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Abstract—Fine-grained website fingerprinting (WF) enables
potential attackers to infer individual webpages on a monitored
website that victims are visiting, by analyzing the resulting
traffic protected by security protocols such as TLS. Most existing
studies focus on WF at the granularity of website, which takes
website homepages as their representatives for fingerprinting.
Fine-grained WF can reveal more user privacy, such as online
purchasing habits and video-viewing interests, and can also
be employed for web censorship. Due to striking similarly of
webpages on a same website, it is still an open problem to conduct
fine-grained WF in an accurate and time-efficient way.

In this paper, we propose BurNet, a fine-grained WF method
using Convolutional Neural Networks (CNNs). To extract differ-
ences of similar webpages, we propose a new concept named uni-
directional burst, which is a sequence of packets corresponding
to a piece of HTTP message. BurNet takes as input unidirectional
burst sequences, instead of bidirectional packet sequences, which
makes it applicable to local and remote attack scenarios. BurNet
employs CNNs to build a powerful classifier, where sophisticated
architecture is designed to improve classification accuracy while
reducing time complexity in training. We collect real-world
datasets from two well-known websites and conduct extensive
experiments to evaluate the performance of BurNet. The closed-
world evaluation results show that BurNet outperforms the state-
of-the-art methods in both attack scenarios. In the more realistic
open-world setting, BurNet can achieve 0.99 precision and 0.99
recall. BurNet is also superior to its CNN-based counterparts in
terms of training efficiency.

Index Terms—Fine-grained website fingerprinting, encrypted
traffic, unidirectional burst, CNNs

I. INTRODUCTION

With the widely adoption of Transport Layer Security (TLS)
protocol on websites, the proportion of web traffic encrypted
by security protocols keeps on growing [1]. Google has
protected 95% of its products and services to ensure security
requirements [2]. Website fingerprinting (WF) via encrypted
traffic analysis enables potential attackers to recognize the
websites visited by victims. Existing studies usually consider
the granularity of website, which takes the homepages of
websites as their representatives. However, we argue that
fine-grained WF, which identifies specific webpages of a
designated website, can reveal more users privacy, such as
the products they viewed on online shopping malls, or videos
on YouTube they watched. Fine-grained WF can also be
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TABLE I: Comparison of existing WF methods
(H: High; M: Medium; L: Low)

[4] [5] [3] [6] [7]1 | BurNet
Accuracy L L M M M H
Apphcablllty to v v N N N %
different scenarios
Practicality N Y Y Y Y Y
Aut_omatlcally N N N N v v
learning features

employed by network administrators for web censorship, e.g.,
blocking access to certain pages on a well-known website.

Designing an efficient fine-grained WF method is extremely
challenging. First, it is significantly difficult to accurately
identify encrypted network flows for different webpages, as
webpages on the same website have more similarities com-
pared to index pages of different websites [3]. Second, it
is non-trivial to make a WF method applicable to different
attack scenarios. Potential attackers can be located at different
positions along the paths from victims to web servers, leading
to discrepancy in capability of obtaining network traffic. The
third challenge lies in practicality, meaning that a WF method
should work with different versions of protocols, ranging from
HTTP to TLS, and achieves time efficiency in training for
practical usage.

Existing WF solutions either leverage hand-crafted features
for training traditional machine learning classifiers, such as
SVM [3] and Random Forest [6], or apply deep learning
techniques such as convolutional neural networks (CNNs) on
original packet sequence [7]. These methods mostly focus
on constructing fingerprinting for index pages of websites
and thereby fail to achieve high accuracy in distinguishing
similar webpages (c.f. Section VI). In addition, they commonly
assume that both uplink and downlink traffic of victims can
be obtained by attackers and thus cannot be easily generalized
to different attack scenarios.

In this paper, we propose BurNet, an accurate and effi-
cient CNNs-based classifier for fine-grained WF. To abstract
discrepant capabilities of attackers, we consider two typical
scenarios, where local attackers can obtain bidirectional traffic
of victims, as commonly assumed in existing studies, while
remote attackers can only acquire victims’ unidirectional traf-
fic. BurNet is restricted to use only unidirectional traffic for



fingerprinting, making it applicable in both scenarios.

The design of BurNet is motivated by the fact that the
differences of encrypted traffic among different webpages are
inherently determined by discrepancy of webpage contents,
such as the number of elements as well as their types and
transmission order. Due to the similarity of webpages on the
same website, packet-level statistics or timing information,
which is commonly used in existing studies, cannot effectively
capture such discrepancy. Therefore, we propose the concept
of unidirectional burst, which is a sequence of packets corre-
sponding to the transmission of a piece of application-layer
message. Unidirectional burst is a higher-level abstraction
over the original packets and can successfully capture the
differences of webpages. Using downlink burst sequence as
input, we construct an effective classifier based on CNNs,
which does not require manually selecting features.

The differences of BurNet from previous WF methods are
summarized in Table I. The main contributions of this paper
are as follows:

1) By analyzing data encapsulation of HTTP, TLS and
TCP, we make an observation that unidirectional burst
can reflect webpage differences. We design an efficient
method to calculate the sequence of unidirectional burst
lengths, which is adaptive to different TLS and HTTP
versions.

2) We propose BurNet, which is a CNNs-based classifier
with sophisticated architecture design. Compared with
existing CNN-based classifiers, BurNet greatly reduces
the number of parameters in neural networks and signif-
icantly improves training efficiency. It also learns time
invariant features from downlink burst sequences, which
helps achieve high accuracy.

3) We evaluate the effectiveness of BurNet with the closed-
world setting. In the local attacker scenario, BurNet
reaches more than 96% accuracy on two real-world
datasets, outperforming the state-of-the-art. In the remote
attacker scenario, BurNet maintains high accuracy while
its counterparts degrade significantly.

4) In a more realistic open-world setting, BurNet can
achieve 0.99 precision and 0.99 recall in binary classi-
fication, which significantly outperforms its counterparts.

The rest of the paper is organized as follows. We first

review the related work in Section II, and then describe the
threat model in Section III. We elaborate on the motivation
of our work in Section IV and present the design of BurNet
in Section V. We evaluate the proposed method and make a
comprehensive comparison with existing methods in Section
VI, and conclude this paper in Section VIIL.

II. RELATED WORK

Encrypted traffic analysis has attracted intensive attention,
including malicious traffic detection [8], APP traffic classifi-
cation [9, 10], video traffic classification [11, 12], and website
fingerprinting [13, 14]. From the perspective of the method
used, the related work can be divided into two categories.
One is to use artificially designed features and traditional

TABLE II: Summary of existing methods

Categories Models Features
MC [4, 15] SSL/TLS message type
. k-NN [5] Uplink time information
Traditional -
machine SVM [3] Cumulative packet length
earning k-NN [6] Statistical features
RF [16] Packet length information
SDAE [19] Sequence of packet direction
Deep CNN [7, 13] Sequence of packet direction
learning FlowPic [20] Packet size-arrival time histogram
BurNet Sequence of unidirectional burst
(This paper) lengths

machine learning algorithm as classifier. The other is to use
the technology of deep learning to train classifiers. We briefly
summarize the existing methods in Table II.

A. Traditional Machine Learning Methods

Several studies employ traditional machine learning models
to build classifiers. SSL/TLS message type is used to construct
Markov Chain (MC) [4, 15]. Shen et al. [4] use second-order
Markov chain and application attribute bigrams to classify
encrypted traffic. However, TLS 1.3 only needs 1-RTT to
complete handshake, which reduces the available SSL/TLS
message types. The methods based on packet length usually
give different attributes to packet length in different direc-
tions [3, 16]. CUMUL [3] sets positive and negative attributes
for packet length in different directions, and uses cumulative
packet length as features to train an SVM classifier, which has
a good performance in detection accuracy. Statistical features
such as maximum, minimum, and average length, are also
used for fingerprinting [6, 9, 17]. k-fingerprints (k-FP) [6]
uses random forest (RF) to extract fingerprinting vector from
the statistical features. The obtained fingerprinting vector is
then used by k-Nearest Neighbor (k-NN) algorithm to build
classifiers. However, these methods need design and select
features [18], and these features are not discriminative enough
for fine-grained WF.

B. Method Based on Deep Learning

Deep learning (DL) has been employed in WF, which
can automatically learn high-level features from input. These
methods [7, 13, 19] usually use -1 and 1 to represent packet
directions. Deep Fingerprinting (DF) [7] leverages a CNN
with many convolutional layers, which can learn features from
simple direction sequence for WF. However, the direction
sequence is no longer distinguishable when there is only
unidirectional traffic. Shapira et al. [20] also propose a CNN-
based classifier named FlowPic, which transforms each traffic
flow into an image and turns WF into image classification.
It requires heavy resource overhead because the transformed
image is much larger than the input of other fingerprinting
methods (c.f. Section VI-B).

In this paper, we propose the concept of unidirectional burst,
which build the relationship between HTTP messages and their
corresponding packets. The unidirectional burst sequence is



used for WF, and thus space complexity is greatly reduced
compared with the original packet sequence. We use CNNs
without fully-connected layers to learn high-level features
from unidirectional burst sequences, which can achieve train-
ing efficiency and classification accuracy simultaneously.

III. PROBLEM DESCRIPTION

This section describes the threat models for launching fine-
grained website fingerprinting attacks by potential adversaries,
and also illustrates the closed- and open-world settings that
are commonly used to assess the effectiveness of specific
fingerprinting methods.

A. Threat Model

Fine-grained website fingerprinting aims at inferring which
webpages in a website are visited by a victim, through care-
fully analyzing the encrypted traffic generated by the victim’s
web browsing behaviors. Following the common assumption
in the literature [7], we assume a passive attacker, which
means that the attacker can only eavesdrop on encrypted
packets through network devices, but cannot drop, modify, or
decrypt network packets. The fingerprinting is conducted at
the granularity of flows, where a flow is uniquely defined by
the traditional five-tuple, namely source IP/port, destination
IP/port, and transport protocol. In practice, an attacker first
recognizes the flows belonging to the target website through
the Server Name Indication (SNI) in the Client Hello packet
of the TLS protocol and then uses the recognized flows to
perform the webpage-level fingerprinting.

The victim accesses the Internet to fetch webpage contents
via browsers, as illustrated in Fig. 1. We focus on two types
of threat models, where the potential attackers are located
in different positions, resulting in different capabilities of
collecting network packets.

Local attackers. The attackers are located in the local
network of the victim, where they can eavesdrop on the
bidirectional traffic between the victim and the corresponding
web servers. Such attackers can be campus network admin-
istrators or local Internet Service Providers (ISPs). They can
obtain both uplink and downlink traffic traversing through the
gateway of local networks.

Remote attackers. The attackers are located far from the
victim, e.g., on a certain critical point along the paths between
the victim and the corresponding web servers. Such attackers
may be located at critical routers in large autonomous systems
(ASes) or regional ISPs, leveraging fingerprinting results for
web censorship, e.g., banning users in a region from accessing
certain webpages in a website. Since asymmetric routing
(e.g., hot-potato routing strategy [21]) commonly exist in the
Internet, i.e., the uplink and downlink traffic of the victim
usually follows different routes. Thus, only unidirectional
traffic of the victim is visible to the remote attackers.

Note that even if a remote attacker is powerful enough to
control all area boarder routers, e.g., a regional ISP, recovering
bidirectional traffic of the victim is prohibitively expensive,

because heavy time and space overhead is required to merge
and reorder packet sequences collected from different routers.

The remote attacker model imposes more constrains on
the capability of attackers, and thus is more challenging to
design effective fingerprinting methods. Different from most
existing studies that consider merely the local attacker model,
we consider the two models as a whole in this paper.
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Fig. 1: Two typical attack scenarios for fine-grained WF

B. Assessment Scenarios

Closed-world setting. It assumes that the victim can only
visit a fixed collection of monitored webpages from the same
website. It is used to evaluate the ability of a fingerprinting
method to distinguish similar webpages.

Open-world setting. It assumes that the victim not only
visits a collection of monitored webpages, but also visits a
larger number of unmonitored webpages. It is used to evaluate
a fingerprinting method in a more realistic scenario, which
can avoid the base rate fallacy [3]. In such a scenario, the
attackers can first conduct binary classification to recognize the
monitored webpages from unmonitored ones, and then perform
multi-classification to identify which monitored webpage it is.

IV. MOTIVATION

Webpage fingerprinting relies on discovering critical dif-
ferences of webpages in terms of the resulting encrypted
traffic. Existing fingerprinting methods attempt to capture such
differences by using statistics, timing, TLS state transition,
or packet length features. These features, however, are not
discriminative enough for distinguishing webpages on the
same website, as demonstrated in Section VI.

Our work is motivated by the fact that the differences of
encrypted traffic are inherently determined by the divergence
of webpages, including the types of elements (e.g., text, image
and video) as well as their sizes and loading orders. Thus, we
will have a deep look at the webpage fetching process and try
to link element loading with the resulting encrypted packet
sequences, which provides us with a fresh angle to discover
and abstract discriminative features.

A. From Webpage Elements to Encrypted Packets

We take as an example the typical webpage fetching process
to analyze the generation of encrypted packets from webpage
elements. For visiting a certain webpage, a user enters the cor-
responding URL in a browser, which establishes a connection
between the client and the web server. In order to fetching
each webpage element, the client sends a HTTP request to the



server, who, in turns, replies with a HTTP response that con-
tains the required element. Each element usually corresponds
to one or multiple HTTP messages. Transport Layer Security
(TLS) protocol has been widely used to secure the client-server
communication.

For ease of illustration, we visualize the data encapsulation
process in Fig. 2, which exhibits the relationship between a
message and the resulting encrypted packets. TLS receives
a message from HTTP and divides them into fragments
according to record size. Then each fragment is optionally
compressed, added with a message authentication code (MAC)
and encrypted. The fragment plus TLS header forms a TLS
record, which becomes the payload of TCP at the transport
layer. If the length of TLS record exceeds maximum segment
size (MSS), it will be segmented. MSS is set to avoid slowing
down the connection speed caused by packet fragmentation at
the network layer. Therefore, an IP packet has only one TCP
segment.

TLS record size has an important impact on the performance
of HTTPS. Here we discuss the effect of record size on data
encapsulation, as shown in Figure 2. TCP is a byte-stream
protocol, which can split message from the upper layer of TCP
(e.g., TLS) in arbitrary ways for transmission. Thus, there is
a length field in TLS header to make the receiver know where
the record ends. For large record size, TLS record exceeding
MSS limit will be transmitted in multiple TCP payloads, and
only one of these TCP payloads contains the TLS header.
While for small record size, the entire TLS record can be
accommodated in a single TCP payload. Since the length of
TLS record is usually less than MSS, TCP will intercept the
next TLS record to pad the current payload as large as MSS.
As a result, a TCP payload may contain none, one or multiple
TLS headers. On the whole, no matter which record size it is,
we can always construct the relationship between packets and
their corresponding HTTP messages.

IP Header I TCP Header I TLS Header
HTTP Message Message
Re(or"c Size
| | | |

MSS
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Large Record Size Small Record Size

Fig. 2: Data encapsulation of HTTP, TLS, TCP and IP

B. Message-Aware Unidirectional Bursts

The analysis above shows that a HTTP message will result
in one or multiple successive packets. If we associate the
packets in encrypted traffic with the corresponding application-
layer message, we can discover the element loading character-
istics from encrypted traffic, which helps us extract discrimi-
native features for fingerprinting.

Our idea is motivated by the fact that burst acts a critical role
in constructing website fingerprinting [17]. In practice, when

bidirectional traffic can be obtained by the attacker, a burst is
simply recognized as a subsequence of packets with the same
direction. In the unidirectional traffic scenario, however, it is
impossible to define burst as before, as all packets are in the
same direction.

In this paper, we define the concept of burst from a new
perspective, which builds the relationship between packets and
application-layer message.

Definition 1. (Unidirectional burst). A unidirectional burst is
defined as the sequence of unidirectional packets correspond-
ing to each piece of HTTP message.

~ — Packet
—— Uni. burst
—— HTTP frame (REQ)
HTTP frame (RSP)

——  —— Packet _—
— —— Uni. burst —
— —— HTTP REQ
HTTP RSP

0 10 20 30 40 0
Cumulative length (KB)

10 20 30 40 50
Cumulative length (KB)

(a) MicroBlog (HTTP/1.1) (b) Twitter (HTTP/2)

Fig. 3: HTTP messages and their resulting unidirectional
bursts and packets

To justify that unidirectional burst can reflect HTTP in-
teractions better than original packets, we select MicroBlog
and Twitter as representatives that adopt two mainstream
HTTP versions, namely HTTP/1.1 and HTTP/2. The HTTP
interactions, as well as the resulting unidirectional bursts and
packet sequences are plotted in Fig. 3. The length of each short
line denotes the length of an HTTP message, a unidirectional
burst, or an encrypted packet. For ease of illustration, all short
lines of the same type are shifted vertically.

When visiting a specific webpage of MicroBlog, as shown
in Fig. 3(a), an HTTP request is always followed by an
HTTP response, because HTTP/1.1 requires that a new HTTP
request cannot start until the previous response completes.
We can find that the unidirectional bursts, no matter uplink
or downlink bursts, are basically consistent with the HTTP
messages. Similar trends can also be observed in Fig. 3(b). The
major difference is two-fold. First, HTTP/2 adopts smaller-
size frames in sending requests and responses, where either a
frame corresponds to one or multiple unidirectional bursts, or
multiple frames form a single burst. Second, HTTP/2 allows
sending all request frames at the beginning, which lead to the
arrival of multiple response frames in a certain order.

Now, we have validated that the concept of unidirectional
burst can be generalized to different HTTP versions, even
though the implementation of these protocols is slightly dif-
ferent among different websites.

Definition 2. (Unidirectional burst sequence). Given a unidi-
rectional flow, the unidirectional burst sequence is defined as
the sequence of all unidirectional burst lengths in the flow.

In order to make the proposed method applicable in both
attack scenarios, we only consider unidirectional traffic for



building webpage fingerprinting. However, it must be admitted
that because of more information in bidirectional traffic, if the
uplink burst sequence and downlink burst sequence can be
extracted from the bidirectional traffic, it is more conducive
to the construction of webpage fingerprinting. In this paper, we
select the downlink traffic because it is more informative than
the uplink traffic. Since the downlink flows are mainly used for
carrying HTTP responses, they usually have a larger volume
of packets and vary greatly due to the differences in website
elements, making it more suitable for constructing fine-grained
WE.

Comparing with the original packet length sequence com-
monly used in recent studies [3], the unidirectional burst
sequence is more beneficial to fingerprinting construction:

o The majority of packets in a flow are usually with the
maximum length, which reduces the diversity of packet
sequences for different webpages. In contrast, the length
of unidirectional burst is determined by the length of
HTTP message, which potentially captures the differ-
ences in terms of website elements.

o The number of unidirectional bursts is far less than that
of individual packets, which helps reduce the space and
time complexity in training classifiers.

C. Calculation of Unidirectional Burst Sequence

Despite that packets in a unidirectional burst are sent
continuously in a short time interval on the server-side, it is im-
possible for an attacker to identify these bursts through inter-
packet time interval, as the inter-packet interval perceived by
a local or remote attacker varies significantly due to network
fluctuation. Therefore, we propose a method to accurately
calculate the unidirectional burst sequence as follows.

Recall that TLS record size leads to differences in data
encapsulation (c.f., Fig. 2). For large record size, the length of
a unidirectional burst, b, is indicated by the length field in TLS
header. When small record size is used, the calculation method
of unidirectional burst sequence is shown in Algorithm 1. It
takes as input a unidirectional flow P. Each packet p; € P
is associated with three values: p;.l, p;.n, and p;.r, denoting
the length of TCP payload, the number of TLS headers in
TCP payload, and an array containing the value of the length
field in TLS header, respectively. Let seg denote the length
of the remaining TLS record in the subsequent TCP payloads
and b denote the current unidirectional burst. First, seg and b
are updated when traversing the TLS headers in the current
TCP payload (lines 3-6), and then seg subtracts the length of
current TCP payload to get the length of remaining TLS record
in the subsequent TCP payloads (line 7). If seg is equal to 0,
the current unidirectional burst ends and its length is added
into B (lines 8-11). Finally, the unidirectional burst sequence
B is obtained.

Note that different TLS versions have the same description
of TLS header. i.e., TLS header takes up 5 bytes and contains
the length field [22]. Therefore, this method can be generalized
to different TLS versions.

Algorithm 1 Calculation of unidirectional burst sequence

Input: A unidirectional flow P = [p1,pa2,...
Output: B = [b™M v® .. (™) m < n;
1: Initialize B as an empty array, seg = 0, and b = 0;
2: fori=1;1<n;i++ do
3: for j=1,j<pin;j++ do

7p”}

4: b+ = (pi.rj] +5)

5: seg+ = (pi-r[j] +5)
6: end for

7: seqg = seg — pi.l

8: if seg == 0 then

9: Append b to B

10: b=0

11: end if

12: end for

13: return B;

V. THE PROPOSED BURNET

This section presents the design of BurNet, including system
overview, architecture design and function formulations.

A. System Overview

The analysis in the last section shows that downlink burst
sequence can capture unique patterns of similar webpages.
Thus, we leverage downlink burst sequence to represent a flow
and turn the fine-grained WF into the classification problem
of downlink burst sequences.

The downlink burst sequence implicitly indicates the order
of bursts, which is analogous to time series. Inspired by
the recent advances in time series classification (TSC) [23],
we employ CNNs to build a powerful classifier, as it can
learn space invariant features in input space. CNN has also
demonstrated its effectiveness in other fields, such as speech
recognition [24] and text classification [25], where audio and
text exhibit natural temporal ordering.

The overview of BurNet is shown in Fig. 4. First, encrypted
traffic flows are collected from the Internet and then parsed
out meta-information to construct downlink burst sequences,
as described in Section IV-C. Note that it is efficient to parse
the TLS headers in TCP payload, because the position of the
next TLS header can be obtained according to the position
of the current TLS header plus the current TLS record length,
instead of traversing TCP payload by byte to find TLS headers.
Then, the CNNss classifier takes each downlink burst sequence
B, as input and learns feature representation. Finally, BurNet
predicts the label of the burst sequence, which reveals the
webpage it belongs to.

B. CNNs Construction

Although VGG [26] and FCN [27] offer basic network
structures, we still need to construct and optimize CNNs
according to our requirements.

Problem Formulation. Let D denote the number of similar
webpages from the same website. The visits of these webpages
result in M downlink burst sequences in total. The i-th
sequence is denoted by BY” = {1 502 50 ] where
b7 is the j-th burst and T} is the total number of bursts. The
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real label of B((;) is y;, 1 < y; < D. Taking Bfii) as input,
BurNet makes a prediction according to Eq. (1),
ji = $(By;w), s € RV (1)

where w is the set of BurNet parameters, ¢; is the probability
that the input data B, () i predlcted as each class (i.e., label).
Our goal is to train ¢(B );w) so that the label with the
maximum probability in its output is y;. Note that we use
the same architecture in both closed- and open-world settings.

Model Inputs. In order to be able to build webpage
fingerprinting quickly, instead of waiting for all the flows to be
loaded, we can determine a length threshold . If a sequence
length exceeds the threshold, we intercept the first N elements
from the original input.

Feature Extraction. In our model, there are five blocks for
feature extraction, as shown in Fig. 5. In the first four blocks,
there are two consecutive convolutional layers before the
pooling layer; and in the last block, there are three consecutive
convolutional layers without pooling layer. The number of
filters in the convolutional layer Conv5_3 is equal to the
number of webpage labels (i.e., D). After each convolutional
layer, there is a BatchNorm (BN) layer that accelerates the
training of neural networks.

The formula for the first convolutional layer Convl_1 at a
centered time step ¢ is given as follows:

Y = ReLU(Wp BV by | ve e [LN] ()
where CC(IZ) denotes the result of a convolution applied on B,
of length N with a filter Wz of length 3, a bias parameter
b and a non-linear function ReLU. The formula for other
convolutional layers is similar to Eq. (2). The activation
function ReLU increases the nonlinearity of neural networks

and improves the expression ability of neural networks. The

weight sharing property of the convolution layer enables them
to learn filters that are invariant across time dimension.

Let F CEZ) € RP*T pe the output of Conv5_3, that is, the
feature representations of the input data BS). D is the number
of channels and is equal to the number of webpage labels, and
T is the length of the feature map.

Classification. BurNet replaces traditional fully-connected
layer with a Global Average Pooling (GAP) layer, which
significantly reduces the amount of parameters, thus greatly
improving training speed and reducing the risk of over fitting.
The GAP layer accepts the output of Conv5_3 and averages
each feature map in time dimension, as shown in Eq. (3),

1 T o
O FS) | vB e 1,D)

Vi’ =5
J

3)

where Vd(i) € RP is the output of GAP. Finally, a traditional
softmax classifier is applied to the output, as shown in Eq. (4),
i = softmaz(Wy x V") “)

where W), are the parameters.
Loss Function. WF is essentially a multi-classification task,

so we use Cross-Entropy loss function to calculate the loss
between the predicted values ¢ and the ground truth vy,

|X| D

= X ZZ[ J)log(9ij) %)

where | X| is the number of model inputs X and I(y; = j) =1
if y; is j, else 0. We use the Adam optimizer to minimize the
loss during training.

Avoid Over-fitting. There is a risk of over-fitting in the
training process of CNNs. In BurNet, we use the following
measures to prevent over-fitting. First, we add a dropout layer
at the end of each block. In the forward propagation, the
dropout layer will make the neurons stop working with a
certain probability, so that the model will not rely on some
local features too much, thus improving the generalization
ability. Second, in order to reduce the complexity of the model,
we introduce L2 regularization. That is adding the sum of



squares of weight parameters on the basis of the original loss
function. The new loss function £ is defined in Eq. (6),

L=L+\> w} (6)
k

where A is a hyperparameter that controls the size of the reg-
ular term. The L2 regularization tends to make all parameters
w smaller to constrain the complexity of the model.

Learning Rate. Learning rate is an important hyperparam-
eter of neural network optimization. In BurNet, exponential
learning rate decay is used. In the early stage, a larger learning
rate is used to accelerate convergence, and in the later stage,
a smaller learning rate is used to ensure stability. The formula
of learning rate decay is shown in Eq. (7),

kE—1

ap = 040.0415 (7)

where o, is the learning rate at the k-th epcho, oy is the initial

learning rate, cvg.cvq is the learning rate at the end of training,
and & is the number of epochs.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of BurNet with
real-world datasets collected from two well-known websites.
We first introduce the experimental setup, then tune the
BurNet’s hyperparameters, and finally make a comprehensive
evaluation of BurNet with the state-of-the-art.

A. Experimental Setup

1) Methods to Compare: Our preliminary experiments find
that MC-based method [4] and DTW [5] result in low accuracy
(less than 30%), so we do not consider them for compari-
son. We select four representative WF methods described as
follows. Note that we have to make modifications on some
methods for comparison in remote attack scenario, as they
are originally designed only for local attack scenario. All
fingerprinting methods are trained on a server equipped with
an Inter Core Duo 3.6GHz, 32GB of memory, and a GPU with
8GB of memory.

e CUMUL [3] is a WF method using cumulative packet
length. CUMUL sets positive or negative signs for packet
length in different directions. In remote attack scenario,
all packet lengths are positive or negative.

e k-FP [6] is a method using statistical features for fin-
gerprinting. In the remote attack scenario, the features of
uplink traffic will be removed.

e DF [7] is a CNNs-based method that uses the sequence
of packet direction as its input. Only one direction is left
in the remote attack scenario.

e FlowPic [20] transforms the flows of each webpage into
an image and uses a CNNs-based classifier for prediction.

2) Dataset Construction: In order to verify the generaliz-
ability of BurNet, we build datasets by visiting similar web-
pages on two famous websites, namely JD [28] and YouTube
[29]. The standard of similarity lies in that webpages have the
same or similar layout.

We select a group of webpages as the monitored webpages,
each of which is visited dozens or even hundreds of times. We
also choose another group of unmonitored webpages that are
hundreds of times larger in volume than the previous group,
where each unmonitored webpage is visited only once.

We use Selenium to drive Google Chrome to access web-
pages and use tcpdump to capture the traffic generated by
visiting the webpages. To emulate user visits from different
locations, the data collection is conducted on Ali cloud servers
located in Virginia, Silicon Valley, Japan, Qingdao, Beijing and
Chengdu. Our dataset collection took three months. We use
the SNI field to refine the traffic flows for each dataset, e.g.,
“yt3.ggpht.com for YouTube and “imgXX.360buying.com” for
ID.

The datasets obtained after the flows are parsed are shown in
Table III. For the closed-word setting, YouTube (YT) dataset
contains a total of 29,902 sequences from 103 webpages. The
JD dataset contains 12,155 sequences from 78 webpages. For
the open-word setting, excluding those in the closed-world
datasets, we visit 10,000 YouTube webpages and 6,500 JD
webpages, respectively. After removing data of failed visits,
the open-world dataset contains 9,767 YouTube sequences and
6,477 JD sequences.

TABLE III: Dataset overview

Closed-world Open-world
Monitored  Sequences Labels Unmonitored Sequences
YT 103 29,902 103 9,767 9,767
D 78 12,155 78 6,477 6,477

3) Cross Validation: We use 10-fold cross validation for
evaluation. That is, we divide the dataset into 10 parts, and
take turns to train classifiers on 9 parts and test with the rest
one. The mean value of the results of 10 times is used as the
result of each method.

B. BurNet’s Hyperparameter Tuning

We use pytorch to implement the deep learning model of
BurNet. In order to get a model with strong generalization
ability, we need to adjust the hyperparameters in the model.
We determine a hyperparameter space based on experience,
and then find the optimal values in the hyperparameter space,
as exhibited in Table IV. When training with different datasets,
we only need to tune three hyperparameters, i.e., N, ag and
A, greatly reducing time spent on tuning hyperparameters.

Figure 6 shows the impact of the number of epochs on
accuracy and error rate of BurNet on YT dataset. Similar
results can be obtained on JD dataset, which is omitted here. Its
accuracy on the testing set exceeds 96% after only 10 epochs
and grows with the increase of epochs. More importantly, the
differences between training accuracy and testing accuracy are
always less than 2%, indicating that BurNet can avoiding over-
fitting.

In our preliminary experiments, we find that FlowPic [20]
requires extremely large time and space costs in training.
To make a fair comparison, we compare the space and time



TABLE IV: Hyperparameter selection of BurNet

Hyperparameter Search Range Final
N [100...500] 300
Optimizer [Adam,Adamax,SGD] Adam
ap [0.001...0.01] 0.005
aq [0.1...0.5] 0.2
EPOCH [20...100] 30
Batch Size [50...200] 150
A [0.0001...0.1] 0.001
Activation Functions [Tanh,ReLU,Sigmoid] ReLU
Number of Filters
Block1[Convl_1,Convl_2] [2...8] [4,4]
Block2[Conv2_1,Conv2_2] [4...16] [8,8]
Block3[Conv3_1,Conv3_2] [8...32] [16,16]
Block4[Conv4_1,Conv4_2] [16...64] [32,32]
Block5[Conv5_1,Conv5_2] [32...128] [64,64]
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Fig. 6: Closed-world: Impact of the number of epochs on
BurNet’s accuracy and error rate on YT dataset

overhead required by FlowPic and BurNet to achieve 90%
training accuracy on two datasets in closed-world setting, as
summarized in Table V.

Each input of BurNet occupies about 300 floats, which is
around 1.17K if each float takes up 4 Bytes. However, each
input of FlowPic takes up 1500x 1500 floats, which is 7500
times more than that of BurNet. Thus, FlowPic results in
a large volume of input data for training, which cannot be
completely loaded in memory. In our implementation, FlowPic
employs eight threads to load data. Its time consumption is
significantly larger than BurNet. FlowPic is not an efficient and
resource-friendly WF method, thereby we no longer consider
it in further comparisons.

TABLE V: Comparison of overhead of FlowPic and BurNet

Space (KB) Training Time (s)
YT D
FlowPic 8,789.06 7,809.93 4,038.16
BurNet 1.17 21.92 14.11

C. Closed-World Evaluation

Now we evaluate the accuracy of each method in closed-
world setting. The accuracy of each method is defined as the
proportion of all instances that are classified correctly.

Table VI shows the accuracy of different methods on two
datasets in two attack scenarios. In local attack scenario,
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Fig. 7: Closed-world: Impact of training data size of YT
dataset on accuracy in local attack scenario

BurNet uses downlink traffic and the other methods use
bidirectional traffic (The reason why BurNet uses downlink
traffic is shown in Section IV-B); while in remote attack
scenario, all methods leverage only downlink traffic.

We make two key observations from the results.

1) In local attack scenario, BurNet achieves the highest
accuracy on two datasets, although the other methods uses
bidirectional traffic for training. The results demonstrate that
the downlink burst sequence as well as the CNNs classifier
proposed in this paper can extract discriminative features in
similar webpages.

2) In the remote attack scenario, BurNet can work well,
whereas the accuracy of other methods drops dramatically
compared with the results in local cases. In particular, DF
exhibits the most significant decrease in accuracy when only
unidirectional traffic is available. The results also confirm that
the remote attack scenario imposes more challenges on WF
methods, as unidirectional traffic leaks less information.

TABLE VI: Closed-world: Accuracy of different methods on
two datasets in two scenarios

Local Attack Scenario Remote Attack Scenario
CUMUL k-FP  DF  BurNet| CUMUL k-FP  DF  BurNet
YT | 0949 0954 0.972 0.981 0.747  0.822 0.068 0.981
JD | 0499 0901 0.808 0.966 0.168 0.824 0.045 0.966

Figure 7 shows the impact of the size of YT dataset
on accuracy. The experiment is carried out in local attack
scenario and the number of instances of each label for training
varies from 50 to 290. The results show that the accuracy of
each method grows with the increase of training instances,
especially for CUMUL and BurNet. When the number of
instances of each label exceeds 150, BurNet outperforms the
rest methods and can further improve its accuracy as the
training data size increases.

D. Open-World Evaluation

We now evaluate the methods in a more realistic open-world
setting, where the attacker needs to determine whether the traf-
fic comes from a monitored webpage or an unmonitored one.
Motivated by the experiments in the literature [3, 7, 13], we
focus on the binary classification, that is, whether an instance
can be correctly classified as monitored or unmonitored.

We use prediction probability to label instances. If an
monitored instance has a prediction probability greater than
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Fig. 8: Open-world: TPR and FPR with varying amounts of
unmonitored webpages on JD dataset in local attack scenario

a certain threshold, it is considered as a true positive (TP),
otherwise a false negative (FN). Similarly, correctly labeling an
unmonitored instance leads to a true negative (TN), otherwise
a false positive (FP). Several metrics are used for evaluation
[3, 6, 7]. True positive rate (TPR) is TP/(TP + FN) and
false positive rate (FPR) is F'P/(FP + TN). Precision and
recall are also used to avoid the base rate fallacy, which are
defined as TP/(T'P+FP) and TP/(TP+F N), respectively.
In practice, the attacker can adjust the threshold to make trade-
offs between precision and recall.

Figure 8 shows TPR and FPR with varying number of un-
monitored webpages on JD dataset. Recall that JD dataset has
12,155 sequences from 78 monitored webpages. We change
the number of unmonitored webpages from 1,000 to 6,000.
The results show that both TPR and FPR of each method
tend to decline with the increase of unmonitored webpages.
However, the number of unmonitored webpages has a greater
impact on CUMUL and k-FP, while BurNet is less affected.
BurNet and DF have the similar FPR trend as the number of
unmonitored webpages increases, but TPR of BurNet is higher
than that of DF. The downward trend of FPR tends to flatten
after the number of unmonitored webpages exceeds 5,000.
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Fig. 9: Open-world: Precision-Recall curves in local attack
scenario

Next, we fix the number of unmonitored webpages in the
dataset and use precision and recall to explore the performance
of different methods in both local and remote attack scenarios.
The YT dataset consists of 29,902 sequences from 103 moni-
tored webpages and 9,677 sequences from 9766 unmonitored
webpages. The JD dataset includes 12,155 sequences from
78 monitored webpages and 3,819 sequences from 3,819
unmonitored webpages. The ratio of monitored to unmonitored
sequences in both datasets is about 3:1.

Figure 9 shows the precision-recall curves of YT and JD

datasets in local attack scenario. Precision-recall curve is an
important indicator to evaluate the performance of classifier in
unbalanced datasets. By adjusting the prediction threshold, the
precision and recall of all methods on YT dataset can reach
0.994 at the same time, which is better than that on JD dataset.
BurNet and DF are highly efficient on YT and JD datasets,
and BurNet performs even better than DF. We notice that the
precision of k-FP on the two datasets is lower than other
methods. The possible reason is that the similarity of webpages
leads to less discriminative statistical features used by k-FP.

TABLE VII: Open-world: Precision and recall in remote
attack scenario

YT JD
Precision Recall Precision Recall
CUMUL 0.9837 0.9904 0.8217 0.9688
k-FP 0.9773 0.9837 0.9014 0.9627
DF 0.7537 1.0000 0.7609 0.9999
BurNet 0.9969 0.9988 0.9910 0.9975

Table VII shows precision and recall of different attacks on
two datasets in the remote attack scenario. The threshold of
true positive is set as 0.5. BurNet can achieve 0.99 precision
and 0.99 recall simultaneously on both datasets, which is better
than other methods. Comparing with the results in Fig. 9, the
precision of other methods in remote attack scenario degrade
greatly, especially on JD dataset. For instance, DF tends to
predict all instances as monitored, so its recall on both datasets
approaches 1.0 whereas the precision is relatively low.

E. Training Cost

TABLE VIII: Closed-world: Training time on YT and JD

datasets
CUMUL k-FP DF BurNet
YT 57.32s 9.73s 182.66s 119.83s
D 73.12s 3.54s 78.70s 58.33s

We record the training time of various methods in local
attack scenario in the closed-world setting. The results in Table
VIII show that k-FP takes the least training time. DF and
BurNet, which leverage CNNs, take longer time compared
with traditional machine learning methods. Although BurNet
has deeper convolutional layers, it needs less training time than
DF, because it does not include fully-connected layer and thus
significantly reduces the amount of parameters for training.

F. Discussion

Through the extensive experiments presented above, we ver-
ify the effectiveness of BurNet on fine-grained WF. But there
is a limitation in this work. Our two datasets are collected in
the general traffic scenario, without considering tunnel traffic
scenarios such as Tor. Although the general traffic scenarios
account for the vast majority in the real world, the tunnel traffic
scenarios are also worth exploring. The unidirectional bursts
required by our method can also be obtained from the traffic



of Tor. Therefore, BurNet is potentially applicable to such a
scenario and we leave this evaluation as the future work.

VII. CONCLUSION

In this paper, we presented BurNet, which is an efficient
method for fine-grained WEF. In order to capture the differences
of similar webpages from the perspective of network traffic,
we proposed the concept of unidirectional burst. The sequence
of unidirectional bursts can make BurNet applicable to both
local and remote attack scenarios. We leveraged downlink
burst sequences as input and carefully designed a CNNs-
based classifier. We collected two real-world traffic datasets
and conducted extensive experiments to make a comprehensive
comparison of BurNet with the state-of-the-art. The results in
both closed- and open-world settings show that, even using
only downlink traffic, BurNet outperforms the state-of-the-art
methods in terms of accuracy. In future work, we will further
evaluate the effectiveness of the proposed method in more
attack scenarios.
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