation is that the construction time of Aton is slightly
higher than the one of Plain Graph. PPknk has the shortest
construction time, since it uses the shortest path tree answering
distance queries. For this reason, it cannot support accurate
queries. Aton and ENPS take longer than GREK because the
OPE algorithm designed in GREK is efficient at the expense
of security. Compared to ENPS, Aton takes longer because
we encrypt each distance value twice with ORE, and ENPS
encrypts each distance once. Since the index construction is
offline, it is acceptable to take longer to ensure security.

C. Evaluation of Query

Query efficiency. The query time includes the query token
generation time and the interval between the user submitting
the token and receiving the result. The query times under
different k for each scheme are shown in Fig. 7. PPknk has the
longest query time due to the use of the Paillier cryptosystem.
With the increase of k, the query time of Aton grows very



(a) Query time on D1 (b) Query time on D2 (c) Query time on D3 

Fig. 7: Average Query Time under different values of k.

(b) Aton with FBQ (c) Aton with combined FQ and FBQ(a) Aton with FQ

Fig. 8: Query time with different keyword frequencies.

slowly. Aton can complete in one second even when k= 128,
which shows the effectiveness of Aton.

Fig. 8 shows the query time of Aton with different keyword
frequencies under k=32. The query time for FQ increases
linearly with keyword frequency, so FQ is less efficient when
the keyword frequency is high. The query time for FBQ is
stable but FBQ cannot process low-frequency keywords as
quickly as FQ. For hight-frequency keywords, FBQ is slower
than FQ-FBQ because it has a larger keyword set in the index.
Thus, using FQ or FBQ alone don’t run as fast as FQ-FBQ.

Query accuracy. We set two parameters to evaluate the
accuracy of the scheme: error and hit. For a k-NK query,
we set R = {(u1, d1), (u2, d2), ..., (uk, dk)} as the exact
result, where the distance values are in non-descending order,
and R

′
= {(u′

1, d
′

1), (u
′

2, d
′

2), ..., (u
′

k, d
′

k)} as the approximate
result. The error represents the average error between R and
R

′
and hit represents the sorting accuracy of distance in R

′
,

which are defined as:

error =

∑k
i=1 |(d

′

i − di)/di|
k

, hit =

∑k
i=1(d

′

i ≤ di)?1 : 0

k

The smaller the error is, the closer the value of approximate
result is to the exact result, while the larger the hit is, the
closer the sorting of the approximate result is to the exact
result. Fig. 9 shows the error and hit of each scheme with
varying k. The error and hit of GREK are 0 and 1, but GREK
sacrifices security. We set the distance interval itv of ENPS
to 8. It can be found that the error of Aton is below 0.1,
and the hit is around 0.7 for all k values. Compared with
ENPS and PPknk, Aton has higher hit and lower error in
different datasets, which means that Aton has higher accuracy
and stability. The inaccuracy of PPknk is due to the underlying
index it chooses, regardless of the encryption method. It should
be noted that increasing itv can improve the accuracy of
ENPS, but more privacy will be disclosed at the same time.

(b) Error of D2 (c) Error of D3

(e) Hit of D2 (f) Hit of D3(d) Hit of D1

(a) Error of D1

Fig. 9: Error and Hit under different values of k.

VIII. RELATED WORK

In this section, we briefly review the related work on k-NK
querying over plain graphs and encrypted graphs.

In the field of plain graphs, Bahmani et al. [9] explore the
approximate k-NK query on undirected graphs through the
shortest path tree. Jiang et al. [10] propose a precise algorithm
to solve the k-NK problem by using an exact 2HL index and
the keyword tree. V-Tree [11] accelerates the query by dividing
the large rode network into interconnected regional subnets.
However, these schemes do not consider security issues, and
cannot be directly applied to encrypted graphs.

Querying encrypted graphs has drawn much attention re-
cently. Some work [12] study the k-NK query for encrypted
geospatial data. However, these schemes are implemented
based on coordinates and privacy protection is mostly achieved
through technologies such as local sensitive hash and location
confusion, which are only applicable to spatial data and cannot
be generalized to general graphs.

Wu et al. [13] realize adjacency search that supports syn-
onym query but does not support the specified k nearest nodes



query. Arthy et al. [14] propose a k-NK query scheme for
encrypted graphs of social media, but this scheme can only be
used on undirected graphs with no weight. Another scheme
[15] performs secure query operations on transitive closure
matrices of directed graphs, but does not support operations
on weighted graphs. Liu et al. [16] consider k-NK query
over graph for privacy protection. However, their scheme has
defects on security, where the order-preserving encryption
scheme constructed in this scheme is not secure and is easy
to be cracked to obtain the key [26]. Teng et al. [18] propose
a dual-cloud framework to solve the k-NK problem, but the
efficiency is low due to the use of Paillier cryptosystem.

Although there are respectable studies on k-NK queries,
a privacy-preserving and efficient solution is still desirable.
In this paper, we propose a secure and efficient encryption
scheme for k-NK queries on directed weighted graphs which
can produce more accurate results in linear time compared
with existing solutions.

IX. CONCLUSION

In this paper, we presented a novel graph encryption scheme
Aton that supports k-NK queries over encrypted graphs, which
can answer a query efficiently with high accuracy. Based on
the existing order-revealing encryption scheme, we proposed a
practical ciphertext sum comparison scheme to select the top-
k answers that satisfy the keyword constraints. This scheme
can also be used in other scenarios that need to compare the
sum of ciphertexts. Through rigorous security analysis, our
scheme was proved to be CQA-2 secure. We evaluated Aton
on three real-world graph datasets, and the experimental results
demonstrated its accuracy and effectiveness. In future work,
we will focus on designing new modules to further improve
query accuracy.
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