
Privacy-Preserving Graph Encryption for
Approximate Constrained Shortest Distance Queries

Meng Shen∗†, Siqi Chen∗, Liehuang Zhu∗, Renyi Xiao‡, Ke Xu§, and Xiaojiang Du¶
∗ School of Computer Science, Beijing Institute of Technology, Beijing, China
† State Key Laboratory of Cryptology, P.O. Box 5159, Beijing, 100878, China

‡ National Natural Science Foundation of China, Beijing, China
§ Department of Computer Science, Tsinghua University & BNRist, Beijing, China

¶Department of Computer and Information Sciences, Temple University, Philadelphia, USA

Abstract—Constrained shortest distance (CSD) queries are a
valuable extension of the traditional pairwise shortest distance
computation over graph-structured data, where the answers to
the queries should fulfill a cost constraint (e.g., the toll payment in
road networks). With the popularity of cloud computing, data
owners have a strong desire to migrate their privacy-sensitive
graphs to remote servers without losing the ability to query
them. Existing graph encryption schemes cannot provide security
guarantees for CSD queries.

In this paper, we present Acro, a graph encryption scheme,
which executes approximate CSD queries securely. The ho-
momorphic encryption and the symmetric-key primitives are
applied to our scheme. Through a security analysis, we prove
that Acro meets the security definition of CQA2-security. The
prototype of Acro is implemented and evaluated using real
datasets. The results show that our proposal outperforms a state-
of-the-art baseline in terms of query accuracy at the cost of
enlarging query completion time.

Index Terms—Graph encryption, constrained shortest distance
querying, privacy-preserving, searchable encryption

I. INTRODUCTION

Graph-structured data is widely used in numerous domains,

such as road networks, online social networks, web graphs and

so on. A number of systems, e.g., Pregel and GraphLab, have

been proposed to facilitate graph management and operations.

Due to the economic and efficient nature of cloud computing,

lots of users tend to migrate their databases to the cloud,

including the graph data owners. Furthermore, users also show

a natural worry about the security and privacy in the cloud.

Encrypting graphs is an effective way for privacy protection,

but it also results in the loss of ability to be queried. To address

this problem, structured encryption [3, 13] was proposed

to allow for some forms of computation and query over

encrypted data. Graph encryption is a special situation in the

structured encryption, which provides data owners with the

ability to conduct queries over cloud-based encrypted data.

Unlike previous studies on graph encryptions for shortest

distance queries [3, 10], we aim at designing an efficient graph

encryption scheme that supports constraint shortest distance

(CSD) queries. The goal of a CSD query is to achieve the

shortest distance from a given source to a destination (s,t)
with cost c under the cost constraint θ. Many applications use

CSD queries as a basic operation [11]. For instance, it can

find the minimum distance (e.g., miles) between two cities in

road networks within a total budget of toll payment.
CSD querying on unencrypted graphs is an extension of the

traditional shortest distance querying [7, 16]. Since the CSD

querying is proven to be a NP-hard problem [7], Lots of exist-

ing studies (e.g., [7, 12, 16]) propose approximate solutions,

such as the α-approximation where the resulting distance is

guaranteed to be shorter than α times of the optimal one.

There are few studies on privacy-preserving CSD querying

over encrypted graphs. Connor [12] solves α-approximate

CSD queries while considering privacy protection. However,

it relies on order-revealing encryption (ORE), which reveals

order information of costs and distances and also results in

querying answers that violate the cost constraint.
In this paper, we present Acro, a graph encryption scheme,

which executes approximate CSD queries over cloud-based

encrypted graphs. Similar to existing studies, our scheme

employs the 2-hop cover labeling index (2HCLI) [10, 16],

a method that pre-computing the distance oracle to simplify

calculations of the distance between vertices. To achieve

computational security, a specific pseudo-random function

(PRF) is used to encrypt the vertices of the graph. Somewhat

homomorphic encryption (SWHE) [1] is also applied to the

encryption of distances and costs.
Our contributions can be summarized as follows:

1) We present a new graph encryption scheme named

Acro for approximate CSD querying over cloud-based

encrypted graphs. The cryptographic primitives used in

our construction ensure that Acro obtains exactly the

same results as plain graph indexing.

2) We propose a split-server model where two non-collusive

servers are employed to implement privacy-preserving

queries together: one executes distance computation and

the other executes cost filtering.

3) We present security analysis on Acro to prove that it

conforms to the security definition of CQA2-security [3].

We evaluate Acro using real datasets to demonstrate its

effectiveness and accuracy.

The content of this paper can be generalized as follows: We

briefly describe the related work in Section II, then introduce

CSD query backgrounds in Section III. The problem of secure

approximate CSD query is formally defined in Section IV,
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followed by the description of Acro system model in Section

V. The security analysis and experimental results of Acro
are in Section VI and Section VII respectively. We give our

conclusion in Section VIII.

II. RELATED WORK

During the past decade, there are lots of works about

constrained shortest distance queries over plaintext graph.

Tsaggouris and Zaroliag [15] followed the general idea of Di-

jkstra’s algorithm and proposed an index-free method for ap-

proximating constraint shortest paths. Due to the inefficiency

of Dijkstra’s algorithm on large-scale graphs, researchers

resort to index-based schemes that use distance oracles to

answer shortest distance queries. Wang et al. [16] proposed

an efficient overlay indexing structure to answer approximate

constrained shortest path queries on large-scale road networks.

With the rise of privacy concerns in the cloud computing

era, many research efforts have been made to develop schemes

that allow querying graphs privately [8, 9]. The notion of

graph encryption was provided by Chase and Kamara [3].

Following that, Meng et al. [10] presented three models based

on distance oracles to answer approximate shortest distance

querying, and their models were proven secure against a

curios-but-honest server. Shen et al. [12] considered the con-

straint shortest distance querying over encrypted graphs, and

proposed a scheme named Connor based on ORE and SWHE

primitives.

Our work is closely related with the study in [12], but with

significant differences. We propose a split-server model for α-

CSD queries, which decouples the cost filtering functionality

in the server P from the index storage server C. As the

ORE has been demonstrated to be vulnerable to leakage-abuse

attacks [2], our scheme can achieve better security by using

SWHE primitive, i.e., without revealing order relationship in

the vertex label sets. Unlike the scheme in [12] which results

in answers violating cost constraint, the SWHE primitive in

our solution can guarantee the correctness of query answers.

III. BACKGROUND

A. Approximate CSD GenQuery

We define V as a vertex set and E as an edge set, For a

given directed graph G = (V,E), each edge e ∈ E has two

attributes: a cost c(e) ≥ 0 and a distance d(e) ≥ 0. Here, the

cost is regarded as the constraint.

The path is defined as the set of edges between a pair of

vertices, denoted by P . The distance and cost of a path are

the total distance and cost of edges composing the path. For

a path P = (e1, e2, . . . , ek)(k = |P |), its distance dist(P )
and cost cost(P ) can be expressed as dist(P ) =

∑k
i=1 d(ei)

and cost(P ) =
∑k

i=1 c(ei). Table I summarizes the notations

used in this paper.

Definition 1. (α-CSD QUERY [12]). For a given graph

G = (V,E), an α-CSD query q = (s, t, θ, α) with a

source-destination pair (s, t), a cost constraint θ, and an

approximation ratio α, α-CSD query finds a path P so that

TABLE I: List of Notations

Notation Meaning
G = (V,E) A graph with a vertex set and an edge set

d(e), c(e) Distance and cost of an edge e ∈ E

du,v , cu,v Distance and cost from vertex u to vertex v

q = (s, t, θ, α) Source, destination, cost constraint and
approximation ratio in an α-CSD query q

Δ, ˜Δ Plain and encrypted graph index

Setin(v) In-label sets for vertex v

Setout(v) Out-label sets for vertex v

C, P The cloud server and the cost filtering server

Q The set of queries

τs,t The query token

λ Security parameter

z Input length of symmetric encryption

θ̃ Encrypted cost constraint perceived by P
Ã Encrypted distance vector returned to user

cost(P ) ≤ θ and dist(P ) ≤ α ·dist(P ∗). Note that dist(P ∗)
is the optimal solution of the CSD query with the same s, t,
and θ.

B. Graph Index

Our graph encryption scheme is constructed on a well-

known distance oracle, 2-hop cover labeling index (2HCLI)[4,

5, 12, 16]. For a given directed graph G = (V,E), each

vertex u ∈ V involves two sketches, an in-label set Setin(u)
and an out-label set Setout(u). Take Setin(u) as an example.

To enable constrained shortest distance queries, each entry in

Setin(u) is represented by a 3-tuple (w, dw,u, cw,u), where

dw,u and cw,u indicate the shortest distance and the corre-

sponding cost from a vertex w ∈ V to u, respectively. Note

that the existence of different criteria (i.e., distance and cost)

may result in multiple entries with different distance and cost

values for the same vertex w in Setin(u).
To reduce the size of 2HCLI, it is important to filter out

redundant entries in out-label sets and in-label sets. To facil-

itate this process, we can use the definition of α-dominance.

We refer readers to the literature [16] for more details.

Definition 2. (α-Dominance). Given two paths P1 and P2

with the same source and destination, P1 α-dominates P2 iff

c(P1) ≤ c(P2) and d(P1) ≤ α · d(P2).

(a) A simple graph (b) 2HCLIs

Fig. 1: Examples illustrating CSD queries and 2HCLIs.
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Example 1. Fig. 1(a) shows an example graph consisting of
five vertices. For each edge, its distance and cost values are
marked alongside it. Given an α-CSD query q = (s, t, 4, 1.5),
the corresponding plain graph index is depicted in Fig. 1(b).

According to Definition 2, the path P 1
bt = 〈b, a, t〉, whose

(dis, cost) pair is (3,2), and it α-dominates the other path
P 2
bt = 〈b, t〉, which has (2,6) of the (dis, cost) pair. Thus, we

can remove the entry corresponding to P 2
bt from Setin(t), as

represented by a dashed arrow in Fig. 1(b). However, neither
of the two paths from vertex s to vertex b (e.g., the two solid
arrows) can be removed from Setout(s). The answer of the α-
CSD query q = (s, t, 4, 1.5) is ds,a+da,t = 6 with cs,a+ca,t =
4, which is exactly the answer of the CSD query.

IV. PROBLEM DESCRIPTION

We give the definition of a privacy-preserving α-CSD query

problem in this section, including descriptions of the system

model and the security model.

A. System Model

In order to enable secure α-CSD queries, the construction

of our system architecture mainly involves three entities: the

user U , the cloud server C, and the cost filtering server P .

Fig. 2 shows a complete construction of our system model.

In the initialization phase, the user constructs a secure

searchable graph index and delivers the encrypted index with

the encrypted graph together to the sever C. Meanwhile, the

user delivers the key pair (pkey, skey) to the sever P .

During the query stage, after receiving the query token

from the user, the sever C selects a set W of intermediate

vertices from the encrypted index that connects the source

s and the destination t. The server P performs the cost

filtering to filter out cost pairs (cs,w, cw,t) for w ∈ W where

cs,w+cw,t exceeds the cost constraint. Next, the sever C replies

to the user with the result after filtering, which includes the

candidate distances satisfying the cost constraint. Finally, the

user selects the minimum distance value as the answer of the

query.

The following definition describes our graph encryption

scheme.

Definition 3. (GRAPH ENCRYPTION). Our scheme consists

of four algorithms: GenKey, GenIndex, GenQuery and

Filtering:

• GenKey(λ) → (K, pkey, skey). This algorithm gener-

ates the secret key. It requires a security parameter λ
to achieve a secret key K and a key pair, denoted as

(pkey, skey) representing the public and private keys

respectively.

• GenIndex(α,K, pkey, skey,G) → Δ̃. GenIndex is a

graph encryption algorithm to achieve a secure index Δ̃.

Note that α is an approximation ratio.

• GenQuery((K, pkey, skey, q), Δ̃) → (distq,⊥). The

algorithm requires a user who masters (K, pkey, skey, q)
and a server C that masters Δ̃ to achieve the distance

distq as the result for users, and an end symbol ⊥ for

the server C.

Fig. 2: The architecture of privacy-preserving CSD querying.

• Filtering(pkey, skey, Lc, θ̃) → M̃. The filtering al-

gorithm requires a key pair (pkey, skey), a vector Lc.

and an encrypted cost constraint θ̃. The purpose is to

determine whether the elements in the vector satisfy the

cost constraints.

B. Security Model

We use the same security definition as symmetric searchable

encryption (SSE) in our scheme, since the graph encryption is

included in SSE [6, 14]. Our security definition is also similar

to the security definition proposed in [3, 6], which is related

to chosen-query attack security (CQA2-security).

We assume that the server C and P is honest-but-curious
and non-colluding adversaries, which would honestly follow

the predefined algorithms, but may try to learn extra sensitive

information from their views of the scheme.

To observe the entire scheme, leakages may happen in three

phases: GenIndex, GenQuery and Filtering. The server C
handles GenIndex and GenQuery algorithm, which is able

to access some sensitive information such as the size of Δ̃,

the total number of sketches and the sequence of queries. The

server P is responsible for handling candidate vectors and

cost constraints, which is possible to reveal the relationship

between each cost and constraints.

There has been a complete discussion in [12] about the

security under the server C adversary, so we focus on the

security analysis under the server P adversary. We consider a

semi-honesty adversary P , probably leaking the information

at the cost filtering phase. The leakage in the cost filtering

process can be defined as a leakage function LFilter.

V. CONSTRUCTION OF ACRO

In this section, we describe the construction of our scheme

Acro for privacy-preserving α-CSD queries.

A. Privacy-preserving α-CSD Querying

The graph encryption scheme for α-CSD querying consists

of 4 components, namely GenKey, GenIndex, GenQuery
and Filtering. The key generation procedure GenKey is as

follows: For a given security parameter λ, the user generates

a secret key K and a pair of key (pkey, skey) in random for

the SWHE.

pr1 : {0, 1}λ × {0, 1}∗ → {0, 1}λ (1a)

pr2 : {0, 1}λ × {0, 1}∗ → {0, 1}λ+2z
(1b)
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We introduce two functions pr1 and pr2, both of which are

pseudo-random functions, used as defined in the following

equation, where λ is the security parameter. The SWHE

scheme adopted in our construction is the SWHE instantiation

in [1] with an output length of z.
The GenIndex process is depicted in Algo. 1. For a given

graph G = (V,E) and an approximation ratio α, the user
firstly generates the 2HCLI Δ of the graph G, then encrypts

the sketches of each vertex v ∈ V , and finally gets the

encrypted graph index Δ̃.
Note that if we simply store all entries in Setout or Setin

in the same position of the dictionary, it would reveal static
information of the encrypted index when no query is issued,

such as the size of each encrypted sketch, and the number

of vertices between Dictin(u) and Dictout(v), implying the

quantity of vertices connecting u to v.

Algorithm 1 GenIndex Algorithm for Graph Encryption

Input: (K, pkey, skey, α,G)
Output: ˜Δ.
1: Produce the 2HCLI Δ = {Setin, Setout} of the graph G.
2: Set two dictionaries Dictin and Dictout.
3: for each u ∈ G do
4: Set Sout,u = pr1(K,u||1), Tout,u = pr1(K,u||2), Sin,u =

pr1(K,u||3), and Tin,u = pr1(K,u||4).
5: Set a counter ε = 0
6: for each (v, du,v , cu,v) ∈ Setout(u) do
7: Calculate V = pr1(K, v||0).
8: Calculate Du,v = SWHE.Enc(pkey, du,v).
9: Calculate Cu,v = SWHE.Enc(pkey, cu,v).

10: Set Tout,u,v = pr1(Tout,u, ε) and Sout,u,v = pr2(Sout,u, ε).
11: Calculate Ψu,v = Sout,u,v ⊕ (V ||Du,v ||Cu,v).
12: Set Dictout[Tout,u,v ] = Ψu,v .
13: Set ε = ε+ 1.
14: end for
15: Execute the same process repeatedly for the sketch in Setin(u) and

get Dictin[Tin,u,v ],
16: Set Tin,u,v = pr1(Tin,u, ε) and Sin,u,v = pr2(Sin,u, ε)
17: Calculate Ψu,v = Sin,u,v ⊕ (V ||Du,v ||Cu,v).
18: end for
19: return ˜Δ = {Dictin, Dictout}.

To prevent such information leakage, each encrypted sketch

is decomposed into individual entries and stored in the dic-

tionary in sequence. For each entry in Setout(u), a counter

ε is utilized to generate a unique pair Tout,u,v and Sout,u,v

(line 10). Tout,u,v is used as a position indicator in Dictout
(line 12), while Sout,u,v is used to protect the content of each

encrypted entry (V ||Du,v||Cu,v). More precisely, an XOR

operation between (V ||Du,v||Cu,v) and Sout,u,v can make

the resulting Ψu,v indistinguishable, even when two entries

of (V ||Du,v||Cu,v) are associated with the same vertex V
(line 11). Similar operations can be taken for each sketch in

Setin(u) to obtain Dictin (line 15). This way, we can ensure

that from the static encrypted graph index Δ̃, an adversary can

learn none of the following sensitive information: the sketch

of each individual vertex, the common vertices between a pair

of vertex sketches, and the distance or cost values in an entry.

Example 2. Fig. 3 shows an example of the dictionary struc-
ture for the out-label set Setout(s) in Fig. 1(b). Originally,
Setout(a) has 4 entries. In the dictionary Dictout(a), each

entry of Setout(s) is stored separately with a size of one,
ordered by the counter ε.

The GenQuery process is shown in Algo. 2. Assume

that a user requests an α-CSD query with (s, t, θ). The user
generates the corresponding query token τs,t and delivers it

to the server C (lines 1-2). Based on the parameters in τs,t,
server C obtains all entries associated with vertices s and t,
which are stored in Ls and Lt, respectively (line 6-21). This

process is conducted as a reverse operation of constructing

the encrypted graph index.

Once Ls and Lt are obtained, C chooses the vertices that

appears in both Ls and Lt, merges their distances and costs,

and adds the processed pairs into L (lines 25-27). Then, C
selects a random number r and encrypts individual costs and

the cost constraint θ with the SWHE, which protects their real

values from server P . Server C calculates the sum of r and c,
as well as r and θ, whose correctness follows homomorphic

properties of the SWHE. Lc and θ̃ are then sent to server P .

P performs cost filtering as depicted in Algorithm 3 and

returns a vector M̃ . For each element in M̃ and each distance,

server C calculates SWHE.Eval(×, M̃i, Di) and sends the

result vector Ã to the user. The user decrypts Ãi ∈ Ã with

skey and selects the minimum non-zero value as the final

answer.

The Filtering process is illustrated in Algorithm 3. Server

P decrypts Lc and θ̃ received from the server C with skey.

Although P is unaware of the exact value of c, it can

determine the relationship between c and the cost constraint

θ: If c+ r is less than θ + r, the cost c is eligible; otherwise

the cost c violates the constraint. Then, it encrypts the vector

M with the SWHE and returns the vector M̃ to server C.

Example 3. Fig.4 shows a schematic of the Filtering process.
It assigns each item in Lc with a number (1 for valid and
0 for invalid) and records the results in the encrypted vector
M̃ .

VI. SECURITY ANALYSIS

This section presents the security analysis of our graph

encryption scheme Acro. We discuss the leakage observed by

the server C and prove that Acro is secure under the CQA2-

security model.

As described in Section IV, we discuss the leakage on the

server P in the cost filtering process. The leakage function

LFilter represents the cost pattern leakage during the cost fil-

tering phase. The cost pattern leakage reveals the relationship

Fig. 3: The dictionary structure obtained from GenIndex
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Fig. 4: Filtration algorithm full schematic (θ=4).

Algorithm 2 GenQuery Algorithm for Graph Encryption

Input: The user: (K, pkey, skey), the query q = (s, t, θ), The server C:
˜Δ.

Output: The user: distq The server C: ⊥.
1: The user generates Sout,s = pr1(K, s||1), Tout,s = pr1(K, s||2),

Sin,t = pr1(K, t||3) , Tin,t = pr1(K, t||4) and Tθ =
SWHE.Enc(pkey, θ)

2: The user sends τs,t = (Sout,s, Tout,s, Sin,t, Tin,t, Tθ) to the server
C.

3: C parses τs,t as (Sout,s, Tout,s, Sin,t, Tin,t, Tθ).
4: C generates a set Ls, a counter ε = 0.
5: C calculates Tout,s,v = pr1(Tout,s, ε).
6: while Dictout[Tout,s,v ] �= ⊥ do
7: C calculates Sout,s,v = pr2(Sout,s, ε).
8: C performs (V ||Ds,v ||Cs,v) = Ψs,v ⊕ Sout,s,v .
9: C adds (V,Ds,v , Cs,v) into Ls.

10: Set ε = ε+ 1.
11: C calculates Tout,s,v = pr1(Tout,s, ε).
12: end while
13: C generates a set Lt, a counter ε = 0.
14: C calculates Tin,v,t = pr1(Tin,t, ε).
15: while Dictin[Tin,v,t] �= ⊥ do
16: C calculates Sin,v,t = pr2(Sin,t, ε).
17: C performs (V ||Dv,t||Cv,t) = Ψv,t ⊕ Sin,v,t.
18: C adds (V,Dv,t, Cv,t) into Lt.
19: Set ε = ε+ 1.
20: C calculates Tin,v,t = pr1(Tin,t, ε).
21: end while
22: C generates a vector L and a vector Lc.
23: for every encrypted identifier v that is in both Ls and Lt do
24: pick the entries (V,Ds,v , Cs,v), (V,Dv,t, Cv,t) from Ls and Lt.
25: C calculates D=SWHE.Eval(+, Ds,v , Dv,t).
26: C calculates C=SWHE.Eval(+, Cs,v , Cv,t).
27: C adds (V,D,C) into L.
28: C selects a random number r.
29: C calculates R=SWHE.Enc(pkey, r).
30: C calculates C̃=SWHE.Eval(+, C,R).
31: C calculates θ̃=SWHE.Eval(+, Tθ, R).
32: C adds (V, C̃) into Lc.
33: end for
34: C delivers the θ̃ and the Lc to the server P , who executes cost filtering

in Algorithm 3 and returns a vector M̃ .
35: for each element M̃i ∈ M̃ and each entry Di ∈ L do
36: C calculates Ãi=SWHE.Eval(×, M̃i, Di).
37: end for
38: C sends Ã to the user.
39: Decrypting Ã with skey to get the minimum distance as the answer.

between each cost and the constraint, as well as the size of

the candidate vector Lc. Note that LFilter does not reveals

the real value of costs and the cost constraint, since Lc and θ̃
are perturbed with a random noise by serber C.

Given an encrypted cost vector Lc and a masked cost

constraint θ̃, the cost pattern leakage function LFilter(Lc, θ̃) is

defined as (n, ln), where n is a vector with a length ln = |Lc|
and each element is 1 or 0, representing that the cost constraint

is satisfied or violated.

Our idea is to construct a simulator S . For a given LFilter,

S constructs a fake candidate vector L∗
c and a cost constraint

Algorithm 3 Filtering Algorithm for Graph Encryption

Input: The Sever P: (pkey, skey, Lc, θ̃).
Output: The vector M̃
1: P initializes an empty vector M with the same length of Lc.
2: P decrypts Lc and θ̃ with skey to get c+ r and θ + r.
3: for each entry in the Lc do
4: if the c+ r is less than θ + r then
5: P assigns 1 to Mi

6: else
7: P assigns 0 to Mi.
8: end if
9: end for

10: P calculates M̃=SWHE.Enc(pkey,M).
11: P sends M̃ to the sever C.

TABLE II: Datasets of the experiments

Dataset Nodes Edges Storage

D1: Email-EuAll 21,721 34,351 335KB

D2: soc-Epinions1 6,506 47,062 418KB

D3: p2p-Gnutella04 10,876 39,994 422KB

D4: p2p-Gnutella25 22,687 54,705 632KB

θ̃∗. If the adversary cannot distinguish between the real one

and the fake one, our cost filtering process is secure enough

against the attack.

For any L∗
c and θ̃∗, the server P only executes comparisons

between (c + r)∗ and (θ + r)∗, which is not able to get

more valid information. So if the cryptography primitives pr2,

pr1 and the SWHE are secure, the fake vector L∗
c and cost

constraint θ̃∗ cannot br distinguished from the real ones. Due

to the complete security of cryptography primitives such as

pr2, pr1 and the SWHE, we have enough security at the cost

filtering phase.

VII. EXPERIMENTAL EVALUATION

In this section, we conduct experiments using real datasets

to evaluate the performance of the proposed graph encryption

scheme.

A. Experimental GenIndex

Testbed. A prototype of Acro is implemented in C++,

where the 2HCLI and the SWHE algorithm in our construc-

tion follow the implementation introduced in [16] and [1],

respectively. All the basic cryptographic primitives use the

OpenSSL library and the security parameter λ is set to be

128. We conduct the experiments on machines with different

configurations: The user runs on a laptop with Intel Core CPU

at 2.70 GHz and 4GB RAM, while the two servers C and P
run on separate machines with Intel Xeon processor at 2.6GHz

and 8GB RAM.

Datasets. As shown in Table II, 4 directed real-world graphs

are selected for evaluation, which are publicly available from

the Stanford SNAP website1. The cost and distance values

of each edge are randomly generated following a uniform

distribution between 1 and 100.

For each graph in Table II, 200 queries are generated with

randomly selected origins and destinations. For each query,

1http://snap.stanford.edu/data/
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TABLE III: The query time over different datasets

Dataset / Time (ms) Connor Acro
D1: Email-EuAll 16.15 155.29

D2: soc-Epinions1 32.63 238.62

D3: p2p-Gnutella04 24.99 1127.13

D4: p2p-Gnutella25 65.21 1512.72

Fig. 5: The query precision over different datasets.

50 values of θ are randomly generated with an additional

guarantee that valid answers always exist given a specific θ.

The approximation ratio α is regarded as a system parameter

and is set to be 1.5.

B. Evaluation of Accuracy and Efficiency

Accuracy. We compare Acro with Connor, as the latter is

the most closely related state-of-the-art approach. Compared

with Connor, the query answer obtained from Acro for each

query is exactly the same as the one derived from plain graph

index. To demonstrate the difference, we define an attribute

named precision. Given a set of queries Q, the precision of a

specific encryption scheme (i.e., Acro or Connor) is defined

as the percentage of the queries whose answers are exactly

the same with the ones obtained from the plain graph index.

Fig. 5 depicts the precision of the two schemes over different

datasets. The precision of our method remains 100% over

different datasets, while the one of Connor is around 80%.

The main reason lies in that the ORE in Connor cannot

accurately identify the relationship between each cost pair

(e.g., (cs,w, cw,t)) and the cost constraint θ and thereby may

return answers that violate the cost constraint.

Efficiency. The query time means the duration from the

query is issued until the result is received. The average query

time over different datasets is exhibited in Table III. For

each dataset, the query time of our scheme is higher than

that of Connor, since we utilize the SWHE primitive rather

than the ORE primitive in the cost filtering process, which

achieves higher accuracy and privacy guarantees at the cost

of increasing computational complexity. The query time of

both methods increase with the increasing size of the graphs.

VIII. CONCLUSION

In this paper, we propose Acro, a practical graph encryp-

tion scheme which can achieve approximating CSD queries

over encrypted graphs. We designed a split-server model,

where one executes distance computation and the other per-

forms cost filtering. Security analysis showed that Acro is

secure under the CQA2-security. The experimental evaluation

using real-world graphs demonstrated the effectiveness and

accuracy of our scheme. In future work, we will further

improve query efficiency.
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