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Abstract—With the dramatic increase of video traffic on the
Internet, video quality of experience (QoE) measurement becomes
even more important, which provides network operators with
an insight into the quality of their video delivery services. The
widespread adoption of end-to-end encryption protocols such as
SSL/TLS, however, sets a barrier to QoE monitoring as the most
valuable indicators in cleartext traffic are no longer available
after encryption. Existing studies on video QoE measurement in
encrypted traffic support only coarse-grained QoE metrics or
suffer from low accuracy.

In this paper, we propose DeepQoE, a new approach that
enables real-time video QoE measurement from encrypted traf-
fic. We summarize critical fine-grained QoE metrics, including
startup delay, rebuffering, and video resolutions. In order to
achieve accurate and real-time inference of these metrics, we
build DeepQoE by employing Convolutional Neural Networks
(CNNs) with a sophisticated input and architecture design. More
specifically, DeepQoE only leverages packet Round-Trip Time
(RTT) in upstream traffic as its input. Evaluation results with
real-world datasets collected from two popular content providers
(i.e., YouTube and Bilibili) show that DeepQoE can improve QoE
measurement accuracy by up to 22% over the state-of-the-art
methods.

Index Terms—Encrypted traffic analysis, video QoE, network
measurement, deep learning, convolutional neural networks

I. INTRODUCTION

Recent years have witnessed the prosperity of video-based
services and applications, which contribute greatly to the
dramatic increase in network traffic. The global internet phe-
nomena report published by Sandvine [1] shows that video
content accounts for an impressive 58% of the Internet traf-
fic. Monitoring video quality of experience (QoE) provides
network operators with a deep insight into the quality of
their network services on video delivery. In particular, real-
time tracking of video QoE enables network operators to
dynamically optimize their network bandwidth provisioning
and traffic routing strategies.

For cleartext video traffic, it is easy to obtain common
QoE metrics (e.g., startup delay and stalls) through deep
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packet inspection. However, an increasing number of net-
work services have adopted end-to-end encryption protocols
for consideration of user privacy. Currently, more than 70%
of Internet traffic has been encrypted by SSL/TLS [I, 2].
YouTube, Netflix and Bilibili, the popular video providers,
have encrypted a large portion of their video streaming traffic.
This poses a great challenge to real-time measurement of video
QoE as most valuable indicators are no longer available in
encrypted traffic.

Existing studies mostly rely on machine learning models
such as Naive Bayes and random forests [3-5] to extract
features from encrypted video traffic for inferring critical
QoE metrics. Features that are commonly used range from
packet level to flow level, such as packet counts, TCP flag
counts, and statistical information. It usually takes a relatively
long time to extract and calculate the desired features from
encrypted traffic, which cannot meet the requirement of real-
time monitoring. In addition, they only enable coarse-grained
video QoE measurements. Take for example the video reso-
lution monitoring, existing studies usually classify all types
of resolutions into two or three classes, which are labeled
as high, medium, and low qualities. Thus, the problem of
measuring video resolutions are turned into a bi-classification
or three-classification problem. This measurement granularity
is inadequate for a comprehensive understanding of video
delivery quality, as current adaptive streaming usually supports
a group of video qualities, varying from 144p to 1080p.

The goal of this paper is to develop an accurate method
for real-time measurement of fine-grained video QoE metrics
from encrypted traffic. Motivated by the literature in QoE as-
sessment [6], we select three types of critical metrics, namely
startup delay, rebuffering, and video resolution. Although these
metrics can be easily obtained from cleartext traffic, it remains
a challenging task to accurately monitor them in encrypted
scenarios. Another challenge lies in the time efficiency of
video QoE measurement approaches. Utilizing the information
of packets can be realized by the network devices such as
routers in a time window of 5 or 10 seconds. Therefore, QoE
measurement should be conducted in a real-time manner with
segmented streaming information.



In this paper, we propose DeepQoE, a new method for real-
time video QoE measurement on encrypted traffic. To achieve
the goal that infers video QoE metrics in a real-time manner,
we use only the Round-Trip Time (RTT) of upstream packets
as a crucial feature. This greatly reduces the computational
complexity in feature extraction and is more suitable for real-
time video QoE measurement. To enable accurate and fine-
grained monitoring, DeepQoE leverages Convolutional Neural
Networks (CNNs) with sophisticated designs, including the
architecture, activation function, and loss function. Compared
with the traditional machine learning methods used in existing
studies (cf. Table I), CNNs solve the problem of manually
selecting and fine-tuning features.

The main contributions of this paper are summarized as
follows:

We observe that the RTT information of upstream packets
can act as a crucial feature for inferring fine-grained video
QoE metrics. We identify fine-grained measurement metrics,
which enable network operators to identify specific startup
delay and concrete video resolutions. Comparing with existing
video QoE inferring models, our method does not need to
calculate traffic statistics, such as mean, maximum, minimum,
etc. It takes a quite short time (i.e., around 4 milliseconds)
to extract features from packets, which greatly reduces the
calculation cost of the front-end server and is more suitable
for real-time inferring.

We design a deep learning-based model for accurate QoE
measurement. In order to apply CNNs in our scenario, we
design an appropriate neural network structure, an activation
function, and a loss function. The neural networks generate
features automatically by convolution functions from the input
data. CNNs extract high latitude features to achieve the goal
that infers fine-grained video QoE metrics.

We demonstrate the effectiveness of DeepQoE with real-
world datasets collected from two popular content providers.
We select YouTube [7], the largest content provider around
the world, and Bilibili [8] as the experiment data sources.
More than 10 thousands video sessions are collected in total,
and the pcap file size reaches 480GB in our experiments. The
evaluation results show that compared with the state-of-the-art
methods, DeepQoE can improve the measurement accuracy by
up to 22%.

To the best of our knowledge, this is the first study that
applies CNNs to infer video QoE metrics from encrypted
traffic. The rest of this paper is organized as follows. We
introduce the background and related work in Section II and
describe the motivation of employing RTT information as
model input in Section III. Then, we present the design details
of DeepQoE in Section IV and evaluate its performance in
Section V. We discuss several future research issues in Section
VI and conclude the paper in Section VII.

II. BACKGROUND AND RELATED WORK

In this section, we briefly introduce the adaptive video
streaming mechanism that is increasingly adopted by video
websites. Then, we elaborate on the QoE metrics considered

in this paper and describe the application scenario. Finally,
we summarize the existing studies on measuring video QoE
metrics from encrypted traffic.

A. Adaptive Video Streaming

HTTP Adaptive Streaming (HAS) combines the traditional
streaming media technology with the characteristics of HTTP
progressive download and play, which transmits media content
to users in HTTP mode. The video content is broken into a
sequence of HTTP-based file segments by HAS, each of which
hold a short interval of playback time of an original video that
is with a duration of several hours, such as a documentary or
a live concert. A video player requests a sequence of fixed
video segments from the server and stores the downloaded
video segments in its local buffer so that it can continue to
play smoothly while waiting for the arrival of the follow-up
video segments. Multiple quality levels, usually varying from
144p to 1080p, are prepared for each video segment. The
quality of each video segment ranges from 144p to 1080p and
the video player request the video segment with a specific
resolution. The video resolution adaptive logic of the video
player determines the video resolution of the request according
to the network condition [15, 16].

B. QoE Metrics

QoE acts as an important measurement of the overall per-
formance of video streaming services perceived by end users.
Traditionally, subjective evaluation solicits users’ evaluation
scores to measure the level of QoE. However, it takes a lot
of time and requires a large amount of human resources.
Objective quality models are developed to provide faster
evaluation results.

In order to develop efficient video QoE prediction models
that are independent of specific video contents, network s-
tatistics (e.g. packet delay) and spatiotemporal features of the
distorted video are involved. The video QoE are characterized
most commonly by video quality metrics containing startup
delay, rebuffering events, and video resolution (i.e., encoding
bitrate) [17].

Motivated by existing studies, we also employ these QoE
metrics as the criteria to evaluate video QoE. In addition, we
also pay special attention to fine-grained metrics that enable
a much better understanding of video delivery quality.

Startup delay. 1t measures the time spent by the video player
when it requests the initial video segments until meeting its
requirements. This delay consists of the network delay and the
initial buffering delay. Network delay is influenced by DNS
lookups, network latency, longer server response times and
CND redirection. The initial buffering delay indicates the time
required to perform the initial filling of the buffer, which has
sufficient local video data to allow layer for smooth playback.

Startup delay plays an important role in the data-driven QoE
evaluation [6]. As the startup delay increases, video popularity
often drops significantly. The coarse-grained metric of startup
delay is commonly used in existing studies, where a binary



TABLE I: Summary of existing studies on QoE metric measurement

QoE Metrics

Methods Online Classifiers Startup delay | Rebuffering | Video resolution
Dimopoulos et al. [9] Random Forest 4 V4 v
Hammad et al. [3] v Decision Tree 4 Vv vV
Orsolic et al. [5] Naive Bayes, Decision Tree and Random Forest v Vv Vv
Mangla et al. [10, 11] Session Modeling-based Approach Va Na VA

Krishnamoorthi et al. [12] v Decision Tree and SVM Va

Gutterman et al. [13] 4 Random Forest Na VA
Schmitt et al. [14] Vv Regression Model and Random Forest VA VA
DeepQoE Vv CNNs VA VA Na

/" represents fine-grained QoE metrics.

parameter is learned to indicate whether the startup delay is
below a certain threshold (e.g., 5 seconds) or not.

Fine-grained startup delay. This metric has two representa-
tions that one directly measures the video’s initial buffering
time to seconds. Although the precision of it is high, the
prediction accuracy is relatively low. Mangla et al. [11] have
only got about 70% of the prediction accuracy. The other
metric is proposed in this paper, which measures whether the
video has started to play within a specific second.

Rebuffering events. When the content locally stored in
the buffer of the video player cannot meet the playback
requirement, rebuffering will appear until the video segments
are buffered enough to satisfy the playing requirements. More
specifically, playback is forcibly suspended until more video
segments are downloaded and the buffer is refilled.

From the perspective of user experience, rebuffering is
also known as stalling. It has been proved that frequent
rebuffering events have a high correlation with poor QoE.
For instance, a video with 2 rebuffering events in a 3-second
session will result in a significantly lower Mean Opinion
Score (MOS) [18]. The coarse-grained rebuffering metric is
usually abstracted as a binary parameter, indicating whether
rebuffering events happen in each video session or not.

Fine-grained rebuffering metric. As indicated by existing
studies, the frequency of rebuffering events in video playback
can severely affect the user viewing experience. Thus, we refer
a fine-grained rebuffering metric to the specific number of
rebuffering events during each time window. In this paper, we
adopt a 10-second time window as the commodity routers can
usually buffer network traffic for 10 seconds.

Video resolution. 1t is a parameter used to measure the
amount of data in one frame. In general, the higher the
resolution of a video, the better the users viewing experience.
Existing researches on subjective evaluations demonstrated the
relationship between video resolution and QoE [19]. They
take experiments in mobile networks, and the results show
that video streams with higher resolution are linked to better
overall QoE.

In a real network environment, content providers dynami-
cally adapt video resolution to network conditions. The typical
inference target of video resolution is the average resolution
during a period of time, such as 10 seconds. Coarse-grained

resolution metric has been employed in previous studies,
where identifying video resolution is abstracted as a binary
(i.e., low or high) or three-category (i.e., low, medium, or high)
classification problem.

Fine-grained video resolution. It aims to identify the specific
resolution of each video session. Fine-grained video resolution
is more desirable as it provides a deep insight into the
concrete display quality on the user side and also enables
the understanding of resolution changes (e.g., active resolution
adjustment by users). As a result, it turns to a multi-category
classification problem, where each category corresponds to a
specific resolution (e.g., 144p).

C. Related Work

Table I shows cutting-edge researches on QoE metrics for
encrypted video traffic. The QoE metrics inferring methods
mainly contain Machine Learning (ML) based methods and
Session Modeling (SM) based methods.

ML-based approaches. This approach predicts video QoE
by associating the network observable metrics like packet
length, delay, and loss with the video QoE metrics using
traditional machine learning algorithms[20]. Dimopoulos et
al. [9] extracted features from encrypted flows, and then
they used Random Forest to identify the initial time delay,
stalls, average representation quality and representation quality
variation about the video QoE. Their method needs to calculate
features from the whole video session, which is not for
online video QoE measurement. Hammad et al. [3] proposed
a machine learning-based solution to predict QoE metrics
using J48 based on statistics of network flow. Features they
extracted from packets and a time window, which contained
statistics such as mean, minimum, maximum, median and
etc. The machine they used is J48, a traditional decision tree
classification algorithm. Their method can’t infer video QoE in
a fine-grained, which is not significant for network operators
to make network operator strategy. Orsolic et al. [S] proposed
a machine learning approach to infer YouTube QoE metrics
based on encrypted traffic analysis. Their method needs to
calculate the number of statistic features, which is not suitable
for real-time video QoE identification.

SM-based approaches. QoE metrics are inferred by mod-
eling the video session according to the properties of the
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relies on application layer information. Mangla et al. [11]
proposed a QoE inferring method for encrypted video, named
eMIMIC. Their method uses packet headers of network traffic
to represent HAS sessions and estimates the QoE metrics.
However, their method is based on video session modeling,
which means that model training can only be performed
offline, and real-time QoE recognition cannot be achieved.

Different from the existing studies discussed above, in this
paper, we apply CNNss to build the classifier for inferring fine-
grained QoE metrics, which can automatically and adaptively
learn valuable features and thus avoids empirical and hand-
crafted feature selection process.

III. MOTIVATION

In this section, we describe the observations that motivate us
to leverage RTT information to infer fine-grained QoE metrics.

In web applications, RTT measures the propagation delay
of the path between a client and the corresponding server. It
usually refers to the duration of sending a packet by the client
to receiving its acknowledgment. In this paper, we regard the
value extracted by tcp.analysis.ack_rtt in Tshark as
the packet-level RTT information, which is a time offset on
the client-side between sending a packet and the arrival of its
acknowledge (ACK) packet.

High RTT in a video session can have a negative effect
on video delivery quality, thus impairing user experiences. To
verify the impact of RTT on QoE metrics listed in Section II,
we conduct experiments to explore the relationship between
RTT and QoE metrics, as illustrated in Figure 1. For ease of
exhibition, we select 10 YouTube traffic flows and visualize
the RTT distribution of the first 100 packets in each flow.

For startup delay shown in Figure 1(a), we simply set a 3-
second threshold and present the RTT of packet sequences
that started (i.e., red stars) or not started (i.e., blue dots)
within 3 seconds. It shows clearly that RTTs of the majority
of NotStarted and Started flows spread above or below the
cutting line of 1 second, respectively. For rebuffering and video

Offline Training Real-time Measurement

Fig. 2: System overview

resolution in Figures 1(b) and 1(c), we observe similar or even
more clear spread of RTTs for fine-grained metrics.

Packet RTT can reflect the state of network condition. The
smaller the RTT value, the better the network environment.
Operators can infer the required QoE metrics from network
conditions which are reflected by RTTs. Note that HTTP
adaptive video streaming always has a segment organization
due to the adaptive characteristics. Though the packet delay
can be bursty due to segment structure, packet-level RTT in
each segment remains relatively stable.

IV. THE PROPOSED DEEPQOE

In this section, we present the design of DeepQoE. An
overview of the QoE metrics measurement process with Deep-
QoE is illustrated in Figure 2, which mainly consists of two
steps: offline training and real-time QoE measurement.

In the training process, we collect encrypted traffic of the
target video provider and extract the input information (i.e.,
packet-level RTTs and labels) to train a CNN-based classifier.
We leverage CNNs to construct DeepQoE as it does not
require manually selecting and fine-tuning features. The data
labeling strategy will be described in Section V. In the online
QoE measurement process, real-time RTTs are extracted from
encrypted traffic of the videos we want to appraise and then
fed to DeepQoE for quick identification.

A. Model Input

In order to satisfy the real-time measurement requirements,
the classifier needs to extract as few input information as
possible from the original encrypted traffic [21]. We take
advantage of the RTT information of the upstream packets.
Now, we provide a formal description of the model input.
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TABLE II: List of notations for rebuffering and video resolution RIN,.:

Notation Meaning
t The video has been played in t second RIN, = [RTTf ’ RTTS] @)
s The number of RTTS used in the startp delay where RTT; is the RTT vector of T, and RTT, is the RTT
T Time window vector of T.
Ty The first half of the time window )
Ts The last half of the time window B. Network Architecture
N, The ““mbf:r of RTTs }lsed i‘} thei rebuffering We use CNNs to construct the classifier, which can ex-

— event or video resolution estimation tract features automatically from the input information. The
R The model input structure of a four-layer stacked CNNs used in DeepQoE is
© The set of CNNs parameters . . . .

illustrated in Figure 3. The main body of the neural network

L; The fully-connected layers ists of luti ) d a full ted 1
ol The number of QoE metrics consists o a} convolution layer and a fully connected layer.
’a Cross entropy function Convolution layer. In this layer, we repeat the convolution
L Confidence control constraint operation four times. We use 2D convolutional functions
C Loss function twice in each convolution operation. After the convolutional

For the startup delay measurement, we use ¢ to represent
the video that has been played in ¢ seconds. If we want to infer
whether the video has been played in ¢ seconds, we only need
to extract tx Ng RTTs in the first ¢ seconds. In our experiments,
N, equals 50, as we get an average of 50 RTTs per second in
our experimental environment. If the number or RTTs in the
packet sequence exceeds t * Ny, we only use the first ¢ * N,
information. If the vector has fewer than ¢ x N,, we pad it to
t * Ny by appending zeros. The notations used in this paper
are summarized in Table II.

For measuring rebuffering and video resolution, we adopt a
T-second interval as the identification time window. 7 is set as
10 in this paper, as the network operator is capable of utilizing
packet data in a moving time window of 10 seconds for each
network flow. We divide 7" into two parts on average, which
are defined as the first and last half of each time window.
Model inputs are derived separately for the first and last half
of each time window. No matter for the first 7'y time window
or the last T, time window, we only need to extract the first N,
RTTs in the packet sequence. If the number of RTTs in each
time window is fewer than [V,., we pad it to NV, by appending
zeros. N, is set to be 150, as 150 RTTs are enough to infer
the QoE metrics.

We represent the three kinds of model input by RIN, for
startup delay RIN;:

RIN, = [RTTy.n.] (1)

function, we use a BatchNorm function to makes the input of
each layer of the neural network keep the same distribution
during the training of the neural network. After the BatchNorm
function, we use a rectified linear unit (ReLU). A max-pooling
layer are added behind the ReLU function to reduce the size
of representation. We add a max-pooling layer to reduce the
size of representation. At the end of each Convolutional Layer,
we use a dropout function to avoid over-fitting by reducing the
interdependence among nodes in the neural network.

O represents the set of parameters in CNNs. Give the input
data RTT, the feature representations can be obtained as
shown in Eq. (3).

F = CNN (RIN, ©) 3)

Fully connected layer. We use a linear function for the
linear transformation of the input data calculated by the
convolution layers. Then, a Batchnorm function is applied
to the linear transformation data. Following the activation
function V;, there is a dropout function to avoid over-fitting.
Based on the output of features extractor (i.e., F'), an activation
function is used before fully-connected layers to learn the
representation £; of RTT as shown in Eq. (4),

L; = Softplus (WiF; + by) 4)

where Wy and by are the parameters to be learned in the
activation function.

In order to infer the labels of video QoE metrics, the
feature representation £; are mapped into a new latent space
H,; € R€, where C is the number of QoE metrics we want



to identify. Furthermore, a softmax function is used to get the
probability vector of QoE metrics as shown in Eq. (5).

¥; = Softmax (H;) 5)
H; is calculated as follows:

where W, and b, are parameters to be learned in the fully
connected layer.

Loss function. The cross entropy function is used to
calculate the loss between the identification and the ground
truth, as defined in Eq. (7),

|IX| ©

Lo = —% DD viclog (yic) (7)

i=1 c=1

where | X| is the number of instances.

One problem of the over-fitting is that the model is over-
confident when it predicts all the probabilities on one class on
the training process [22]. The model may get stuck in a local
optimum when the model is overfitted on the training stage,
which may reduce the classification accuracy of the model on
the testing stage. To solve this problem, a confidence control
constraint is proposed in this paper, which is penalized ;.
when it is over confident. It introduces the prior knowledge
of label distribution into the training data to improve the
stability of the training stage. The loss of the confidence
control constrain is shown in Eq. (8).

x| ¢
1 . .
Ly = X Z Z (log (4ic) +log (1 — yic))  (8)
=1 c=1
In this way, if y;. reaches 0 or 1, the penalty will go to
infinity. Based on Egs. (7) and (8), we define the loss function
in Eq. (9),
L=L,+aly 9)

where « is the weighting parameter.

Optimizer. As for the optimizer, we adopt Adam optimizer
in DeepQoE. Adam algorithm is a first-order gradient opti-
mization algorithm for the stochastic objective function, which
is based on adaptive low-order moment estimation. Adam is an
effective stochastic optimization method, which requires only
a first-order gradient and very little memory.

C. Real-Time Measurement of QoE Metrics

When all the parameters of the CNNs classifier are learned
at the training stage, the classifier is saved locally. The trained
classifier can then be used to infer QoE metrics based on a
real-time acquisition of RTT information from network egress
nodes (e.g., the exit nodes of the campus network). More
specifically, to identify the startup delay, we only need to
extract t; *x Ng RTTs from the packet sequence in the first ¢;
seconds; for rebuffering and video resolution, we separately
extract the first V,, RTTs from the first T seconds and the
last T, seconds.

TABLE III: Datasets for Experiments

# of Sessions
5,833
6,303

Video Source
YouTube
Bilibili

Pcap File Size
180GB
302GB

V. PERFORMANCE EVALUATION

In this section, we are devoted to evaluating the effective-
ness of DeepQoE, in terms of measurement accuracy and time
overhead, by comparing it with the state-of-the-art methods.

A. Preliminary

Methods to compare. In order to fully understand the
efficacy of DeepQoE, we leverage two typical methods for
comparison: one uses a traditional J48 classifier to predict
video QoE metrics and the other leverages deep learning for
website fingerprinting, which are summarized as follows:

o J48, which uses statistical features generated from net-
work and transport layers, such as mean, minimum, and
maximum, to infer video QoE metrics [3].

o DeepFingerprinting (DF), which uses the packet direction
as the input of CNNs model to obtain website fingerprints
[23]. We adjust hyperparameters to achieve its best per-
formance. DF acts as a counterpart that leverages a CNN-
based classifier for encrypted traffic analysis.

Hardware. A server equipped with an Intel Core Duo i5-
3230M 2.60GHz and 4GB of memory to capture video traffic
in our experiment. The traffic capture script runs on Ubuntu
16.04. Video QoE metrics inferring experiments are conducted
on a server, which is equipped with an Inter Core Duo 3.6GHz
and 16GB of memory. The CNNs module runs on a GPU with
8GB of memory.

Cross-validation. In order to prove the effectiveness of
DeepQoE, we use the collected datasets to establish a 10-
fold cross-validation, i.e., 9 of the 10 portions are used as the
training data and the remaining one as the testing data. The
mean result is used to evaluate the performance of inferring
models.

Precision, recall and Fl-score are used to measure the
performance of an inferring model. Recall is the number of
true positive instances divided by the sum of true positive
and false negative instances. Precision is the number of true
positive instances divided by the true positive and false positive
instances. Fl-score considers both the precision and recall to
measure the overall performance of a classifier.

B. Dataset Collection

In our experiments, we consider two popular network con-
tent providers, namely Youtube [7] and Bilibili [8]. Based on
the global internet phenomena report published by Sandvine
[1], more than 1.9 billion users log on to YouTube every month
in general. Bilibili is one of the most popular video websites
in China, of which user views are over 90 millions per month.
Choosing different video websites can prove the universality
of the proposed method.



TABLE IV: Hyperparameters selection for DeepQoE from
extensive candidates search method

Hyperparameters Search Range Final
Optimizer [Q&Z?;(;?gglgﬁ’ Adamax
Learning Rate [0.001 ... 0.01] 0.0015
Training Epochs [10 ... 50] 30
Batchsize [50 ... 300] 150
[Kernel, Stride, Pool] Sizes [1...16] [3, 1, 2]
Activation Functions [Tanh, ReLU, ELU] ReLU
Each Convolution Layer

Block1 [Convl, Conv2] [D ... 3D] [D, 2D]
Block2[Conv3, Conv4] [2D ... 6D] [2D, 4D]
Block3[Conv5, Conv6] [2D ... 10D] [4D, 8D]
Block4[Conv7, Conv8] [2D ... 20D] [8D, 16D]
Pooling Layers [Average, Max] Max
Number of FC layers [1.. .4] 2
Dropout [Pooling, FC1, FC2] [0 ... 0.3] [0.01,0.01,0.01]

The data capturing process is shown in Figure 4. We set
a list of video URLs, which contain short interviews, game
videos, short documentaries and so on. The video resolutions
range from 144p to 1080p. YouTube videos are automatically
played by Selenium WebDriver in a Chrome browser, which
runs on a server with Ubuntu 16.0.4 OS. Selenium WebDriver
is controlled by a Python script, which loads the selected video
URL to the browser, opens the video player button and closes
the browser.

D — (e

Internet Video Servers

I
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Netem/TC Ubuntu Tcpdump Data Package
Selenium  Google Chrome Video Logs

Fig. 4: Process of data collection

To get the ground truth of video QoE metrics, we use
the IFrame API provided by YouTube and Bilibili to get the
playing log reported by the video player. We can get the
states of the player (e.g., started, not started, paused, playing,
buffering) and the exact video resolution (ranging from 144p
to 1080p) from the IFrame API. Tcpdump is used to capture
traffic and extract tcp.analysic.ack_rtt information.

Network emulation tools containing net em and t ¢ are used
to emulate a dynamic network environment. Taking advantage
of these tools in the traffic capturing server, we can emulate
different network conditions by randomly setting different
network parameters, such as bandwidth, delay, and packet loss
rate. We divide the network condition into 10 types, which
represent different network conditions. The network bandwidth
ranges from 100kbps to 1000kbps, the delay ranges from 10ms
to 100ms, and the packet loss ranges from 0 to 30%. Before

every video playback, we randomly set network environment
relying on these tools.

The video traffic of YouTube and Bilibili is collected for
three months. To avoid data contingency, we collect data from
6 servers deployed in different areas. The total datasets are
shown in Table III. We collect 5833 sessions of YouTube and
6303 sessions of Bilibili.

C. Hyperparameter Tuning of DeepQoE

In this subsection, we illustrate the hyperparameters used in
DeepQoE.

Tuning the hyperparameters of neural networks is of great
significance for achieving desirable inferring performance.
Adjusting the trade-off between bias, variance and inferring
accuracy is contained in this process. A large number of
training data and hyperparameters make it very difficult to train
DeepQoE. We build each layer of the neural network block
by block by an extensive search of the hyperparameter space.
In each layer of DeepQoE, we change the hyperparameters to
anticipate the gradient of the parameter and decide whether its
value should be increased or decreased. After completing this
process, the best Top-N parameters are selected as the initial
parameters. When all layers are set up, we choose the best
combination of these hyperparameters. The hyperparameters
search space and the final selected values are shown in Table
IV. We use D to represent the dimensions of input data. After
4 blocks with 2 layers of convolutional function, we will get
16 D features extracted from the network. We use a fully
connected layer to output the inferred labels.

Although the deep neural network is a powerful supervised
classification model, like most machine learning models, they
are also prone to over-fitting. Dropout [24] and Batch Norm
[25] are applied to prevent over-fitting during the training stage
of DeepQoE. Hidden units such as incoming and outgoing
connections are randomly selected to remove by Dropout
function in the training stage. Batch Norm normalizes the
output of the fully connected layer and the convolution layer.
It helps the deep learning model to accelerate learning and
reduce over-fitting at the same time.

D. Evaluation of Measurement Accuracy

In this subsection, we evaluate the performance of DeepQoE
from the identification accuracy of video QoE metrics.

Startup delay. To infer the startup delay time of YouTube
and Bilibili, we range ¢; from 1 to 8. Table V shows the
inferring result of the different inferring models on YouTube.
No matter which metrics, DeepQoE performs best comparing
with the other two methods. The precision of DeepQoE
reaches more than 90%, which is more than 10% higher than
J48 and DF. At the start up delay time of 6 seconds, the recall
of DeepQoE reaches 94.98%, which is more than 22% higher
than J48. The recall and F1 score of DeepQoE also reach
more than 90%. Table VI shows the inferring result of the
different inferring models on Bilibili. DeepQoE is superior
to the counterparts on the Bilibili dataset. The precision of
DeepQoE reaches more than 90%, which is higher than DF



TABLE V: Startup delay inferring results with J48, DF and DeepQoE on YouTube

148 DF DeepQoE

S,tlfiil;uep t??:;y Precision | Recall | F1 Score | Precision | Recall F1 Score | Precision | Recall | F1 Score
1 0.7732 0.7744 0.7738 0.7868 0.8165 0.8014 0.9276 0.9289 0.9283
2 0.6960 0.6967 0.6963 0.7766 0.7650 0.7708 0.9027 0.9026 0.9027
3 0.7085 0.7086 0.7085 0.7766 0.7699 0.7732 0.9376 0.9370 0.9373
4 0.7129 0.7135 0.7132 0.8140 0.7886 0.8011 0.9190 0.9191 0.9190
5 0.7082 0.7090 0.7086 0.8240 0.8029 0.8133 0.9203 0.9204 0.9204
6 0.7270 0.7292 0.7281 0.8248 0.7927 0.8085 0.9507 0.9498 0.9502
7 0.7395 0.7418 0.7406 0.8241 0.7920 0.8078 0.9158 0.9072 0.9115
8 0.7614 0.7631 0.7623 0.8092 0.7676 0.7879 0.9127 0.9075 0.9101

TABLE VI: Startup delay inferring results with J48, DF and DeepQoE on Bilibili

148 DF DeepQoE
Sta.rtup Delay Precision | Recall | F1 Score | Precision | Recall F1 Score | Precision | Recall | F1 Score
Time ¢; (s)
1 0.8484 0.8529 0.8506 0.8256 0.8360 0.8308 0.9017 0.9044 0.9030
2 0.8373 0.8421 0.8397 0.8014 0.8153 0.8082 0.9496 0.9491 0.9493
3 0.8168 0.8224 0.8196 0.8054 0.8167 0.8110 0.9420 0.9426 0.9423
4 0.8176 0.8222 0.8199 0.8004 0.8127 0.8065 0.9634 0.9632 0.9633
5 0.8131 0.8176 0.8153 0.8023 0.8090 0.8056 0.9346 0.9350 0.9348
6 0.7943 0.8005 0.7974 0.7900 0.8022 0.7961 0.9149 0.9070 0.9109
7 0.7787 0.7849 0.7818 0.7671 0.7800 0.7735 0.9396 0.9376 0.9386
8 0.7772 0.7826 0.7799 0.7573 0.7664 0.7618 0.9155 0.9165 0.9160

TABLE VII: Rebuffering event inferring results

with J48, DF and DeepQoE on YouTube

J48 DF DeepQoE
Rebtl;:;(;rmg Precision | Recall | F1 score | Precision | Recall | F1 score | Precision | Recall | FI score
0 0.7751 0.7962 0.7855 0.7514 0.9794 0.8504 0.7814 0.9657 0.8638
1 0.4910 0.4663 0.4783 0.7759 0.3194 0.4525 0.8158 0.4330 0.5657
2+ 0.1032 0.0919 0.0973 0.0000 0.0000 0.0000 0.9002 0.2082 0.3382
Weighted AVG 0.6683 0.6752 0.6717 0.7287 0.7254 0.7270 0.7954 0.7875 0.7914

TABLE VIII: Rebuffering event inferring results with J48, DF and DeepQoE on Bilibili

J48 DF DeepQoE
RethilIfrfleerlng Precision Recall F1 score | Precision Recall F1 score Precision Recall F1 score
0 0.8495 0.8593 0.8543 0.8230 0.9362 | 0.875971 0.9001 0.9923 0.9440
1 0.5923 0.5828 0.5875 0.7055 0.4822 | 0.572844 0.9685 0.7557 0.8490
2+ 0.1436 0.1234 0.1328 0.2609 0.0792 | 0.121501 0.9494 0.5214 0.6731
Weighted AVG 0.7640 0.7682 0.7661 0.7763 0.7979 0.7869 0.9208 0.9161 0.9184

and J48. As for the recall and F1 score, DeepQoE reaches
more than 90%, which performs best among the three methods.
The recall and F1 score of J48 and DF are similar, which are
around 80%. The results show that our approach is effective
for both YouTube and Bilibili traffic.

Rebuffering events. As for rebuffering events, we adopt
T = 10s as the inferring time threshold. We label rebuffering
events as 3 types: no rebuffering, rebuffering 1 time, rebuffer-
ing 2+ times (rebuffering 2 times and more than 2 times).

Table VII and Table VIII show the rebuffering event in-
ferring results of different identification models on YouTube
and Bilibili. No matter how many the rebuffering times are,
DeepQoE performs the best among different inferring models.
The recall of DeepQoE on no rebuffering event reaches more
than 95%. The precision of DeepQoE also outperforms among

different inferring models.

The precision of DeepQoE reaches 79.54% on YouTube,
which is 12.71% higher than J48 and 6.67% higher than DF.
DeepQoE performs the best on Bilibili compared to the other
two models, whose precision reaches 92.08% and is 15.68%
higher than J48 and 14.45% higher than DF. As for the recall,
DeepQoE reaches 78.75% on YouTube, which is the highest
among the three inferring models. The recall of DeepQoE
reaches 91.61% on Bilibili, which is 14.79% higher than J48
and 11.82% higher than DF. The F1 score of DeepQoE reaches
79.14% on YouTube and 91.84% on Bilibili, which is higher
than J48 and DF. The results show that our method is superior
to other methods.

Video resolution. For the video resolution inferring, we
adopt a fine grained inferring model and set the time window



TABLE IX: Video resolution inferring result comparison of J48, DF and DeepQoE on YouTube

J48 DF DeepQoE
Video Resolution | Precision | Recall F1 Score | Precision | Recall | FI Score | Precision Recall F1 Score
144p 0.7320 0.7465 0.7392 0.6999 0.9889 0.8197 0.7301 0.9617 0.8300
240p 0.2735 0.2629 0.2681 0.4159 0.0316 0.0588 0.8242 0.3318 0.4731
360p 0.5721 0.5553 0.5636 0.9310 0.4624 0.6179 0.8447 0.5870 0.6926
Weighted AVG 0.6199 0.6240 0.6218 0.6936 0.7180 0.6458 0.7736 0.7548 0.7289

TABLE X: Video resolution inferring result comparison of J48, DF and DeepQoE on Bilibili

J48 DF DeepQoE
Video Resolution | Precision Recall F1 Score | Precision Recall F1 Score | Precision Recall F1 Score
360p 0.8819 0.8981 0.8899 0.8430 0.9519 0.8942 0.9288 0.9932 0.9599
480p 0.2785 0.2554 0.2664 0.2299 0.0806 0.1193 0.8747 0.4784 0.6185
720p 0.3459 0.3147 0.3296 0.2390 0.0692 0.1073 0.9446 0.6592 0.7765
1080p 0.4456 0.4247 0.4349 0.3106 0.3420 0.3255 0.9717 0.8477 0.9055
Weighted AVG 0.7819 0.7902 0.7859 0.7563 0.7981 0.7766 0.9277 0.9285 0.9213

T = 10s. DeepQoE can estimate the specific resolution of the
videos. Since the connection bandwidth is limited between our
server and YouTube server, the resolution of YouTube videos
ranges from 144p to 360p (i.e., 144p, 240p, and 360p).

Table IX shows the precision, recall and F1 score of
different models on YouTube. DeepQoE performs best in
precision, recall and accuracy comparing with other methods.
The precision of our method on YouTube reaches 77.36%,
which is 15.37% higher than J48 and 8% higher than DF.
As for the recall, DeepQoE reaches 75.48%, which is 13.08%
higher than J48 and 3.68% higher than DF. The F1 score of
DeepQoE is 72.89% on YouTube, which is the highest score
among the three inferring models. The video resolution of
Bilibili ranges from 360p to 1080p (i.e., 360p, 480p, 720p,
and 1080p).

Table X shows the inferring results of video resolution
on Bilibili. DeepQoE outperforms other inferring models in
precision, recall or F1 score all the time. The precision of
DeepQoE reaches 92.77%, which is 14.58% higher than J48
and 17.14% higher than DF. The recall of DeepQoE also
reaches more than 90%, which is the highest among three
different methods. The F1 score of DeepQoE is the highest
score among these inferring models, which reaches 92.13%.
The experimental results show that our method is applicable
to different datasets, which has the best identification results
among different methods.

E. Evaluation of Time Cost

We evaluate time cost from three aspects: feature extraction,
training, and testing stage. Table XI presents the details of the
time cost of the different inferring models.

TABLE XI: Time complexity

Trainin, Testing Time (ms
Approaches Time (sg) Feature gInferrinfg ) Total
Extraction Time Time
J48 10.266 73.961 0.095 74.056
DF 64.095 3.401 1.575 4.976
DeepQoE 35.899 4.057 0.099 4.156

Feature extraction stage. As J48 needs to calculate statics
from the video flow, it takes the longest time in the feature
extraction stage, which is 15 times higher than DeepQoE.
DF and DeepQoE takes a similar time to extract features.
DeepQoE needs 4.507 milliseconds to extract features from
the encrypted flow and it’s suitable for real-time video QoE
metrics inferring.

Training and testing stage. DF takes the longest time to
build a QoE inferring model in the training stage, which takes
64.095 seconds, 28.196 seconds higher than DeepQoE and
53.288 seconds higher than J48. When a video QoE metrics
model is constructed, J48 and DeepQoE take a similar time
to infer an instance. DeepQoE only takes 0.099 milliseconds
in the inferring stage. DF takes the longest time to infer an
instance. When inferring the unknown data, our method needs
only 4.156 milliseconds in the testing stage, which is the
lowest time cost among the three methods and is suitable for
real-time identification.

VI. DISCUSSION

In this paper, CNN is selected to construct DeepQoE as
it fits our scenario better, e.g., we can quickly retrain the
classifier when input characteristics change, and thus can
react more quickly to the changes in video delivery strategies
such as quality adaption logic. Several deep learning tools,
such as Long Short-Term Memory (LSTM) and reinforcement
learning, have been used in networking field. We expect
that DeepQoE can be extended with these advanced tools.
For instance, LSTM is suitable for correlation analysis of
time series with sequential connections. As for the video
steaming traffic, the RTTs of consecutive segments may have
a correlation, making it potentially suitable to incorporate
LSTM in constructing high-accurate classifiers. Reinforcement
learning focuses on representation learning and goal-directed
behavior, which can also be applied to QoE measurement
with tailored designs such as reward functions. It would be an
interesting issue to explore the possible extension of DeepQoE
with other deep learning tools.

In our datasets, we consider only the video traffic of
YouTube and Bilibili encrypted by HTTPS. However, Deep-



QoE can be generalized to other streaming protocols (e.g.,
WebRTC) and transport protocols (e.g., QUIC), as long as the
relationship between packet-level RTT and QoE still holds.
We will leave these attempts as the future work.

VII. CONCLUSION

In this paper, we proposed DeepQoE, which is a CNN-
based classifier to measure real-time video QoE metrics
from encrypted traffic. Several crucial QoE metrics were
considered, including startup delay, rebuffering events, and
video resolution. We customized an appropriate input format
based on the observation of the relationship between RTTSs
of upstream packets and QoE metrics, designed activation
functions tailored to our input format, and proposed effective
protection against over-fitting. We evaluated DeepQoE on real-
world traffic datasets collected from YouTube and Bilibili.
The results demonstrated the superiority of DeepQoE over the
state-of-the-art methods, in terms of measurement accuracy
and time overhead. In future work, we will further extend
DeepQoE with other deep learning tools and evaluate its
effectiveness on more video content providers.
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