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Abstract—Traffic analysis is the process of monitoring network
activities, discovering specific patterns, and gleaning valuable
information from network traffic. It can be applied in various
fields such as network assert probing and anomaly detection.
With the advent of network traffic encryption, however, traffic
analysis becomes an arduous task. Due to the invisibility of packet
payload, traditional traffic analysis methods relying on capturing
valuable information from plaintext payload are likely to lose
efficacy. Machine learning has been emerging as a powerful tool
to extract informative features without getting access to payload,
and thus is widely employed in encrypted traffic analysis.

In this paper, we present a comprehensive survey on recent
achievements in machine learning-powered encrypted traffic
analysis. To begin with, we review the literature in this area and
summarize the analysis goals that serve as the basis for literature
classification. Then, we abstract the workflow of encrypted traffic
analysis with machine learning tools, including traffic collection,
traffic representation, traffic analysis method, and performance
evaluation. For the surveyed studies, the requirements of classi-
fication granularity and information timeliness may vary a lot
for different analysis goals. Hence, in terms of the goal of traffic
analysis, we present a comprehensive review on existing studies
according to four categories: network asset identification, net-
work characterization, privacy leakage detection, and anomaly
detection. Finally, we discuss the challenges and directions for
future research on encrypted traffic analysis.

Index Terms—Encrypted traffic analysis, traffic classification,
machine learning, deep learning, anomaly detection.

I. INTRODUCTION

W ITH the rapid increase of Internet traffic, the security of
network connections becomes significantly crucial, as

a large amount of user sensitive information is transmitted on
the Internet, such as bank accounts and payment records. To
ensure security and privacy, data encryption technologies, e.g.,
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Fig. 1: Number of investigated papers on encrypted traffic
analysis sorted by published year

Secure Socket Layer/Transport Layer Security (SSL/TLS) [1],
have been widely used to protect network connections. Ac-
cording to the Google Transparency Report [2], more than
95% of services provided by Google have applied encryption
protocols to protect their connections, so that the resulting data
packets are transmitted in a more secure way and can only be
decrypted by legitimate receivers.

The ever-growing encrypted traffic, however, brings new
challenges to network traffic analysis, which is a useful tool for
administrators in network management and network anomaly
detection. Traditional traffic analysis methods usually rely on
valuable information from plaintext payload [11]. They are
likely to lose efficacy for encrypted traffic, as payload infor-
mation is no longer available. For instance, many attackers take
advantage of encryption protocols to hide malicious contents
and evade anomaly detection. It becomes more difficult for
network administrators to find suspicious patterns in encrypted
traffic. As another example, network service providers (ISPs)
usually measure delivery quality (e.g., video resolution, stall
frequency) of video streams by analyzing contents in HTTP
request header [12, 13] and then take actions accordingly.
However, end-to-end encryption adopted by content providers
sets a new barrier for ISPs to measure video delivery quality.

From the perspective of end users, traffic encryption also
poses new threats to user privacy. In general, traffic encryption
protocols (e.g., TLS) can protect Internet users from eaves-
droppers that attempt to decipher or modify the content in
their network connections. However, the privacy of end users is
still threatened by advanced side-channel attacks. For instance,
an eavesdropper can record their encrypted traffic and learn
sensitive information, such as the websites a user is visiting
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TABLE I: The differences between other existing works and our survey

Survey Paper Year Description
Buczak et. al. [3] 2016 Introducing data mining and machine learning methods used for cyber security intrusion detection

Jing et. al. [4] 2018 Summarizing the security data and data analysis methods for DDoS and Worm attack detection
Fernandes et.al. [5] 2019 Overviewing the network data types and methods for network anomaly detection
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Kwon et.al. [6] 2017 Surveying the deep learning methods used in network anomaly detection

Velan et.al. [7] 2015 Summarizing approaches for encrypted traffic analysis, mainly focusing on traditional machine learning methods
Rezaei et.al. [8] 2019 Overviewing the deep learning technique for encrypted traffic classification
Conti et.al. [9] 2018 Review the studies that contributed to network traffic analysis targeting mobile devices

Pacheco et.al. [10] 2018 Introducing machine learning solutions in network traffic classification
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Our Survey 2021
Providing a survey of machine learning-powered encrypted traffic analysis methods categorized by analysis goals,
including network asset identification, network characterization, privacy leakage detection and anomaly detection

and the actions taken by a user in mobile applications [14–
16]. Encrypted traffic analysis provides us with a useful
tool to get more insights into the information leakage from
network connections, and then defenses can be designed and
implemented accordingly.

To deal with these new challenges caused by traffic en-
cryption, machine learning techniques have been employed
to extract useful information from encrypted traffic, with no
need for access to packet payloads. The machine learning-
powered encrypted traffic analysis leverages statistical features
or behavioral features of encrypted traffic, which are less
affected when encryption protocols are adopted. These meth-
ods show great capabilities in dealing with extremely large
amounts of data, which is suitable for building classification
models without being specifically programmed. Moreover,
as the branch of machine learning, deep learning obviates
the process of manual feature extraction, which makes it a
desirable approach for encrypted traffic analysis, especially in
dealing with the constantly varying traffic patterns.

There are a fruitful number of studies on encrypted traffic
analysis during the past decade. We investigated 108 papers
that were published between 2007 and 2021, as depicted in
Fig. 1. Among the literature investigated, machine learning
techniques play an important role in encrypted traffic analysis.
Therefore, it is quite necessary to conduct a comprehensive
survey that summarizes the recent achievements in machine
learning-powered encrypted traffic analysis and sheds a new
light on future research directions.

A. Differences From Existing Surveys

With the rapid development of machine learning algorithms,
there are many surveys on applications of machine learning in
various scenarios, including cognitive radios [17], computer
vision [18, 19], Internet of Things (IoT) [20], economics and
econometrics [21]. For instance, Bkassiny et al. [17] discuss
the role of various machine learning models in cognitive
radios, which is defined as radio devices that can adapt to
the environment automatically. Wang et al. [18] provide an
overview of generative adversarial networks applied in com-
puter vision, including high-quality image generation, diverse
image generation and stabilizing training. Different from these
surveys, this survey focuses on the applications of machine
learning in encrypted traffic analysis.

There are several surveys on traffic analysis, which are
summarized in Table I. Buczak et al. [3] conduct a survey
of machine learning and data mining methods applied for
intrusion detection. Jing et al. [4] focus on the Distributed
Denial of Service (DDoS) and Worm attack detection. Fernan-
des et al. [5] and Kwon et al. [6] investigate traffic analysis
methods for network anomaly detection. These surveys are not
comprehensive enough, as they only concern about malicious
behavior detection, where most studies focus on unencrypted
network traffic. Due to the invisibility of packet payload,
methods for unencrypted traffic relying on plaintext payload
signatures are likely to lose efficacy for encrypted traffic.

Several recent surveys pay attention to traffic analysis
methods applicable in the encrypted scenario [7–10]. Among
these studies, Conti et al. [9] review the applications of traffic
analysis targeting mobile devices, and Pacheco et al. [10]
review the application of machine learning in traffic analysis,
including both unencrypted and encrypted traffic. Numerous
recent studies in this field show two research trends: 1)
encrypted traffic analysis can find its applications in a wider
range of scenarios in both fixed and mobile networks, from
network asset recognition to network anomaly detection, and
2) deep learning techniques are increasingly employed to
demonstrate their superiority over traditional machine learning
models in encrypted traffic analysis. Therefore, compared with
the existing surveys, we cover an extensive range of appli-
cations of encrypted traffic analysis based on the advanced
machine learning techniques.

B. Contributions

The popularity of encrypted communication makes a survey
dedicated to encrypted traffic analysis necessary. Compared
with surveys that have been published on network traffic
classification, we systematically introduce the encryption pro-
tocols and pay more attention to the complete workflow of
encrypted traffic analysis. Moreover, we focus on machine
learning techniques that are widely employed for a variety
of analysis goals. The main contributions of this survey are
summarized as follows:

1) We abstract the workflow of encrypted traffic analysis
from a great amount of concrete traffic analysis ap-
proaches, which presents an overview that helps readers
grasp the general process on traffic analysis, including
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Fig. 2: System model of encrypted traffic analysis

traffic collection, traffic representation, traffic analysis
method design, and performance evaluation.

2) To the best of our knowledge, we are the first to survey
existing studies that employ machine learning techniques
in encrypted traffic analysis. We present a systematic
classification of the state-of-the-art methods according
to analysis goals, including network asset identification,
network characterization, privacy leakage detection and
anomaly detection. This type of organization allows us
to exhibit the variety of classification granularity and
information timeliness among different analysis goals.

3) We provide further insights into the defects of existing
studies, and discuss in detail the future research chal-
lenges and directions on encrypted traffic analysis, which
provides readers with possible directions for developing
innovative solutions.

C. Survey Organization

We commence with an overview on the application sce-
narios of encrypted traffic analysis in Section II-B, which
depicts a whole picture according to their analysis goals.
In Section III-C, we introduce the background of machine
learning techniques that are commonly used in encrypted
traffic analysis. Then, we present a description of the general
framework of encrypted traffic analysis in Section IV, which
serves as a guideline to review and compare the studies with
specific analysis goals.

Sections V-VIII introduce recent studies on encrypted traffic
analysis according to the 4 types of analysis goals. In each
section, we attempt to extract the information of each literature
following the stages of the general framework in Section
IV. By this way, we can observe that the similarities and
differences thoroughly among the existing studies.

Next, Section IX elaborates on the challenges and future
research directions of encrypted traffic analysis. We still fol-
low the steps in the general framework of encrypted traffic
analysis and state the research challenges and opportunities
in traffic dataset construction, traffic representation, analysis
model building, and proposed countermeasures.

Finally, Section X concludes this survey. We summarize
the achievements made by state-of-the-art on encrypted traffic
analysis to highlight the valuable information that can be
excavated in traffic encryption scenarios. We also point out
potential research directions that require further investigations.

II. OVERVIEW OF ENCRYPTED TRAFFIC ANALYSIS

In this section, we first introduce a general system model
of encrypted traffic analysis, and then propose a criterion,
according to which we can classify existing papers using
a layered structure. The list of common abbreviations and
explanations are summarized in Table II.

A. System Model

The system model of encrypted traffic analysis is shown in
Fig. 2. Encrypted traffic generated by different kinds of end
devices, e.g., computers, IoT devices, and mobile phones, is
sent to remote servers, which may pass through the gateway,
firewall, local ISP networks and the Internet. Traffic monitors
can collect traffic at different points along this path and then
conduct traffic analysis according to their goals. For example,
a network administrator may monitor whether the network is
under attack by analyzing the traffic passing by the firewall;
an attacker can refer from an end user’s traffic which website
or application the user is visiting. Moreover, ISPs can measure
network service quality perceived by end users based on the
traffic traversing their networks.

B. Taxonomy of Encrypted Traffic Analysis

Considering that a fruitful of papers have been published
during the last decade, it is challenging to classify these papers
according to appropriate criteria. Structuring the literature in a
comprehensive and clear way is non-trivial, as we would end
up with completely different categories according to various
classification criteria.

The requirements of classification granularity and informa-
tion timeliness may vary between different analysis goals for
the surveyed studies. For instance, network attack detection
is generally regarded as a binary classification problem (i.e.,
whether the traffic is malicious) while website fingerprinting
is regarded as a multi-class problem (i.e., which website the
user is visiting). Compared with website fingerprinting, QoE
metric measurement has a higher requirement for real-time
performance, since an ISP needs to adjust the quality of
content transmission according to the actual situation. Accord-
ingly, encrypted traffic analysis methods highly depend on the
analysis goals, including traffic feature extraction and machine
learning model selection. The researchers attempt to optimize
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TABLE II: Common abbreviations and explanations used in this paper

Abbreviation Explanation Abbreviation Explanation Abbreviation Explanation

AF Application Fingerprinting CNN Convolutional Neural Network DDoS Distributed Denial-of-Service

DT Decision Tree GNN Graph Neural Network IoT Internet of Things

IPSec Internet Protocol Security ISP Internet Service Provider k-NN k Nearest Neighbor

LSTM Long Short-Term Memory OS Operating System QoE Quality of Experience

QoS Quality of Service QUIC Quick UDP Internet Connection R2L Remote to Local

RF Random Forest SDN Software Defined Network SSH Secure Shell

SSL Secure Socket Layer SVM Support Vector Machine TLS Transport Layer Security

Tor The Onion Router U2R User to Root WF Website Fingerprinting

Encrypted traffic analysis 

Network asset 
identification

Ⅴ

Network 
characterization

Ⅵ

Privacy leakage 
detection

Ⅶ

Attack
detection

Ⅷ

Device 
fingerprinting 

Ⅴ-A

OS 
identification 

Ⅴ-B

QoE metric 
measurement

Ⅵ-A

Protocol 
recognition

Ⅵ-B

Application 
fingerprinting

Ⅶ-B

Website 
fingerprinting 

Ⅶ-A

User action 
identification

Ⅶ-C

Network anomaly 
detection 

Ⅷ-B

Malware 
detection 

Ⅷ-A

Fig. 3: Classification of existing studies on encrypted traffic analysis according to their analysis goals

their analysis methods to meet the requirements of a specific
application scenario. Thus, we group the existing studies by
the analysis goals, as illustrated in the hierarchical structure
in Fig. 3. At the top level, we identify four macro-goals that
correspond to different application domains, including network
asset identification, network characterization, privacy leakage
detection, and anomaly detection. At the lower level, several
micro-goals are summarized within each application domain,
corresponding to the specific targets.

• Network asset identification targets identifying physical
network equipment and the operating system (OS). On the
one hand, with an increasing number of network devices
connected to the Internet, it becomes more difficult for
network administrators to fully understand the network
assets under their control. On the other hand, malicious
attackers can accurately grasp the vulnerabilities of de-
vices by identifying which version it is. As different types
of network devices and OS versions may lead to various
characteristics in communication traffic, we can perform
network asset identification based on traffic analysis even
if the traffic is encrypted. Coupled with the above two
aspects, we shall introduce a variety of analysis methods
as well as traffic representation methods.

• Network characterization is to have an understanding of
service delivery quality and related protocols by ana-

lyzing the corresponding traffic. Video streaming traffic
shows a trend of rapid growth, where the demands for
high bandwidth and low latency increase accordingly.
The control of transmission quality by service providers
is inseparable from the perception of user experience.
However, with the adoption of encrypted protocols, such
as SSL/TLS and QUIC, video streaming services produce
an increasing amount of encrypted traffic, leaving limited
features for network characterization. To solve this issue,
a lot of studies focus on measuring and characterizing
the video-based service delivery quality from encrypted
traffic, e.g., the QoE perceived by end users. These char-
acteristics can help network providers to figure out the
long-term or short-term quality of their network service
and optimize their routing strategies.

• Privacy leakage detection focuses on the analysis of
information that may be leaked by encrypted traffic.
Although the encryption protocols are proposed to protect
the content of traffic packet, there are still differences
in the traffic of different websites or applications, which
provides a possible way for privacy leakage, such as what
website or application a victim is visiting, as well as the
in-app actions during the visits (e.g., sending an email in
Gmail [22]). This difference may be reflected in features
such as packet length, peak packet numbers, etc. With this
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target, we review three categories of privacy leakage, i.e.,
Website Fingerprinting (WF), Application Fingerprinting
(AF), and user action identification.

• Attack detection mainly aims to detect diverse malware
and network anomaly. Recently, we have witnessed a
rapid growth of malware targeting PCs, mobile phones
and IoT devices, such as WannaCry and Petya. There are
also an increasing number of network attacks on various
platforms, such as enterprise networks, campus networks,
IoT networks and blockchain networks [23–25]. The
adoption of encryption techniques makes payload-based
anomaly detection methods ineffective, as the traditional
detection methods commonly scan packet contents to fig-
ure out malicious patterns based on the signature library.
However, the traffic generated by abnormal behaviors is
still different from that of legitimate behaviors, making
it possible to distinguish abnormal traffic from benign
traffic even in an encrypted scenario.

III. BACKGROUND OF MACHINE LEARNING

As this survey mainly focuses on the application of machine
learning in encrypted traffic analysis, in this section, we briefly
introduce the background of machine learning and review
several commonly-used algorithms.

Machine learning aims to build models that can improve the
future performance of a target through learning from the past
experiences [26–30]. It is a highly interdisciplinary field based
on other fields such as statistics and optimization theory [31],
which serves multiple tasks in different scenarios, e.g., medical
industry [32], IoT [20] and financial industry [21]. Machine
learning also plays an important role in encrypted traffic clas-
sification, which can be demonstrated by the fact that almost
85% of the studies investigated employ machine learning
methods for various analysis goals.

A. Categories of Machine Learning Methods

From the aspect of whether labels are required, machine
learning can be classified as supervised learning, unsupervised
learning, semi-supervised learning and reinforcement learning.
As for supervised learning, the input data has a pre-determined
label, e.g, the type of traffic. The model is trained to achieve
a higher level of classification accuracy. For unsupervised
learning, there is no label for training dataset, the model is
designed by deducing existing patterns of samples [26]. Semi-
supervised learning is used for the dateset with both labeled
and unlabeled samples, typically most of them are unlabeled as
unlabeled data is less expensive [33]. Reinforcement learning
is trained to decide actions yield the most rewards by the trial
and error, which is based on the interactions with environments
and past experiences of learning [34].

Taking supervised learning as an example, we introduce
a general model of machine learning. Supervised learning
uses a training dataset to train a model, which is leveraged
for the prediction of the test dataset. For a training dataset
D = {(xi, yi)}, i = 1, 2, .., N , where xi ∈ X denotes an input
sample (e.g., an extracted feature vector), and yi ∈ Y denotes

an output sample (e.g., a specific label for classification
problems). In the training phase, a decision model Ŷ = f(X)
is obtained, which maps the inputs to outputs. Through the
training algorithm, the decision model tries to minimize the
differences between the predicted value ŷi and the real value
y based on a loss function L(yi, f(xi)). The model that
minimizes the loss function is taken as the final decision model
f∗(X). In the testing phase, for each sample in the test dataset,
the model gives the corresponding prediction value.

Inspired by the existing surveys [35, 36], we also consider
model complexity as another criterion to categorize machine
learning methods. According to this criterion, machine learn-
ing can be roughly divided into two categories, namely tradi-
tional machine learning methods and deep learning methods.
The main difference of them is that most deep learning meth-
ods leverage cascades of neural network layers, which contain
nonlinear processing units for feature extraction [37]. In con-
trast, traditional machine learning methods without nonlinear
processing units usually require more feature engineering [38].

For traffic analysis, feature extraction is a crucial part. To
improve the accuracy of traffic classification, many studies
focus on how to extract effective semantic information from
byte stream to fed into traditional machine learning models.
However, with the advent of deep learning, feature engi-
neering is no longer the only concern. The combination of
raw information and neural network models becomes another
way to achieve high accuracy. We observed that feature
engineering combined with traditional machine learning, and
raw information combined with deep learning are the two
common types of approaches for traffic analysis. The former
focuses more on the extraction of effective features, while
the latter focuses more on the construction of models with
strong feature extraction capability. Due to this reason, we will
mainly introduce machine learning according to this criterion.

B. Traditional Machine Learning Methods

Typical examples of traditional machine learning methods
include Naïve Bayes, Markov Model, k-Nearest Neighbor (k-
NN), Support Vector Machine (SVM), Decision Tree (DT),
Random Forest (RF), and clustering, which are briefly de-
scribed as follows.

• Naïve Bayes [39] method is a classification method based
on Bayes’ theorem and condition independence. It is
called naïve because it assumes that the features are inde-
pendent of each other. It can make probabilistic inferences
for classification and decision-making problems.

• Markov Model [40] is a stochastic model, which gives
the probabilities of random state changing. It composes
of state, state transition probability, and the initial proba-
bility distribution. The first-order Markov model assumes
that the current state depends only on the last state and
is irrelevant to the earlier states.

• k-NN [41] is a commonly used supervised learning
method. Given the target sample, it finds out the nearest k
samples, and predicts the information according to these
neighborhoods. The distant calculation methods include
Euclidean distance, Manhattan distance, etc.
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• SVM [42] is a flexible supervised algorithm for both clas-
sification and regression. In order to solve the complex
classification problems, SVM uses a kernel function to
map the features of low dimensional space to the higher
one. Common kernel functions include linear kernel,
polynomial kernel, gaussian kernel and Sigmoid kernel.

• DT [43] is composed of directed edges and nodes which
include the root node, internal nodes and leaf nodes. The
path from the root node to each leaf node corresponds to
a decision sequence. The commonly used algorithms for
DT are ID3, C4.5 and CART.

• RF [44]is a collection of traditional DTs. Given the short-
coming that DT is easy to overfit, RF adopts the voting
mechanism based on multiple DTs for improvement. To
be specific, each tree in RF is trained by a sub dataset
sampled from the original dataset and then the final result
is obtained through the voting of all DTs.

• k-Means [45] is a commonly used clustering algorithm.
It assigns each object to the nearest cluster based on the
distances from cluster centers, and then recalculates the
centers. This process is repeated until convergence and
finally all objects are divided into k clusters.

C. Deep Learning Methods

Traditional machine learning technologies are essentially
shallow learning, which has some limitations in terms of accu-
racy for classification tasks. In particular, their generalization
abilities are restricted when dealing with complex problems.
Hence, deep learning is introduced to address these limitations.
We mainly introduce three typical deep learning methods that
are widely employed in encrypted traffic analysis.

• Convolutional Neural Network (CNN) [46] is a kind of
neural network with convolution operation added, which
can weaken local features and enhance generalization.
The special thing about CNN is that this method has the
convolutional layer, which uses the convolution operation
to filter the input features. Normally, the convolutional
layer and the pooling layer appear alternately. After the
combination of several sets of convolutional and pooling
layers, a fully connected layer will be added at the end.

• Graph Neural Network (GNN) [47] is a deep learning
method that processes the data represented in the graph
domain [48]. As an effective graph analysis method, GNN
is widely used in social network and physics system
analysis, which leverage graphs as the denotation of the
relationships underlying data.

• Long Short-Term Memory (LSTM) [49] is a special kind
of Recurrent Neural Network (RNN) used to process
sequences, which has achieved excellent performances
in the field of natural language processing. LSTM has
the ability to selectively remember the previous output
results and superimpose them on different positions of
the current cell to achieve the purpose of data analysis.

IV. A GENERAL FRAMEWORK OF ENCRYPTED TRAFFIC

ANALYSIS

In this section, we summarize the general framework of
encrypted traffic analysis. We present the framework overview
and then elaborate on each component in the subsection.

The overview of the general framework of encrypted traffic
analysis is illustrated in Fig. 4, where four components are
evolved, namely traffic collection, traffic representation, traffic
analysis method, and performance evaluation.

A. Traffic Encryption Mechanisms

We summarize the encryption protocols and anonymity
mechanisms currently used for secure communication before
introducing each individual component in Fig. 4. Without
traffic encryption, sensitive information transmitted in clear-
text would be effortlessly sniffed by malicious eavesdroppers
who have access to network interfaces. Moreover, cleartext
communication provides convenience for intentional attackers
inserting false information, which makes communication un-
reliable. Therefore, traffic encryption mechanisms have been
implemented for communication security guarantees.

The interaction process of an encryption protocol usu-
ally includes two parts: a secure connection establishment
phase and an encrypted data transmission phase. The secure
connection establishment phase mainly includes handshake,
authentication and encryption algorithm negotiation, which is
the preparation for encrypted data transmission. The encrypted
data transmission phase ensures safe transmission with the use
of the encryption algorithm negotiated in the previous phase.

Next, we introduce mainly used encryption protocols in-
cluding Internet Protocol Security (IPSec) on the network
layer, SSL/TLS and Quick UDP Internet Connections (QUIC)
between the transport layer and application layer, Secure Shell
(SSH) and HTTP over Secure Socket Layer (HTTPS) on the
application layer as well as anonymity mechanisms such as
The Onion Router (Tor) in detail. The encryption protocols
and anonymity mechanisms are organized according to their
positions in the network structure as Fig. 5.

• IPSec [50].IPSec is a set of network transmission proto-
cols for network layer communication security, which is
utilized for the authentication of communication parties
as well as the confidentiality and integrity of the data [51].
IPSec mainly includes Security Association (SA),Internet
Key Exchange (IKE), Authentication header (AH) and
Encapsulated Security Payload (ESP).

• SSL/TLS [1]. SSL locates between a reliable connection-
oriented network layer protocol and an application layer
protocol. It creates an encryption channel between the
communication parties to ensure the confidentiality of
communication, preventing malicious attackers acquir-
ing and modifying any information, which may contain
sensitive data. TLS is a standard proposed by Internet
Engineering Task Force (IETF) in 1999 as the successor
of SSL, providing transport layer security directly on top
of the TCP protocol [52]. The recent version of TLS is
TLS 1.3 [53] defined in 2018.
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Fig. 4: A general workflow of encrypted traffic analysis

TLS consists of three components including handshake
protocol, alert protocol and record protocol. Handshake
protocol is mainly used for encryption algorithm negoti-
ation, key generation and identity authentication. Alert
protocol is exploited for warning message notification
once one of the parties discovers the exception. Record
protocol is responsible for data translation between com-
munication parties. The data is divided into multiple
shorter fragments and each fragment is compressed sepa-
rately. Thereafter, the compressed fragment will be added
with a message authentication code which is used to en-
sure the integrity and perform data authentication. Finally,
the compressed fragment with the message authentication
code will be encrypted together with a symmetric pass-
word.

• SSH [54]. SSH is a security protocol based on the
application layer, which is designed to provide security
for the connection and interaction between the client
and remote host, preventing information leakage during
remote access. SSH establishes an encrypted channel
between the communicating parties to ensure the con-
fidentiality of the transmitted information and uses a key
exchange algorithm to ensure the security of the key
itself. It mainly consists of three parts including the trans-
port layer protocol (SSH-TRANS), user authentication
protocol (SSH-USERAUTH) and the connection protocol
(SSH-CONNECT).

• HTTPS [55]. HTTPS is the extension of HTTP by wrap-
ping it inside the SSL/TLS protocol, which is used for
safety communication over the network. Compared with
HTTP, HTTPS can be utilized for encrypted transmission,
identity authentication and data integrity protection. For
this reason, HTTPS plays an important role in online ac-
tivities such as shopping, payment and website browsing.

• QUIC [56]. QUIC is a new generation of low-latency
network transport layer protocol based on user datagram
protocol (UDP), which is similar to TLS implemented on
TCP. HTTP and several extended protocols are based on
TCP protocol. However, the TCP protocol requires three

times of handshakes before establishing a connection.
The purpose of QUIC is to reduce network latency
while ensuring reliability. QUIC needs to complete the
confirmation of packet transmission by itself because
it is built on UDP which is unreliable. Besides, QUIC
realizes multiplexing without head-of-line blocking and
can be used for applications or services with real-time
requirements.

• Tor [57]. Tor is an open-source and free anonymous
communication software. It is widely used because it can
provide low-latency and low-overhead anonymous access
services. Due to the similarity between the structure of
the Tor network and onion, it is called the onion routing.
Tor can help users deal with some malicious attacks
effectively. As the Tor client starts, it will first run
an onion agent locally and then get in touch with the
directory server which stores global relay node infor-
mation. After the onion agent obtains the relay node
information, it will select three nodes according to the
routing algorithm to form an anonymous communication
link. The onion agent will shake hands with each node
using the Diffie-Hellman (DH) handshake protocol to
negotiate a session key. Only when the link is confirmed
to be established, users’ access information begins to be
delivered. In this process, each node cannot discover the
source and destination of the information. Tor randomly
selects forwarding nodes and keeps updating. At the same
time, it encrypts the packet contents with the negotiated
keys to ensure confidentiality.

• Nested encryption [58]. National Security Agency (NSA)
delivers the multi-site connectivity capability package to
meet the demands of data transmission across networks
with different security levels. It needs two independent
encryption tunnels (i.e., inner encryption component and
outer encryption component), which can use either IPSec
or Media Access Control Security (MACsec). According
to the times of encryption, the network is classified into
the red network that consists of unencrypted data, the
gray network that consists of data that has been encrypted
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once, and the black network that consists of data that
has been encrypted twice. When a packet is sent to the
black network, it is encrypted by the two encryption
components in turn. Similarly, at the destination, the
received packet is unencrypted twice.

Fig. 5: Mechanisms in the network model

Encryption technologies are used to protect user privacy and
communication security emerges endlessly. Although these
encryption protocols or anonymity mechanisms protect the
security of communication to a certain extent, it is still
possible for the attacker to obtain some sensitive information
by analyzing the encrypted traffic.

B. Traffic Collection

Traffic data collection is an important step in the field
of encrypted traffic analysis, as a data set is the foundation
of experiments. Therefore, data collection often acts as the
starting point of encrypted traffic analysis.

As shown in Fig. 2, traffic can be captured at various nodes
in a network, such as switches, routers, and gateways. In
recent years, several network simulation techniques, such as
NS3 [59], have been proposed to simulate network traffic.
Software-Defined Network (SDN) [60, 61], which has a spe-
cial network structure, can also facilitate traffic data collection.
In this subsection, we are dedicated to introducing typical
traffic collection tools that are commonly used for traffic
capture.

• Libpcap [62]. It is a well-known network packet capture
library based on C/C++, which sits at the data link layer
and can display TCP/IP and other packets transmitted
over the network. Libpcap defines pcap as the storage
form of captured packets, which is widely used in traffic
capture tools. Many other traffic capture tools, such as
Tcpdump and Wireshark, are based on this library.

• TCPdump [63]. It is a packet analysis tool that runs on
Linux systems, which is based on Libpcap. TCPdump
offers the ability to capture network packets and record
those packets in pcap files. It also enables users to
filter network packets using regular expressions. Since
TCPdump is based on the command line, users can
set parameters to meet different requirements, such as
limiting the number of captured packages.

• Wireshark [64]. It is a traffic collection tool that runs on
Windows, which is known as the user interface version of
tshark [65]. Similar to TCPdump, it enables user specific
requirements on packet capture. It can display traffic
information more visually through the user interface, such
as displaying different protocol information in different
colors. Compared with TCPdump, Wireshark shows a
better user experience but consumes more power and
memory [63].

• Netflow [66]. It is a network monitoring technique pro-
posed by Cisco, which can be deployed on routers and
gateways. Unlike the above three tools, Netflow provides
a flow-level view of network traffic, recording the infor-
mation on each flow, rather than providing the packet-
level information as Wireshark and TCPdump do. In
NetFlow, a flow is uniquely defined by the five tuples,
namely the source IP address or port, the destination IP
address or port, and the transport protocol. For enterprise
users, a flow-level display of traffic can be more useful,
manageable and readable than the packet-level display.

• Hardware Probe [67]. It is a network tool that can capture
and analyze network packets at the physical layer. The
hardware probe can provide more timely information,
including physical layer data, without consuming network
resources. While compared with software-based tools, the
strategy based on hardware is expensive and inflexible.

C. Traffic Representations

The representation of traffic is essential for traffic analysis.
For different application scenarios, the traffic representations
may be diverse. A superior traffic representation can improve
the effectiveness and reduce the overhead.

1) Representation Level: We introduce two mainly used
traffic representation levels according to classification gran-
ularity including flow-level and session-level.

• Flow-Level. The flow is a collection of data packets
with the specific common attributes. Generally, common
attributes refer to the source or destination IP, source or
destination port and protocol [68]. Moreover, in [69],
a group of packets with specific common attributes
collected in a pre-defined time interval are regarded as
the basic unit of analysis, which is also considered as
flow-level representation in this survey. From the flow-
level representation, multiple statistical features such as
an average packet count, maximum packet length, or
minimum interval time can be extracted.

• Session-Level. The session is a collection of packets
generated during the complete interaction between the
client and server, e.g., packets generated by a complete
website visit process from session-level traffic [70]. The
packets in a session may have different attributes such as
destination IP, therefore, a session may contain several
flows. Especially, there is no limitation on the size of the
flow, e.g., a flow may contain only one packet. However,
a session must include a completely interactive process,
so it includes at least two packets related to the establish-
ment of the interactive process. Meanwhile, the statistical

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3208196

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on September 22,2022 at 03:31:07 UTC from IEEE Xplore.  Restrictions apply. 



9

features extracted from flow-level representation are also
suitable for session-level representation as the essence of
a session is still a collection of packets. In addition, other
features such as the count of flows or the average duration
of flows can be extracted as session-level features.

2) The Forms of Representations: The traffic representation
corresponds to the input of classifiers. To be specific, multiple
features such as packet-based features and statistical features
can be used as the input of traditional machine learning
classifiers. Besides, raw representations of traffic such as
sequences [70] or graphs [71] may be used as the input of deep
learning models. Different forms of traffic representations for
encrypted traffic analysis are introduced as follows.

• Packet-based Features. The basic packet-based features
are the information of packet header captured directly.
Generally, the five-tuple of IP packets, including source
and destination IP addresses, source and destination ports
and protocol types, are the most commonly leveraged
packet-based features. Moreover, the Time-To-Live of the
IP header, the initial window size of the TCP header
can also be extracted as features. These are the simplest
features obtained directly from the packet.

• Statistical Features. Statistical features are defined as
features extracted from a group of packets through ab-
straction or computation. The statistic values include
expectations, deviations, average, minimum, maximum,
medians, accumulation, etc. Combining these statistics
with traffic attributes, such as packet size, inter-arrival
time, packet count, results in a large number of statistical
features, e.g., average of cumulative packet sizes, quartile
of inter-arrival time and burst packet count.

• Raw Traffic Representation. In addition to selecting net-
work traffic features manually, researchers can also use
frameworks or models like deep learning algorithms to
extract features automatically. Artificial feature extraction
is based on experience, however, the raw representation
transfers the offload of feature selection to the mod-
els. Several studies encode traffic into sequences [70],
graphs [71] or images [72] for classification. For example,
the traffic can be abstracted into graphs. The structure
of the graph can be regarded as a set of interconnected
nodes, each of which is treated as a packet. This is
similar to the graph definition in data structure and can
be augmented with directions, weights, etc.

D. Encrypted Traffic Analysis Methods

With the traffic representation obtained in Section IV-C,
traffic analysis methods are applied according to different
task requirements. The investigated encrypted traffic analysis
methods are summarized in Table III. As a necessary sup-
plementary, apart from machine learning methods, we also
introduce knowledge-based methods, which are selected in
certain scenarios.

1) Machine learning method: As shown in Table III, we
can divide these methods into two categories, namely tradi-
tional machine learning and deep learning. In encrypted traffic
analysis, the major difference between the two categories is

that the former requires manually-crafted features as input,
which needs complex feature engineering processes, while the
latter enables end-to-end traffic classification. The process of
feature extraction requires much prior knowledge about the
task, e.g, the most contributing features for distinguishing
target traffic from background traffic.

Traditional machine learning technologies are essentially
shallow learning, which has some limitations in the accura-
cies for classification tasks. In particular, their generalization
abilities are restricted when dealing with complex problems.
In contrast, deep learning methods are introduced to address
these limitations. Benefitting from the feature learning ability
of deep learning, it enables raw traffic representation as input.
For example, several studies represent traffic with sequences,
e.g., packet direction sequences [70], and use a CNN as the
classifier. Also, the CNN can be combined with a triplet
network as the feature extractor [142]. Moreover, network
traffic can also be represented by a graph structure, which digs
out the hidden information [71], and is combined with GNNs
for traffic classification. In addition, as there are correlations
between the packets at the current moment and those in the
previous period of time, LSTMs can be used to capture timing
features of packet sequences [149].

The rapid development of machine learning, especially deep
learning, provides a large number of analytical methods for
encrypted traffic analysis. Unsupervised learning has even
the ability to identify unknown targets, which provides more
possibilities for abnormal traffic detection.

2) Knowledge-based method: It is used for traffic analysis
based on prior knowledge. The knowledge-based method is
generally composed of two parts, i.e., the knowledge base
and the inference engine. The knowledge base is used to
store facts, such as specific patterns and logical assertions.
The inference engine is used to analyze the problem and
match the content in the knowledge base. In encrypted traf-
fic analysis, several studies extract features of traffic and
match them using similarity analysis [73] or pre-established
rules [74] to achieve the purpose of classification. However, the
accuracy of knowledge-based detection greatly depends on the
completeness of the knowledge base. Therefore, knowledge-
based methods are not widely used in traffic analysis. With
the types of network devices, applications and attack methods
increasing, the knowledge base needs to be updated dynami-
cally. Hence, most studies tend to leverage machine learning
methods for encrypted traffic analysis.

E. Performance Evaluation Metrics

In order to verify the effectiveness of encrypted traffic
analysis methods, several effective validation methods and
evaluation metrics are proposed.

The validation method is used to confirm that the analytical
method is suitable for its intended use. In machine learning,
there are two commonly used datasets, training set and test set,
which are utilized for model building and model validating.

Different partition methods are used for dividing the two
datasets. Common partition methods are k-fold cross val-
idation, hold-out, and bootstrapping. Among them, the k-
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TABLE III: Summary of existing traffic analysis methods

Classifer Related works Applications Advantages Disadvantages

K
no

w
le

dg
e-

ba
se

d

-

[73], [74], [75], [76],

[77], [78], [79], [80],

[81], [82], [83], [84]

1. It classifies traffic through stacking

simple rules.

2. Deal with tasks where the feature

of target traffic is obvious, such as

OS identification (Section V-B).

Traffic can be identified by

matching specific features,

which has high interpretability.

Depend on the effectiveness

of the constructed knowledge

library.

Bayes classifier
[85], [86], [87], [88],

[89], [90], [86], [91]

Markov model [16], [92], [93]

1. Through learning from

historical traffic datasets,

it provides reliable and

repeatable decisions.

2. Utilize highly interpretable

algorithms, which makes it

easy to explain the reasons

for decision.

3. Take relatively little time

for model training, usually

only seconds to hours [38].

1. Require artificial feature

extraction based on prior

knowledge such as discrimi-

nation of different categories.

2. It is shallow learning,

which performs pool in

feature extraction.

3. It is less capable of dealing

with time drift, especially

when considering a long

period, as the applications,

malware, may be updated [94].

K-NN

[95], [96], [97], [98],

[99], [100], [101], [102],

[103]

SVM

[104], [68], [105], [106],

[107], [108], [109], [110],

[22]

DT
[111], [112], [113], [114],

[115], [116], [117]

Su
pe

rv
is

ed
M

L

RF

[118], [119], [120], [121],

[122], [123], [124], [125],

[126], [127], [128], [129],

[130], [131], [132], [133],

[134], [135], [136]

1. It is applied in scenarios where

historical traffic labels are known.

2. Deal with classification tasks

where traffic can be obtained ahead of

time, such as IoT device fingerprinting

(Section V-A).

U
ns

up
er

vi
se

d
M

L

K-Means [137], [138]

1. It is applied for traffic samples that

have no historical labels.

2. Deal with classification of unknown

traffic categories, such as unknown

malware detection (Section VIII).

CNN

[139], [140], [141], [70],

[142], [143], [144], [145],

[146], [147] 1. It nests a cascade of hidden layers

with nonlinear processing unitss for

feature extraction.

2. Deal with scenarios where there is

few prior knowledge, as it allows to be

fed with raw representation, such as the

packet direction vector (Section VII).

1. The multilayer architec-

ture of deep learning helps

map the traffic to higher

level representation [148].

2. Perform well in scenarios

where there are large and high

dimensional data.

3. Enable end-to-end traffic

analysis, as few complex

feature engineering is required

[145].

1. Require significant volumes

of data that should be updated

regularly.

2. Demand generous computing

resources, which is expensive

[38].

3. Deep network is a black

box, which makes it difficult

to interpret as the complex

hyperparameters and network

structures

[148].GNN [71]

D
L

LSTM [149], [150], [151], [152]

fold cross validation is the most frequently used validation
method. In practice, 10-fold (i.e. k = 10) cross validation it is
commonly used to evaluate to divide the data into 10 blocks in
encrypted traffic analysis methods validation [86, 153, 154],
which means k = 10. We first10-fold cross validation divides
a complete dataset into an average of 10 mutually exclusive
subsets. Then, one of the subsets is used as the test set in
turns, and the union of the remaining 9 subsets is used as the
training set. In the end, each subsetblock of data is used for
training and testing, which maximizes the use of the dataset
and the final validation result does not depend on the random
choice of the training set.

At the same time, according to the coverage of the training

set to the test set, we can divide the validation method
into closed-world validation and open-world validation. In
a closed-world, we assume that the training set contains all
classes of samples in the test set, which means there is no
unknown sample in the test set. However, the open-world
corresponds to a more realistic scenario, in which the test set
contains samples belonging to unknown classes. In the field
of encrypted traffic analysis, unknown samples can represent
new network devices [121], OS types [155], malware [154],
network attacks [136], etc. Compared with the closed-world
validation, the open-world validation generally has higher
requirements for classification models.

After the selection of validation methods, multiple eval-
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TABLE IV: Confusion matrix of classification result

Predicted class
Actual class

Condition positive Condition negative

Condition positive TP FP

Condition negative FN TN

uation metrics are proposed. According to the different re-
quirements of the classification on the accuracy, time and
generalization, we can divide the evaluation metrics into
effectiveness, time overhead and robustness.

1) Effectiveness: For both binary classification and multi-
classification tasks, two metrics, accuracy and error rate,
are commonly used. Accuracy is defined as the ratio of the
number of samples labeled correctly over the total number of
samples, while Error rate is defined as the percentage of
samples classified incorrectly in the total samples.

In particular, for binary classification, we can obtain a
confusion matrix, as shown in Table IV. The confusion matrix
includes four elements: true positive (TP), false positive (FP),
true negative (TN), and false negative (FN). Among them,
TP stands for positive samples predicted to be positive by
the model, FP stands for negative samples predicted to be
positive by the model, FN stands for positive samples predicted
to be negative by the model, and TN stands for negative
samples predicted to be negative by the model. Based on
these four elements, the commonly-used evaluation metrics
for effectiveness can be calculated.

• TPR (Recall) is the ratio between the number of positive
samples correctly classified and the number of actual
positive samples, ranging between 0 and 1.

• FPR is the ratio between the number of negative samples
incorrectly classified and the number of actual negative
samples, ranging between 0 and 1.

• Precision (Prec) is the ratio between the number of
positive samples correctly classified and the number of
samples classified as positive, ranging between 0 and 1.

Moreover, some metrics that consider two of the above metrics
comprehensively are proposed.

• F1 considers both Prec and Recall, which is represented
as the harmonic mean of Prec and Recall.

• Receiver Operating Characteristic (ROC) curve is con-
stituted by TPR and FPR, with TPR as the vertical axis
and FPR as the horizontal axis. When we compare the
performance of two models, if the ROC curve of the first
model can completely ’cover’ the second one’s, we can
consider the performance of the first one is better.

• Area Under ROC Curve (AUC) is the area under the ROC
curve. If the ROC curves of the two comparison models
cross, we can choose AUC as the evaluation metric.

• Precision-Recall Curve (P-R Curve) is constituted by
Prec and Recall, with Prec as the vertical axis and Recall
as the horizontal axis. When it comes to the imbalance

dataset, P-R Curve is used to evaluate the performance
of the model as an alternative to ROC Curve[70].

In addition, customized metrics are introduced into encrypted
traffic analysis to evaluate the amount of leaked informa-
tion [102]. Mutual information, which measures the mutual
dependence between two variables, can be used as the feature
engineering process for WF. The mutual information is defined
as Formula 1:

I(F ;W ) = H(W )−H(W |F ) (1)

where F denotes the fingerprints of traffic, W denotes the
website information, I(F ;W ) means the amount of informa-
tion can be attained from F about W , H(·) is the the entropy.

2) Time Overhead: Several encrypted traffic application
scenarios have time requirements for methods, such as net-
work attack detection and network device identification. For
these scenarios, time overhead is another issue affecting the
practicability of the model. In the encrypted traffic analysis
field, time overhead evaluation metrics mainly include training
time, validation time and time complexity.

• Training and validation time. They are important indica-
tors commonly used for experimentally evaluating time
overheads. Training time refers to the time required to
train a traffic analysis model with a given set of training
samples, while validation time refers to the time used to
analyze the test set using the pre-trained model. To make
a fair comparison among different analysis methods, the
evaluation on training and validation time should be
conducted on the same dataset [156–158].

• Time complexity. It provides a theoretical estimate of
time overhead to run a certain traffic analysis method.
Different from training and validation time, time com-
plexity focuses on computational complexity, rather than
concrete analysis time spent on specific datasets.

3) Generalization: As the traffic in the network changes dy-
namically over time, the previously constructed model may not
be suitable after the traffic features change. It requires that the
constructed model is capable of generalization, which means
that the classifier is supposed to be robust to the data mismatch
problem. It may occur due to the staleness of training data
or structure difference between training and test set. Here,
we introduce a metric to evaluate the generalization which
is defined as the number of samples needed for retraining the
previously trained model [142]. For example, in the field of
website fingerprinting, it is impossible for an attacker to use
all website traffic for model training. If the training set comes
from website a, while the attacker is expected to monitor
website b, there are different structures between training and
test sets. Due to this issue, the previously trained model is
no longer applicable to the current test set. Therefore, we are
supposed to use new samples which have the same structures
as the test set to retrain the model. If the model retrained by
only a few samples performs well, it is considered to have
strong generalization and transferability.
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TABLE V: A Conclusion For Studies Related To Network Asset Identification.

Analysis Dataset Feature1 Method2 Evaluation3

Ref Year Platform Species Level Style PH PC PL PT PD Others Category Classifier Train Predict OW CW ET TO

[73] 2010 Access point 6 Flow SF X KB - Off Off X X

[85] 2018 Mobile/IoT 34 Session SF X ST Bayes On On X X

[104] 2017 Mobile/IoT 22 - SF Link-layer ML RF/CART/SVM Off Off X X X

[159] 2018 IoT 14 Session SF X X Entropy ML Gradient boosting Off Off X X

[95] 2018 IoT 22 Flow SF X X ML k-NN Off Off X X

[118] 2017 IoT 21 Flow SF X X X ML RF Off Off X X

[156] 2019 IoT 21 Flow SF X ML AdaBoost Off Off X X

[68] 2017 IoT 9 Flow SF X X X ML SVM Off On X X

[119] 2017 IoT 27 Flow SF X ML RF Off On X X

[120] 2019 IoT 4 Flow SF X X X ML/DL RF/ANN Off On X X

[160] 2018 Mobile 2 Flow SQ X DL CNN Off Off X X

[121] 2020 IoT 10 Flow SF X X ML/DL RF/Autoencoder Off Off X X

D
ev

ic
e

Fi
ng

er
pr

in
tin

g

[161] 2015 Mobile/IoT 37 Flow SF X DL ANN Off Off X X X

[74] 2016 Computer - Session SF X KB - Off Off X

[75] 2016 Mobile 4 Flow SF Spectrum KB - Off On X X X

[86] 2014 Mobile 2 Flow SF X X ST Bayes Off Off X X

[87] 2014 Computer/Mobile 3 Flow SF X X ST Bayes Off Off X X

[111] 2014 Computer/Mobile 4 Flow SF X ML DT Off Off X X

[122] 2017 Computer/Mobile 4 Session SF X ML RF Off Off X X

[153] 2019 Computer/Mobile 5 Session SF X X X ML Gradient boosting Off Off X X

O
S

Id
en

tifi
ca

tio
n

[105] 2017 Computer - Session SF X X X X X Burst ML SVM Off Off X X

1 In the Traffic Representation columns, Level is traffic representation level, Style is traffic representation style, where SF denotes statitical features and SQ denotes sequence, PH is packet header, PC is packet

content, PL is packet length, PT is packet timing, PD is packet direction.
2 In the Method columns, Train is online training or offline training, Predict is online predicting or offline predicting.
3 In the Evaluation columns, OW is open world, CW is closed world, ET is effectiveness, TO is time overhead.

V. NETWORK ASSET IDENTIFICATION

Network assets refer to valuable resources in computer
networks, which vary from physical network equipment (e.g.,
servers, routers, switches, firewalls, and printers) to software
assets such as operating system (OS). Currently, there are
several search engines (e.g., Shodan [162], FOFA [163] and
Zoomeye [164]) that provide information retrieval services of
worldwide network assets connected to the Internet.

Traffic analysis methods are largely used in network asset
probing process. On one hand, network administrators can
keep themselves updated with the online status of their net-
work assets, and can also find assets with potential security
risks in time. On the other hand, malicious attackers can
also accurately grasp vulnerabilities of devices (e.g., probing
devices with stale protections) and carry out targeted attacks.

Traffic encryption has a significant impact on network asset
identification, as traditional analysis methods on unencrypted
traffic depend on inspecting certain fields in packet payload.
For instance, the device type can be toilless attained from the
non-encrypted traffic (e.g., the names and version numbers
of standard libraries used by devices can be extracted at the
HTTP packet header [165]), and the OS type is also clearly
shown in the HTTP packet header (e.g., the user-agent field).
All the information used above has been masked in encrypted
traffic. Therefore, in the traffic encrypted scenario, it is non-

trivial to identify network assets accurately without getting
access to packet content. In this section, we will introduce
the applications of encrypted traffic analysis in network asset
identification from device fingerprinting to OS identification,
which are summarized in Table V.

A. Device Fingerprinting

With the aim of network security, when a device gets
connected to a network, the network administrator is supposed
to authenticate this device and allocate it basic communi-
cation permissions according to the device type. Due to
the numerous quantity and frequent alternation of network
devices, authentication manually is unpractical, which makes it
necessary to identify the device type automatically. However,
the abnormal behaviors of several untrusted devices challenge
the identification. For example, malicious devices may respond
to queries with fake identities [159], or deviate from their
expected behaviors, e.g., a temperature sensor tries to read
information from a network camera. These problems motivate
researchers to find effective and robust fingerprints that can be
used to identify device type accurately.

Traditional machine learning methods. Machine learning
methods are widely used in device probing, performing well in
terms of device classification. Numerous studies compare the
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effectiveness and overhead of different algorithms for device
fingerprinting, such as SVM, random forest and decision tree.
Most of the studies investigated focus on IoT devices, as the
amount and types of IoT devices keep on increasing. Hence,
we will mainly introduce the application of machine learning
methods in IoT device identification.

The growing smart home IoT market introduces new chal-
lenges for network management. Although IoT devices bring
us convenience, they become potential targets for adversaries,
such as smart watches, network cameras and even sweeping
robots. Notably, attacks involving IoT devices account for
more than 25% of attack events in enterprises by 2020 [166].
Most IoT devices generate less traffic and are lower diversity,
which makes it difficult for traffic-based identification [119].

To construct effective device fingerprints using transitional
machine learning models, traffic representation is of great
importance. Several studies try to make use of protocol header
information, such as the link layer, network layer and appli-
cation layer, for traffic representation.

Maiti et al. [104] make an observation that link layer fea-
tures can be used for traffic representation. A set of consecutive
link layer frames are combined together as a block, which
is the basic unit for fingerprint construction. Traffic features
can be extracted from blocks, including temporal properties,
payload sizes and header information, and then fed to a
random forest classifier. While feature extraction requires a
block size of 30K frames, which may take up to days of
traffic collection for a standby IoT device. It indicates that
only link layer features are insufficient for efficient device
fingerprinting.

To improve the efficiency on feature extraction, statistical
features are explored in the following studies [95, 118].
Sivanathan et al. [118] propose a method to distinguish IoT
traffic from non-IoT traffic and then identify specific IoT
device types. Firstly, the number of different Internet servers
contacted and unique DNS requests can be used to distinguish
whether it is an IoT device. Further, they observe that 12
features (e.g., DNS interval, sleep time) are effective for
distinguishing one IoT device from another. The extracted
features are fed into a RF classifier, which has the viability of
identifying IoT devices. However, this method splits the traffic
by fixed-length windows, i.e., regard traffic in a fixed period
of time as a sample, which may lead to the traffic generated by
an activity to be split up, thus hindering classification results.

Msadek et al. [156] overcomes the shortcoming of manual
parameter selection in earlier studies [118], by adding sliding
windows for traffic splitting automatically. The basic idea is
that, instead of shifting by a specific length, it moves traffic
with the next unrelated activity, which ensures the relevant
traffic in the same window. To construct device fingerprints,
they combine the basic features based on dominant protocol
analysis (e.g., types of protocols, port intervals) with derived
features based on statistical distributions (e.g., maximum and
minimum packet sizes). The feature fusion process can obtain
more discriminative information for device fingerprints.

The methods described above have a common limitation
that they cannot extract features until the completion of traffic
transmission and thereby are not suitable for early identifi-

cation. In practice, however, network administrators wish to
know device types as soon as the devices join the network.
To meet the needs of real-time device identification, several
studies propose more time efficient methods, e.g., obtaining
traffic representations using the first n packets in a connection.

IoT sentinel [119] extracts 23 features (e.g., IP options) from
the protocol header from packets generated in the device setup
process to meet the demands. For each newly joined device,
the features of the first 12 packets are recorded by gateway to
form device fingerprints. Based on the fingerprints provided by
the gateway, the remote server identifies the type using RF and
returns an isolation level, which is leveraged for restricting the
communication behavior of the device. The extracted features
are all related to specific fields in packet header, without taking
into consideration the behavior features of devices.

Deep learning methods. We notice that transitional ma-
chine learning methods have two significant defects: 1) they
all rely on artificial feature selection, which requires prior
domain knowledge, and 2) they are tightly bounded with a
specific task and cannot be easily transferred to different tasks.
To overcome these limitations, deep learning techniques have
been employed in recent studies [121, 160, 161].

Shanthi et al. [161] propose a mobile device classification
method, which employs packet inter-arrival time as traffic
representation and build a classifier using Artificial Neural
Networks (ANNs). They test 14 devices in an isolated testbed
and 23 devices (e.g., iPads, iPhones) in campus network. As
is known that packet timing is largely affected by network
fluctuation, such as packet loss and network jitters, these
methods are difficult to maintain high-level performance in
terms of accuracy. Similar to the previous work, packet inter-
arrival time is also exploited by Aneja et al. [160]. To achieve
better performance, they reshape the sequences of packet inter-
arrival into a two-dimensional image, which is used to train
a CNN classifier. Thus, the device recognition problem has
turned into an image classification problem. However, they
only consider two devices in their experiments, which is far
less than the amount of devices in practice. Moreover, there
is an unsolved issue of model retraining, i.e., the single multi-
class classifier requires full model retraining when new types
join, which requires further investigation.

Knowledge-based methods. These methods can be lever-
aged in routing device probing. Different Access Point (AP)
types have specific internal architectures, which affects the
speed of packet processing. Hence, the packet inter-arrival
time is a distinguishing feature for routing devices. Gao et
al. [73] extract distinct patterns of traffic by applying wavelet
transform to the sequence of packet inter-arrival time. The
wavelet analysis is used to reveal discriminative attributes of
wireless devices. Through measuring similarities of the current
pattern and the patterns in database, they can determine which
type of AP the traffic belongs to. This method is restricted in
real applications, because it largely relies on prior knowledge
of specific architectures.
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B. Operating System Identification

Operating System (OS) identification can find its applica-
tions in various scenarios. It enables network administrators
to obtain the information of end devices connected to the
network and ensure timely OS upgrades. From the perspective
of malicious attackers, OS identification is leveraged as a
powerful tool to learn vulnerabilities of the target system or
tailor attacks on a certain stale OS. Therefore, the study on
accurate and rapid OS identification is of great significance to
network security.

Machine learning methods. In recent years, a large num-
ber of machine learning methods have been proposed for OS
recognition. Multiple protocol header features are extracted,
such as the Time-to-Live of the IP header, the initial window
size and max segment size of the TCP header [122], as TCP/IP
header can still be attained even if the traffic is encrypted.
For example, p0f [167], a passive OS fingerprinting tool,
relies on configuration differences of various network stack
implementations reflecting in the packet header.

Al-Shehari et al. [111] extend p0f feature set by adding the
features extracted from the header of FIN packets (FIN packets
are TCP packets required to close connections). They utilize
the C4.5 algorithm to identify the OS that does not have an
exact match in the p0f signature database. However, only the
older versions of OS are considered in feature selection, which
leads to the newer OS can not be classified at the version level.

To classify the OS more accurately based on encrypted
traffic, several statistical features are applied, such as mean and
extreme value. In addition to TCP/IP and TLS header features,
Fan et al. [153] extract several flow statistics features (e.g.,
mean packet throughput). They use light gradient boosting
machine algorithm to identify the host OS information. This
method can identify not only types but also OS versions.
Muehlstein et al. [105] propose a method to identify the OS,
browser, and application. They leverage both base features
which are used in most traffic classification methods (e.g.,
packet inter-arrival time) and new features which are based
on a comprehensive network traffic analysis (e.g., bursty
behaviors). About 50 features are exploited in this work
including both header features and statistical features. The
feature selection is crucial, which affects the accuracy of the
model directly. However, the statistical features are sensitive to
OS upgrade, even a small magnitude of changes may reduce
the effectiveness of the model, which makes robust feature
extraction an important research direction.

Knowledge-based methods. These methods mainly lever-
age fingerprint libraries and pre-defined rules to identify the
OS types [74]. However, this method will fail if there are
multiple OS types corresponding to one key. To find more
effective fingerprints, Ruffing et al. [75] present a method
that extracts features of traffic in the frequency domain. To
filter out the frequency component that is not helpful for OS
identification, the genetic algorithm is applied to decide which
one should be kept. By calculating the correlation between
the features of the target traffic and the samples in fingerprint
libraries, they can identify which type of OS the traffic belongs
to. While the classification of minor OS versions is not solved

by the proposed method.

C. Summary and lessons learned

In this section, we review existing studies that focus on en-
crypted traffic analysis applied in network asset identification,
including device fingerprinting and OS identification. Due to
the differences in protocols used between devices, the packet
header information (e.g., TCP/IP fingerprints) is one of the
mostly used features extracted from traffic, as these features
can be attained even if the traffic is encrypted. In addition, the
statistical features (e.g., mean packet size) are widely used
to represent the uniqueness of traffic generated from different
devices, achieving effective identification performances.

Our investigation depicts several remaining challenges in
network asset identification. First, network devices, especially
IoT devices, are well known for the huge scale deployment.
Thus, continuous traffic collection and processing are required,
which lead to significant improvement for both feature extrac-
tion methods and classification frameworks. Second, the huge
scale is reflected in not only the generated traffic volume, but
also the multiple asset types. In practical applications, there are
types of devices that the model has not known before, which
requires the methods to be able to handle more complex cases
in the open-world scene. Finally, traffic source is a crucial part
of the effectiveness evaluation. However, due to the lack of
valid public dataset, most of current studies resort to the traffic
generated in the lab environment. Therefore, a large-scale and
real-world dataset is essential for network asset identification.

VI. NETWORK CHARACTERIZATION

As numerous network services keep on emerging, the im-
provement on user experience and service quality becomes
crucial to service providers. In this paper, we refer to network
characterization as the process of traffic monitoring and anal-
ysis to learn network characteristics that are closely related to
service quality. More specifically, we focus on two aspects of
network characteristics, namely QoE metric measurement and
protocol recognition.

The rapid growth of video streaming traffic asserts signifi-
cant pressure on mobile network operators [168]. QoE metric
measurement aims to extract critical QoE indicators (e.g.,
video bitrate, resolution, and stalling) from network traffic,
which can provide network operators with more insights into
the video delivery quality perceived by end users. Network
protocol recognition is also of great importance to network
operators, as it can provide a deep understanding of all kinds
of protocols in the traffic traversing their networks.

While traffic encryption benefits user privacy protection, it
has a negative impact on monitoring network characteristics.
In unencrypted traffic, QoE measurement and protocol recog-
nition are usually based on high performance DPI engines
that carefully inspects packet contents. For instance, the string
related to specific requests can be extracted from the HTTP
header to indicate the delay aroused at the beginning of
video sessions [12]. However, this information is hidden by
the encryption of packet contents. Moreover, several private
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Fig. 6: QoE Metric Measurement Model

protocols mask their identities through encryption for evading
censorship [169], increasing the difficulty of protocol recogni-
tion. In this section, we review and summarize existing studies
on encrypted traffic analysis with the goals of QoE metric
measurement and protocol recognition.

A. QoE Metric Measurement

With the exponential increase in multimedia services, QoE
measurement is increasingly crucial to the optimization or
development of corresponding services [172]. To measure QoE
reliably and accurately, several researchers develop objec-
tive quality prediction models through traffic collection and
analysis. The factors which influence quality (e.g., stalling
event, resolution and bitrate) or overall QoE which takes all
factors aforementioned into account are measurement metrics
concerned by the current QoE-related studies. We list several
metrics and show the model of QoE metric measurement in
Fig. 6. Selection of metrics describing QoE, collection and
prediction of traffic, especially real-time monitoring, are three
key points in QoE metric measurement. The current studies of
QoE metric measurement are summarized in Table VI.

Traditional machine learning methods. These methods
utilize observable network features (e.g., packet length and
packet time) and machine learning classifiers to predict QoE.
Several studies choose different features and use multiple sta-
tistical models for accurate QoE metric measurement through
analyzing encrypted traffic. The parameters and their weights
of models are momentous for accurate prediction. Therefore,
distinct weights are assigned to factors usually according to
their contributions to the overall QoE to obtain an objec-
tive statistical model [170, 171]. The proliferation of smart
vehicular terminals imposes serious challenges to vehicular
networks [173]. Oche et al. [170] observe that the key factors
impacting the QoE in a vehicular environment are frame
rate, bit rate, packet loss, throughput and delay, which may
lead to blocking, blurriness or blackouts of videos. They
propose a QoE estimation function based on the multivariate
statistical approach and ordinal regression analysis. The overall
QoE is estimated as a weighted sum of the QoE influencing
factors. Due to the convenience of predicting the overall QoE
according to the evaluation function, it is suitable for real-

time QoE prediction. However, the function requires regular
parameter updates to meet the dynamic changes of services.

In addition to using the overall QoE aforementioned, sev-
eral studies employ specific indicators (e.g., stall occurrence,
resolution, and bitrate) to describe different levels of QoE.
Dimopoulos et al. [123] propose a predictive model for
measuring QoE degradation levels caused by three key fac-
tors, i.e. stalling, video resolution and quality variations. To
obtain these factors from encrypted traffic, they extract 10
features from chunk size and packet inter-arrival time (e.g.,
the percentiles of chunk size), which are fed into RF for QoE
prediction. While the approach extracts features after obtaining
the traffic of an entire video session, which makes it unsuitable
for real-time measurement.

Traffic collection is a crucial part of the classification
process. Data diversity is important for creating robust and
effective models. Specifically, in order to collect more realistic
data, a variety of network conditions are supposed to be taken
into consideration. To this end, Oršolić et al. [126] collect the
YouTube video traffic under 39 different bandwidth scenarios
to estimate the QoE of end users when watching videos. The
bandwidth envelopes range from 0.3 to 7 Mbps to cover a large
number of different scenarios, which differ in QoE metrics,
e.g., stalling number. To be specific, they extract 17 statistical
features corresponding to packet length, packet time, packet
count and throughput as the input of 5 machine learning
models, e.g., RF and Naïve Bayes. However, it is not clear
whether the approach can obtain a superior performance when
transferred to other platforms, as the features are extracted for
YouTube traffic.

Similar to the aforementioned issues, the traffic generated
by software running on different platforms or network en-
vironments may be various in the terms of element loading
orders or packet sizes. In order to conduct a more complete
study of video streaming, Pan et al. [125] collect their data
from different networks, e.g., WiFi and 4G, or different areas,
e.g., Hong Kong and Shanghai for evaluating the quality
of video. Among them, the bitrate is regarded as the key
factor influencing user experience. Thus the main goal is to
acquire bitrate information. To be specific, multiple machine
learning algorithms such as RF are used as classifiers in the
method. However, in addition to quantifiable factors, more
user subjective feelings should be considered to the scope of
evaluation models, for instance, although high resolution is
provided, it is not user-friendly if stalling occurs due to the
poor network condition.

Deep learning methods. Traditional machine learning
methods require the input of interpretable features, while deep
learning can utilize raw traffic data to avoid hand-crafted fea-
ture selection. Shen et al. [139] design a CNN-based model for
measuring fine-grained video QoE metrics, including startup
delay, rebuffering, and video resolution. To achieve the goal of
inferring QoE metrics in a real-time manner, only the Round-
Trip Time (RTT) of upstream packets are used as a crucial
feature. Real-world datasets collected from two large-scale
content providers (i.e., YouTube and Bilibili) are utilized to
demonstrate the effectiveness of the approach. While it will
be invalid in video streaming based on UDP protocol, as there
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TABLE VI: A Conclusion For Studies Related To QoE Metrics Measurement.

Analysis Analysis Goals Dataset Representation1 Method2 Evaluation3

Name Year Stalling Resolution Switch BR Scale EM Level Style PC PL PT PD Others Category Classifier Train Predict ET TO

[170] 2017 X X 2 databases HTTPS Flow SF X ST - Off Off X

[171] 2018 X X - - Flow SF X X ST - Off On X

[123] 2016 X X X 390k sessions HTTPS Session SF X X X ML RF Off Off X

[126] 2016 X X 1060 traces HTTPS Session SF X X X X ML RF Off Off X

[124] 2018 X X X 1000+ videos QUIC Flow SF X X ML RF Off Off X

[125] 2016 X X X - HTTPS Flow SF X X X X ML RF Off On X

[96] 2017 360 flows - Flow SF X X X ML k-NN Off Off X X

[127] 2019 X 3879 sessions QUIC Session SF X X X X ML RF Off On X

[139] 2020 X X 2 databases HTTPS Flow SF X DL CNN Off On X X

1 In the Traffic Representations columns, Level is traffic representation level, Style is traffic representation style, where SF denotes statistical features, PC is packet content, PL is packet length, PT is packet timing,
PD is packet direction.

2 In the Method columns, Train is online training or offline training, Predict is online predicting or offline predicting.
3 In the Evaluation columns, ET is effectiveness, TO is time overhead.

TABLE VII: A Conclusion For Studies Related To Protocol Recognition.

Analysis Dataset Traffic Representation1 Method2 Evaluation3

Name Year Scale EM Level Style PC PL PT PD Others Category Classifier Train Predict CW OW Efficiency Overhead

[77] 2011 4 Protocols - Flow SF X X KB - Offline Offline X X

[78] 2014 30+ Protocols TLS Flow SF X KB - Offline Offline/Online X X X X

[137] 2009 SSH Protocol SSH Flow SF X X X ML k-Means Offline Online X X

[174] 2017 Tor Service Tor Flow SF X X ML Clustering Offline Offline X X

[140] 2017 108 Services - Flow GP X X X X DL CNN/RNN Offline Offline X X

[141] 2019 5 Protocols SSH Flow IM X X X DL CNN Offline Online X X

1 In the Traffic Representations columns, Level is traffic representation level, Style is traffic representation style, where SF denotes statistical features, PC is packet content, PL is packet length, PT is
packet timing, PD is packet direction.

2 In the Method columns, Train is online training or offline training, Predict is online predicting or offline predicting.
3 In the Evaluation columns, OW is open world, CW is closed world.

are no RTT features in UDP traffic.

B. Protocol Recognition

Protocol recognition is an important foundation for network
service providers and network administrators to provide dif-
ferentiated Quality of Service (QoS) or carry out malware and
intrusion detection. Traditionally, protocols are identified by
ports which are assigned for the majority of standard protocols
(e.g., HTTP, FTP and TELNET) by the Internet Assigned
Numbers Authority (IANA). While port-based identification
methods are less effective, as many applications allow users
to customize the ports for communication [175]. Therefore,
several approaches have been proposed to deal with this
problem, which are summarised in Table VII.

Traditional machine learning methods. These methods
have been widely used in protocol recognition, which is
useful for network management and resource allocation. The
extracted features, e.g., mean packet size, packet inter-arrival
time, standard deviation in packet lengths and absolute de-
viation of packet sizes, rely on information that can be
obtained from packet headers or the entire flow/session. For
instance, Rao et al. [174] propose a method for Tor anonymous
traffic identification based on cluster algorithm. Observing
that the duration time between onion proxy and entry node

of Tor network is usually fixed and long, the flow duration
time is extracted as features. Moreover, the large number of
fixed-length packets in the process of communication in Tor
network is considered as another typical feature. Combined
with the above features, they utilize the gravitational clustering
algorithm as a classifier to realize the Tor traffic identification.
However, the approach results in poor performance in classify-
ing Tor and Http traffic, as the former is usually hidden behind
the latter, which leads to similarity between them.

Deep learning methods. In addition to traditional machine
learning methods, these methods are widely utilized to identify
security protocols. Lopez-Martin et al. [140] present a new
technique based on a combination of CNN and RNN that can
be applied on IoT traffic to recognize the used services. In
terms of feature extraction, they only consider the first 20
packets that are exchanged in a flow lifetime. 6 features are
extracted from each packet header, i.e., source port, destination
port, packet direction, bytes in payload, inter-arrival time and
window size. They observe that compared with pure RNN
model, RNN combined with a previous CNN model can
achieve higher accuracy, as the location invariant patterns from
the reshaped traffic can be extracted by CNNs.

Knowledge-based methods. These methods are used to
identify protocols based on specific rules. The DPI method
appears to obtain more accuracy in protocol recognition, which
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is used to check the contents of the entire packet involving
packet header and payload, and then match some pre-defined
special strings to determine the specific application. For ex-
ample, L7-filter [176], Libprotoident [177] and nDPI [78] are
built based on DPI, where nDPI has the ability to process
encryption protocols. It applies a decoder for SSL that extracts
the host name, which can be leveraged for specific application
identification.

C. Summary and Lessons Learned

In this section, we review existing studies that focus on
encrypted traffic analysis applied in QoE metric measurement
and protocol identification from the perspective of user expe-
rience. As shown in Table VI, 4 types of key factors affecting
QoE are concluded, i.e., stalling, resolution, switch and bitrate.
To measureg these factors, several statistical features are
extracted from encrypted traffic, where the packet timing is
the most commonly used feature, as it can reflect the speed
of data transmission directly.

However, there are also several challenges related to net-
work characterization. Firstly, as the requirements for real-
time resource allocation and optimization mechanisms in-
crease, such as the emergence of live broadcast applications,
online deployment and updates of QoE prediction models are
demanded. Secondly, the majority of aforementioned studies
choose a subset of protocols in order to examine the effec-
tiveness of approaches, which leads to potential scalability
and adaptability issues. Moreover, since efficient data col-
lection is significant, we suggest automating the process of
data collection and processing, which enables the running of
more massive measurement assignments and thus increases the
robustness of prediction models.

VII. PRIVACY LEAKAGE DETECTION

With the development of the Internet, large amounts of data
are created and disseminated, which may contain personal
private information. The user activities can be inferred from
non-encrypted traffic effortlessly. Take web browsing for ex-
ample, the website being visited can be confirmed through the
HTTP packet header (e.g., host). While with the widespread
encryption protocol, the packets are usually encrypted by TLS,
making the HTTP header invisible. However, attackers can
still obtain sensitive information from the encrypted traffic. In
other words, despite the existence of encryption technologies,
there is still a risk of privacy leakage through the channel of
encrypted traffic analysis.

In this section, we will introduce three aspects of privacy
leakage detection, which are website fingerprinting, applica-
tion fingerprinting, and user action identification, respectively.
Website fingerprinting is a kind of traffic analysis that attempts
to learn about which website or webpage users are browsing.
Similarly, application fingerprinting can be used to identify
which application users are using. User action identification
focuses on inferring the behaviors of users, e.g., sending an
email on smartphones. A summary of approaches pertaining
to privacy leakage detection are presented in Table VIII

It is worth mentioning that, from the aspect of defense,
it helps administrators discover if there is a risk of privacy
leakage, so they can protect user data by adding artificial
noise [178]. However, from the aspect of the attack, the
machine learning techniques for leakage detection might be re-
purposed as an adversarial tool to launch privacy attacks, e.g.,
re-identification attacks, inference and linkage attacks [179–
182], which puts users at risk of privacy breaches even when
only browsing on the Internet.

A. Website Fingerprinting

The popularity of the Internet has aroused people’s attention
to potential privacy threats associated with web browsing.
Although encryption mechanisms like SSL/TLS or HTTPS
establish encrypted tunnels to preserve communication con-
tents, they are still endangered by website fingerprinting (WF)
attacks, which leverage specific features of encrypted traffic,
e.g., packet sizes, time and directions, to identify a website or
webpage. Through the features, inadequate information about
user identities, behaviors and preferences may be leaked.

Fig. 7: Threat Model of Website Fingerprinting

The threat model of WF is shown in Fig. 7. First, the
attacker utilizes sniffing tools such as Wireshark to monitor
encrypted traffic generated by the victim. Then, the obtained
traffic is segmented into flows or sessions, from which mul-
tiple features are extracted. After that, the attacker leverages
classification techniques, e.g., machine learning algorithms, to
identify from which website the traffic is generated. In this
way, the web browsing information of the victim is leaked.

Traditional machine learning methods. The traditional
machine learning classifiers, such as k-NN [100], SVM [106]
and RF [128], are widely used in website fingerprinting. The
effectiveness of different methods is usually evaluated in two
scenarios, namely closed-world and open-world scenarios. In
the closed-world assumption, users are assumed to access a
small number of known websites, which simplifies the attack
process. However, in practice, users can visit a larger amount
of websites, thus it is unrealistic for the attacker to collect
samples of all possible websites. The open-world assumption
is more realistic, where only a fixed set of websites are
assumed to be monitored by the attacker.

The popularity of Tor with anonymity urges researchers
to propose novel WF attacks. Though Tor claims to provide
anonymous browsing services for users through encryption,
it cannot conceal the behavioral information of traffic, e.g.,
packet directions and packet inter-arrival time. Al-Naami et
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TABLE VIII: A Conclusion For Studies Realted To Website & Application Fingerprinting And User Action Identification.

Analysis Dataset Traffic Representation1 Method2 Evaluation3

Name Year Scale EM Level Style PC PL PT PD Others Category Classifier Train Predict CW OW ET TO

[79] 2010 2000 sites OpenVPN/SSH Session SQ X KB - Off Off X X X

[89] 2014 11+ sites VPN Flow SF X X X ST BayesNet Off Off X X

[106] 2011 1M pages Tor/JAP Session SF X X X X ML SVM Off Off X X X X

[107] 2016 300k pages Tor Session SF X X X ML SVM Off Off X X X X

[98] 2016 1000+ pages Tor/HTTPS Session SF X X X X ML SVM/k-NN/RF On On X X X X

[103] 2020 80k pages Tor Session SF X X X ML SVM/k-NN Off Off X X X

[108] 2013 1000 sites Tor Session SQ X X X X ML SVM Off Off X X X

[97] 2014 100 pages Tor Session SF X X X X X ML k-NN Off Off X X X X

[128] 2016 100k+ sites Tor Session SF X X X ML RF/k-NN Off Off X X X X

[101] 2017 33k+ traces Tor Session SQ X X X ML k-NN Off Off X X X

[102] 2018 55k pages Tor Session SF X X X X X ML k-NN Off Off X X X

[100] 2019 6k flows SSL/TLS Flow SQ X ML k-NN Off On X X X

[113] 2020 37k traces SSL/TLS Flow SF X X ML k-NN/RF/DT Off Off X X X X

[70] 2018 20k+ sites Tor Session SQ X DL CNN Off Off X X X X

W
eb

sit
e

Fi
ng

er
pr

in
tin

g

[142] 2019 3 datasets Tor Session SQ X DL CNN Off Off X X X

[183] 2016 12 apps SSL/TLS Session SF X ST Markov Off Off X X

[16] 2017 14 apps SSL/TLS Session SF X ST Markov Off Off X X X

[92] 2018 18 apps SSL/TLS Flow SF X X ST Markov Off Off X X

[90] 2016 1595 apps HTTPS Session SQ X ST Bayes Off On X X

[129] 2015 13 apps WPA2 Flow SF X X X ML RF Off On X X

[109] 2016 5 apps HTTPS Flow SF X X ML RF Off Off X X

[130] 2018 110 apps SSL/TLS Flow SF X X X X ML RF Off Off X X

[114] 2013 40 apps HTTPS Flow SQ X ML DT Off Off X X

[71] 2021 1300 Dapps SSL/TLS Flow GR X X X DL GNN Off Off X X X X
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[143] 2018 15 apps HTTPS/SSH/SSL Flow SQ X X DL MLP/SAE/CNN Off On X X X

[81] 2007 21 languages SSL Session SF X KB - Off Off X X X

[80] 2010 - SSL Flow SQ X X KB - Off Off X X

[93] 2008 122 sentences SSL Flow SQ X ST Markov Off Off X X

[86] 2014 - SSH/HTTPS Flow SQ X ST Bayes Off Off X X

[132] 2015 3 apps SSL/TLS Flow SF X X X X ML RF Off Off X X

[22] 2016 35 activities SSL/TLS Session SF X X X X ML SVM Off Off X X

[184] 2017 7 usages SSL/TLS Flow SF X X ML MVML Off Off X X

[133] 2018 16 actions SSL/TLS Flow SF X X X X X ML RF Off Off X X X

[110] 2017 2100 titles HTTPS Flow SF X ML SVM Off Off X X X

[131] 2018 780 files - Flow SF X X X X ML RF Off Off X X

[149] 2018 10 videos HTTP Flow SF X X X DL CNN/LSTM/MLP Off On X X
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[150] 2018 100 traces WPA/WPA2-PSK Flow SQ X DL LSTM Off Off X X

1 In the Traffic Representations columns, Level is traffic representation level, Style is traffic representation style, where SF denotes statistical features, SQ denotes sequence and GR denotes graph, PC is packet
content, PL is packet length, PT is packet timing, PD is packet direction.

2 In the Method columns, Train is online training or offline training, Predict is online predicting or offline predicting.
3 In the Evaluation columns, CW is closed world, OW is open world, ET is effectiveness, TO is time overhead.

al. [98] propose a WF attack by extracting features related to
data dependencies occurring over sequential transmissions of
packets, e.g., bursts, packet sizes and timestamp. To mitigate
the impact of drifts between the current data and previously
training data, the model needs to be re-trained periodically
according to whether the accuracy drops below a certain
threshold. Hence, there is an open issue of model fine tuning
to overcome the data drift problem.

A superior representation of traffic plays a momentous role
in WF. Wang et al. [108] propose a data collection scheme
that uses the more fundamental Tor cells, which are data in
units of 512 bytes, instead of TCP/IP packets as the meta-
data. Since then, Tor cell has been certified and utilized in

WF. Wang et al. [97] improve the effectiveness of the former
in the open-world scenario by using k-NN. The fingerprints
are constructed based on the features including bursts, packet
sizes and packet ordering. However, it needs manually analysis
to extract features that may contain significant information, to
overcome this shortcoming, Panchenko et al. [107] propose a
WF attack named CUMUL based on cumulated packet sizes
and an SVM classifier. They leverage the cumulated sum of
packet sizes as the traffic representation, from which a fixed
number of features are derived. Specifically, they extract the
features by sampling the piece-wise linear interpolant of the
cumulated packet size sequence at n equidistant points. The
feature sets proposed in [107] and [97] have proven to perform
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well on website fingerprinting while they are less effective on
webpage classification.

Webpage fingerprinting is a fine-grained variation of WF,
where the attackers attempt to identify specific webpages
belonging to the same website. The analysis of webpages is
meaningful for privacy leakage detection due to the reason
that the fine-grained analysis may reveal more sensitive in-
formation. For instance, the attacker can acquire information
about which type of videos the victim prefers. However, the
SSL/TLS traffic parameters of different webpages on the same
websites are basically the same, making the classification
methods based on SSL/TLS fingerprints less effective.

To achieve fine-grained WF, Shen et al. [100] focus on
the classification of webpages from the same website. The
cumulative length of a packet sequence is selected as the
feature, which distinguishes between webpages. Only features
extracted from the first 100 packets of a webpage loading
trace are input into the k-NN classifier, balancing the accuracy
and time complexity. As the cumulative packet length in
bidirectional interaction between clients and servers describes
the differences in the content transmitted on webpages, it is
effective for fine-grained webpage fingerprinting. The authors
in [113] extend the study in [100] by utilizing more distin-
guishing features and enlarging the experimental dataset. The
regular patterns of the first few packets in the interaction
process are leveraged to identify the webpages. They grasp
distinctive features of webpages related to packet length in
the uplink-dominant stage, including block features, sequence
features and statistical features. Both high accuracy and low
time overhead are achieved using the extracted features.

The selected features play an important role in WF, hence,
there are several studies focusing on how to choose the
distinctive features. For instance, Li et al. [102] select 3043
features used in the state-of-the-art WF attacks and empirically
confirm that Tor leaks information about client connections.
The mutual information is exploited to measure the amount
of information that can be obtained through encrypted traffic,
which illustrates that anonymous networks are still faced
with eavesdropping. The above work quantifies the extent of
information leakage, which brings inspiration in the aspect of
feature selection.

Deep learning methods. Compared with traditional ma-
chine learning, deep learning requires more complex calcula-
tions and larger consumption, e.g., storage resources and time
costs. As the input of the deep learning model, the samples
classified need to be expressed in a regular form, e.g., a
sequence of fixed lengths. Generally, deep learning methods
weaken the interpretability of features, as feature extraction is
done automatically by the model.

To protect the communication from encrypted traffic analy-
sis, there are two defense strategies against WF attacks, which
are WTF-PAD [185] and Walkie-Talkie [186], respectively.
WTF-PAD is a defense method using adaptive padding that
can increase padding when channel utilization is low. Walkie-
talkie makes the network connection work in a half duplex
mode as well as adds dummy packets and delays to mask the
features of communications.

After that, robust WF methods have been proposed to

maintain their performance on defended traffic. Sirinam et
al. [70] propose a method named DeepFingerprinting based on
CNNs. To be specific, the traffic is represented as sequences
of packet directions (e.g., 1 for incoming packets and −1
for outgoing packets), which is used for automatic feature
extraction by the CNN classifier. Even though the traffic
statistical features are partly obscured by dummy packets, the
remaining sequence features can still be learned by the CNN
model. Gong et al. [187] observe that the front of traffic leaks
the largest amount of information. They propose a WF defense
method, named Front, to add dummy packets to the front
of traffic according to Rayleigh distribution. The experiments
show that it can reduce the effectiveness of DF [70].

To further improve the transferability of WF methods in
different scenarios, the authors in [70] propose Triplet Finger-
printing [142], which is built on a machine learning technique
named N-shot learning that requires a few training samples to
identify a given class. While they do not address the problem
of multi-tab web browsing [188], i.e., the users visit multiple
websites continuously, where the traces of the websites may
overlap. It remains an open issue of multi-trace splitting and
classification.

In addition for WF attacks, deep learning, e.g., the genera-
tive adversarial net (GAN), also has applications in the privacy
protection [179] to prevent attackers from inferring sensi-
tive information from user browsing traffic. For example, as
deep neural networks are vulnerable to adversarial examples,
Nasr et al. [189] leverage adversarial perturbation to disturb
the original traffic patterns. They design an adversarial network
and a dummy packet inserting approach to create adversarial
perturbations on live traffic, which is effective for againsting
Var-CNN [190] and DF [70].

Recently, the one-page setting, a standard for evaluating WF
defenses, is proposed by Wang [191]. The author argues that
the evaluation of WF defense should not be set in a scenario
where there are a large number of websites in the open world,
which strongly favors the defender. He proposes that WF
defense should be evaluated with only one monitored website
and one non-monitored website. The experiment results show
that under one-page setting, Decoy [192], Front [187] and
Tamaraw [193] failed to defend against WF.

Knowledge-based methods. These methods are utilized in
WF because of their convenience and efficiency. Specifically,
calculating the similarities between samples to be classified
and samples of known categories is one of the commonly used
methods. Lu et al. [79] consider information about packet sizes
and propose an approach to analyze the similarity between
fingerprints using Levenshtein distance, which is effective for
WF in the case of encryption and proxy channels. Considering
that the Maximum Transmission Unit (MTU) downloading
packets contain less information, only the size of the last
packet transferring the remaining data in each data chunk
is extracted as the fingerprint. The proposed method can
guarantee the effectiveness of defending strategies such as
traffic morphing and padding. While the extracted features
depend heavily on packet size information, which is not
available for Tor network.
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B. Application Fingerprinting

With the profusion of mobile applications, the resulting
network traffic increases dramatically. The existing studies
usually regard the process of identifying applications through
traffic analysis as application fingerprinting (AF). On the one
hand, AF helps network administrators identify the appli-
cations that are visited by users in their networks, which
can be used for network management. For example, through
encrypted traffic analysis, the administrator can block access
to forbidden applications for security control. On the other
hand, AF leaks the users privacy such as their commonly used
applications. For example, the usage of sensitive applications
such as job-hunting and health testing applications may cause
privacy exposure. In addition, grasping the information on
sensitive applications visited by potential victims, attackers
may provide them with false information and commit fraud
such as phishing attacks.

Due to the widely used encryption mechanisms, traditional
methods such as payload-based classification are no longer
feasible. Multiple machine learning methods (e.g., RF [129]),
deep learning methods (e.g., CNN [143]) and statistical meth-
ods (e.g., Markov model [16]) have been proposed for AF.

Traditional machine learning methods. Behavioral fea-
tures such as sizes, lengths and directions are used in these
methods, as alternatives to packet contents, which is invisible
in encrypted traffic. Wang et al. [129] leverage the frame inter-
arrival time, size and direction during bursts, which contain
several frames aggregated densely within a period of time, as
traffic features to categorize iOS and Android applications.
Shen et al. [183] combine certificate packet length with
second-order Markov Chain to identify applications. However,
there are several occasions where the probability computed
with the fingerprint of correct application is lower than that
of the wrong application, as certificate packet lengths of the
two applications are subject to the same cluster. To solve the
issue, they extend the leveraged information to two types, i.e.,
the first application data length, and the certificate packet size
in [16]. However, there are conditions that produce SSL/TLS
flows without the certificate packets. To solve the problem,
Liu et al. [92] leverage both message type sequences and
packet length sequences as features, as there are overlaps
in message type sequences between different applications.
However, this method needs to load the entire flow before
performing feature generation, weakening their capabilities for
timely classification.

Capturing the traffic of specific targets contrapuntally has
been the most commonly-employed strategy in practice. Nev-
ertheless, it is not simple to distinguish and filter background
traffic completely. Moreover, the mixture of target traffic
and background traffic may weaken the effectiveness of the
classification model. To solve the issue, Mongkolluksamee et
al. [109] filter short-lived flows according to flow duration
constraint to remove background traffic. Specifically, they
construct graphlet consisting of five-tuple information and
then utilize 59-dimension features extracted from graphlet
and packet size distribution to classify monitored applications.
However, it is not clear how scalable and robust their approach

is since they consider only five applications. Moreover, the
application fingerprints may be influenced by different devices,
versions or time, which corresponds to the robustness and the
stability of analysis methods. To investigate how to identify
apps or how app fingerprints change, Taylor et al. [130]
utilize a total of 54 statistical features to construct burst
vectors, e.g., the variance, skew and kurtosis of packet sizes,
and train the ambiguity detection classifier which involves a
reinforcement learning strategy. They evaluate the robustness
of their approach across various app versions, devices or
changing time, the last of which is the least influential factor.

Fig. 8: Traffic Interaction Graph [71]

Deep learning methods. Deep learning automatically ex-
tracts and selects features, reducing the cost of manual fea-
ture extraction greatly. For example, decentralized applica-
tions (DApps) are increasingly developed and deployed on
blockchain platforms. [71, 194] However, DApps deployed
on the same platforms may share similar encryption settings,
which reduces the discrimination of the generated traffic. To
identify DApp accurately, Shen et al. [71] propose GraphDApp
to extract traffic interaction graph using the method shown in
Fig. 8 and utilize GNN for identifying decentralized appli-
cations that users visit. The traffic interaction graph reserves
several dimensional features like packet length, direction and
so on. Furthermore, their method is verified in classification
of traditional applications and is applicable. While it needs to
be updated regularly as the applications change.

C. User Action Identification

Apart from websites and applications, identifying fine-
grained user actions from encrypted traffic is essential for
network management. Various service providers research user
behaviors or request types in order to manage services and
improve QoS better. In addition, several studies analyze the
specific traffic of applications, e.g., voice call, to detect the
leakage of user privacy.
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Traditional machine learning methods. These methods
are widely used in user action identification. Despite the use of
SSL/TLS, the traffic analysis approach is still an effective tool
that an eavesdropper can leverage to undermine the privacy of
mobile users. Conti et al. [132] propose a user action iden-
tification method based on clustering and RF. Packet header
information (e.g., ports), packet sizes and packet directions
are considered as features. The method takes advantage of the
most distinctive flows belonging to a particular user action for
classification. However, there are only 3 applications and a
subset of actions related to those applications are analyzed.
Thereafter, Saltaformaggio et al. [22] expand the application
data set and propose a method to detect 35 types of behaviors
in iOS and Android applications, such as reading news. Instead
of extracting the fingerprints of an activity directly, they cut the
traffic into segments, which represent the traffic’s behaviors in
a time window. Whether the traffic contains specific behaviors
is considered as the fingerprints to classify activities. While the
method is vulnerable to imitation attacks, i.e., replaying traffic
that belongs to other applications to confuse the classifier.

Watching videos online by multiple users will generate a
large amount of traffic, which may leak users privacy such as
religious faith and sexual orientation. Encrypted traffic analysis
is applied to video identification to prove the information leak-
age from video streaming. The packet size features extracted
for other purposes, such as audio content analysis, are not
reliable for video classification, as the payload size in video
streaming is often set to be the maximum size. Dubin et
al. [110] propose a method to classify the video titles on
YouTube from encrypted traffic. They observe that the total
number of bits at a peak, which is defined as a section of
traffic where there is silence before and after, is an informative
feature. Therefore, they construct a feature vector containing
the bits of every peak in a video stream and make classification
based on the similarity between a given sample and the known
classes. Specifically, during the experiments, the noise traffic,
e.g., non-YouTube packets and TCP re-transmission packets
are filtered out at the state of preprocessing. While in a real
network environment, the re-transmission event may change
the feature distribution and even hinder accurate classification.

The widespread use of smart IoT devices gives rise to ram-
pant concerns on user privacy. Smart devices such as Amazon
Echo, which can interact with users via voice commands, may
leak sensitive information such as contents spoken from traffic
transmitting between the cloud service and itself. Jackson et
al. [131] focus on the information leaked by smart speakers
such as Amazon Echo. They collect the encrypted traffic sent
from the cloud service to the Echo device, which associates
with the response to the user request. Several statistical fea-
tures extracted from TCP packets, such as the histogram of
packet inter-arrival time, are exploited to identify the type
of user requests, e.g., requests for weather and directions.
It demonstrates the information leakage of user request type
in smart speakers, but its generalizability across different
networks, users, and devices still needs further investigation.

Deep learning methods. These methods are useful for
identifying video contents or user actions. Li et al. [149]
develop RNNs requiring less computational power and time

than state-of-the-art classifiers to identify YouTube videos. It
does not require complete TCP/IP flow information, which
makes it suitable for online video identification. Nevertheless,
the authors consider only 10 videos so it is unclear whether
the method is effective in unveiling more videos.

To detect the existence of wireless cameras and infer user
presence status, Ji et al. [150] utilize packet lengths and LSTM
to identify whether there is a wireless camera in the target area.
Furthermore, the count or size of video and audio frames of
wireless camera may change with motions and voices of users,
resulting in different bitrate. As such, they infer user presence
by detecting the bitrate changes caused by human motions.
However, slight movements of users may not change the state
of camera, resulting in failure recognition, which makes the
method less effective.

Knowledge-based methods. Various communication appli-
cations are arising to provide convenience to users. However,
an encrypted VoIP conversation does not prevent attackers
from eavesdropping completely. Knowledge-based methods
can be leveraged to discover the sensitive information, e.g.,
language used [81], which leaks users privacy in the commu-
nication process. Dupasquier et al. [80] focus on recognizing
the specific sentence during the conversation using Skype,
which is a widely used VoIP application. The packet sizes are
used as features to achieve isolated phoneme classification.
Through manually separating sentences, the dynamic time
warping (DTW) algorithm is used to calculate whether each
sentence is the specific sentence previously set. However, due
to the variety of sentences in natural language, it is impossible
to build a DTW model for each sentence.

D. Summary and Lessons Learned

In this section, we review three types of encrypted traffic
analysis related to privacy leakage detection, i.e., website
fingerprinting, application fingerprinting, and user action iden-
tification. Discriminative feature extraction and appropriate
classifier selection are two key points in privacy leakage detec-
tion, affecting the effectiveness of models significantly. Packet
length and packet direction are two widely used features
in disclosing traffic private information. From coarse-grained
WF to fine-grained action analysis, more discriminative traffic
representations, e.g., burst features, and more complex network
structures, e.g., GNN, are used to dig out leaks.

Based on the limitations of existing approaches, several
issues should be further investigated. First, the variety of
dataset should be taken into consideration. For instance, the
traffic used for WF is supposed to be collected from multiple
web browsers (e.g., Firefox, Chrome and Internet Explorer)
and multiple platforms (e.g., Windows, Linux and iOS), which
can be leveraged to validate the generality of models. Second,
in response to these privacy attacks, practical defenses have
been proposed by adding dummy packets or delays into the
traffic to mask the original features. Those countermeasures
hinder the effectiveness of privacy attacks, which requires
exploring traffic features surviving under these defenses.
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TABLE IX: A Conclusion For Studies Related To Anomaly Detection.

Analysis Dataset Feature1 Method2 Evaluation3

Ref Year Platform Collection point/Dataset Level Style PH PC PL PT PD Others Category Classifier Train Predict Uk ET TO

[82] 2014 Mobile Gateway Flow SF X X X X KB - Off Off X

[83] 2018 IoT Between device and hub Flow SF X X KB - Off On X

[115] 2017 Mobile Gateway Flow SF X X X X X ST/ML DT/k-NN/Bayes Off Off X X X

[154] 2015 Mobile - Session SF X X X X X ST/ML Bayes/DT/RF/ Off Off X X

[195] 2017 Mobile Gateway Flow SF X X X ML RF/k-NN/DT Off Off X

[157] 2019 Mobile Host/Gateway Flow SF X X X X ML XGBoost Off Off X X

[116] 2018 Mobile Gateway Session SF X X X ML DT Off Off X

[91] 2017 Mobile - Flow SF X X X X ML Bayes Off Off X X X

[134] 2020 IoT Between device and hub Flow SF X X X X ML RF Off Off X

[144] 2018 Mobile Stratosphere IPS project Flow SF X X X X ML/DL RF/CNN Off Off X

[151] 2017 Mobile Cloud firewall Flow SF X X DL LSTM Off Off X X

[145] 2020 Mobile CICAndMal2017 Flow SQ DL Autoencoder/CNN Off Off X
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[146] 2020 Mobile CICAndMal2017 Flow SQ DL CNN Off Off X

[84] 2015 - CAIDA 2007 Session SF X Entropy KB - Off Off X

[138] 2015 Simulation network MIT-DARPA 1999 Flow SF X X Entropy ML k-Means On On X X

[196] 2015 Isolated network RGCE Flow SF X X X X X ML DBSCAN On On X X

[117] 2018 Simulation network UNSW-NB15 Flow SF X X X X X ML/DL RF/DT/SVM/MLP Off Off X X

[158] 2017 SDN - Flow SF X X X ML Bagged Trees Off Off X X

[135] 2020 Blockchain - Flow SF X X X Entropy ML RF Off Off X

[136] 2020 IoT Gateway Flow SF X X ML RF Off On X X

[69] 2016 Isolated network RGCE Flow SF X X X Duration ML/DL SOM/SAE Off Off X X

[197] 2020 Campus network CTU-13 Flow SF X X X X X Duration DL ANN Off Off X
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[152] 2019 Simulation network ISCX Flow SQ DL CNN/LSTM/SAE Off Off X

1 In the Traffic Representations columns, Level is traffic representation level, Style is traffic representation style, where SF denotes statistical features and SQ denotes sequence, PH is packet header, PC is packet content,

PL is packet length, PT is packet timing, PD is packet direction.
2 In the Method columns, Train is online training or offline training, Predict is online predicting or offline predicting.
3 In the Evaluation columns, Uk is unknown attack, ET is effectiveness, TO is time overhead.

VIII. ATTACK DETECTION

With the rapid evolution of the Internet, the complexity
of network topology and the scale of devices has increased
accordingly, which brings an outbreak trend of anomalous
behaviors. The increasing popularity of mobile phones and
IoT devices attracts malware developers who earn profit from
the malicious applications implanted into victims’ devices.
Moreover, there are numerous network attacks on various
platforms, e.g., campus networks, enterprise networks, IoT net-
works and blockchain networks. Given the significant growth
of anomalous behaviors, there is a pressing need for timely
and effective anomaly detection.

The traditional anomaly detection methods commonly scan
packet contents to find malicious patterns based on the pre-
determined signatures, e.g., the unique part of the malware
which is unlikely found in any benign traffic [198]. However,
due to traffic encryption, payload-based anomaly detection
methods are less effective. Thus, novel traffic representations
and anomaly detection methods suitable for encryption traffic
need to be proposed. As described in Table IX, we mainly
focus on the applications of encrypted traffic analysis in
malware detection and network anomaly detection.

A. Malware Detection

Malware is software designed to damage devices or net-
works. After being implanted in the target device, the malware
will run executable code or scripts to damage it. For example,
malware like WannaCry and Petya disrupted business oper-
ations by exposing vulnerabilities in software, which leads
to immense financial loss. The rampant malware makes it
necessary for intelligent intrusion detection systems.

Traffic analysis methods are largely used in malware de-
tection, which attempts to leverage unique features reflected
in traffic to detect the behavior of the target software during
execution. While the encryption leveraged in malware com-
munication hinders payload-based feature extraction, which
motivates researchers to find effective fingerprints that can be
used for encryption traffic.

Traditional machine learning methods. Machine learning
has become the most commonly used intelligent data analysis
technology. A large amount of studies apply machine learning
techniques to malware detection. We divide these studies
into the application of machine learning methods in mobile
malware detection and IoT malware detection.

With the development of wireless communication tech-
nology [182, 199], smartphones have become indispensable,
which are closely related to sensitive information exchange.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3208196

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on September 22,2022 at 03:31:07 UTC from IEEE Xplore.  Restrictions apply. 



23

However, the software installed on mobile phones may bring
potential dangers to users. Smartphones store a large amount
of private information, thereby, they are the main targets of
cyber-attacks [200], which makes it urgent to build an efficient
malware detection system to protect privacy.

Lashkari et al. [195] propose an Android malware detec-
tion model to protect mobile device users from malicious
applications. They leverage 3 feature selection algorithms, i.e.,
information gain [201], cfs subset evaluation [202], and SVM,
to select the common features from the feature set. Finally, the
selected features, e.g., maximum and minimum packet length,
are extracted from traffic and then are fed into 5 classifiers,
e.g., k-NN and DT. They compare the precision, recall, accu-
racy and false positive of the 5 classifiers and observe that the
DT model performs well in two tasks, i.e., distinguishing mal-
ware from benign applications and classifying malware into
general malware and adware (software that generates revenue
by generating advertisements automatically). To improve the
performance of a single machine learning model, ensemble
learning is used in malware detection. Rahmat et al. [157]
apply bagging and boosting algorithms to create ensemble
models. They divide the dataset into smaller subsets and each
of the subsets is then provided to train a base learner. The
outputs obtained by these learners are voted to obtain the final
result. They compare 5 ensemble learners (e.g., AdaBoost,
XGBoost) as well as 4 single learners (e.g., Naïve Bayes,
SVM) and observe that the XGBoost model achieves the
highest accuracy.

The above methods require a large number of resources for
feature calculation and classifier training. However, mobile
phones have limited computing power and storage, which
necessitates a lighter detection method to improve user ex-
perience. Offloading the calculations from mobile to remote
servers can be used to solve the challenge. Following this idea,
Wang et al. [116] utilize a mirror technology to transfer traffic
to the server, which is used for traffic filtering, analyzing and
detecting. To detect malware, they train a DT model with 6
statistical features including uploading or downloading bytes,
uploading or downloading packet number and average byte
of uploading or downloading packets. However, this method
performs poorly in unknown types of malware detection, as it
relies on existing features, which may not appear in unknown
malware.

Given the various types of malware, there is a pressing
demand to propose methods to detect the malware family that
is not included in the training set, which requires extracting the
features that are prevalent in malware traffic. Garg et al. [115]
extract representative malware features, e.g., time properties
and packet numbers, then feed them into machine learning
classifiers. They compare 5 classifiers including DT, logistic
regression, k-NN, Bayes as well as RF, and observe that the
k-NN and RF achieve the highest and stablest accuracy. To
examine the ability of unknown malware detection, the leave-
one-out method is used, i.e., a type of malware is left out as the
test set and the model is trained with the rest of the malware
traffic. The results show that if there is similar malware in the
training set, the detection of unknown malware is effective.
However, it has low identification rates when there is no

similar malware available in the trained model. Therefore, it
is an open issue of unknown malware detection.

In addition to mobile phones, smart home IoT devices are
also vulnerable to malware. With the popularity of smart home
platforms supporting third-party application development, peo-
ple pay more and more attention to the security and privacy
loopholes of smart home IoT devices. Intrinsic design flaws
of Samsung-owned SmartThings that lead to significant over
privilege in SmartApps are discovered [203], which promotes
the development of IoT malware detection.

Malware that controls IoT devices may behave inconsis-
tently with its declared working patterns. Gu et al [134]
propose an IoT malware detection method by analyzing the
sequence of traffic packets to discover whether the state of the
IoT device is consistent with the state declared by the software.
They extract IoT context using natural language processing
(NLP) to represent the actions the user expected and generate
wireless context inferred from the wireless communication
traffic to describe the actual actions. By comparing the dif-
ferences of the contexts, malware can be identified. However,
the detection process is time consuming due to the process of
NLP analysis, which limits its ability to detect malware in a
real-time manner.

Moreover, the fabricated ad request is another malicious
traffic, which leads to losses for advertisers. "Click farm" is
one of the most common ways to fabricate the visits (e.g.,
the number of times an app has been downloaded), which
leverages multiple mobile devices to simulate normal user
operations. To discover these bot devices, Sun [204] propose
a mobile ad fraud detection method based on invalid traffic
analysis. Firstly, they develop a classifier to distinguish bot
devices from the normal user by leveraging 11 features, e.g.,
the entropy of ad slot IDs. Secondly, devices are clustered
based on app usage patterns. Finally, the devices in a cluster
are related by majority voting of all devices in the same cluster.

Deep learning methods. As the diversity and variability
of traffic features, Malware detection is considered as a
complex problem, which is difficult to be solved by traditional
machine learning methods. Therefore, deep learning methods
are introduced to solve two problems, i.e., automatic feature
extraction and effective feature learning.

Compared with traditional machine learning methods which
require a lot of prior knowledge to select input features, deep
learning methods can automatically extract them from raw
traffic. Feng et al. [145] propose a two-layer deep learning
model for Android malware detection. The traffic analysis is
based on a cascaded model of CNN and AutoEncoder, which
takes the 2-D images as input. Thus the malware detection
problem is translated to image classification problem. This
method achieves high accuracy in binary classification (2-
label) and category classification (4-label), while it will lead to
low accuracy for malicious family classification, as the images
are similar between malicious families in the same category.

As the structure of deep neural network makes it has a
stronger ability to fit complex functions, it is more suitable
to learn traffic features comprehensively. For example, traffic
is composed of sequential packets and adjacent packets are
usually closely related to each other, which makes LSTM suit-
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able for the traffic analysis, as its ability of handling sequential
input and dealing with long-term dependencies. Following this
idea, Prasse et al. [151] propose a client malware detection
method based on the LSTM network. Compared with RF
classifier, the method they proposed performs better.

B. Network Anomaly Detection

As the Internet has become the primary universal commu-
nication infrastructure, it is also subject to a variety and an
increasing number of attacks. Network attacks such as Denial
of Service (DoS), User to Root (U2R), Remote to Local (R2L)
and Probing Attack increase rapidly, which pushes cyberspace
security becoming an important topic. Traffic analysis methods
are widely used to build intrusion detection systems, while
encryption technology block accesses to the contents of data
packets, which brings challenges to attack detection. Therefor,
the Internet needs more effective protection measures suitable
for encrypted traffic. As summarized in Table IX, in this
section, we mainly introduce the encrypted traffic analysis
used in network anomaly detection.

Traditional machine learning methods. Machine learning
methods are largely used in the network anomaly detection. As
shown in Fig. 9 , we can further divide the network anomaly
detection based on machine learning methods into anomaly-
based detection, classification-based detection and hybrid de-
tection according to the prior knowledge. For anomaly-based
detection, only normal traffic is leveraged in model building,
which is usually constructed with unsupervised learning meth-
ods. For classification-based detection, both normal and abnor-
mal traffic are leveraged to build a classifier with supervised
learning methods. For hybrid detection, it is the combination
of anomaly-based and classification-based methods.

Fig. 9: Three types of network anomaly detection methods

based on machine learning

Anomaly-based detection methods construct models of nor-
mal user behaviors leveraging features extracted from them.
On the basis of the models, behaviors that deviate from the
normal patterns are classified as abnormal.

Qin et al. [138] leverage the entropy of destination ad-
dresses, destination ports, source addresses, packet sizes and
flow durations to model normal users’ patterns using k-means
algorithm. Through detecting deviations from the built models,
they can judge whether a DDoS attack has occurred. Similarly,
Zolotukhin et al. [196] build a normal user behavior model
using DBSCAN algorithm with 9 features, e.g., inter-arrival

time, extracted from traffic. If the target traffic deviates from
the normal model by greater than the threshold, it is judged as
a DoS attack traffic. The main difference between the above
methods is that the former builds several normal user behavior
models, which considers multiple types of user behaviors,
while the latter builds only one, which regards all outliers
as abnormal values.

Anomaly-based methods are usually realized by clustering
algorithms, which have the advantages of updating the built
models online. Moreover, This type of method augments the
ability to detect unknown anomalies. However, if the attacker
can mimic the behavior of a normal human user, traffic related
to the attack may be clustered into the normal class.

The modeling process of the anomaly-based method rarely
considers anomalous traffic, but it may contain key discrimi-
native information. Due to this reason, several studies consider
the problem of network anomaly detection as a classification
problem [117]. They combine normal and abnormal traffic
to train a classifier to determine whether the target object is
network anomaly traffic.

In order to build the detection system suited to SDN,
Ajaeiya et al. [158] propose a method which leverages the
built-in statistics collected by the OpenFlow switch at 1-second
interval to detect network attacks. The statistics are aggregated
to 9 features, e.g., standard deviation of packets and standard
deviation of bytes, which are used to build a classifier using
bagged trees. The system runs over the control plan and is
therefore transparent to users, which is an advantage of SDN.
In general, the special structure of SDN introduces the ability
of traffic collection, which brings convenience for network
attack detection system construction.

In blockchain networks, special types of network attack
detection can be regarded as a binary classification prob-
lem [205]. As an emerging infrastructure, blockchain has
been applied in many fields such as healthcare, IoT, energy
and manufacturing [206]. However, it still has many security
problems, which threaten network security. Eclipse attack is an
attack that may cause serious consequences to the blockchain
network, which isolates the victimized blockchain node from
the normal network by occupying the routing table of it. To
detect the eclipse attack in Ethereum, Xu et al. [135] leverage
encrypted traffic analysis to detect whether the target node is
being attacked. They utilize information entropy, packet size,
packet frequency and connection time to describe the eclipse
attack features and use RF as the classifier.

However, the classification-based detection method has an
inherent limitation that it is difficult to deal with unknown
types of attacks, as the classification process is based on
features extracted from existing malicious behaviors, which
may be changed as the malware evolves.

To further improve the ability of network anomaly detection,
Hybrid detection methods which combine anomaly-based de-
tection and classification-based detection are proposed. Gen-
erally, the hybrid detection method is shown as a two-step
method. The first step is classification-based detection and the
second step is anomaly-based detection. Samples classified as
"normal" in step 1 will be input into the model in step 2
for abnormal or outlier detection. IoTArgos [136] combines
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supervised and unsupervised learning algorithms to discover
suspicious behaviors. They make the observation that the
11 features, e.g., remote ports and packets per 5 min, are
effective for network detection. To be specific, supervised
machine learning algorithm is used for filtering a subset of
attack traffic, while unsupervised machine learning algorithm
is exploited for discovering samples misclassified as ’normal’
at the previous step.

Compared with the anomaly-based detection and
classification-based detection, the hybrid detection method
achieves both high classification accuracy of known attacks
and detection capability of unknown attacks.

Deep learning methods. Due to the strong feature extrac-
tion ability, it is applied in network anomaly detection.

On the one hand, deep learning methods are able to extract
features from raw traffic. Zeng et al. [152] propose an end-
to-end intrusion detection framework based on deep learning.
Three deep learning models including CNN, LSTM and SAE
are used for anomaly detection. Compared with traditional ma-
chine learning methods, the deep learning algorithm requires
less manual intervention, which provides greater automation.

On the other hand, the multi-layer neural network has
the ability to combine shallow features to form higher-level
features that are more complex and abstract, which is suitable
to discover the covert attack behavior. Following this idea,
Zolotukhin et al. [69] combine both clustering algorithm and
SAE algorithm to build a DDoS attack detection model. For
each time interval, 8 types of features, e.g., percentage of
packets with different TCP flags, are extracted as the input
of clustering and SAE model. A normal user behavior model
is built using clustering algorithm, which divides the behavior
deviated from it as DoS attack. SAE is used to detect the attack
that is able to mimic the browsing behavior of a regular human
user, which cannot be discovered by the clustering algorithm.

Knowledge-based methods. Generally, these methods de-
pend on artificial rules to determine whether it is network
attack traffic. The rules are usually based on ports, protocol
headers and artificial features. Jisa et al. [84] calculate the fast
entropy of flow count for each connection as the fingerprint,
which needs only packet header information. They build a
rule with an adaptive threshold for DDoS attack detection.
However, the proposed detection method relies on flow count,
which makes it less effective for classifying flash crowds
(massive legitimate packets arrive in a short time) [207] and
DDoS attacks.

C. Summary and Lessons Learned

In this section, we introduce existing studies that focus
on encrypted traffic analysis applied in anomaly detection,
including malware detection and network anomaly detection.
The traffic patterns are distinctive between normal and abnor-
mal user behaviors, e.g., DDoS attack generates more illegal
connections compared with normal actions, from which the
anomaly can be detected. As for unknown types, the clustering
algorithm is introduced to solve the problem, where the traffic
deviating from the normal cluster is classified as abnormal.
However, its performance largely relies on the effectiveness

of the extracted features, which makes it difficult to detect
malicious behaviors that mimic normal users.

We summarize that high overhead, self-adaptive and zero-
day attack discoveries are three main dilemmas of anomaly
detection based on encrypted traffic analysis. Firstly, for
the purpose of protecting resources, malicious behaviors are
expected to be detected as soon as possible, which requires
timely feature extraction approaches and efficient classifica-
tion models. Secondly, due to the dynamics and diversity
of malware and network anomaly, the detection models are
expected to update the strategies (e.g., extracted features and
decision thresholds) as illegitimate traffic changes mask in a
short while. Moreover, new malware and network anomaly
are surging. Detection systems that are appropriate for zero-
day attack discovering, e.g., anomaly-based methods, are more
suitable for the realistic network environments in terms of
unknown malicious behavior detecting.

IX. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

Although researchers have made substantial achievements
in developing encrypted traffic analysis methods, there remain
significant challenges around dataset construction, traffic rep-
resentation, analysis model building, and potential counter-
measures. At the same time, unprecedented study opportunities
are also provided to develop innovative approaches to tackle
these challenges.

A. Traffic Dataset Construction

Network traffic dataset is a crucial component for traffic
analysis, as high-quality datasets can play an important role
in training, e.g., helping to train accurate and robust classifiers
for supervised learning, and in validation, e.g., helping to
evaluate the performance of traffic analysis methods, no matter
whatever technique is used. The requirements in constructing
high-quality encrypted traffic datasets are two-fold.

First, datasets should provide a good amount of variety
to cover diverse scenarios in reality. For instance, in super-
vised learning, to construct accurate website fingerprinting
classifiers, an ideal dataset for training should consist of
instances generated by visiting numerous websites through
diverse web browsers (e.g., Chrome, Firefox, IE, Safari) on
various types of devices (e.g., laptops, PCs, smartphones,
and pads) that are equipped with all major OS types (e.g.,
Windows, Linux, iOS, Android) and get access to the Internet
via different approaches (e.g., fixed network, 3G/4G/5G, and
WiFi). Without adequate training data, even the classifier with
the best performance would be rendered useless. Second, to
quantitatively measure the effectiveness of a certain traffic
analysis method, such as checking the correctness of the
results from machine learning classifiers, we should be able to
obtain factual data as ascertainable through direct observation,
which is known as the ground truth.

It is quite challenging to obtain datasets with sufficient di-
versity and undisputed ground truth. We refer to a straightfor-
ward way that is commonly used in the literature as snowball
method. The basic idea of this method is to simulate a vasty of
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TABLE X: Summary of challenges and future research

directions

Challenge Details Future directions

Traffic Dataset

Construction

• Diversification

• Ground truth

• Snowball method

• Gold panning method

Traffic

Representation

• Effectiveness

• Robustness

• Time efficiency

• Interpretability

• Diging into the interaction process

• Stream representations

• Representation construction and

number of packets required

• Interpretable machine learning

Analysis Model

Building

• Effectiveness

• Generalizability

• Transferability

• Considering the open-world and

defended scenarios

• Networking heterogeneity, para-

meter variations and temporal drift

• Dataset transferability and task

transferability

Countermeasures
• Effectiveness

• Overhead

• Generative adversarial networks

user actions, such as simulating web visiting behaviors of real
users, and then collect the resulting traffic traces. It usually
starts with a small set of user actions, and then enlarges the
set to cover a variety of combinations of software, hardware,
and environmental variations. It can obtain data samples with
accurate ground truth, but requires significant manual efforts.
An alternative way is referred to as gold panning method,
which collects traffic from network devices in real-world
environments, e.g., recording traffic traversing through the
egress router of a campus network, as real-world traffic has
sufficient diversity. Since the target traffic traces are usually
mixed with a much larger amount of background traces, time-
consuming efforts are needed to filter out untargeted traces,
like the gold panning process that separates gold from other
materials. A major obstacle to this approach is the lack of
ground truth for most encrypted traffic traces.

To break through the dilemma between accuracy and di-
versity, auto-labeling tools are highly desirable to automati-
cally collect accurate and adequate data samples for a given
analysis purpose. Since ensuring sufficient diversity can be
time-consuming and costly in terms of human efforts, crowd-
sourcing emerges as a promising approach to reduce the
complexity, where multiple users or volunteers are involved to
complete the same data collection and labeling tasks together.
There are several issues to be further addressed, such as

operational standards to measure data quality, incentives to
attract more participants, and privacy protection strategies to
secure participants sensitive information. Additional efforts
can also be put on benchmark datasets in different research
domains, which can greatly facilitate a fair and comprehensive
comparison of different approaches.

B. Traffic Representation

Traffic representation can be of great importance to ex-
tract multi-dimensional information from encrypted traffic.
Informative representations can extract the most distinctive
features, which helps improve the accuracy of both supervised
and unsupervised machine learning models. Existing studies
have proposed several representations at different levels of
granularity. For flow-level representation, statistic features [68]
are usually fed into traditional machine learning classifiers,
while the sequence of directional packets, image-based ab-
straction [152], graph-based abstraction [71], frequency do-
main [208] are proposed to work with deep learning classi-
fiers. For session-level representation, the sequences of packet
direction or timing [70] are used. Recently, raw bitmap rep-
resentation [209] combined with automated machine learning
is proposed to reduce reliance upon feature selection, hence it
is suitable for multiple traffic analysis tasks.

It is still a challenging task to propose an appropriate
representation of encrypted traffic. To achieve this goal, several
issues should be carefully considered and addressed.

Effectiveness. To facilitate the classification or clustering of
different classes of encrypted traffic, an effective representa-
tion should be discriminative enough to make each class easily
separated from one another. More specifically, a powerful
representation should make a traffic instance similar to those in
the same class while distinctive from those in a different class.
Existing representations usually abstract encrypted traffic from
one or multiple aspects, such as packet order, timing, direction
and frequency [75]. Except for abstracting these superficial
features, future studies can dig into the interaction process
between a pair of communication components (e.g., client-
server interactions) and attach the traffic with more semantic
knowledge of the application-layer data in transmission. This
can provide us with more insights into the fundamental reasons
that lead to traffic differences among different classes. In
addition, appropriate evaluation metrics are needed to quanti-
tatively measure the effectiveness of different representations.

Robustness. Traffic representation should have the ability to
resist change of encrypted traffic without significantly adapting
its initial construction. Potential changes can take many forms,
such as protocol upgrading, content updates, and network
condition changes. Statistical representations are usually sen-
sitive to these changes, as a small magnitude of changes
would render the original representations inefficient. This can
be demonstrated by the quantitative measure of information
leakage of different statistical features, where the features
contribute mostly to website fingerprinting vary greatly when
the traffic is perturbed. In contrast, the stream representations
are more robust to such changes, as they construct traffic
abstractions from the original packet streams and thereby are
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not severely affected by potential changes. The current forms
of stream representation (e.g., sequence, graph, and image)
usually borrow ideas from other research domains, such as
speech signal processing, natural language processing, and
computer vision. More powerful and robust representations are
expected to be proposed to reflect the inherent characteristics
of encrypted network traffic.

Time efficiency. It is desirable to construct traffic represen-
tation in a time-efficient manner so as to accelerate the model
training process or make decisions rapidly for on-the-fly traffic
instances. Time efficiency can be explained in two aspects. The
first one, which is commonly employed in the literature, is
time consumption on construing representation for a batch of
encrypted traffic instances. Statistical representations usually
require complex computation of multi-dimensional features,
such as entropy and frequency spectrum. Stream represen-
tations vary a lot in terms of time consumption, depend-
ing on the specific form of a representation. For instance,
sequence-based and graph-based representations are quite easy
to obtain from the original encrypted traffic, whereas image-
based representation can result in a dramatic increase of time
overhead for reforming packet sequence information into the
image-like structure. The second aspect is usually ignored
in existing studies, which can be roughly interpreted as the
number of packets required for representation construction.
Since packets are arrived at a monitoring point in sequence,
the smaller the number of packets used, the less the time spent
on representation construction. Several statistical features are
able to be extracted by the end of the session, which cost a lot
of time [120]. Therefore, the number of packets used is crucial
for online training or testing. Statistical representations require
complete flows or packet sequences, thus resulting in poor time
efficiency, while typical stream representations (e.g., sequence-
or graph-based ones) can be obtained with a flexible number of
packets. Improving time efficiency of representation construc-
tion is an interesting topic. The challenge is carefully balance
the trade-offs between effectiveness and time efficiency, i.e.,
achieving discriminative representation using as few features
and packets as possible.

Interpretability. As the machine learning methods, espe-
cially deep learning techniques, have been widely used for
encrypted traffic analysis, interpretability becomes a chal-
lenging issue, which means the degree to which a human
can understand the cause of a decision. The need for inter-
pretability arises from an eagerness to know why a machine
learning method ends with such predictions. In other words,
getting correct predictions only partially solves the problem.
For instance, in a QoE metric estimation task, besides accu-
rate predication of a well-trained machine learning method,
network operators are also eager to know the major reasons
that result in poor QoE metrics (e.g., low video resolution
on user side), which can be interpreted from typical network
quality indicators (e.g., RTT, packet loss rate, and inter-packet
gap). With these indicators, the operators can launch certain
optimization strategies on network devices so as to improve
QoE perceived by end users. Statistical representations owe
the advantage of interpretability, because the features can be
used to reason the prediction of classifiers. While stream

representations are not interpretable enough as the features
are automatically extracted and learned as in a black-box
scenario. Recent advances in interpretable machine learning
can be employed to improve the interpretability of encrypted
traffic analysis methods.

C. Analysis Model Building

Traffic encryption uncovers payload segments of packets,
which reduce the information that can be exploited for analysis
significantly. Thus, most existing work resorts to machine
learning techniques to build analysis models. As mentioned
above, the traffic analysis problem is usually treated as a
supervised or unsupervised classification problem, where the
classifiers can be roughly grouped into two categories.

In the first category, the classifiers usually leverage tradi-
tional machine learning models (e.g., k-NN, SVM, RF, and
DT), which are carefully trained with empirically crafted
features. The classifiers in the second category employ deep
learning models (e.g., CNN, MLP, and LSTM) that can
automatically learn effective features from raw input data and
thus avoid the complicated feature engineering process. An
emerging trend appears to combine deep learning models and
traditional machine learning techniques together, e.g., effective
features are first extracted using deep learning models and then
used to train traditional machine learning classifiers.

In order to improve the performance of a classifier, several
challenging issues should be well addressed.

Effectiveness. The fundamental goal of a classifier is to
achieve high effectiveness, which can be measured by a series
of metrics, such as accuracy, precision, recall, etc. Most
existing work focuses on evaluating the effectiveness of a
classifier in the closed-world setting [100], where the traffic
is assumed to be generated from a limited number of targeted
sources (e.g., websites). A classifier with high accuracy in
the closed-world scenario, however, loses efficacy in the more
realistic open-world scenario, as the encrypted traffic can be
generated from a much larger number of untargeted sources
than the targeted ones. In other words, the targeted traffic may
take only a small fraction of the total amount of traffic in the
open-world setting, and the classifier should also be able to
distinguish between the targeted and untargeted traffic.

In order to evade traffic analysis tools, several defenses have
been proposed to reduce the information leaked out from the
encrypted traffic. Defenses negatively affect the effectiveness
of classifiers, as less discriminative features can be extracted
from defended traffic. Existing studies have confirmed that
the accuracy of classifiers drops significantly on defended
traffic. An interesting problem is to investigate how to maintain
the effectiveness of classifiers in distinguishing between the
targeted and untargeted traffic when all the traffic is protected.

Generalizability. A robust classifier should remain effec-
tive under different networks and environmental conditions.
Many existing studies assume that the pre-trained classifiers
are applied in scenarios having similar or even the same
conditions as in the training process. This assumption gives
the classifier an unrealistic advantage for making predictions,
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as the conditions for testing would be different from those for
training. We summarize the differences as following:

• Networking heterogeneity. Network encrypted traffic can
be generated from users or devices with heterogeneous
network conditions, including fixed network and wireless
network (e.g., WiFi and 3G/4/G/5G). The locations where
network traffic is collected can also be different, e.g., at
the locations near to end users (e.g., the access point),
both upstream and downstream traffic can be collected,
whereas at the locations far away from end users (e.g.,
the backbone routers) only unidirectional traffic can be
collected due to routing asymmetry in the real world.

• Parameter variations. Network encrypted traffic can be
generated with different hardware and software parame-
ters. The range of hardware covers PCs, laptops, smart-
phones, IoT devices, wearable devices, network servers
and devices, while the range of software parameters
covers OS types, browser brands and versions, protocol
versions (e.g., TLS and Tor-browser-bundle).

• Temporal drift. The sources for generating encrypted
traffic would change over time, e.g., the layout and
content of a webpage can vary frequently, or the upgrade
of data transmission protocols such as Dynamic Adaptive
Streaming over HTTP (DASH), making the accuracy of
a well-trained classifier decay after a certain period.

Transferability. In order to reduce the complexity and
resource consumption on frequently re-training a classifier, it
is highly desirable that the classifier can be flexibly transferred
to different datasets and tasks. Currently, most supervised
classifiers are trained with a fixed number of labels, where the
classifiers attempt to learn the optimal mapping from labelled
samples (traffic traces or features) to their corresponding
labels. Then, in the prediction phase, the classifier outputs the
probability vector for a given unlabeled sample. In practice,
more flexibility is needed to design an out-of-the-box classifier.

• Dataset transferability. The label set in the training dataset
would change dynamically. For instance, the adversary
conducting website fingerprinting attacks may wish to
enlarge or shrink the set of targeted websites by adding
or removing the corresponding labels. Another example
can be found in the estimation of video resolutions,
where a coarse-grained label set (e.g., high, medium, and
low resolutions) is replaced by a fine-grained label set
consisting of specific resolutions (e.g., 144P, 360P, 480P,
720P, and 1080P).

• Task transferability. Most classifiers are trained for a
specific task, which results in poor transferability among
tasks. For instance, when the classifiers for application
recognition are directly applied for user action recogni-
tion, the accuracy would drop significantly, as the features
of different tasks vary a lot. As a result, the shift of traffic
analysis goals inevitably leads to classifier re-training.

The current advances in transfer learning provide promis-
ing opportunities to improve the transferability of classifiers,
which can also ameliorate the generalization issues.

D. Countermeasures
In order to protect against traffic analysis methods, many

countermeasures have been proposed over the years. Existing
solutions mainly focus on two aspects: 1) protecting user-side
information leakage against fingerprinting attacks, and 2) ob-
fuscating malicious traffic to evade anomaly traffic detectors.
Next, we briefly describe the achievements of current solutions
and discuss the challenges.

Website Fingerprinting Defenses. To defend against pas-
sive WF attacks, several methods have been proposed to make
the targeted traffic traces less discriminative. To achieve this
goal, they typically employ two approaches: inserting dummy
packets, and/or deferring the sending of certain packets. Wang
et al. [187] classify existing defenses into three types: traffic
obfuscation, confusion, and regularization. For ease of under-
standing, we can roughly summarize the basic ideas behind
these defenses into two categories.

The first category aims at making traffic traces as similar
as possible, by inserting dummy packets or enlarging inter-
packet delays. The defended traffic traces from a targeted site
become indistinguishable from those from another one (e.g.,
Walkie-talkie [186] or Decoy [106]) or multiple sites (e.g.,
Supersequence). This idea is analogue to the k-anonymity
strategy in protecting sensitive location information. The sec-
ond category aims to make traffic traces as stochastic as
possible, by inserting dummy packets following a certain
distribution (e.g., a fixed rate distribution in WTF-PAD [185],
or the Rayleigh distribution in Front [187]). With the adoption
of such defenses, the resulting traffic traces from the same site
become apparently different, making the attackers difficult to
extract consistent and discriminative features.

Anomaly Detection Escape. To evade anomaly traffic
detection, several methods have been proposed to mislead the
classifiers by traffic obfuscation. The basic idea behind these
methods is to disguise malicious traffic as normal traffic, by
changing the features of malicious traffic. Such as intermediate
DDoS attack, bots generate random browser-like requests to
make the attack behavior can not be distinguished from the
regular human traffic [69].

Next, we discuss the challenges to design efficient and
effective countermeasures.

The effectiveness and overhead should be taken into con-
sideration when designing countermeasures. The effectiveness
is usually measured as the accuracy of a specific classifier on
traffic traces when the countermeasures are applied. Since the
goal of changing traffic features is usually achieved by adding
dummy packets or deferring packet delivery, the overhead
is commonly measured by the bandwidth overhead and time
overhead, where the former denotes the fraction of bandwidth
increase compared with the original traffic traces, while the
latter denotes the fraction of time extension for completing
the packet transmission.

There usually exists a conflict between these two factors.
For instance, to reduce the overhead introduced by potential
countermeasures, dummy packets should be added as little as
possible, and at the same time, packets should maintain their
original delivery timetables. This, however, would have limited
impacts on changing the original traffic features, resulting in a
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poor defense effect on classifiers. Thus, to design appropriate
countermeasures for traffic analysis models, a better balance
should be achieved between effectiveness and overhead.

The recent advances in GANs can be helpful to improve the
effectiveness of defenses. GANs have proved to be effective
in many fields such as face recognition and acoustical signal
processing. By crafting adversarial examples, the perturbed
samples can successfully cheat a deep learning classifier. It is
not straightforward to apply GAN techniques in the domain
of encrypted traffic analysis, due to the following barriers:

• Unforeseeable traffic traces. The traffic traces are gener-
ated in a real-time manner, the defender can hardly learn
the whole traces in advance. To address this problem,
historical traces can be used to learn a relatively constant
pattern as a basic prediction of unforeseeable traces.
Since many factors have influences on traces, the gap
between real and predicted traces can always exist and
would negatively impact the effectiveness of defenses.

• Limited manipulation methods. Unlike the diversified
ways to craft adversarial images, the methods to manip-
ulate traffic traces are limited to adding dummy packets
or deferring packet delivery. In other words, the defender
cannot delete or speed up packets in the original traffic
traces, which narrows the space to craft effective adver-
sarial traffic traces.

• Limited prior knowledge of classifiers. Most classifiers
conduct traffic analysis in a passive manner, where the
victim knows little prior knowledge of these classifiers.
As a result, the defenses are blinded to the features that
can be employed by potential attacks. In such a scenario,
the specific classifiers can be treated as a black-box and
the defenses are expected to have good defense effects
no matter which classifier is used.

X. CONCLUSION

This paper surveys significant studies in the field of multi-
target and multi-method encrypted traffic analysis. Before
starting the introduction of the specific studies, we review
the network encryption technologies and introduce the goals
of encrypted traffic analysis. In particular, we summarize the
workflow including traffic collection, traffic representation,
traffic analysis method, and performance evaluation.

In terms of classification goals, we review four applica-
tion scenarios including network asset identification, network
characterization, privacy leakage detection and anomaly de-
tection. Network asset identification section focuses studies
of device fingerprinting and OS identification. By probing
network assets, administrators can keep abreast of the dynamic
changes, which provides connivance for device management.
Then, we review the studies on privacy leakage detection in-
cluding WF, AF and fine-grained user action identification. By
detecting sensitive information leaked from website browsing
and application using, malicious eavesdroppers may commit
criminal activities such as financial fraud. Next, the network
characterization section focuses on QoE metric measurement
and protocol recognition, which helps service providers to
grasp the network environment and adjust service strategies

timely. As for the anomaly detection section, we introduce
two types of malicious behaviors, which are malware and
network attacks, respectively. Novel representations and de-
tection methods for encrypted traffic are introduced. Finally,
we discuss challenges and future directions, which provide
new ideas for developing innovative approaches.

In conclusion, encrypted traffic analysis plays an essen-
tial role in the field of network security protection and
personalized service guarantee. However, the analysis is a
mixed blessing which breaks the security of the network
and probes user privacy to a certain extent. Hence, there are
also several studies contributing to countermeasures against
encrypted traffic analysis. Due to this reason, determining how
to properly use encrypted traffic analysis is a problem worthy
of consideration. To conclude, with the rapid development of
the network and related technologies, encrypted traffic analysis
will be a vibrant field and continue to flourish.
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Vymlátil. Towards identification of operating systems
from the internet traffic: Ipfix monitoring with finger-
printing and clustering. In 2014 5th International Con-
ference on Data Communication Networking (DCNET),
pages 1–7. IEEE, 2014.

[156] Nizar Msadek, Ridha Soua, and Thomas Engel. Iot
device fingerprinting: Machine learning based encrypted
traffic analysis. In 2019 IEEE Wireless Communications
and Networking Conference (WCNC), pages 1–8. IEEE,
2019.

[157] Safia Rahmat, Quamar Niyaz, Akshay Mathur, Weiqing
Sun, and Ahmad Y Javaid. Network traffic-based hybrid
malware detection for smartphone and traditional net-
worked systems. In 2019 IEEE 10th Annual Ubiquitous
Computing, Electronics & Mobile Communication Con-
ference (UEMCON), pages 0322–0328. IEEE, 2019.

[158] Georgi A Ajaeiya, Nareg Adalian, Imad H Elhajj,
Ayman Kayssi, and Ali Chehab. Flow-based intrusion
detection system for sdn. In 2017 IEEE Symposium
on Computers and Communications (ISCC), pages 787–
793. IEEE, 2017.

[159] Bruhadeshwar Bezawada, Maalvika Bachani, Jordan
Peterson, Hossein Shirazi, Indrakshi Ray, and Indrajit
Ray. Behavioral fingerprinting of iot devices. New York,
NY, USA, 2018. Association for Computing Machinery.

[160] Sandhya Aneja, Nagender Aneja, and Md Shohidul
Islam. Iot device fingerprint using deep learning. In
2018 IEEE International Conference on Internet of
Things and Intelligence System (IOTAIS), pages 174–
179. IEEE, 2018.

[161] Sakthi Vignesh Radhakrishnan, A Selcuk Uluagac, and
Raheem Beyah. Gtid: A technique for physical de-
viceanddevice type fingerprinting. IEEE Transactions

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3208196

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on September 22,2022 at 03:31:07 UTC from IEEE Xplore.  Restrictions apply. 



36

on Dependable and Secure Computing, 12(5):519–532,
2014.

[162] Shodan Search Engine. https://www.shodan.io/, 2021.
[Online; accessed 16-May-2021].

[163] FOFA. https://fofa.so/, 2021. [Online; accessed 16-
May-2021].

[164] ZoomEye - Cyberspace Search Engine. https://www.
zoomeye.org/, 2021. [Online; accessed 16-May-2021].

[165] Gregor Maier, Fabian Schneider, and Anja Feldmann.
A first look at mobile hand-held device traffic. In In-
ternational Conference on Passive and Active Network
Measurement, pages 161–170. Springer, 2010.

[166] Yubo Song, Qiang Huang, Junjie Yang, Ming Fan,
Aiqun Hu, and Yu Jiang. Iot device fingerprinting for
relieving pressure in the access control. In Proceed-
ings of the ACM Turing Celebration Conference-China,
pages 1–8, 2019.

[167] p0f v3. https://lcamtuf.coredump.cx/p0f3/.
[168] Jianbo Du, F Richard Yu, Guangyue Lu, Junxuan Wang,

Jing Jiang, and Xiaoli Chu. Mec-assisted immersive
vr video streaming over terahertz wireless networks: A
deep reinforcement learning approach. IEEE Internet of
Things Journal, 7(10):9517–9529, 2020.

[169] Jan Beznazwy and Amir Houmansadr. How china
detects and blocks shadowsocks. In Proceedings of
the ACM Internet Measurement Conference, pages 111–
124, 2020.

[170] Michael Oche, Rafidah Md Noor, and Christopher
Chembe. Multivariate statistical approach for estimating
qoe of real-time multimedia applications in vehicular
its network. Computer Communications, 104:88–107,
2017.

[171] James Nightingale, Pablo Salva-Garcia, Jose M Alcaraz
Calero, and Qi Wang. 5g-qoe: Qoe modelling for ultra-
hd video streaming in 5g networks. IEEE Transactions
on Broadcasting, 64(2):621–634, 2018.

[172] Hua Wu, Xin Li, Guang Cheng, and Xiaoyan Hu.
Monitoring video resolution of adaptive encrypted video
traffic based on http/2 features. In IEEE INFOCOM
2021-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 1–6. IEEE,
2021.

[173] Jianbo Du, F Richard Yu, Xiaoli Chu, Jie Feng, and
Guangyue Lu. Computation offloading and resource
allocation in vehicular networks based on dual-side
cost minimization. IEEE Transactions on Vehicular
Technology, 68(2):1079–1092, 2018.

[174] Zhihong Rao, Weina Niu, XiaoSong Zhang, and Hong-
wei Li. Tor anonymous traffic identification based on
gravitational clustering. Peer-to-Peer Networking and
Applications, 11(3):592–601, 2018.

[175] Wenbo Feng, Zheng Hong, Lifa Wu, Menglin Fu, Yihao
Li, and Peihong Lin. Network protocol recognition
based on convolutional neural network. China Com-
munications, 17(4):125–139, 2020.

[176] Tomasz Bujlow, Tahir Riaz, and Jens Myrup Pedersen.
A method for classification of network traffic based on
c5. 0 machine learning algorithm. In 2012 international

conference on computing, networking and communica-
tions (ICNC), pages 237–241. IEEE, 2012.

[177] Shane Alcock and Richard Nelson. Libprotoident:
traffic classification using lightweight packet inspection.
WAND Network Research Group, Tech. Rep, 2012.

[178] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H
Yang, Farhad Farokhi, Shi Jin, Tony QS Quek, and
H Vincent Poor. Federated learning with differential
privacy: Algorithms and performance analysis. IEEE
Transactions on Information Forensics and Security,
15:3454–3469, 2020.

[179] Bo Liu, Ming Ding, Sina Shaham, Wenny Rahayu,
Farhad Farokhi, and Zihuai Lin. When machine learning
meets privacy: A survey and outlook. ACM Computing
Surveys (CSUR), 54(2):1–36, 2021.

[180] Emiliano De Cristofaro. A critical overview of privacy
in machine learning. IEEE Security and Privacy,
19(4):19–27, 2021.

[181] Harry Chandra Tanuwidjaja, Rakyong Choi, and
Kwangjo Kim. A survey on deep learning techniques
for privacy-preserving. In International Conference on
Machine Learning for Cyber Security, pages 29–46.
Springer, 2019.

[182] Hao Dong, Cunqing Hua, Lingya Liu, and Wenchao
Xu. Towards integrated terrestrial-satellite network
via intelligent reflecting surface. In ICC 2021-IEEE
International Conference on Communications, pages 1–
6. IEEE, 2021.

[183] Meng Shen, Mingwei Wei, Liehuang Zhu, Mingzhong
Wang, and Fuliang Li. Certificate-aware encrypted
traffic classification using second-order markov chain.
In 2016 IEEE/ACM 24th International Symposium on
Quality of Service (IWQoS), pages 1–10. IEEE, 2016.

[184] Yanjie Fu, Junming Liu, Xiaolin Li, Xinjiang Lu, Jingci
Ming, Chu Guan, and Hui Xiong. Service usage
analysis in mobile messaging apps: A multi-label multi-
view perspective. In IEEE International Conference on
Data Mining, pages 877–882, 2017.

[185] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz,
and Matthew K Wright. Toward an efficient website fin-
gerprinting defense. European Symposium on Research
in Computer Security, pages 27–46, 2016.

[186] Tao Wang and Ian Goldberg. Walkie-talkie: An efficient
defense against passive website fingerprinting attacks.
In 26th USENIX Security Symposium (USENIX Security
17), pages 1375–1390, Vancouver, BC, August 2017.
USENIX Association.

[187] Jiajun Gong and Tao Wang. Zero-delay lightweight de-
fenses against website fingerprinting. In 29th USENIX
Security Symposium (USENIX Security 20), pages 717–
734, 2020.

[188] Qilei Yin, Zhuotao Liu, Qi Li, Tao Wang, Qian Wang,
Chao Shen, and Yixiao Xu. Automated multi-tab
website fingerprinting attack. IEEE Transactions on
Dependable and Secure Computing, pages 1–1, 2021.

[189] Milad Nasr, Alireza Bahramali, and Amir Houmansadr.
Defeating dnn-based traffic analysis systems in real-
time with blind adversarial perturbations. In Michael

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3208196

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on September 22,2022 at 03:31:07 UTC from IEEE Xplore.  Restrictions apply. 

https://www.shodan.io/
https://fofa.so/
https://www.zoomeye.org/
https://www.zoomeye.org/
https://lcamtuf.coredump.cx/p0f3/


37

Bailey and Rachel Greenstadt, editors, 30th USENIX
Security Symposium, USENIX Security 2021, August
11-13, 2021, pages 2705–2722. USENIX Association,
2021.

[190] Sanjit Bhat, David Lu, Albert Kwon, and Srini-
vas Devadas. Var-cnn and dynaflow: Improved at-
tacks and defenses for website fingerprinting. CoRR,
abs/1802.10215, 2018.

[191] Tao Wang. The one-page setting: A higher standard for
evaluating website fingerprinting defenses. In Proceed-
ings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’21, page
2794–2806, New York, NY, USA, 2021. Association
for Computing Machinery.

[192] Andriy Panchenko, Lukas Niessen, Andreas Zinnen,
and Thomas Engel. Website fingerprinting in onion
routing based anonymization networks. In Yan Chen
and Jaideep Vaidya, editors, Proceedings of the 10th
annual ACM workshop on Privacy in the electronic
society, WPES 2011, Chicago, IL, USA, October 17,
2011, pages 103–114. ACM, 2011.

[193] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob John-
son, and Ian Goldberg. A systematic approach to de-
veloping and evaluating website fingerprinting defenses.
In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, Scottsdale,
AZ, USA, November 3-7, 2014, pages 227–238. ACM,
2014.

[194] Meng Shen, Jinpeng Zhang, Liehuang Zhu, Ke Xu,
Xiaojiang Du, and Yiting Liu. Encrypted traffic classi-
fication of decentralized applications on ethereum using
feature fusion. In 2019 IEEE/ACM 27th International
Symposium on Quality of Service (IWQoS), pages 1–10.
IEEE, 2019.

[195] Arash Habibi Lashkari, Andi Fitriah A Kadir, Hugo
Gonzalez, Kenneth Fon Mbah, and Ali A Ghorbani. To-
wards a network-based framework for android malware
detection and characterization. In 2017 15th Annual
conference on privacy, security and trust (PST), pages
233–23309. IEEE, 2017.

[196] Mikhail Zolotukhin, Timo Hämäläinen, Tero Kokko-
nen, Antti Niemelä, and Jarmo Siltanen. Data mining
approach for detection of ddos attacks utilizing ssl/tls
protocol. In Internet of Things, Smart Spaces, and
Next Generation Networks and Systems, pages 274–285.
Springer, 2015.

[197] Abdulghani Ali Ahmed, Waheb A Jabbar, Ali Safaa
Sadiq, and Hiran Patel. Deep learning-based classifi-
cation model for botnet attack detection. Journal of
Ambient Intelligence and Humanized Computing, pages
1–10, 2020.

[198] Guoning Hu and Deepak Venugopal. A malware signa-
ture extraction and detection method applied to mobile
networks. In 2007 IEEE International Performance,
Computing, and Communications Conference, pages
19–26. IEEE, 2007.

[199] Ying He, Zheng Zhang, F Richard Yu, Nan Zhao,
Hongxi Yin, Victor CM Leung, and Yanhua Zhang.

Deep-reinforcement-learning-based optimization for
cache-enabled opportunistic interference alignment
wireless networks. IEEE Transactions on Vehicular
Technology, 66(11):10433–10445, 2017.

[200] Yisroel Mirsky, Asaf Shabtai, Bracha Shapira, Yuval
Elovici, and Lior Rokach. Anomaly detection for smart-
phone data streams. Pervasive and Mobile Computing,
35:83–107, 2017.

[201] Infogainattributeeval. https://weka.sourceforge.io/doc.
dev/weka/attributeSelection/InfoGainAttributeEval.
html.

[202] Cfssubseteval. https://weka.sourceforge.io/doc.dev/
weka/attributeSelection/CfsSubsetEval.html.

[203] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash.
Security analysis of emerging smart home applications.
In 2016 IEEE symposium on security and privacy (SP),
pages 636–654. IEEE, 2016.

[204] Suibin Sun, Le Yu, Xiaokuan Zhang, Minhui Xue, Ren
Zhou, Haojin Zhu, Shuang Hao, and Xiaodong Lin.
Understanding and detecting mobile ad fraud through
the lens of invalid traffic. In CCS ’21: 2021 ACM
SIGSAC Conference on Computer and Communications
Security, Virtual Event, Republic of Korea, November 15
- 19, 2021, pages 287–303. ACM, 2021.

[205] Ke Ye, Meng Shen, Zhenbo Gao, and Liehuang Zhu.
Real-time detection of cryptocurrency mining behavior.
International Conference on Blockchain and Trustwor-
thy Systems, 2022.

[206] Yiming Liu, F Richard Yu, Xi Li, Hong Ji, and Vic-
tor CM Leung. Blockchain and machine learning for
communications and networking systems. IEEE Com-
munications Surveys & Tutorials, 22(2):1392–1431,
2020.

[207] Xuyang Jing, Zheng Yan, and Witold Pedrycz. Security
data collection and data analytics in the internet: A
survey. IEEE Communications Surveys & Tutorials,
21(1):586–618, 2018.

[208] Chuanpu Fu, Qi Li, Meng Shen, and Ke Xu. Realtime
robust malicious traffic detection via frequency domain
analysis. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security,
pages 3431–3446, 2021.

[209] Jordan Holland, Paul Schmitt, Nick Feamster, and
Prateek Mittal. New directions in automated traffic
analysis. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security,
pages 3366–3383, 2021.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3208196

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on September 22,2022 at 03:31:07 UTC from IEEE Xplore.  Restrictions apply. 

https://weka.sourceforge.io/doc.dev/weka/attributeSelection/InfoGainAttributeEval.html
https://weka.sourceforge.io/doc.dev/weka/attributeSelection/InfoGainAttributeEval.html
https://weka.sourceforge.io/doc.dev/weka/attributeSelection/InfoGainAttributeEval.html
https://weka.sourceforge.io/doc.dev/weka/attributeSelection/CfsSubsetEval.html
https://weka.sourceforge.io/doc.dev/weka/attributeSelection/CfsSubsetEval.html


38

Meng Shen (M’14) is a Professor at Beijing In-

stitute of Technology, Beijing, China. He received

the B.Eng degree from Shandong University, Jinan,

China in 2009, and the Ph.D. degree from Tsinghua

University, Beijing, China in 2014, both in computer

science. His research interests include data privacy

and security, blockchain applications, and encrypted

traffic classification. He has authored over 50 papers in top-level journals and

conferences, such as ACM SIGCOMM, IEEE JSAC, and IEEE TIFS. He has

guest edited special issues on emerging technologies for data security and

privacy in IEEE Network and IEEE Internet-of-Things Journal. He received

the Best Paper Runner-Up Award at IEEE IPCCC 2014 and IEEE/ACM

IWQoS 2020. Dr. Shen was selected by the Beijing Nova Program 2020

and was the winner of the ACM SIGCOMM China Rising Star Award 2019.

He is a member of the IEEE.

Ke Ye received the B.Eng degree in software en-

gineering from Shandong University, Weihai, China

in 2020. Currently she is a master student in the

Department of Computer Science, Beijing Insti-

tute of Technology. Her research interests include

Anonymity Networks and Traffic Analysis.

Xingtong Liu received the B.Eng degree in infor-

mation security from Hunan University, Changsha,

China in 2020. Currently she is a master student in

the Department of Computer Science, Beijing Insti-

tute of Technology. Her research interests include

Anonymity Networks and Traffic Analysis.

Liehuang Zhu (M’16) is a Professor in the De-

partment of Computer Science at Beijing Institute

of Technology. He is selected into the Program for

New Century Excellent Talents in University from

Ministry of Education, P.R. China. His research in-

terests include Internet of Things, Cloud Computing

Security, Internet and Mobile Security.

Jiawen Kang (M’18) received the Ph.D. degree

from the Guangdong University of Technology,

China in 2018. He was a postdoc at Nanyang Tech-

nological University, Singapore from 2018 to 2021.

He currently is a professor at Guangdong University

of Technology, China. His research interests mainly

focus on blockchain, security, and privacy protection

in wireless communications and networking.

Shui Yu (IEEE SM’12) obtained his PhD from

Deakin University, Australia, in 2004. He currently

is a Professor of School of Computer Science, Uni-

versity of Technology Sydney, Australia. Dr Yu’s

research interest includes Big Data, Security and

Privacy, Networking, and Mathematical Modelling.

He has published four monographs and edited two

books, more than 400 technical papers, including top journals and top

conferences, such as IEEE TPDS, TC, TIFS, TMC, TKDE, TETC, ToN, and

INFOCOM. His h-index is 66. Dr Yu initiated the research field of networking

for big data in 2013, and his research outputs have been widely adopted by

industrial systems, such as Amazon cloud security. He is currently serving

a number of prestigious editorial boards, including IEEE Communications

Surveys and Tutorials (Area Editor), IEEE Communications Magazine, IEEE

Internet of Things Journal, and so on. He served as a Distinguished Lecturer

of IEEE Communications Society (2018-2021). He is a Distinguished Visitor

of IEEE Computer Society, a voting member of IEEE ComSoc Educational

Services board, and an elected member of Board of Governor of IEEE

Vehicular Technology Society.

Qi Li (Senior Member, IEEE) received the Ph.D.

degree from Tsinghua University. He is currently an

Associate Professor with the Institute for Network

Sciences and Cyberspace, Tsinghua University. He

has worked with ETH Zurich and the University of

Texas at San Antonio. His research interests include

network and system security, particularly in Internet

and cloud security, mobile security and big data security. He is currently an

Editorial Board Member of the IEEE TDSC and ACM DTRAP.

Ke Xu received his Ph.D. from the Department

of Computer Science & Technology of Tsinghua

University, Beijing, China, where he serves as a full

professor. He has published more than 200 technical

papers and holds 11 US patents in the research ar-

eas of next-generation Internet, blockchain systems,

Internet of Things (IoT), and network security. He is

a member of ACM and senior member of IEEE. He has guest-edited several

special issues in IEEE and Springer Journals. He is an editor of IEEE IoT

Journal. He is also the Steering Committee Chair of IEEE/ACM IWQoS.

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2022.3208196

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tsinghua University. Downloaded on September 22,2022 at 03:31:07 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Differences From Existing Surveys
	Contributions
	Survey Organization

	Overview of Encrypted Traffic Analysis
	System Model
	Taxonomy of Encrypted Traffic Analysis

	Background of Machine Learning
	Categories of Machine Learning Methods
	Traditional Machine Learning Methods
	Deep Learning Methods

	A General Framework of Encrypted Traffic Analysis
	Traffic Encryption Mechanisms
	Traffic Collection
	Traffic Representations
	Representation Level
	The Forms of Representations

	Encrypted Traffic Analysis Methods
	Machine learning method
	Knowledge-based method

	Performance Evaluation Metrics
	Effectiveness
	Time Overhead
	Generalization


	Network Asset Identification
	Device Fingerprinting
	Operating System Identification
	Summary and lessons learned

	Network Characterization
	QoE Metric Measurement
	Protocol Recognition
	Summary and Lessons Learned

	Privacy Leakage Detection
	Website Fingerprinting
	Application Fingerprinting
	User Action Identification
	Summary and Lessons Learned

	Attack Detection
	Malware Detection
	Network Anomaly Detection
	Summary and Lessons Learned

	Challenges and Future Research Directions
	Traffic Dataset Construction
	Traffic Representation
	Analysis Model Building
	Countermeasures

	Conclusion
	Biographies
	Meng Shen
	Ke Ye
	Xingtong Liu
	Liehuang Zhu
	Jiawen Kang
	Shui Yu
	Qi Li
	Ke Xu


