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Abstract—Federated learning (FL) serves as an enabling
technology for intelligent edge computing, where high-quality
machine learning (ML) models are collaboratively trained over
large amounts of data generated by various Internet of Things
devices while preserving data privacy. To further provide data
confidentiality, computation auditability, and participant incen-
tives, the blockchain framework has been incorporated into FL.
However, it is an open question whether the model updates from
participants in blockchain-assisted FL can disclose properties of
the private data the participants are unintended to share. In
this article, we propose a novel property inference attack that
exploits the unintended property leakage in blockchain-assisted
FL for intelligent edge computing. More specifically, we present
an active attack to learn the property leakage from model updates
of participants and to identify a set of participants with a certain
property. We also design a dynamic participant selection strat-
egy tailored to the setting of large-scale FL, which accelerates
the selection process of target participants and improves attack
accuracy. We evaluate the proposed attack through extensive

Manuscript received April 30, 2020; revised July 19, 2020 and August 6,
2020; accepted September 19, 2020. Date of publication October 1, 2020;
date of current version February 4, 2021. This work was supported in part
by the Beijing Nova Program under Grant Z201100006820006; in part by
NSFC Projects under Grant 61972039, Grant 61932016, and Grant 61872041;
in part by the Beijing Natural Science Foundation under Grant 4192050;
in part by the Zhejiang Lab Open Fund under Grant 2020AA3AB04; in
part by the China National Funds for Distinguished Young Scientists under
Grant 61825204; in part by the Beijing Outstanding Young Scientist Program
under Grant BJJWZYJH01201910003011; in part by BNRist under Grant
BNR2019RC01011; in part by the Science and Technology Planning Project
of Guangdong Province under Grant LZC0023 and Grant LZC0024; and in
part by the PCL Future Greater-Bay Area Network Facilities for Large-Scale
Experiments and Applications under Grant LZC0019. (Corresponding author:
Bin Zhang.)

Meng Shen is with the School of Cyberspace Security, Beijing Institute of
Technology, Beijing 100081, China, and also with the Cyberspace Security
Research Center, Peng Cheng Laboratory, Shenzhen 518066, China (e-mail:
shenmeng@bit.edu.cn).

Huan Wang is with the School of Computer Science, Beijing Institute of
Technology, Beijing 100081, China (e-mail: wanghuan6693@163.com).

Bin Zhang is with the Cyberspace Security Research Center, Peng Cheng
Laboratory, Shenzhen 518000, China (e-mail: bin.zhang@pcl.ac.cn).

Liehuang Zhu is with the School of Cyberspace Security, Beijing Institute
of Technology, Beijing 100081, China (e-mail: liehuangz@bit.edu.cn).

Ke Xu is with the Department of Computer Science and Technology and
Beijing National Research Center for Information Science and Technology,
Tsinghua University, Beijing 100084, China, and also with the Peng Cheng
Laboratory, Shenzhen 518066, China (e-mail: xuke@tsinghua.edu.cn).

Qi Li is with the Institute for Network Sciences and Cyberspace, Tsinghua
University, Beijing 100084, China (e-mail: qi.li@sz.tsinghua.edu.cn).

Xiaojiang Du is with the Department of Computer and Information
Sciences, Temple University, Philadelphia, PA 19122 USA (e-mail:
dxj@ieee.org).

Digital Object Identifier 10.1109/JIOT.2020.3028110

experiments with publicly available data sets. The experimen-
tal results demonstrate that the proposed attack is effective and
efficient in inferring various properties of training data, while
maintaining the high quality of the main tasks in FL.

Index Terms—Blockchain, edge computing, federated learning
(FL), Internet of Things (IoT), property inference.

I. INTRODUCTION

IN RECENT years, the rapid advancement of Internet of
Things (IoT) results in a huge amount of data gathered

from various IoT devices. The high-performance machine
learning (ML) models require large amounts of data to per-
form data classification and prediction of future events [1].
To address the limitations of data privacy and network band-
width, edge computing offloads computation resources and
data to IoT devices. Federated learning (FL) and blockchain
are emerging paradigms of distributed learning [2]–[4] that
stores and processes data locally, which has been extended
to the edge computing and used in various domains [5], [6].
With the advanced features such as anonymity and traceability,
blockchain has emerged as a promising technology to provide
distributed secure solutions in FL which provides a guaranteed
collaborative scheme among untrusted participants and servers
for efficient model training [4], [7]–[9].

Although the blockchain-assisted FL avoids the shar-
ing of participants’ data and guarantees the credibility and
integrity of data, the shared model updates still reveal private
information of participants’ training data sets. An impor-
tant question naturally arises: what can be disclosed about
the participants’ private data set from the model updates in
blockchain-assisted FL?

Existing studies have investigated various privacy violations
in the federated setting, such as membership inference attacks
and property inference attacks. In the membership inference
attack, an adversary can determine if an exact data record was
used to train the model [10]–[12]. In the property inference
attack, an attacker can infer properties of the training data that
is uncorrelated with the main task, e.g., inferring the hair color
or the race (as a property) of the images used to train a gender
classifier [10], [12], [13].

In this article, we focus on the inference of unintended prop-
erties of the participates’ training data, i.e., those properties
that hold for the training data of certain subsets of the partici-
pants, but are not the global properties of the training data as a
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whole. Different from prior work [12] that assumes an adver-
sarial participant, we explore the unintended property leakage
in FL with an adversarial server, as the server potentially has
a greater attack capability, e.g., having a global view of the
model updates of all participants, or even determining the par-
ticipants involved at each iteration of training. This inference
enables the server to extract valuable properties that partic-
ipants are not intended to share and are independent of the
features that characterize the main classifier.

In general, a practical property inference attack launched
by a central server in FL has two goals. First, high inference
accuracy is always desirable, which enables the adversary to
correctly excavate as many private properties of participants’
training data as possible. The second goal is to maintain the
high utility of participants’ training data to ensure the quality
of the classifier of the main task. An ideal property inference
attack should have a negligible impact on the main task.

Recently, the cryptography is widely used to protect the pri-
vacy of various data, such as graph [14] and text data [15].
In order to reduce the risk of information leakage from
model updates in FL, several secure aggregation schemes
and multiparty secure computing algorithms [16], [17] have
been proposed to protect participants’ local updates. Thus, we
assume that an active adversary only obtains the aggregated
model without knowing each participant’s plaintext model
updates. We also assume that the adversary has white-box
knowledge about the federated model. Instead of inferring the
properties of individual participants, the goal in our attack is
to infer a subset of participants with the target properties that
are of interest to the adversary, while maintaining the high
quality of the classifier trained as the main task. It is a serious
privacy risk for participants’ sensitive data, especially in the
field of healthcare and finance.

We design a participant selection strategy that can be
actively launched by the server, which iteratively selects the
participants whose training data is more likely with the tar-
get properties. Intuitively, the effectiveness and efficiency of
the selection strategy are contradictory. Thus, we design a
strategy with adjustable parameters, which enables the adver-
sary to select appropriate parameters to meet their inference
requirements.

We evaluate the effectiveness and efficiency of the proposed
attack on several public data sets (i.e., CelebA [18], LFW [19],
MNIST, and CASIA-WebFace [20]) with up to 1000 partic-
ipants. The results show that the attack accuracy is mostly
above 80%, even with 1000 participants. For example, when
the main task is the gender classifier trained on the CASIA
data set with 1000 participants, an adversary can infer 100
participants with “hair-color:black” with a considerable accu-
racy of 82.3%. Moreover, it almost preserves the same utility
of the gender classifier, where the prediction accuracy slightly
drops from 82.4% to 82.0% (LFW) and from 80.7% to 80.2%
(MNIST).

Our contributions are summarized as follows.
1) We train a metaclassifier to exploit the property leakage

in the training process of FL.
2) We design a selection strategy to iteratively infer a subset

of participants with target properties from all participants
in the large-scale FL.

3) We evaluate the proposed attacks on real-world data sets,
which demonstrates that our attacks can efficiently infer
the properties of participants’ private data.

The remainder of this article is organized as follows.
We introduce the related work and problem statement in
Sections II and III. Next, we present the property attacks in
Section IV. We describe the experimental data sets and eval-
uation results in Sections V and VI, respectively. Finally, we
conclude this article in Section VII.

II. RELATED WORK

FL provides a parallel scheme for participants to learn a
collaborative model and achieves edge intelligence by learn-
ing from distributed data. The collaborative idea has been
widely used in many fields [21], [22] and in the FL, it can
reduce the privacy risk of directly sharing data [23]. Recently,
blockchain is an emerging parallel that brings opportunities to
the traditional information-centric networks [15], [24], [25]
and has been widely used in FL for edge computing to
provide data confidentially, computation auditability, device
authentication for cross-domain industrial IoT and participant
incentives [4], [7], [26], [27].

However, the model sharing does disclose the unintended
leakage of the training data, which leads to various attacks
against neural networks in the black-box setting or white-box
setting. Here, we briefly summarize the inference attacks from
two aspects: 1) membership inference attacks and 2) property
inference attacks.

Membership Inference Attacks: Shokri et al. [28] proposed
a membership attack to infer whether the target data records
are the training data of the target model in a black-box setting.
Yeom et al. [29] analyzed the influence of overfitting on the
membership attacks. Long et al. [30] showed that the mem-
bership attacks were still effective even in the well-generalized
learning models, because of the complexity and memorabil-
ity of deep neural networks. Hayes et al. [31] presented the
membership attacks against generative models combining the
generative and discriminative models of generative adversarial
networks (GANs) [32].

In collaborative learning, Nasr et al. [11] designed a mem-
bership attack model during the training phase in a white-box
setting, including passive and active attackers based on the dif-
ferent adversary prior knowledge. Melis et al. [12] developed
passive and active membership inference attacks to extract the
unintended features from the model updates in the collabora-
tive learning.

Property Inference Attacks: Model inversion attacks [33]
were proposed to construct the inputs of a certain class.
Ateniese et al. [34] built a metaclassifier to infer unexpected
but useful statistical information of the training data set from
ML classifiers. Ganju et al. [35] proposed the property infer-
ence attacks on fully connected neural networks to infer the
global properties of the training data set and used the per-
mutation invariant representations to simply the structures of
networks.

In collaborative learning, the studies [10], [13] recon-
structed the representation of a class based on the observing
updates from participants using the GANs. Wang et al. [13]
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TABLE I
MAIN NOTATIONS USED IN THIS ARTICLE

proposed a novel GAN with a multitask discriminator to
recover participants’ specified private data from the server
side. Melis et al. [12] designed a mini-batch property attack
model to extract the unintended features in the FL [2] and
collaborative learning with synchronized gradient updates [3]
by active attacker and passive attacker.

In contrast, our property inference attacks could infer a set
of participants with target properties by a server who can only
obtain the aggregated global models, which achieves a more
generic attack and has a negligible impact on the FL tasks.

III. PROBLEM STATEMENT

In this section, we present the background, threat model,
and design goals of property inference attacks.

A. Background of Blockchain-Assisted Federated Learning

FL is an emerging paradigm of distributed learning with
multiple participants. Participant i with data set Di, at iteration1

t (t ∈ [0, T]), trains the local model wi
t that minimizes the local

loss function Li(wi
t). The loss function is defined as

Li
(
wi

t

) = 1

|Di|
∑

j∈Di

lj
(
wi

t

)
(1)

where lj(wi
t) is the loss function of participant i on data sam-

ple (xj, yj). Define the global data set as D = ⋃N
i=1 Di, the

objective of FL at iteration t is to train a global model wt to
minimize the global loss function L(wt) as shown in

L(wt) = 1

|N|
∑

i∈N

∑

j∈Di

Li
(
wi

t

)

|Di| (2)

where N is the number of participants and | · | denotes the
size of sets. The main notations used in this paper are listed
in Table I.

The distributed technologies, e.g., FL and blockchain, pro-
mote the development of edge computing. Edge computing
provides the specific application scenarios for the combi-
nation of FL and blockchain which is widely used for
enhancing security in areas such as, IoT [36] and vehicular

1The iteration is also called round in [2], [12], and [17].

Fig. 1. Typical scheme of blockchain-assisted FL for intelligent edge
computing.

networks [8]. The general process of the blockchain-assisted
FL architecture [8], [9] typically consists of three phases:
1) nodes selection; 2) local training; and 3) global aggregation,
as shown in Fig. 1.

1) Nodes Selection: At the beginning, the central server ini-
tializes the global model. Then, the central server selects
the node to participate the model training.

2) Local Training: The local training is implemented with
gradient descent. Upon receiving wt−1 in iteration t, each
participant i updates the local model wi

t on the local
data Di as illustrated in (1). Then, participant i sends
the updated model wi

t to the nearby edge server and
uploads it to the blockchain for further verification and
aggregation

wi
t = wt−1 − η∇Li(wt−1). (3)

3) Global Aggregation: The aggregator (e.g., a centralized
server) retrieves the updated models from the permis-
sioned blockchain and aggregates local models wi

t from
participating nodes to a global model wt

wt = 1

n

n∑

i=1

wi
t (4)

where n is the number of nodes in iteration t.

B. Threat Model

In this article, we assume the server is an adversary. In the
blockchain-assisted FL settings, the adversary is the edge server.
It is worth mentioning that in the FL commonly used, our attack
is still valid and the adversary is the central server in this setting.
We also assume that the adversary has a white-box access to
the structure of the federated model and federated algorithm.
The assumption is also commonly used in [11] and [37].

In this setting, an adversary is unnecessary to strictly follow
the procedures of the main task. Instead, he can take active
actions (e.g., dynamically selecting the participants involved
in each iteration) to improve the accuracy or efficiency of the
property inference attack. We assume that secure aggregation
schemes [17] are employed to protect the model updates of
individual participants. Thus, the adversary has only access to
the global model aggregated from the selected participants at
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Fig. 2. Overview of the property inference attack. A honest server performs steps 1–3. The active adversary only obtains the global model wt at the tth
iteration and conducts steps 1–6 to perform the attack.

each iteration. In our attack, the goal turns to infer a certain
number of participants that are most likely to have the desired
properties in their training data.

In addition, to perform the property inference attacks, the
adversary needs an auxiliary data set that has a similar dis-
tribution with the participants’ private data. That is because
the data sets with similar distribution have similar gradients of
deep neural networks [11], [28], [35]. The auxiliary data record
is correctly labeled with the property an adversary wants to
infer, as well as the label of the main task.

If the adversary does not have access to similar training
data set (e.g., without publicly available data sets), he can
compromise one of the participants to obtain the auxiliary data
set, as evidenced in FL with large-scale participants [38].

C. Design Goals

An ideal property inference attack should allow an adversary
to extract the unintended property leakage of participants’ pri-
vate data from the model updates, while preserving the quality
of the main task classifier. Therefore, the design goals can be
described in the following aspects.

1) High Accuracy: For an active adversary, the goal is to
infer a certain number of participants with the target
property. The attack accuracy represents the ratio of cor-
rect inferences, i.e., the percentage of participants with
the target property in the inferred participants.

2) High Efficiency: In the property inference attack, the
attack efficiency is the required iterations of this attack
during the FL process. We choose the iterations of fed-
erated training rather than running time of the attack for
two reasons. First, the iterations represent the commu-
nications between adversary and participants, the fewer
communications, the more effective of attack. Another
reason is that the time cost of each iteration depends on
the performance of different machines.

3) Low Overhead: In the active attack scenario, the adver-
sary actively selects certain participants in the training
process of FL, which can have an impact on the accuracy
of the main tasks. Thus, we use overhead to evaluate the
impact of the proposed attacks on the main tasks of FL.

IV. PROPERTY INFERENCE ATTACKS

In this section, we describe the attack model used to extract
the property leakage of private data sets of participants from
model updates.

A. Property Inference Attack Model

We present a high-level overview of the property inference
attacks in Fig. 2. As mentioned above, for the adversary, he
takes steps 1–4 to train the attack model on the auxiliary data
set. Then, he feeds the global updates wt to the attack model
and uses the selection strategy (step 6) to select participants
with the target property based on the outputs of the attack
model.

Define P as the target property the adversary aims to infer,
and H as a metaclassifier to determine whether the target
participant’s private data has the property P or not.

Following research [11], [35], to train H, the adversary
has an auxiliary data set denoted by Da, which has similar
distribution with the training data for the federated model.
Da = {DP

a , DP
a }, where DP

a and DP
a are the auxiliary data sets

with and without the property P , respectively. The property
inference attack mainly consists of three phases: 1) training
data generation; 2) attack model training; and 3) property
inference, as illustrated in Algorithm 1.

Generating Training Data Set of Attack Models: To train
the attack model H, an adversary first generates the training
data set of H. H is used to learn the differences of gradients
of model updated on the private data sets with and without P .
Therefore, the server mimics the behavior of the target model
and divides the auxiliary data set into N pieces. Then, at each
iteration t, the adversary trains the federated model wt on N
auxiliary data sets and obtains gradients on auxiliary data sets

DPi
a (i ∈ [1, x]) and D

P j
a (j ∈ [1, y]) after obtaining the global

model wt−1, just like the participants in the FL. x is the number
of divided pieces with the property P and y is the number
of divided pieces without P , where DP

a =
∑x

i=1 DPi
a , DP̄

a =∑y
j=1 D

P̄j
a . The update rule is defined in

gPa = ∇L
(

DPi
a , wt−1

)
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Algorithm 1 Inference Attack Model

Input: auxiliary dataset Da = {DP
a , DP

a }, model wt
Output: Attack model H

1: Server executes: Initialize global model w0, T;
2: for t = 0 to T do
3: /* Generating training datasets of H */
4: DP

c = φ, DP
c = φ

5: for k = 1 to K do

6: for each DPi
a (i ∈ [1, x]), D

P j
a (j ∈ [1, y])

7: gPa = ∇L(DPi
a , wt−1), gPa = ∇L(D

P j
a , wt−1) do

8: DP
c ← DP

c ∪ (gPa ,P), DP
c ← DP

c ∪ (gPa ,P)
9: end for

10: end for
11: Train attack model H, given DP

c , DP
c

12: St = Select(n) /* Participant selection strategy */
13: for each i ∈ St do
14: wi

t = ClientUpdate(wt−1)
15: end for
16: wt =∑n

k=1
1
n wk

t
17: /* Prediction phase of attack model */
18: end for

gPa = ∇L

(
D
P j
a , wt−1

)
(5)

where L(D, w) is described in (1).
To simplify the input features and attack model, we extract

only the parameters of the last fully connected layer. The rea-
son is that the last layer of the neural network leaks more
information about the training data set [11]. Hereafter, g
represents the gradients of the last layer.

Training Phase of the Attack Model: The adversary builds
the training data of the attack model H by labeling the
gradients gPa and gPa as P and P , respectively.

Prediction Phase of the Attack Model: The adversary aggre-
gates the global updates and uses it as the input feature of H.
Then, the attack model H outputs a score in [0, 1]: the closer
the score is to 1, the more likely the updates have property P ,
and vice versa. After that, the adversary leverages the partic-
ipant selection strategy to iteratively select participants with
the property P based on the predictions of H.

B. Naive Selection Strategy

To select a set of participants with the target property,
we first consider a naive selection strategy (NSS). At each
iteration of FL, the server randomly selects n participants
involved in model training. If we aim to infer K participants
with the target property, an NSS is to select K(K = n) partic-
ipants at each iteration, and infer the set of participants with
the largest probability of having the target property.

The NSS can be described as follows.
1) Partitioning Participants: The adversary divides N par-

ticipants into multiple sets, each of which contains K
participants. Thus, the number of selected participants n
at each iteration equals K.

2) Screening Out Participants: At each iteration, the server
selects a set of K participants and predicts the proba-
bility that the global update of the selected participants
has a certain property. After selecting all participant sets,

Algorithm 2 DSS
Input: Attack model H and global model wt
Output: The set of participants SP , |SP | = K

1: Initialize N0 = N, SP = ∅
2: for r = 0 to R do
3: Divide Nr participants into c sets, Sr = {S1

r , S2
r , . . . , Sc

r}
4: for each Si

r ∈ Sr do

5: wt =∑|Si
r|

k=1
1
|Si

r
wk

t , g(Si
r)) = wt − wt−1

6: Pre(Si
r)← (H, g(Si

r))
7: end for
8: Filter out the b sets Sx

r with smallest prediction, x ∈ [1, c]
9: Nr = Nr − b× �Nr/c	, Sr = Sr − {Sx1

r , Sx2
r , . . . , Sxb

r }
10: end for
11: SP = Sr

the adversary obtains the corresponding predictions of
H. Then, he screens out the last one sets of partici-
pants (b≥ 1) based on the rank of predictions, as the
prediction represents the probability that the set of par-
ticipants has the property. Thus, the adversary selects the
participants may have the property P . Repeat the above
steps until only one set of participants is left.

There are two main problems in NSS. First, the accuracy of
H will drop as the number of target participants K increases.
This is because local updates are averaged, making it more dif-
ficult to extract information from the updates. Second, given
the number of participants N, the required iterations of this
attack are only affected by the number of target participants
K. For instance, if N = 100 and K = 10, the number of partici-
pant sets is �N/K	 = 10, and the adversary needs ten iterations
to traverse all participant sets. This limits the flexibility in
participant selection and thus reduces the attack efficiency.

C. Dynamic Selection Strategy

To select a given number of participants more efficiently,
while achieving high accuracy of the attack model, we pro-
pose a dynamic selection strategy (DSS) to adaptively select
participants at each iteration.

The basic idea of DSS is illustrated in Fig. 3. We use two
parameters c and b to dynamically change the number of
selected participants and the number of screened participant
sets. At each iteration, the number of selected participants is
set as n = �N/c	, where c represents the proportion of the
selected participants among all participants. Also, the number
of screened participants equal b × n, where n is the size of
the selected participants set and b is the number of screened
participant sets.

Algorithm 2 exhibits the process of DSS. We first divide the
participants into c sets randomly, and iteratively screen out b
sets of participants with the minimum probability of owning
the property P , until the required number of participants are
left. However, it is important to note that these c sets do not
overlap. R is the round of selection strategy, and we initialize
N1 = N and M1 = M, where M denotes the number of par-
ticipants with property P . At each round r (r ∈ [1, R]), we
perform the selection strategy as shown in Fig. 3.
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Fig. 3. DSS used in the active attack scenario.

1) Partitioning Participants: We divide the Nr candidate
participants into c sets, each participant set contains
�Nr/c	 participants and the number of selected partici-
pants n = �Nr/c	.

2) Screening Out participants: At each iteration, the server
selects a set of participants Si

r (i ∈ [1, c]) and predicts
the probability that the global update from Si

r has the
property P using the metaclassifier H. After c iteration,
we obtain the corresponding predictions of H. Then,
we screen out the last b sets of participants Sj

r (j ≤ c)
based on the rank of predictions, since the predictions
represent the probability that the set of participants has
the property P . Thus, we screen out the participants
most likely without the property.

After steps 1) and 2), the number of candidate participants
is Nr+1 = Nr−b×�Nr/c	, and remaining participants with the
property P satisfies Definition 1. Repeat the above steps until
the number of candidate participants satisfies NR ≈ K, where
K is the number of participants with the property P we aim
to infer. It should be noted that some participants who are
not selected in this iteration (less than �Nr/c	) will not be
screened out.

Definition 1 (Candidate Participants): Given the number of
candidate participants N, the number of participants M with
the property P , the number of selected participants n at each
iteration of FL, the number of sets of participants c, a screen
parameter b, the remaining candidate participants Nr, and the
remaining participants with the property P, Mr following the
rules:

Nr = N

(
1− b

c

)r

(6)

Mr = M −
r∑

j=1

b∑

i=1

xi
j (7)

where xj = ∑
xi

j (i ∈ [1, b]) is the number of screened
participants with property P at the jth round of DSS.

D. Effectiveness Analysis of DSS

In this section, we formalize the effectiveness and efficiency
of the above selection strategy and analyze the impact of the
number of participants sets c and screened participant sets b.

We use S to represent the above selection strategy, A and
B represent the accuracy and efficiency of this attack. Attack
accuracy A is the proportion of participants with the property
P among the inferred participants.

We use the required iterations of this attack to formalize its
efficiency, because the time cost of each iteration in the FL
depends on the performance of machines.

The selected participants with the property P at each round
subject to the hypergeometric distribution defined as follows.

Definition 2 (Hypergeometric Distribution): Given the
above variables N, M, and n. The probability of the number
of participants X with property P in n selected participants
satisfies the hypergeometric distribution X ∼ H(N, M, n). It
follows the rule, and the mathematical expectation of X is
E(x) = (nM/N):

P(X = x) = Cx
MCn−x

N−M

Cn
N

. (8)

Given the above selection strategy S, the impacts of c and
b on attack accuracy are defined as follows.

Definition 3 (Selection Strategy): Given a hypergeometric
distribution X ∼ H(N, M, n), the parameters of b and c, the
target number of participants K with the property P . We define
the selection S to maximize the accuracy of our objective by
solving the following problems:

arg min
c,b

R∑

r=1

b∑

i=1

P
(
X = xi

r

)
, X ∼ H(Nr, Mr, nr). (9)

The efficiency of our attack is iterations in Algorithm 1, and
is calculated as follows.

Definition 4 (Iterations Required): Given the selection
strategy S, the parameters of c, b, the round required R of
the selection strategy, the iterations required is r× c, thus, the
efficiency objective aim to solving the following problem:

arg min
c,b

(

c× log

(
1− b

c

) K
N
)

. (10)

From (9) and (10), we can see that the effectiveness and
efficiency of DSS are related to the parameters b and c. The
larger the number of participant sets c, the higher the accuracy
of the attack and the more iterations needed. The smaller the
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screen value b, the higher the accuracy of the attack and the
more iterations needed.

We demonstrate the efficiency and effectiveness of DSS in
Section VI.

V. DATA SETS AND MODEL ARCHITECTURES

In this section, we describe the data sets and the architecture
of the target models and the inference attack models.

A. Data Sets

Labeled Faces in the Wild (LFW): It is a standard data set
designed for face recognition, and contains 13 233 face images
of 5749 individuals. Each image has multiple labels, such as
race, age, gender, hair color, and eyewear. As shown in Table
II, for LFW1, the main task is the gender classifier and the
target property is “race:black”; for LFW2, the main task is the
race classifier and the target property is male. Each participant
in FL has 32 images (i.e., the batch size).

CelebFaces Attributes (CelebA): It contains 202 599 face
images for 10 177 celebrities. Each image labels 40 binary
attribute annotations, such as race, smile, age, and gender. The
main tasks of FL on CelebA are gender and smile classifiers,
and the target properties are race, smile, and black hair, which
are denoted by CelebA1, CelebA2, CelebA3, and CelebA4,
respectively. Each participant in FL has 64 images, composing
a total of 128 000 images.

CASIA-WebFace: It contains more than 400 000 face images
of 10 575 individuals. For CASIA1, the main task is gender
classifier and the target property is the black race; and for
CASIA2, the main task is race classifier and the target property
is male. Each participant in FL has 64 images.

MNIST: It contains 70 000 handwritten digits. We select a
subset of the original data set, named MNIST1. The main task
is to recognize the digit shown in the image, and we want
to infer whether the target model was trained using noisy
images [35]. We create the noisy images by adding a ran-
dom brightness jitter to each image as suggested in [35]. Each
participant in FL has 32 images.

We divide the data sets randomly into two parts for adver-
sary and participants, as shown in Table III. It should be noted
that there is no overlapping between the auxiliary data set of
the adversary and the training data sets of participants. The
data set sizes for all participants are the same on the same
data set. Half of the participants have the training data sets
with property P , and another half of the participants have the
training data sets without property P . Note that each partici-
pant’s private data only has pure properties, e.g., either black
hair or nonblack hair.

B. Model Architecture Description

Target Models: For the face classification task, we use a
three-layer CNN classifier with 32, 64, and 128 filters at each
layer, a kernel size of (3, 3), followed by two fully connected
layers of size 256 and 2. We use the FaceNet [39] to align
all face images to 160 × 160 pixels. On MNIST, we use a
two-layer CNN classifier with 32, 64 filters, followed by two
fully connected layers of size 128 and 10. We use the ReLU

TABLE II
DATA SETS AND TASKS IN OUR EXPERIMENTS. WE USE THE PEARSON’S

COEFFICIENT TO SHOW THE RELEVANCE OF THE TARGET PROPERTIES TO

THE MAIN TASK LABELS

TABLE III
SIZES OF DATA SETS USED IN MAIN TASKS AND INFERENCE TASKS

as the activation function and SGD learning algorithm for all
models. The learning rate is 0.00001. The batch sizes are 32
on LFW and MNIST and 64 on the rest data sets.

Attack Model: We flatten the input features into a 1-D vector
and use a CNN with 100 kernels of size (1, 100) to extract
the input features. The max-pooling size is (1, 2). Two fully
connected layers are of size 128 and 64. We use the ReLU as
the activation function and Adam optimizer for all inference
attack models. The learning rate is 0.001 and the output of
attack models is a softmax layer.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
attacks.

A. Evaluation of Property Inference Attack

Recall that the goal of the adversary is to infer a certain
number of participants with the target properties. We set the
number of target participants K = (N/10), unless otherwise
noted. Table II shows an overview of our experiments. We use
the Pearson’s coefficient to show the relevance of the target
properties to the main task labels. The Pearson’s coefficients
are missing in CASIA and MNIST data sets, because there
are no data labels in CASIA and MNIST, only the images.

Attack Accuracy: To evaluate the accuracy of the active
attack, in each experiment in Table II, we randomly initialize
model parameters to repeat the inference attack 100 times and
obtain the averaged attack accuracy. We also vary the partici-
pant number N from 100 to 1000 to evaluate its performance
with different participant populations.
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TABLE IV
ACCURACY AND ITERATION REQUIRED FOR ACTIVE PROPERTY INFERENCE ATTACKS (K = [N/10])

TABLE V
COMPARISON OF ATTACK ACCURACY AND EFFICIENCY BETWEEN DSS

AND NSS (N = 100 AND b = 2)

Table IV shows the accuracy with different data sets. The
attack accuracy decreases as the number of participants N
increases, but remains above 70% even with 1000 participants.

To verify the effectiveness of the active selection strategy,
we compare DSS with NSS. Table V shows the accuracy of
the active attacks using NSS or DSS with c = 7 and b =
2. The number of participants N equals 100 in all experiments.
The results show that DSS helps increase the attack accuracy
while significantly reducing the iterations required.

Attack Efficiency: We use the required iterations during the
inference attack to evaluate the effectiveness of active attacks,
as illustrated in (10). Table IV shows the required iterations
in different data sets with varying participant numbers.

Attack Overhead: The only difference of the active attack
from the passive attack lies in that the adversary can actively
select participants invovled in the training of main tasks.
Table VI shows the impact of the active attack on the accuracy
of the main tasks with different data sets. We can see that the
accuracy of the main tasks only slightly drops when the active
attacks are launched.

Impact of Target Participants on Inference Attack: Table VII
shows attack accuracy for a different number of target partici-
pants. As expected, an increasing number of target participants
decreases the accuracy of the property inference attack. It
should be noted that in all experiments, a half of the par-
ticipants have the target property P , which means that (N/2)

is the upper bound of K.
Impact of Training Iteration on Inference Attack: Fig. 4

shows the attack accuracy performed in different iterations of
main tasks. As expected, the training iteration has a marginal

TABLE VI
ACCURACY OF THE MAIN TASKS WITH OR WITHOUT ATTACKS FOR 240

ITERATIONS (N = 100 AND b = 2)

Fig. 4. Accuracy of inference attack in various iterations on LFW1 (N = 100
and K = 10).

impact on the attack accuracy, and increasing the training iter-
ations weakens the accuracy of the property inference attack.
When the models of main tasks have been fitted, the update
gradients of the main task models will be less obvious. From
the above, the more training iterations, the higher the accuracy
of the main task models, and the less significant the update
gradients.

Impact of Distributions of Participants’ Data Sets on
Inference Attack: We evaluate the attack accuracy for various
distributions of the participant’s private data in Table VIII. If
the size of the participant’s data with property P is larger
than those with P̄ , we label the model updates as P and vice
versa. As expected, the closer the size of data with P and P̄ ,
the worse our attack performance.
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(a) (b) (c)

Fig. 5. Attack accuracy and efficiency with varying N and c (K = (N/10), M = (N/2), and b = 2). (a) Accuracy in CelebA1. (b) Accuracy in CASIA2.
(c) Efficiency in CelebA1 and CASIA2.

(a) (b) (c)

Fig. 6. Attack accuracy and efficiency with varying b (c = 14). (a) Accuracy with N = 1000. (b) Accuracy in CASIA1. (c) Efficiency in CASIA1.

TABLE VII
ATTACK ACCURACY AT INFERRING VARIOUS SIZE OF TARGET

PARTICIPANTS IN CASIA1 (c = 9 AND b = 1)

B. Impact of Selection Strategy on Inference Attack

To select the suitable parameters of DSS, we analyze the
experimental results with varying the size of selected partic-
ipants c, the number of screened participant sets b, and the
number of participants N.

Impact of the Number of Participants N: Fig. 5(a) and (b)
demonstrates the impact of the number of participants N on
CASIA-WebFace and CelebA data sets. From Fig. 5, the attack
accuracy of N = 200 is obviously higher than the accuracy
of N = 1000 with the same parameters c and b. As expected,
the larger N is, the more iterations are required, the lower
efficiency and accuracy the attack will get.

Impact of the Size of Selected Participants c: Fig. 5 shows
the accuracy and efficiency of this attack on CelebA and
CASIA data sets with different c. We set the beginning value
of c as 4 rather than 1. The reason behind this is twofold. The

TABLE VIII
ATTACK ACCURACY FOR VARIOUS DISTRIBUTIONS OF PARTICIPANT’S

PRIVATE DATA. THE SIZE OF PARTICIPANT’S DATA IS 64. THE RATIO OF

THE DATA WITH P TO THE DATA WITH P̄ ARE 7/1, 4/1, 3/1, AND 2/1
(N = 100, c = 7, AND b = 3)

first one is that c represents the proportion of selected par-
ticipants among all participants which means it has a lower
bound. The second reason is that when c is smaller, the num-
ber of selected participants n = �N/c	 would be larger, and
the accuracy of the attack model H would be lower. When c
increases, the number of iterations increases, and the efficiency
of this attack would decrease as well.

Impact of Screened Participant Sets b: As shown in Fig. 6(a)
and (b), the attack accuracy is negatively correlated with b.
The attack efficiency is positively correlated with b. When the
value of b increases, the required iterations decrease and the
efficiency of this attack would increase [see Fig. 6(c)].

From these experiments in several real-world data sets, we
verify the impact of parameters N, c, and b on the effectiveness
and efficiency of the attacks and the selection strategy we
proposed.
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C. Limitations of Attacks

Attack Model: The attack model we proposed is used to
predict whether a model update has a certain property. The
adversary generates metatraining data to train the attack model
based on the global model and auxiliary data set. When the
number of required iterations is large, the time cost of training
the attack model is high.

Number of Selected Participant: The output of the attack
model is the probability that the model update has a target
property. When the number of selected participants increases,
the accuracy of the attack model will decrease. In order
to ensure the accuracy of the attack model and iteratively
inferring the participants with target property, the number of
selected participants is limited.

VII. CONCLUSION

In this article, we proposed a novel attack to exploit
the unintended properties leakage from model updates in
blockchain-assisted FL for intelligent edge computing. This
attack is practicable and enables a server to infer a set of
participants with target properties, which is a risk to the sen-
sitive data of IoT devices. We evaluated the proposed attacks
on real-world data sets and demonstrated that the proposed
attacks are effective and efficient in inferring various proper-
ties of training data while having a negligible impact on the
main tasks of FL. Our attacks suggest that there are a num-
ber of privacy risks even if the local updates of participants
are encrypted and servers observe only the aggregated global
updates. In future work, we will improve the attack efficiency
and explore better defenses to protect sensitive information of
participants in the training process of blockchain-assisted FL.

REFERENCES

[1] S. Wang et al., “Adaptive federated learning in resource constrained
edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6,
pp. 1205–1221, Jun. 2019.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 20th Int. Conf. Artif. Intell. Stat. (AISTATS) vol. 54. Fort
Lauderdale, FL, USA, Apr. 2017, pp. 1273–1282.

[3] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Security, 2015,
pp. 1310–1321.

[4] J. Weng, J. Weng, M. Li, Y. Zhang, and W. Luo, “Deepchain: Auditable
and privacy-preserving deep learning with blockchain-based incentive,”
IACR Cryptol. ePrint Archive, Lyon, France, Rep. 2018/679, 2018.

[5] A. Jochems et al., “Distributed learning: Developing a predictive model
based on data from multiple hospitals without data leaving the hospital—
A real life proof of concept,” Radiother. Oncol., vol. 121, no. 3,
pp. 459–467, 2016.

[6] M. Shen, Y. Deng, L. Zhu, X. Du, and N. Guizani, “Privacy-preserving
image retrieval for medical IoT systems: A blockchain-based approach,”
IEEE Netw., vol. 33, no. 5, pp. 27–33, Sep./Oct. 2019.

[7] X. Zhu, H. Li, and Y. Yu, “Blockchain-based privacy preserving deep
learning,” in Proc. 14th Int. Conf. Inf. Security Cryptol., vol. 11449,
2018, pp. 370–383.

[8] Y. Zhang, Y. Lu, X. Huang, K. Zhang, and S. Maharjan, “Blockchain
empowered asynchronous federated learning for secure data sharing
in Internet of Vehicles,” IEEE Trans. Veh. Technol., vol. 69, no. 4,
pp. 4298–4311, Apr. 2020.

[9] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Blockchain and
federated learning for privacy-preserved data sharing in industrial IoT,”
IEEE Trans. Ind. Informat., vol. 16, no. 6, pp. 4177–4186, Jun. 2020.

[10] B. Hitaj, G. Ateniese, and F. Pérez-Cruz, “Deep models under the GAN:
Information leakage from collaborative deep learning,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Security, 2017, pp. 603–618.

[11] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy anal-
ysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning,” in Proc. IEEE Symp. Security
Privacy (SP) San Francisco, CA, USA, May 2019, pp. 739–753.

[12] L. Melis, C. Song, E. D. Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in Proc. IEEE
Symp. Security Privacy (SP), San Francisco, CA, USA, May 2019,
pp. 691–706.

[13] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond
inferring class representatives: User-level privacy leakage from federated
learning,” in Proc. IEEE INFOCOM Conf. Comput. Commun., Paris,
France, 2019, pp. 2512–2520.

[14] M. Shen, B. Ma, L. Zhu, R. Mijumbi, X. Du, and J. Hu, “Cloud-based
approximate constrained shortest distance queries over encrypted graphs
with privacy protection,” IEEE Trans. Inf. Forensics Security, vol. 13,
pp. 940–953, 2018.

[15] M. Shen, J. Zhang, L. Zhu, K. Xu, and X. Tang, “Secure SVM train-
ing over vertically-partitioned datasets using consortium blockchain for
vehicular social networks,” IEEE Trans. Veh. Technol., vol. 69, no. 6,
pp. 5773–5783, Jun. 2020.

[16] S. Truex et al., “A hybrid approach to privacy-preserving federated learn-
ing,” in Proc. 12th ACM Workshop Artif. Intell. Security (AISec CCS),
2019, pp. 1–11.

[17] K. Bonawitz et al., “Practical secure aggregation for federated learning
on user-held data,” 2016. [Online]. Available: arXiv:1611.04482.

[18] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proc. Int. Conf. Comput. Vis. (ICCV), Dec. 2015.

[19] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database forstudying face recognition in uncon-
strained environments,” in Proc. Dans Workshop Faces Real Life Images
Detection Alignment Recognit., 2008, pp. 1–14.

[20] S. Li, D. Yi, Z. Lei, and S. Liao, “The CASIA NIR-VIS 2.0
face database,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
Workshops, Portland, OR, USA, 2013, pp. 348–353.

[21] X. Wang, X. Li, S. Pack, Z. Han, and V. C. M. Leung, “STCS:
Spatial-temporal collaborative sampling in flow-aware software defined
networks,” IEEE J. Sel. Areas Commun., vol. 38, no. 6, pp. 999–1013,
Jun. 2020.

[22] D. Zhang, X. Chen, D. Wang, and J. Shi, “A survey on collaborative
deep learning and privacy-preserving,” in Proc. IEEE 3rd Int. Conf. Data
Sci. Cyberspace (DSC), Guangzhou, China, 2018, pp. 652–658.

[23] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 869–904, 2nd
Quart., 2020.

[24] M. Shen, J. Duan, L. Zhu, J. Zhang, X. Du, and M. Guizani,
“Blockchain-based incentives for secure and collaborative data shar-
ing in multiple clouds,” IEEE J. Sel. Areas Commun., vol. 38, no. 6,
pp. 1229–1241, Jun. 2020.

[25] R. Li, H. Asaeda, and J. Li, “A distributed publisher-driven secure data
sharing scheme for information-centric IoT,” IEEE Internet Things J.,
vol. 4, no. 3, pp. 791–803, Jun. 2017.

[26] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge
AI: Intelligentizing mobile edge computing, caching and communica-
tion by federated learning,” IEEE Netw., vol. 33, no. 5, pp. 156–165,
Sep./Oct. 2019.

[27] M. Shen et al., “Blockchain-assisted secure device authentication for
cross-domain industrial IoT,” IEEE J. Sel. Areas Commun., vol. 38, no. 5,
pp. 942–954, May 2020.

[28] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership infer-
ence attacks against machine learning models,” in Proc. IEEE Symp.
Security Privacy (SP), San Jose, CA, USA, 2017, pp. 3–18.

[29] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy risk in
machine learning: Analyzing the connection to overfitting,” in Proc.
IEEE 31st Comput. Security Found. Symp. (CSF), 2018, pp. 268–282.

[30] Y. Long et al., “Understanding membership inferences on
well-generalized learning models,” 2018. [Online]. Available:
arXiv:1802.04889.

[31] J. Hayes, L. Melis, G. Danezis, and E. D. Cristofaro, “LOGAN:
Membership inference attacks against generative models,” Proc. Privacy
Enhancing Technol., vol. 2019, no. 1, pp. 133–152, 2019.

[32] I. Goodfellow et al., “Generative adversarial nets,” in Advances in Neural
Information Processing Systems. Red Hook, NY, USA: Curran, 2014,
pp. 2672–2680.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 07,2021 at 10:13:03 UTC from IEEE Xplore.  Restrictions apply. 



SHEN et al.: EXPLOITING UNINTENDED PROPERTY LEAKAGE IN BLOCKCHAIN-ASSISTED FEDERATED LEARNING 2275

[33] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Security, 2015,
pp. 1322–1333.

[34] G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vitali, and
G. Felici, “Hacking smart machines with smarter ones: How to extract
meaningful data from machine learning classifiers,” Int. J. Security
Netw., vol. 10, no. 3, pp. 137–150, 2015.

[35] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov, “Property
inference attacks on fully connected neural networks using permuta-
tion invariant representations,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Security, 2018, pp. 619–633.

[36] M. Shen, X. Tang, L. Zhu, X. Du, and M. Guizani, “Privacy-
preserving support vector machine training over blockchain-based
encrypted IoT data in smart cities,” IEEE Internet Things J., vol. 6,
no. 5, pp. 7702–7712, Oct. 2019.

[37] C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning models that
remember too much,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Security, 2017, pp. 587–601.

[38] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov,
“How to backdoor federated learning,” 2018. [Online]. Available:
arXiv:1807.00459.

[39] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embed-
ding for face recognition and clustering,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Boston, MA, USA, 2015, pp. 815–823.

Meng Shen (Member, IEEE) received the B.Eng. degree in computer science
from Shandong University, Jinan, China, in 2009, and the Ph.D. degree in
computer science from Tsinghua University, Beijing, China, in 2014.

He currently serves with Beijing Institute of Technology, Beijing, as an
Associate Professor. His research interests include privacy protection for cloud
and IoT, blockchain applications, and encrypted traffic classification.

Dr. Shen received the Best Paper Runner-Up Award at IEEE IPCCC 2014.

Huan Wang received the B.Eng. degree in computer science from the Ocean
University of China, Qingdao, China, in 2018. She is currently pursuing the
master’s degree with the Department of Computer Science, Beijing Institute
of Technology, Beijing, China.

Her research interests include machine learning and data privacy.

Bin Zhang received the Ph.D. degree from the Department of Computer
Science and Technology, Tsinghua University, Beijing, China, in 2012.

He worked as a Postdoctoral Fellow with Nanjing Telecommunication
Technology Institute, Nanjing, China, from 2014 to 2017. He is currently
a Researcher with the Cyberspace Security Research Center, Peng Cheng
Laboratory, Shenzhen, China. He has published more than 40 papers in ref-
ereed international conferences and journals. His current research interests
focus on network anomaly detection, Internet architecture and its protocols,
network traffic measurement, and information privacy security.

Liehuang Zhu (Member, IEEE) received the Ph.D. degree in computer
science from Beijing Institute of Technology, Beijing, China, in 2004.

He is a Professor with the Department of Computer Science, Beijing
Institute of Technology. He is selected into the Program for New Century
Excellent Talents in University from the Ministry of Education, China. His
research interests include Internet of Things, cloud computing security, and
Internet and mobile security.

Ke Xu (Senior Member, IEEE) received the Ph.D. degree from the Department
of Computer Science and Technology, Tsinghua University, Beijing, China,
in 2001.

He serves as a Full Professor with Tsinghua University. He has published
more than 200 technical papers and holds 11 U.S. patents in the research
areas of next-generation Internet, blockchain systems, Internet of Things, and
network security.

Prof. Xu has guest-edited several special issues in IEEE and Springer jour-
nals. He is an Editor of the IEEE INTERNET OF THINGS JOURNAL. He is the
Steering Committee Chair of IEEE/ACM IWQoS. He is a member of ACM.

Qi Li (Senior Member, IEEE) received the Ph.D. degree from Tsinghua
University, Beijing, China, in 2012.

He is currently an Associate Professor with the Institute for Network
Sciences and Cyberspace, Tsinghua University. He has worked with ETH
Zurich, Zürich, Switzerland, and University of Texas at San Antonio, San
Antonio, TX, USA. His research interests include network and system secu-
rity, particularly in Internet and cloud security, mobile security, and big data
security.

Dr. Li is currently an Editorial Board Member of the IEEE
TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING and ACM
DTRAP.

Xiaojiang Du (Fellow, IEEE) received the B.S. and M.S. degrees in electrical
engineering from Tsinghua University, Beijing, China, in 1996 and 1998,
respectively, and the M.S. and Ph.D. degrees in electrical engineering from
the University of Maryland at College Park, College Park, MD, USA, in 2002
and 2003, respectively.

He is a tenured Professor with the Department of Computer and
Information Sciences, Temple University, Philadelphia, PA, USA. His research
interests are wireless communications, wireless networks, security, and
systems. He has authored over 400 journal and conference papers in these
areas, as well as a book published by Springer.

Dr. Du has been awarded more than $5 million research grants from the
U.S. National Science Foundation, Army Research Office, Air Force, NASA,
the State of Pennsylvania, and Amazon. He won the Best Paper Award at IEEE
GLOBECOM 2014 and the Best Poster Runner-Up Award at ACM MobiHoc
2014. He serves on the editorial boards of three international journals. He is
a Life Member of ACM.

Authorized licensed use limited to: Tsinghua University. Downloaded on February 07,2021 at 10:13:03 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


