
Encrypted Traffic Classification of Decentralized Applications
on Ethereum using Feature Fusion

Meng Shen
Beijing Instititue of Technoloty

Beijing, China
shenmeng@bit.edu.cn

Jinpeng Zhang
Beijing Instititue of Technoloty

Beijing, China
zhangjinpeng@bit.edu.cn

Liehuang Zhu
Beijing Instititue of Technoloty

Beijing, China
liehuangz@bit.edu.cn

Ke Xu
Tsinghua University & BNRist

Beijing, China
xuke@tsinghua.edu.cn

Xiaojiang Du
Temple University
Philadelphia, USA
dxj@ieee.org

Yiting Liu
Beijing Instititue of Technoloty

Beijing, China
liuyiting@bit.edu.cn

ABSTRACT
With the prevalence of blockchain, more and more Decentralized
Applications (DApps) are deployed on Ethereum to achieve the
goal of communicating without supervision. Users habits may be
leaked while these applications adopt SSL/TLS to encrypt their
transmission data. Encrypted protocol and the same blockchain
platform bring challenges to the traffic classification of DApps.
Existing encrypted traffic classification methods suffer from low
accuracy in the situation of DApps.

In this paper, we design an efficient method to fuse features
of different dimensions for DApp fingerprinting. We firstly ana-
lyze the reason why existing methods do not perform well before
proposing to merge features of different dimensions. Then we fuse
these features by a kernel function and propose a fusion feature
selection method to select appropriate features to fuse. Applying
features that have been fused to the machine learning algorithm can
construct a strong classifier. The experiment results show that the
accuracy of our method can reach more than 90%, which performs
better than state-of-the-art classification approaches.
ACM Reference Format:
Meng Shen, Jinpeng Zhang, Liehuang Zhu, Ke Xu, Xiaojiang Du, and Yiting
Liu. 2019. Encrypted Traffic Classification of Decentralized Applications on
Ethereum using Feature Fusion. In IEEE/ACM International Symposium on
Quality of Service (IWQoS ’19), June 24–25, 2019, Phoenix, AZ, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3326285.3329053

1 INTRODUCTION
Ethereum [12] is designed to create an alternative protocol for build-
ing Decentralized Applications (DApps). It allows anyone to write
smart contract and deploy their DApps. DApps are applications
that run on a P2P network of computers, in such way they cannot
be controlled by a single entity. By December 2018, there were more
than two thousands DApps deployed on Ethereum [7]. From the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6778-3/19/06. . . $15.00
https://doi.org/10.1145/3326285.3329053

attack perspective, an adversary can build a fingerprint of a vulnera-
ble application offline, and then uses this fingerprint to identify the
target DApp in the open world. The Adversary can also attack spe-
cific users, whose habits can be profiled by collecting and analyzing
their network activities. From a positive perspective, DApp finger-
printing can help Internet service providers analyze user volume,
geographic distribution and habits of DApps, which contributes to
the DApp market research. And network manager can optimize
network environment according to traffic classification results.

DApps deployed on Ethereum use SSL/TLS protocols to encrypt
transmission data between entities. Traditional traffic classifica-
tion methods (e.g., Deep Packet Inspection) begin to lose effect,
due to the adoption of encryption technology. Encrypted traffic
fingerprinting is not a new area of research, and indeed many re-
searchers have focused on traffic fingerprinting about websites and
smartphone apps. Existing traffic classification methods are based
on machine learning algorithms using different traffic statistical
characteristics, containing packet sizes [20, 26], packet timestamp
series [13], packet flags [17, 24, 25] and packet orderings [26]. It is
obvious that network traffic fingerprinting is inextricably bound
up with statistical features of traffic from different dimensions.

The complexity of traffic generated by DApps brings challenges
to encrypted traffic classification. Traffic features of traditional ap-
plications are different because of company-varied implementation
SSL/TLS protocol details. The same blockchain platform (Ethereum)
is adopted by these applications, which reduces the dissimilarity
of traffic generated by different applications. As for classification
accuracy, we implement the Markov model [17] generating applica-
tion fingerprints mainly depending on the flags of SSL/TLS packet,
which reaches 56% accuracy. The Random Forest (RF) classifier
relying on statistics of packet length [26] achieves the classification
accuracy of 80%. Experiment details can be referred to Section 3.
As for classification efficiency, Derivative Dynamic Time Warping
(DDTW) [13] needs to calculate the warping distance between any
two time series, which will cost a lot of time, and is not suitable for
the scenario of real-time classification.

In this paper, we propose a novel classification model based
on traffic feature fusion. The simplest way of feature fusion is to
combine all traffic features of different dimensions together, which
has a better classification performance than those classifiers making
decisions based on a single dimension features. Not all the features
in the feature set have the same importance. By removing the

https://doi.org/10.1145/3326285.3329053
https://doi.org/10.1145/3326285.3329053

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Shen and Zhang, et al.

influence of relatively bad features, a classifier can make a better
classification result than the classifier that makes decisions relying
on all dimensional features. Our experiment results show that these
two feature fusion strategies only makes non-obvious effects. We
propose a feature fusion and feature number increasing method
based on a kernel function. By choosing the right number of features
to fuse, a high dimensional feature set can be generated. Using the
resulting feature set, our classifier outperforms all existing state-of-
the-art classification methods in terms of classification accuracy.

The contributions of this paper are as follows:
We make observations on cases where existing classifica-

tion methods are prone to misclassification on DApps. DApps
use SSL/TLS protocols to encrypt their transmission data and adopt
Ethereum as their developing platform. The confusion and invisi-
bility of DApp traffic lead to the bad performance of the state-of-
the-art encrypted traffic classification method.

We propose a newmethod to fuse encrypted traffic features
of different dimensions. In order to increase the discrimination
of DApp fingerprinting, kernel functions can be used to fuse differ-
ent features and increase feature number based on proper selected
features of different dimensions. Feature fusion strengthens the
discrimination of DApp’s fingerprinting. Different kernel functions,
including Polynomial and Radial Basis, are exploited to fuse fea-
tures. The usage of feature fusion makes great significance to the
improvement of classification accuracy.

We verify the effectiveness of the proposed method by ex-
perimenting on real traffic datasets collected from 15 repre-
sentative DApps in different campus sites. These applications
are deployed on Ethereum. We collect 18,242 flows and millions of
packets in total, and open-source datasets are accessible on Github
[8]. Ten-fold cross validation is used to evaluate our method, and
results show that our classifier can reach more than 90% accuracy.

The rest of the paper is organized as follows. We introduce the
background of DApp and our datasets in Section 2. In Section 3,
we analyze the limitation of existing encrypted traffic classification
methods and explain the motivation of our feature fusion method.
The model is presented in Section 4. Next, we evaluate the proposed
method in Section 5 and review the relatedwork in Section 6. Finally,
we conclude our paper in Section 7.

2 BACKGROUND AND DATASETS
In this section, we introduce the background of DApp and the
datasets we use in our experiments.

2.1 DApp Background
Decentralized applications (DApps) run on a Peer-To-Peer network,
which are designed to communicate freely without being controlled
by a single entity. DApps are more flexible, transparent, distributed,
and resilient with a better incentivized structure software model.
Applications deployed on Ethereum are completely open-source,
where data and records of application operations are cryptographi-
cally stored, using a cryptographic token and generating tokens.

DApps deployed on Ethereum adopt SSL/TLS protocols to en-
crypt their transmission data, leading to the function loss of deep
packet inspection, a traditional traffic classification method. All
applications exchange information based on the 443 port number.

Thus classifying encrypted traffic of DApps based on the port num-
ber is not available, either. Centralized applications are usually
managed by different entities. Although they all adopt SSL/TLS
protocols, they differ in the details of the protocol implementa-
tion. Unlike centralized applications, all DApps are developed on
Ethereum, which means that the traffic features of these applica-
tions have little difference. State-of-the-art methods of encrypted
traffic classification have little effect on the transmission data of
DApps. The performance of existing methods is shown in Section
3.

2.2 Datasets
We select 15 DApps of diverse categories on Ethereum, most of
which have a user volume more than one thousand per month.

As shown in Figure 1, we deploy our network traffic capture
tool in the router of a laboratory. Personal computers are con-
nected to the router, and DApps are installed on the computers.
When users use these applications, network traffic is captured and
saved into a database. Network flows are then exported to a comma
separated value (CSV) file, each row of which contains the infor-
mation we can get from the packet. The information includes time,
source/destination IP addresses, ports, protocols, packet lengths
and TCP/IP flags. The traffic of all applications is collected for fifty
days. The number of flows and packets for each application is sum-
marized in Table 1. We collect 18242 flows and millions of packets
in total from these applications.

Internet

PC

PC

PC

Control Center

Router

Traffic Database

Figure 1: Process of Network Traffic Capture

When using a specific application, a group of packets generated
together satisfies the condition that the most recent packets occur
within a threshold of time, which are defined as a session. There
are several flows in a session. A flow is a sequence of packets,
which have the same source/destination IP addresses, sources ports,
destination ports and adopt the same transmission protocol. The
concept of flow is previously used by Conti et al. [5] and we adopt
the same definition here.

3 MOTIVATION
In this section, we firstly analyze existing encrypted traffic classi-
fication methods and their performance on our datasets. As these
methods on the traffic of DApps do not perform well, we consider
merging features of different dimensions to improve the classifier’s
performance. Then we select those features with a score higher

Encrypted Traffic Classification of Decentralized Applications using Feature Fusion IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

Table 1: Flow and Packets of Applications

Application Flow Packet Category
Aragon 481 130,483 Governance
Bancor 551 557,057 Trading Token
Canwork 1,342 1,209,033 Social Communication
Chainy 6,768 517,499 Information Protection
Cryptopepes 981 2,995,340 Online Game
Eth_town 548 866,255 Online Game
Etheremon 1,194 149,307 Online Game
Idex 552 6,801,737 Trading Token
Joyso 472 290,622 Exchange Platform
Cryptokitties 697 390,629 Online Game
Lordless 1,423 30,003 Social Contact
Makerdao 511 285,109 Collateralized Dabe
Matchpool 1,438 462,899 Social Communication
Ono 720 803,498 Social Communication
Originprotocol 564 621,997 Online Shopping
Total 18,242 16,111,468

than 0.15% and merge them together. The results show limited
improvement in effectiveness.

3.1 Existing Classification Methods of
Encrypted Traffic

In this subsection, we mainly discuss two typical classification
methods of encrypted traffic: Markov model relying on SSL/TLS
message types and classifier based on statistical features of packet
lengths.

Markov Model Relying on SSL/TLS Message Types. Kor-
czynski and Duda propose stochastic fingerprints for application
traffic flows conveyed in the Secure Socket Layer/Transport Layer
Security (SSL/TLS) session [17, 24]. They use compact notation to
represent message types during SSL/TLS sessions (e.g., 22:2 rep-
resents Server Hello). A sequence of states represents a series
of message types sent from server to client. A state is either an
SSL/TLS message type (e.g., 22:2) or a sequence of the SSL/TLS mes-
sage types transmitted in a single TCP segment (e.g., 22:11,22:14).
In the Markov chain, they need to calculate the probability of state
transition from the previous state to the next state. Besides, they
need to calculate the Enter Probability Distribution (ENPD), which
represents the probability of the first state of the Markov chain
model. Similarly, the Exit Probability Distribution (EXPD) is calcu-
lated to represent the probability of the final state of Markov chain
model. When an SSL/TLS stream needs to be classified, the result
probability is calculated by multiplying ENPD, transition proba-
bility and EXPD. The result probability represents how a given
encrypted traffic flow is close to a model of an application flow: a
larger value means that the encrypted flow is closer to this model.

Based on the datasets we describe in Section 2, we build Markov
chain fingerprints for DApps. Although these fingerprints are con-
ductive to the encrypted traffic classification of DApps, they make
little effect in some cases. We build a Markov model for Lordless
and Bancor. A flow of SSL/TLS message types 22:2,20,22:17 -
23 - 23 - 23 - 23 belongs to Lordless, which we have known
its ground turth. We calculate the probability of this flow derived

from these two applications. The probability of this flow belonging
to Lordless is 0.3648, while the probability of this flow belonging to
Bancor is 0.4278. According to the computing result, this flow will
be wrongly classified as Bancor, which results in a low precision
of Lordless and a low recall of Bancor. Applying our datasets to
Mrakov model, the whole accuracy is only 56.65%.

Remark 1: Classifying the encrypted traffic of DApps relying on
the SSL/TLS message type is unavailable. The adoption of the same
blockchain platform Ethereum causes that the SSL/TLS message
types of different applications are similar.

Classifier based on Statistical Features of Packet Lengths.
Besides classifying encrypted traffic based on the SSL/TLS message
types, Taylor et al. present a automatic fingerprinting based on
packet length [26]. They extract 54 statistical features from each
flow. These statistical features are calculated from three packet
directions: incoming packets only, outgoing packets only and bi-
direction packets. For each direction packets, 18 statistical values
are calculated: minimum, maximum, mean, median absolute devia-
tion, standard deviation, variance, skew, kurtosis, percentiles (from
10% to 90%) and the number of elements in the series (18 in total).
After statistical features are calculated, they adopt Support Vector
Classifier (SVC) and Random Forest (RF) to classify network flows
of encrypted applications.

We implement this method and the accuracy of the classifier
is 79.77% on our datasets. Statistical features of packet length are
similar among some applications, for instance, the statistics of Kitty
is similar to Originprotocol. For most of these applications, the
minimum of incoming packet length is 54, and the maximum of
outgoing packet length is 1514. The similarity of statistical features
results in the poor performance of the classifier. Obviously, the
method based on statistical features of packet length does not apply
to our problems.

Remark 2: The method making decisions only depending on
packet length information has a limited improvement on classifi-
cation accuracy. The distinguishability of packet length statistical
features is weakened by using the same encrypted protocol and
blockchian platform.

3.2 Merging Typical Features for Classification
As mentioned above, the classifier based on the message type of
SSL/TLS traffic or the statistical features of packet length does
not perform well. Except for the message types and the packet
length statistical values, other dimensional features can be used for
encrypted traffic classification, including time series and packets
bursts. The approach of generating features used in [16] is preva-
lently exploited in the problem of encrypted traffic fingerprinting.
Such set of features has not been previously applied in the encrypted
traffic classification of DApps.

Naami et al. [2] propose a feature extraction method that extracts
features from consecutive bursts to capture any dependencies that
may exist between them. A burst is a sequence of consecutive
packets transmitted along the same direction of a TCP network
flow. The statistical features of bursts are calculated from burst size
and bursts length. Burst size is the number of packets contained
in a burst and burst length is the sum of packet lengths in a burst.
For the statistical features of burst size or burst length, statistical

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Shen and Zhang, et al.

values ban be calculated like packet length. Each flow contains
bi-directional bursts: ingress bursts and egress bursts and each kind
of bursts include burst size and burst length. So we can calculate
72 statistic features from bursts.

As for the statistical features of timing information they are
similar to the statistical characteristics of packet length. Three
directions of time series are used, and for each series 18 statistical
features are calculated (54 features in total).

We use features of three dimensions to different machine learn-
ing classifiers separately. Three machine learning classifiers are
considered: k-Nearest Neighbor (kNN), Support Vector Machine
(SVM) and Random Forest (RF). As for features of packet length, RF
performs best and the accuracy is 79.77%. When using statistical
features of burst, RF accuracy can reach 82.01%, and neither of the
remaining two classifiers works well. If we only take statistical
features of time series into consideration, RF outperforms the other
two classifiers and the accuracy of this classifier can reach 78.46%.
As we can see, the performance of classifier is undesirable, which
makes decisions only depending on one dimensional features.

We merge features of three different dimensions together. Ex-
cept for the 54 statistical values of packet length mentioned in
[26], we add the total of packet lengths in each direction. Thus the
number of statistical feature calculated from packet length is 57,
where len1, ..., len57 represents statistical features of packet length
and bur1, ...,bur72 represents the statistical features of burst and
time1, ..., time54 represents the statistical features of time series.We
merge features of all different dimensions into one dimension vec-
tormerдe1, ...,merдe183. The accuracy of RF reaches 85.50% based
on merged features, which performs better than the other two ma-
chine learning classification methods. As we can see, the accuracy
of merging features has improved 5.73%.

Remark 3: Merging features of different dimensions can im-
prove accuracy of the classifier. The features combined are better
than single-dimensional features, though there still exists features
with little importance.

3.3 Merging Selected Features for Classification
Not all features in the feature set contribute the same to the result.
The curse of diensionality can be avoided by removing the features
with little importance. Thus a feature selection function is used to
choose the more weighted features. The feature selection function
used in this paper relies on the Gini importance metric provided
by a Random Forest classifier, which runs on the training set. The
percentage contribution of each feature to the classification result is
measured. This percentage relies on the Gini impurity index which
is computed during estimator building. The classifier gives a score
to each feature according to its significance when the training is
finished.

We remove features scored lower than 0.15% of different features.
And then 166 features are left, which are further exploited to the
encrypted traffic classification of DApps. The accuracy varies using
different machine learning classification methods based on the
selected features. RF performs best compared to kNN and SVM, and
its accuracy can reach 85.94%. Compared to the classifier that simply
merges features of different dimensions together, RF improves 0.54%

Table 2: List of Notations

Notation Meaning
F = (p1, ..,pn) Network flow
PLen Packet length of a flow
PTime Time information of a flow
Burs Burst size of a flow
Burl Burst length of a flow
f Features to fuse
x One-dimensional features
i The number of packet length statistical features
j The number of time series statistical features
k The number of burst statistical features
V IM Feature importance
GIm Gini index

accuracy. Although the classification accuracy of this method has
been improved, the improvement effect is still unsatisfactory.

4 FEATURE FUSION AND CLASSIFICATION
In this section, we illustrate our feature fusion method. The whole
process of our model is shown in Figure 2. We firstly collect traf-
fic of DApps. Then we extract features of different dimensions.
After different dimensional features are extracted, we select the
appropriate features to fuse. Using the kernel function, features of
different dimensions are fused and the feature number increases
at the same time. Finally, we apply the fused features to existing
machine learning classification algorithms.

Dataset
Collection

Time Series

Packet Length

Burst
Feature Selection

and Feature Fusion
Machine Learning

Classifier

kNN

SVM

RF

Figure 2: Process of Modeling

4.1 Kernel Functions of Feature Fusion
The notations throughout the paper are summarized in Table 2.
A flow of an DApp network traffic can be represented as F =
(p1, ...,pn), where pi represents the packet in this flow. For each
packet pi , two different dimensional features can be extracted. They
are the packet length information plen and the packet timestamp
information ptis , where plen represents the bytes that the packet
load and ptis represents the timestamp the packet are captured.
Thus the packet length and time series can be extracted as follows:
PLen = (plen1, ...,plenn), PTime = (ptime1, ...,ptimen)

ptimei =

{
0, if i = 1;
ptisi − ptis1, if i > 1.

(1)

Encrypted Traffic Classification of Decentralized Applications using Feature Fusion IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

In addition to the packet length and time series, we also consider
burst behaviors in our situation. A burst is a sequence of consecutive
packets transmitted along the same direction of a network flow, and
the details of burst actions are illustrated in Figure 3. The blocks in
yellow and blue represent different bursts in the figure. For each
burst, we extract features from two dimensions: burst size and
burst length. Burst size is the number of packets in a burst, and
burst length is the accumulative packet length of all packets in that
burst. Burs = (s1, ..., sn) represents the features of burst size and
Burl = (l1, ..., ln) represents features of burst length.

Figure 3: Illustration of Burst Behaviors

Given a decentralization application flow, we firstly need to
calculate the statistical features of different dimensions. After sta-
tistical features are calculated, we need to select proper features
to fuse. The feature selection method will be described in the next
subsection. Two kernel functions are used to fuse features of dif-
ferent dimensions: Polynomial Kernel Function and Radial Kernel
Function.

Given the features we need to fuse f = [Plen, Ptime,Burst],
where Plen = [[plen1] , ..., [pleni]], Ptime = [[ptime1] , ..., [ptimei]],
and Burst = [[burst1] , ..., [bursti]], kernel functions are used to
feature fusion and feature increase for each kind of dimension.
We need to calculate each dimensional fusing result using kernel
functions. Then we merge fusion results of all dimensions together.

Suppose x represents the kind of dimensional feature we want
to fuse, which can be one of f = [Plen, Ptime,Burst]. Firstly, we
need to compute the matrix transpose of x , which we marked as x ′.
x is a matrix of n ∗ 1 and x ′ is a matrix of 1 ∗ n.

x ′ = xT (2)

The kernel function K(x ,x ′) should be a dot product of charac-
teristic space, which can be presented as Φ(x)Φ(x ′) = K(x ,x ′). The
polynomial kernel function is calculated as follows:

K(x ,x ′) = (x ∗ x ′ + 1)d (3)

where d = 1, 2, The result of the polynomial kernel function is a
matrix of n ∗ n.

The radial basis function is another frequently used kernel func-
tion, and it is a single-valued function. The Radial Basis kernel
function is calculated as follows:

K(x ,x ′) = exp(−
∥x − x ′∥2

2σ 2) (4)

where σ ∈ (0, 1). As the growth rate of an exponential function is
directly proportional to its value. Exponential function have only
one character that the growth rate of such a function is directly
proportional to its value. ∥x − x ′∥ is the Euclidean distance. The
result of Radial Basis function is also the matrix of n ∗ n.

Suppose that the features of different dimensions we need to
fuse Plen, Ptime, and Burst have i, j,k items respectively, the result
matrices contain i ∗ i, j ∗ j,k ∗k items after functions acting on these
features. Then we need to merge the features after elevating the
feature numbers. The merging method is sequentially appending.
The number of features we use to classify varies from i + j + k to
i2 + j2 + k2. The feature fusing algorithm we design is exhibited
in Algorithm 1. The effect of different kernel functions will be
discussed in Section 5.

Algorithm 1 Fusing Features Using the Kernel Function
Require: f = {Plen, Ptime, Burst }
Ensure: F = {f ea1, ..., f ean }
1: for item ∈ f do
2: item′ = item .T
3: vi = K (item, item′)

4: Put vi into a list I = (v1, ..., vn)
5: end for
6: for vi ∈ I do
7: for each value v ∈ vi do
8: Put v into F
9: end for
10: end for
11: return

4.2 Fusion Feature Selection
The number of features we use is 183 (57 features of packet lengths,
72 features of bursts and 54 features of time series). Not each feature
has the same importance. With the increasing of the feature number
in the feature fusing process, the accuracy of the classifier may
decline. To find the most suitable fusing features, we can enumerate
fusing features’ number n from 2 to 183 that achieves the most
accurate classification as the model of FFP.

Given a specific value of n, a direct way to evaluate the perfor-
mance of a classifier is applying the corresponding feature fusing
model to the classifier. This simple method would result in high
computation overhead when selecting the proper n. Therefore, it is
necessary to find an alternative way to efficiently find the best n.

To find the proper n, we mainly consider the importance of
different statistic features. We adopt the feature importance mea-
surement method in Random Forest, which calculates the feature
importance according to the Gini index. We represent feature im-
portance asV IM . Supposing we havem features, X1,X2, ...,XC , we
need to calculate the Gini indexV IMj of feature X j . The Gini index

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Shen and Zhang, et al.

is calculated as follows:

GIm = 1 −
k=1∑
K

p2mk (5)

where K represents the number of applications, and pmk represents
the percentage of applicationk in nodem. The importance of feature
X j in nodem is calculated as follows:

V IM
дini
jm = GIm −GIl −GIr (6)

where GIl and GIr represent the Gini index of the two new nodes
after node m is branched. When the feature X j that appears in
the node of decision tree i , is included in the aggregateM and its
importance in the tree i is calculate according to Equation (7).

V IM
дini
i j =

∑
m∈M

V IM
дini
jm (7)

Supposing there are n trees in the RF, the Gini index of feature X j
in the trees is calculated as follows:

V IM
дini
j =

n∑
i=1

V IM
дini
i j (8)

Finally, we need to normalize all the importance scores to get the
final importance score. The normalization process is as follows:

V IMj =
V IMj∑c
i=1V IMi

(9)

After the feature importance V IMj is calculated, we need to
sort the feature according the feature importance. Supposing that
the larger the feature importance, the greater contribution the
feature effects on the classifier, we design a method of measuring
cumulative feature contribution with feature number n.

CFCn =
n∑
i=1

V IMj ×
1
n

(10)

With the increasing of feature number n, the value of CFC in-
creases. TheCFC’s increasing speed reflects feature j’s contribution
to the classifier. By finding the inflection point of CFC curve, we
can easily find the optimal fusing feature number.

4.3 Machine Learning Classifier
After kernel-functions are used to fuse features and increase feature
numbers, we mainly consider three approaches for using these fea-
tures to classify encrypted traffic data: k-Nearest Neighbor (kNN),
Support Vector Machine (SVM) and Random Forest (RF).

1)k-Nearest Neighbors (kNN): kNN is one of the simplest methods
in data mining classification. The core idea is that if a majority of
samples in the feature space of the k most adjacent samples belongs
to a certain category, the sample has the characteristics of the
sample category and belongs to this category. A commonly used
distance metric for continuous variables is the Euclidean distance.
Although kNN relies on the limit theorem, it is only related to a
small number of adjacent samples in decision making.

2) Support Vector Machine (SVM): SVM is a supervised machine
learning algorithm that classifies data using labeled training in-
stances falling into different classes [23]. Based on the training data,
the classifier fits a hyperplane into the vector space, which can
separate the instances into different classes. The plane is as high

as possible to make a distinction between different classes. When
classifying testing data, the classifier classifies it according to the
plan where the testing vector is located.

3) Random Forest (RF): RF refers to a classifier that uses multiple
trees to train and predict samples. A RF classifier is an ensemble
method that uses weak decision trees to build a strong decision tree.
Each decision tree is trained by randomly generated data sets from
the original data sets, and the decision results of RF is the decision
results of most decision trees. RF is a highly flexible and efficient
classifier.

5 PERFORMANCE EVALUATION
In this section, we are dedicated to evaluating the effectiveness
of the method we propose. We introduce this section from four
subsections: preliminary, evaluation of fusion feature selection,
evaluation of classification accuracy and time complexity.

5.1 Preliminary
Methods to Compare. We name the method proposed in this
paper as Feature Fusion Fingerprinting (FFP). In order to present
a comprehensive understanding on the effects of the method we
propose, we leverage two other methods for comparison, which are
summarized as follows:

• Markov Model (MARK), which uses SSL/TLS message types
to build a Markov model and uses the maximum likelihood
function to classify a flow into which kind of web application
[17].

• Appscanner (APPS), which uses the statistical features of
packet length (e.g., minimum, maximum) about incoming,
outgoing, and bidirection flows in the RF classifier [26].

Hardware.The traffic is generated onHP laptopswith Intel Core
i5-3230M Duo 2.60GHz and 4GB memory, and they are running
on Windows 10. Encrypted traffic classification experiments are
finished on a server with Intel core duo 3.60GHz and 16GB memory,
and it is running on Windows 10.

Cross-validation. For the purpose of validating application
fingerprints mentioned in this paper, we use 10 heterogeneous
datasets to establish a 10-fold cross validation. We use the 10-fold
mean result as our classification result.

Criteria of Cross-validation. The goal of a classifier is to be
accurate, i.e., recognize more encrypted flows and avoid misclassi-
fication. The criteria used to measure a classifier contain precision,
recall, F1-measure and accuracy. Precision is calculated using Equa-
tion (11), whereTP refers to the number of true positives, FP refers
to the number of false positives, FN refers to the number of false
negatives, and TN refers to the number of true negatives.

Precision =
TP

TP + FP
(11)

Recall is calculated according to Equation (12).

Recall =
TP

TP + FN
(12)

F1 is calculated according to Equation (13), and it’s the harmonic
mean of precision and recall.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(13)

Encrypted Traffic Classification of Decentralized Applications using Feature Fusion IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

In other words, precision is the fraction of the relevant flows among
the detected flows. Recall measures the fraction of a kind of DApp
that is detected. And F1 considers both the precision and recall to
measure a classifier’s score. In our work, the classifier is a multi-
class classifier. So the accuracy is calculated as the total number of
correct classifications divided by the total number of classifications
in (14),

Accuracy =
TP

S
(14)

where S represents the total number of instances in the classifica-
tion.

5.2 Evaluation Fusion Feature Selection

Table 3: Comparison of Different Kernel Function

FFP_rbf FFP_poly
Application Precision Recall Precision Recall
Cryptopepes 0.8154 0.7976 0.8398 0.8948
Matchpool 0.9422 0.9389 0.9639 0.9526
Lordless 0.9001 0.9281 0.9441 0.9563
Ono 0.7053 0.7524 0.9348 0.9657
Makerdao 0.2473 0.2162 0.5449 0.5834
Canwork 0.7893 0.8468 0.9025 0.8162
Kitty 0.8673 0.7664 0.9076 0.8188
Joyso 0.6703 0.6353 0.7136 0.7636
Eth_town 0.6834 0.2873 0.5854 0.3590
Etheremon 0.9322 0.9058 0.8150 0.9757
Chainy 0.9328 0.9901 0.9788 0.9762
Originprotocol 0.6995 0.7619 0.8702 0.8254
Idex 0.7667 0.4078 0.9063 0.4205
Aragon 0.9743 0.8613 0.9955 0.9152
Bancor 0.6944 0.3425 0.7440 0.4624
F1 Score 0.8897 0.9181
Accuracy 0.8820 0.9175

Before been compared to other classification methods, we first
evaluate the effectiveness of the fusion feature selection method
proposed in Section 4. The evaluation methodology is as follows:
we calculate the best n according to CFCn on part of the dataset
and validate n on the rest of the dataset.

We enumerate n from 2 to 183 and calculate the corresponding
CFC value defined in Equation (10). The varying trend of CFC is
exhibited in Figure 4. We can find that the value of CFC gradually
increases with the number of fusing features when k < 90. Then it
reaches a stage of slow growth during the interval of [90, 120], until
finally reaching a stable stage as n continues increasing. Therefore
we can choose a number before CFC reaching the stable stage.
In this case, n is 120. Next, we enumerate n from 10 to 180 and
use fusing features on the classifier. The classification accuracy
with the fusing feature number n is shown in Figure 5. With the
increase of fusing feature number n, the accuracy of the classifier
increases. When n reaches 120, accuracy reaches its highest point.
The accuracy declines when n exceeds 120. By combining Figure
4 and Figure 5, we can conclude that when n = 120, our method

achieves the best classification performance. It also proves the
validity of our method to find the most suitable n in Section 4.

0 20 40 60 80 100 120 140 160 180
Number of Fusion Features

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

CF
C

Figure 4: Varying Trend of CFC Value

0 20 40 60 80 100 120 140 160 180
Number of Fusion Features

0.82

0.84

0.86

0.88

0.90

0.92

Ac
cu

ra
cy

Figure 5: Classification Results for Different Value of n

5.3 Evaluation of Classification Accuracy
In this subsection, we discuss the efficacy of different methods.

Merging features of different dimensions: In Section 3, we
present a method that merges features of different dimensions
together to make the classifier perform better. We use MFT to
represent the method that merges different dimensions’ features
together and SMT to represent the method that selects features
with higher importance to merge together.

Figure 6 shows the F1 score and the accuracy of MFT under
three classification algorithms. Whether in F1 score or accuracy,
RF performs best. RF accuracy reaches 85.5% higher than kNN
and SVM, so we use RF as the classifier of MFT. Table 4 presents
the classification results of the four classifiers, among which SMT
performs best. The accuracy of SMT reaches 85.94%, which is 0.54%
higher than MFT. Compared to Markov, the accuracy increases
29.79% and compared to Appscanner, the accuracy increases 6.17%.
The results show that the classifiers perform better by merging
features of different dimensions together and removing the features
with low importance, which provides a theoretical basis for our
feature fusion.

Different kernel functions: Figure 7 shows the F1 score and
accuracy of FFP under three classification algorithms. RF performs
best compared to other classification methods. So we select RF as

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Shen and Zhang, et al.

Table 4: Comparison of Markov, Appscanner, MFT and SMF

Markov Appscanner MFT SMT
Applications Precision Recall Precision Recall Precision Recall Precision Recall
Cryptopepes 0.2536 0.3100 0.9991 0.9967 0.7651 0.8596 0.7758 0.8566
Matchpool 0.6943 0.7649 1.0000 1.0000 0.9680 0.9726 0.9705 0.9710
Lordless 0.5667 0.0206 0.9652 0.9969 0.9052 0.9654 0.9109 0.9654
Ono 0.4694 0.2573 0.3182 0.4241 0.9638 0.8904 0.9647 0.8979
Makerdao 0.0000 0.0000 0.0000 0.0000 0.4269 0.3354 0.4759 0.3508
Canwork 0.7199 0.4027 0.9477 0.7831 0.8890 0.8781 0.8879 0.8803
Kitty 0.2476 0.6834 0.1074 0.0179 0.9421 0.8720 0.9425 0.8736
Joyso 0.9112 0.9446 0.9751 0.9430 0.4889 0.7445 0.4839 0.7368
Eth_town 0.0813 0.0765 0.8308 0.6668 0.6827 0.4060 0.6473 0.4107
Etheremon 0.2851 0.3296 0.6367 0.9990 0.9684 0.9641 0.9674 0.9680
Chainy 0.8128 0.7244 0.9552 0.7685 0.9633 0.8186 0.9591 0.8024
Originprotocol 0.1565 0.1802 0.3379 0.9981 0.8106 0.8802 0.8284 0.8802
Idex 0.0509 0.1676 1.0000 1.0000 0.7386 0.5030 0.7024 0.5030
Aragon 0.4582 0.8316 0.8017 0.9936 0.9848 0.9278 0.9827 0.9320
Bancor 0.0279 0.4022 0.9265 0.8409 0.6845 0.5024 0.7088 0.4851
F1 Score 0.5879 0.8080 0.8757 0.8766
Accuracy 0.5665 0.7977 0.8550 0.8594

kNN SVM RF0.0

0.2

0.4

0.6

0.8

1.0

Va
lu
e

0.
65

8

0.
18

8

0.
87

6

0.
64

9

0.
12

2

0.
85

5F1_Score
Accuracy

Figure 6: MFT Classification Results with DifferentMachine
Learning Algorithms

our classification algorithm under features using feature fusion.
Table 3 presents the classification result of different kernel function.
FFP model with a polynomial kernel function can achieve a bet-
ter classification performance than a radial basis function, whose
accuracy reaches 91.75%.

Feature fusion: Figure 8 shows the classification results with
different approaches. The accuracy of our method FFP is 91.75%.
Compared to Markov, Appscanner, MFT and SMT, the accuracy of
our method increases by about 35.10%, 11.98%, 6.25% and 5.81%,
respectively. As for F1 score, our method also performs best, which
can reach 91.81%. Compared to the other four classificationmethods,
the F1 score of our method increases by about 33.02%, 11.01%, 4.24%
and 4.15%, respectively. According to the classification results, our
classifier is superior to all the current classifiers.

5.4 Evaluation of Time Cost
In this subsection, we will evaluate the time cost of three classifica-
tion methods from three aspects: feature extraction cost, training

kNN SVM RF0.0

0.2

0.4

0.6

0.8

1.0
Va

lu
e

0.
70

1

0.
62

0

0.
91

8

0.
68

1

0.
53

5

0.
91

7F1_Score
Accuracy

Figure 7: FFP Classification Results with Different Machine
Learning Algorithms

MARK APPS MFT SMT FFP0.0

0.2

0.4

0.6

0.8

1.0

Va
lu
e 0.
58

8

0.
80

8

0.
87

6

0.
87

7

0.
91

8

0.
56

7

0.
79

8

0.
85

5

0.
85

9

0.
91

7F1_Score
Accuracy

Figure 8: Classification Results with Different Approaches

cost and testing cost. Table 5 presents the details of time complexity
of different classification methods.

Encrypted Traffic Classification of Decentralized Applications using Feature Fusion IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

Table 5: Time complexity

Approaches Feature
Extraction(s)

Training
Time(s)

Testing
Time(s)

Markov 4.084E-3 0.406 2.507E-3
Appscanner 1.226E-2 0.531 2.690E-5

FFP 3.758E-2 30.306 3.943E-3

Feature extraction stage.Three different kinds of classification
methods all need to extract features from a network flow. The
Markov model needs to extract SSL/TLS packets’ types and the
transformation relationship between two adjacent packets. As for
Appscanner, it only needs to calculate the statistical features of
packet length, so it takes the shortest time to extract features. FFP
needs to calculate features from three different dimentions and
it uses kernel functions to increase feature numbers, so it takes
the longest time to extract features. FFP takes 0.03758 second to
extract features from a flow, and it takes more 0.02232 second than
Appscanner. Mavkov takes the least time to extract features, which
only costs 4.0842 milliseconds.

Training and testing stage. As for the training and testing
stage, the training time cost is the time cost to fit a classification
model. And the testing time cost is an unknown flow to be classi-
fied to a specific application. The testing time cost of Markov and
Appscanner is similar, which is no more than 0.5 second. Since
the input of FFP is higher than Markov and Appscanner, FFP takes
the longest time to build a model. When a classification model is
constructed, testing time of three classifiers is similar, though FFP
needs more time to test a flow. Appscanner takes the shortest time
to test a flow. Markov and FFP take the similar time to test a flow.
Markov needs to calculate the probabilities of a flow belonging to
different applications, and this calculation process takes a larger
time cost. FFP’s input vectors are much larger than Appscanner,
so the testing process of Markov and FFP is longer than Appscan-
ner. Compared to Markov and Appscanner, FFP needs more time
to extract features. The vector input into the classifier of PPF is
much larger than the classifier of Markov and Appscanner, so the
training time and testing time of PPF is longer than Markov and
Appscanner.

6 RELATEDWORK
6.1 Summary of Encrypted Traffic

Classification Methods
With the development of SSL/TLS encrypted protocol, traditional
traffic classification methods, such as deep packet inspection [14]
and classify traffic based on port number [1], lose their effects.
More and more researchers have focused on the classification of
encrypted traffic. Besides, some researches have focused on the
security protection [9–11, 22, 28, 30] of encrypted traffic. We sum-
marize the encrypted traffic classification methods mainly from the
following three aspects:

Web Application Classification. Panchenko et al. proposed a
website fingerprinting method at Internet Scale [20]. They charac-
terized the progress of webpage loading with the accumulated sum
of packet sizes and used SVM to classify. Cai et al. systematically

analyzed existing attacks and defenses to understand which traffic
characteristics convey the most information [4]. They proposed a
mathematical framework that can evaluate fingerprint attacks and
defense performance in the open world. Wang et al. built website
fingerprint over Tor [27]. Their work indicated that even clients
who use state-of-the-art privacy software (such as the Tor browser)
would be snooped by local passive eavesdroppers in real-life condi-
tions.

Mobile Application Classification. Yao et al. focused on the
traffic classification problem of smart phone [29]. They built a
classifier based on the HTTP header filed and the prefix/suffix sur-
rounding around the HTTP header. Since the HTTP packets are
not encrypted, their method lost effect on the encrypted traffic clas-
sification. Taylor et al. used 54 statistic features of packet length on
RF to build a Appscanner [26]. Conti et al. took the series of packet
lengths of each flow and calculated the dynamic warping distance
between different flows [5]. In order to reduce the computation
burden of the subsequent classification, every kind of action was
selected using hierarchical clustering. After warping distances were
calculated, they used RF to build a classifier to identify user actions
on the phone. They could identify user actions, such as sen and
reply messages. Grolman et al. used transfer learning to construct
a classifier capable of identifying user actions [15]. They evaluated
their method on two different applications Twitter and Facebook.
The results showed that their methods were effective on different
application versions and devices.

Encrypted Traffic Classification in Other Situations. En-
crypted traffic classification could be used in other situations. Bar-
radas et al. used encrypted traffic classification to identify the con-
vert channel in Skype [3]. Their work revealed that previous state-
ments about the unobservability of the convert channel were flawed.
Schuster et al. used Convolutional Neural Networks (CNNs) to
identify video streams [21]. Since modern video streaming services
commonly adopt the MPEG-DASH standard for Dynamic Adaptive
Streaming over HTTP. The feature they used was burst size, and
they found that burst sizes varied with the content of a video, which
mean that a “low action" scene had a low burst size and a “high
action" scene had a high burst size. In a video with different video
contents, the pattern would have been different.

6.2 Network Traffic of Ethereum
Analysis of Anonymity in Bitcoin. Androulaki et al. used dK-
means and Hierarchical Agglomerate Clustering to tie together
behavioral patterns based on the dataset that simulates the bitcoin
usage in a university setting [19]. They created a list of known
bitcoin addresses for each party by actively interacting with par-
ties on the Bitcoin network. In 2014, Koshy et al. applied highly
conservative constraints to the Bitcoin network traffic, and they
demonstrated that nearly 1,000 bitcoin addresses could be mapped
to their specific IPs by leveraging anomalous relaying behaviors
[18]. As the traffic was not encrypted, the behavior could be easily
discovered by decoding the packet on transmission.

Analysis of Communication Traffic of IoT Devices based
on Blockchain Synchronization. Danzi et al. invested several
protocols for synchronization between IoT (Internet of Things)
devices and the blockchain networks [6]. They proposed a model to

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Shen and Zhang, et al.

study the impact of the communication link quality and blockchain
parameters on the synchronization process. The result showed that
the duty cycle of the device should be designed by taking into
account both blockchain and communication parameters.

To the best of our knowledge, we are the first one who classify
the encrypted traffic generated by DApps. Since the same encrypted
protocol SSL/TLS and blockchain platform has been adopted, it is
still a serious challenge to classify encrypted traffic generated by
DApps. In this paper, we propose an application network traffic
fingerprint using feature fusing.

7 CONCLUSION
In this paper, we proposed a feature fusing method based on ker-
nel functions. By generating statistic features from packet lengths,
packet bursts and time series using the feature selection function,
we could pick out the features that suit for fusing functions. Apply-
ing kernel functions on these selected features, we could increase
the number of features and fuse them. Then we adopt the fused
features on the machine learning algorithm. We conducted experi-
ments to evaluate our method on real traffic datasets collected from
15 representative DApps. The results showed that we proposed
method outperforms the other approaches in terms of classification
accuracy.

In future work, we plan to further investigate other traffic fea-
tures of DApps and improve the classification accuracy.

ACKNOWLEDGMENTS
This work is partially supported by the National Key Research and
Development Program of China under Grant No. 2018YFB0803405,
the National Natural Science Foundation of China under Grant
No. 61602039, the Beijing Natural Science Foundation under Grant
4192050, the China National Funds for Distinguished Young Sci-
entists under Grant No. 61825204, the Beijing Outstanding Young
Scientist Project, and CCF-Tencent Open Fund WeBank Special
Funding.

REFERENCES
[1] Giuseppe Aceto, Alberto Dainotti, Walter De Donato, and Antonio Pescape. 2010.

PortLoad: Taking the Best of Two Worlds in Traffic Classification. In Infocom
IEEE Conference on Computer Communications Workshops, 2010. 1–10.

[2] Khaled Al-Naami, Swarup Chandra, Ahmad M. Mustafa, Latifur Khan, Zhiqiang
Lin, KevinW. Hamlen, and Bhavani M. Thuraisingham. 2016. Adaptive encrypted
traffic fingerprinting with bi-directional dependence. In Proceedings of the 32nd
Annual Conference on Computer Security Applications, ACSAC 2016. 177–188.

[3] Diogo Barradas, Nuno Santos, and Luís Rodrigues. 2018. Effective Detection of
Multimedia Protocol Tunneling using Machine Learning. In 27th USENIX Security
Symposium, USENIX Security 2018. 169–185.

[4] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. 2014.
A Systematic Approach to Developing and Evaluating Website Fingerprinting
Defenses. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. 227–238. https://doi.org/10.1145/2660267.2660362

[5] Mauro Conti, Luigi Vincenzo Mancini, Riccardo Spolaor, and Nino Vincenzo
Verde. 2016. Analyzing Android Encrypted Network Traffic to Identify User
Actions. IEEE Trans. Information Forensics and Security 11, 1 (2016), 114–125.
https://doi.org/10.1109/TIFS.2015.2478741

[6] Pietro Danzi, Anders Ellersgaard Kalør, Cedomir Stefanovic, and Petar Popovski.
2018. Analysis of the Communication Traffic for Blockchain Synchronization of
IoT Devices. In 2018 IEEE International Conference on Communications, ICC 2018.
1–7. https://doi.org/10.1109/ICC.2018.8422485

[7] Dapps. 2019. https://www.stateofthedapps.com/dapps?page=1.
[8] Datasets. 2019. https://github.com/MovanZhang/TrafficDataofDapps/.
[9] Xiaojiang Du and Hsiao-Hwa Chen. 2008. Security in wireless sensor networks.

IEEE Wireless Commun. 15, 4 (2008), 60–66. https://doi.org/10.1109/MWC.2008.

4599222
[10] Xiaojiang Du, Mohsen Guizani, Yang Xiao, and Hsiao-Hwa Chen. 2009. Transac-

tions papers a routing-driven Elliptic Curve Cryptography based key manage-
ment scheme for Heterogeneous Sensor Networks. IEEE Trans. Wireless Commu-
nications 8, 3 (2009), 1223–1229. https://doi.org/10.1109/TWC.2009.060598

[11] Xiaojiang Du, Yang Xiao, Mohsen Guizani, and Hsiao-Hwa Chen. 2007. An
effective key management scheme for heterogeneous sensor networks. Ad Hoc
Networks 5, 1 (2007), 24–34. https://doi.org/10.1016/j.adhoc.2006.05.012

[12] Ethereum. 2019. https://www.ethereum.org/.
[13] Saman Feghhi and Douglas J. Leith. 2014. A Web Traffic Analysis Attack Using

Only Timing Information. IEEE Transactions on Information Forensics & Security
11, 8 (2014), 1747–1759.

[14] Michael Finsterbusch, Chris Richter, Jean Alexander Muller, Klaus Hanssgen,
and Eduardo Rocha. 2014. A Survey of Payload-Based Traffic Classification
Approaches. IEEE Communications Surveys & Tutorials 16, 2 (2014), 1135–1156.

[15] Edita Grolman, Andrey Finkelstein, Rami Puzis, Asaf Shabtai, Gershon Celniker,
Ziv Katzir, and Liron Rosenfeld. 2018. Transfer Learning for User Action Identi-
cation in Mobile Apps via Encrypted Trafc Analysis. IEEE Intelligent Systems 33,
2 (2018), 40–53.

[16] Jamie Hayes and George Danezis. 2016. k-fingerprinting: A Robust Scalable
Website Fingerprinting Technique. In 25th USENIX Security Symposium, USENIX
Security 16. 1187–1203.

[17] Maciej Korczynski and Andrzej Duda. 2014. Markov chain fingerprinting to
classify encrypted traffic. In 2014 IEEE Conference on Computer Communications,
INFOCOM 2014. 781–789. https://doi.org/10.1109/INFOCOM.2014.6848005

[18] Philip Koshy, Diana Koshy, and Patrick D. McDaniel. 2014. An Analysis of
Anonymity in Bitcoin Using P2P Network Traffic. In Financial Cryptography and
Data Security - 18th International Conference, FC 2014. 469–485.

[19] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon
McCoy, Geoffrey M. Voelker, and Stefan Savage. 2013. A fistful of bitcoins:
characterizing payments among men with no names. In Proceedings of the 2013
Internet Measurement Conference, IMC 2013. 127–140.

[20] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zin-
nen, Martin Henze, and Klaus Wehrle. 2016. Website Fingerprinting at Internet
Scale. In 23rd Annual Network and Distributed System Security Symposium, NDSS
2016. 1–15.

[21] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. 2017. Beauty and the Burst:
Remote Identification of Encrypted Video Streams. In 26th USENIX Security
Symposium (USENIX Security 17). USENIX Association, Vancouver, BC, 1357–
1374.

[22] Meng Shen, Baoli Ma, Liehuang Zhu, Rashid Mijumbi, Xiaojiang Du, and Jiankun
Hu. 2018. Cloud-Based Approximate Constrained Shortest Distance Queries Over
Encrypted Graphs With Privacy Protection. IEEE Trans. Information Forensics
and Security 13, 4 (2018), 940–953. https://doi.org/10.1109/TIFS.2017.2774451

[23] Meng Shen, Xiangyun Tang, Liehuang Zhu, Xiaojiang Du, and Mohsen Guizani.
2019. Privacy-Preserving Support Vector Machine Training over Blockchain-
Based Encrypted IoT Data in Smart Cities. IEEE Internet of Things Journal (2019),
1–1. https://doi.org/10.1109/JIOT.2019.2901840

[24] Meng Shen, Mingwei Wei, Liehuang Zhu, and Mingzhong Wang. 2017. Classifi-
cation of Encrypted Traffic With Second-Order Markov Chains and Application
Attribute Bigrams. IEEE Trans. Information Forensics and Security 12, 8 (2017),
1830–1843. https://doi.org/10.1109/TIFS.2017.2692682

[25] Meng Shen, Mingwei Wei, Liehuang Zhu, Mingzhong Wang, and Fuliang Li. 2016.
Certificate-aware encrypted traffic classification using Second-Order Markov
Chain. In 24th IEEE/ACM International Symposium on Quality of Service, IWQoS
2016. 1–10. https://doi.org/10.1109/IWQoS.2016.7590451

[26] Vincent F. Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. 2016.
AppScanner: Automatic Fingerprinting of Smartphone Apps from Encrypted
Network Traffic. In IEEE European Symposium on Security and Privacy, EuroS&P
2016, Saarbrücken, Germany, March 21-24, 2016. 439–454. https://doi.org/10.1109/
EuroSP.2016.40

[27] Tao Wang and Ian Goldberg. 2016. On Realistically Attacking Tor with Web-
site Fingerprinting. PoPETs 2016, 4 (2016), 21–36. https://doi.org/10.1515/
popets-2016-0027

[28] Yang Xiao, Venkata Krishna Rayi, Bo Sun, Xiaojiang Du, Fei Hu, and Michael
Galloway. 2007. A survey of key management schemes in wireless sensor
networks. Computer Communications 30, 11-12 (2007), 2314–2341. https:
//doi.org/10.1016/j.comcom.2007.04.009

[29] Hongyi Yao, Gyan Ranjan, Alok Tongaonkar, Yong Liao, and Zhuoqing Morley
Mao. 2015. SAMPLES: Self Adaptive Mining of Persistent LExical Snippets
for Classifying Mobile Application Traffic. In Proceedings of the 21st Annual
International Conference on Mobile Computing and Networking, MobiCom 2015.
439–451. https://doi.org/10.1145/2789168.2790097

[30] Liehuang Zhu, Xiangyun Tang, Meng Shen, Xiaojiang Du, and Mohsen Guizani.
2018. Privacy-Preserving DDoS Attack Detection Using Cross-Domain Traffic in
Software Defined Networks. IEEE Journal on Selected Areas in Communications
36, 3 (2018), 628–643. https://doi.org/10.1109/JSAC.2018.2815442

https://doi.org/10.1145/2660267.2660362
https://doi.org/10.1109/TIFS.2015.2478741
https://doi.org/10.1109/ICC.2018.8422485
https://doi.org/10.1109/MWC.2008.4599222
https://doi.org/10.1109/MWC.2008.4599222
https://doi.org/10.1109/TWC.2009.060598
https://doi.org/10.1016/j.adhoc.2006.05.012
https://www.ethereum.org/
https://doi.org/10.1109/INFOCOM.2014.6848005
https://doi.org/10.1109/TIFS.2017.2774451
https://doi.org/10.1109/JIOT.2019.2901840
https://doi.org/10.1109/TIFS.2017.2692682
https://doi.org/10.1109/IWQoS.2016.7590451
https://doi.org/10.1109/EuroSP.2016.40
https://doi.org/10.1109/EuroSP.2016.40
https://doi.org/10.1515/popets-2016-0027
https://doi.org/10.1515/popets-2016-0027
https://doi.org/10.1016/j.comcom.2007.04.009
https://doi.org/10.1016/j.comcom.2007.04.009
https://doi.org/10.1145/2789168.2790097
https://doi.org/10.1109/JSAC.2018.2815442

	Abstract
	1 Introduction
	2 Background and Datasets
	2.1 DApp Background
	2.2 Datasets

	3 Motivation
	3.1 Existing Classification Methods of Encrypted Traffic
	3.2 Merging Typical Features for Classification
	3.3 Merging Selected Features for Classification

	4 Feature Fusion and Classification
	4.1 Kernel Functions of Feature Fusion
	4.2 Fusion Feature Selection
	4.3 Machine Learning Classifier

	5 Performance Evaluation
	5.1 Preliminary
	5.2 Evaluation Fusion Feature Selection
	5.3 Evaluation of Classification Accuracy
	5.4 Evaluation of Time Cost

	6 Related Work
	6.1 Summary of Encrypted Traffic Classification Methods
	6.2 Network Traffic of Ethereum

	7 Conclusion
	References

