
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3719027.3744795
.

.

RESEARCH-ARTICLE

Swallow: A Transfer-Robust Website Fingerprinting Aack via
Consistent Feature Learning

MENG SHEN, Beijing Institute of Technology, Beijing, China
.

JINHE WU, Beijing Institute of Technology, Beijing, China
.

JUNYU AI, Beijing Institute of Technology, Beijing, China
.

QI LI, Tsinghua University, Beijing, China
.

CHENCHEN REN, Shandong University, Jinan, Shandong, China
.

KE XU, Tsinghua University, Beijing, China
.

View all
.

.

Open Access Support provided by:
.

Beijing Institute of Technology
.

Tsinghua University
.

Shandong University
.

PDF Download
3719027.3744795.pdf
23 December 2025
Total Citations: 0
Total Downloads: 915
.

.

.

.

Published: 19 November 2025
.

.

Citation in BibTeX format
.

.

CCS '25: ACM SIGSAC Conference on
Computer and Communications Security
October 13 - 17, 2025
Taipei, Taiwan
.

.

Conference Sponsors:
SIGSAC

CCS '25: Proceedings of the 2025 ACM SIGSAC Conference on Computer and Communications Security (November 2025)
hps://doi.org/10.1145/3719027.3744795

ISBN: 9798400715259

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3719027.3744795
https://dl.acm.org/doi/10.1145/3719027.3744795
https://dl.acm.org/doi/10.1145/contrib-81487646224
https://dl.acm.org/doi/10.1145/institution-60016835
https://dl.acm.org/doi/10.1145/contrib-99661522918
https://dl.acm.org/doi/10.1145/institution-60016835
https://dl.acm.org/doi/10.1145/contrib-99661516319
https://dl.acm.org/doi/10.1145/institution-60016835
https://dl.acm.org/doi/10.1145/contrib-99661064038
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/contrib-99661764856
https://dl.acm.org/doi/10.1145/institution-60031031
https://dl.acm.org/doi/10.1145/contrib-81384607628
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/3719027.3744795
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60016835
https://dl.acm.org/doi/10.1145/institution-60025278
https://dl.acm.org/doi/10.1145/institution-60031031
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3719027.3744795&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/ccs
https://dl.acm.org/conference/ccs
https://dl.acm.org/sig/sigsac
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3719027.3744795&domain=pdf&date_stamp=2025-11-22

Swallow: A Transfer-Robust Website Fingerprinting Attack via
Consistent Feature Learning

Meng Shen
Beijing Institute of Technology

Beijing, China
shenmeng@bit.edu.cn

Jinhe Wu
Beijing Institute of Technology

Beijing, China
jinhewu@bit.edu.cn

Junyu Ai
Beijing Institute of Technology

Beijing, China
aijunyu@bit.edu.cn

Qi Li
Tsinghua University

Beijing, China
qli01@tsinghua.edu.cn

Chenchen Ren
Shandong University

Jinan, China
chenchenren@mail.sdu.edu.cn

Ke Xu
Tsinghua University

Beijing, China
xuke@tsinghua.edu.cn

Liehuang Zhu
Beijing Institute of Technology

Beijing, China
liehuangz@bit.edu.cn

Abstract
Website fingerprinting (WF) attacks on Tor networks can analyze
traffic patterns to identify the websites Tor users are visiting, and
thus pose a significant threat to user privacy. In a real-world envi-
ronment, Tor users face diverse network conditions and can also
employ WF defenses, raising new challenges to launch WF attacks.
The state-of-the-art (SOTA) WF attacks either rely on a strong as-
sumption that WF classifiers are trained and deployed under the
same network condition, or suffer from significant performance
degradation against WF defenses. In this paper, we propose Swal-
low, a transfer-robust WF attack that can quickly transfer to new
network conditions while maintaining robustness against various
WF defenses. Specifically, we propose a novel trace representation
named Consistent Interaction Feature (CIF), which aligns traffic
distributions across different network conditions to capture consis-
tent features. Then we design three data augmentation algorithms
to simulate potential variations under various network conditions.
We extensively evaluate Swallow using ten datasets, including both
self-collected and public datasets. The closed- and open-world eval-
uation results demonstrate that Swallow significantly outperforms
the SOTA attacks. In particular, with only 5 labeled instances per
website for model fine-tuning, Swallow achieves an average im-
provement in accuracy of 17.50% over the SOTA WF attacks.

CCS Concepts
• Networks→ Network privacy and anonymity.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’25, Taipei
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1525-9/2025/10
https://doi.org/10.1145/3719027.3744795

Keywords
Tor; privacy; website fingerprinting; data augmentation

ACM Reference Format:
Meng Shen, Jinhe Wu, Junyu Ai, Qi Li, Chenchen Ren, Ke Xu, and Liehuang
Zhu. 2025. Swallow: A Transfer-Robust Website Fingerprinting Attack
via Consistent Feature Learning. In Proceedings of the 2025 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’25),
October 13–17, 2025, Taipei. ACM, New York, NY, USA, 15 pages.
https: //doi.org/10.1145/3719027.3744795

1 Introduction
As an anonymous proxy tool, Tor has been increasingly adopted by
users who seek to bypass censorship and safeguard their privacy [7].
Active daily users of Tor networks have exceeded 2 million by
November 2024 [24]. Tor encrypts user traffic and routes it through
a Tor circuit consisting of three relay nodes, effectively concealing
the original source and making online activities difficult to trace.
However, Tor has been shown to be vulnerable to various Website
Fingerprinting (WF) attacks [26, 27, 31], where the attackers extract
Tor traffic features (e.g., packet direction, length and timestamp) and
leverage machine learning techniques to train a classifier, allowing
accurate identification of the websites users are visiting.

Launching WF attacks in real-world scenarios remains a highly
challenging task. The network conditions of the users are often
assumed to be fixed [3, 15, 26, 27, 31], and the WF classifiers are
trained and tested using datasets collected under the same condi-
tions. In real world environment, however, Tor users face diverse
network conditions (e.g., locations of guard relays, web browsers),
which can lead to significant changes in Tor traffic patterns [36]. For
instance, Tor users can connect through guard relays located in dif-
ferent regions, resulting in substantial variations in communication
latencies [24]. When training and testing traces are collected under
different network conditions, the accuracy of WF attacks drops
significantly [15]. To adapt to new network conditions, attackers
often need to collect a large number of labeled traffic instances for
retraining, which is quite time consuming [2, 32]. Tor users can

1574

https://doi.org/10.1145/3719027.3744795
https://doi.org/10.1145/3719027.3744795
https://doi.org/10.1145/3719027.3744795

Meng Shen et al.CCS ’25, October 13–17, 2025, Taipei

also employ different WF defenses, such as WTF-PAD [16] and
Front [8], to protect their traffic against WF attacks. These defenses
can modify the original Tor traffic patterns by introducing dummy
packets or delays, reducing the accuracy of WF classifiers [8, 16, 28].

Researchers have proposed various WF attacks that can be roughly
classified into two categories: traditional attacks [3, 26, 27, 31] and
transferable attacks [2, 32]. Traditional attacks assume that the
training and testing conditions are the same. When applying under
a different condition, they require a time-consuming data collec-
tion process for model retraining. Transferable attacks TF [32]
and NetCLR [2] attempt to make the classifier transferable to new
network conditions. They represent a Tor trace by a sequence of
packet directions (e.g., +1 and −1 for incoming and outgoing pack-
ets, respectively). Since this representation is not robust against WF
defenses [28], it suffers from a significant performance degradation
against WF defenses. For example, their accuracy drops by more
than 50% against Front (see Section 6.2). Therefore, practical WF
attacks should be transfer-robust, meaning that they can achieve
higher accuracy than existing WF attacks on defended traces across
different network conditions.

In this paper, we propose Swallow1, a transfer-robust WF at-
tack that can quickly transfer to new network conditions while
demonstrating superior robustness against WF defenses compared
to SOTA WF attacks. We observe that the packet distributions of
defended traces vary under different network conditions. The basic
idea of Swallow is to align the packet distributions under different
network conditions to learn consistent features.

Swallow is composed of three key modules. First, we propose
a consistent feature representation module to convert raw web-
site traces into Consistent Interaction Feature (CIF), which aligns
traffic distributions across different network conditions to capture
consistent features. Second, we develop a robust data augmenta-
tion module to simulate unseen traffic distributions under various
network conditions. Since it is difficult to enumerate all kinds of
changes in network conditions, we resort to website loading time
as an indicator to reflect variation in traffic distribution, which
can be roughly classified in three scenarios: stable, shorter, and
longer loading time. For each scenario, we design the correspond-
ing data augmentation strategy, namely trace fluctuation, trace
aggregation and trace flatten. Finally, we design a few-shot website
identification module to adapt the model to new network condi-
tions using only a few labeled traffic instances. Specifically, we use
self-supervised learning to train the encoder to capture consistent
features by minimizing the distance between the original trace rep-
resentation and the corresponding augmented trace representations
in the feature space. This training process does not rely on labeled
traffic instances. The trained encoder can then be fine-tuned for a
new network condition using only a few labeled instances.

We collect eight datasets under different conditions and conduct
extensive experiments with these datasets and two public datasets,
i.e., Wang100 [35] and DF95 [31]. We compare the performance
of six SOTA WF attacks i.e., DF [31], Tik-Tok [26], Var-CNN [3],
RF [27], TF [32] and NetCLR [2] against seven different WF de-
fenses i.e., WTF-PAD [16], Front [8], Surakav [9], RegulaTor [13] ,

1Swallows are migratory birds known for their ability to travel long distances and
quickly adapt to new environments with agility and efficiency.

Palette [28], Tamaraw [4] and TrafficSilver [6]. The results show
that Swallow achieves the best attack performance in all scenarios.
In particular, when fine-tuned with 5 labeled instances per website,
Swallow achieves an average improvement in accuracy of 17.50%
over the SOTA WF attacks.

We summarize our contributions as follows:

• We propose Swallow, a transfer-robust WF attack that can
quickly transfer to new network conditions while demon-
strating superior robustness against WF defenses compared
to SOTA WF attacks. Specifically, we propose a novel trace
representation named Consistent Interaction Feature (CIF)
and design three data augmentation algorithms that are tai-
lored to variation in traffic distributions.
• We collect eight datasets under different conditions (e.g., lo-
cations of guard relays, web browsers, and collection times),
including seven closed-world datasets and one open-world
dataset. The closed-world datasets consist of 100 websites,
while the open-world dataset comprises 4,000 websites.
• We evaluate Swallow in both closed-world and open-world
scenarios using our collected datasets aswell as public datasets.
The results demonstrate that Swallow significantly outper-
forms existing WF attacks in all scenarios. We release the
dataset and source code of Swallow2.

The remainder of the paper is organized as follows. We first
introduce the related work in Section 2 and the threat model in
Section 3. We present high-level design of Swallow in Section 4 and
the design details in Section 5. Next, we conduct a comprehensive
evaluation on the performance of Swallow in Section 6. We discuss
relevant issues in Section 7 and conclude this paper in Section 8.

2 Related Work
2.1 WF Attacks
Existing WF attacks can be roughly classified into two categories:
traditional attacks and transferable attacks.
Traditional WF attacks. Recent studies [3, 26, 27, 29, 31] use a
simple representation of raw traffic traces (e.g., packet direction
sequence) as input and then leverage deep neural networks (DNNs)
to automatically extract traffic characteristics to avoid sophisticated
feature engineering in WF attacks. These attacks are based on
traditional supervised learning, assuming that the training and test
datasets are collected under the same network conditions. However,
when attacks are launched under a new network condition, they
usually require time-consuming collection of a large number of
well-labeled traffic traces to retrain the classifier.

Here, we review four typical attacks in this category. DF [31]
uses the packet direction sequence as traffic representation and
leverages Convolutional Neural Networks (CNNs) to build a clas-
sifier. Tik-Tok [26] further improves the attack accuracy of DF by
using a different traffic representation that combines packet timing
and direction information. Var-CNN [3] uses a ResNet18 model to
process packet direction and timing information separately and
trains an ensemble of website fingerprinting classifiers to enhance
attack performance. RF [27] proposes a trace representation named

2https://github.com/wujinhe0814/Swallow

1575

https://github.com/wujinhe0814/Swallow

Swallow: A Transfer-Robust Website Fingerprinting Attack via Consistent Feature Learning CCS ’25, October 13–17, 2025, Taipei

Traffic Aggregation Matrix (TAM) that to improve robustness of
WF attacks against existing defenses.
Transferable attacks. These attacks employ metric learning [32]
or contrastive learning [11, 17] to fine-tune a well-trained classifier
with a few traffic traces collected in a new network condition. Dur-
ing the pre-training phase, they aim to create a feature space where
traffic traces from the same website are closely grouped, while those
from different websites are clearly separated. In the fine-tuning
phase, they further generalize to diverse network conditions by
refining the feature space with only a few labeled traffic instances.

Here, we review two representative attacks in this category.
TF [32] is composed of two parts, i.e., the feature extraction network
based on CNN and k-NN classifier. It can achieve transferring tasks
from one dataset to another using a few instances. NetCLR [2] is
a contrastive learning-based WF attack that uses packet direction
sequences as trace representation. It can adapt to new network
conditions with only a few labeled traffic instances.

2.2 WF Defenses
To defend against WF attacks, recent studies have proposed various
WF defenses, which can be roughly divided into three categories:
obfuscation, regularization and splitting [28].

The basic idea of obfuscation defense is to randomize the sending
of packets, ensuring that the traffic patterns for each visit to the
same website are as different as possible. This category includes
defenses such as WTF-PAD [16] and Front [8]. Regularization de-
fense aims to regulate the traffic of all websites in a predefined
pattern, ensuring that the traffic patterns of different websites are
as similar as possible. This category includes four typical defenses:
Tamaraw [4], Surakav [9], RegulaTor [13], and Palette [28]. Split-
ting defense is designed to split traffic and destroy the original
features of websites without introducing time or bandwidth over-
head. TrafficSliver is a representative splitting defense, which splits
traffic over several Tor circuits in a highly random manner and
merges it to the guard. It employs two strategies: BD and BWR. BD
uses separate circuits for the incoming and outgoing packets, while
BWR, the optimal strategy [6], weighs the selection of guard nodes
to send Tor packets.

3 Threat Model
The threat model for transfer-robust WF attacks is illustrated in
Figure 1. Tor relay nodes are geographically distributed throughout
the world. To visit websites anonymously, a Tor client picks a Guard
Relay and constructs a Tor circuit consisting of three Relay nodes to
deliver traffic to the correspondingweb servers.WF attack is usually
considered a traffic classification problem. Previous studies [3, 26,
27, 31] assume that a WF attacker can train a classifier under the
same conditions as the victim. Unlike them, we consider a more
realistic scenario, where the WF attacker aims to apply a classifier
trained under a certain network condition on a victim under a
different network condition. Similar to previous WF attacks [3, 26,
27, 31], we consider a local and passive attacker, who can only
collect traffic exchanged between victim and Tor guard relays but
lacks the capability to modify or decrypt packets. The adversary
may be the administrator of the user’s local networks, Internet
Service Providers (ISPs), or Autonomous System (AS).

Victim

Client
controlled by attacker

Exit-1

Websites

Training

Guard-1 Middle-1

Tor Network

Attacker

Defended Tor Traffic Tor Traffic

Deployment

Exit-2Guard-2 Middle-2

Figure 1: The threat model of transfer-robust WF attacks.

More specifically, the WF attacker extracts features from the
collected traces of websites and trains a classifier offline. When
launching WF attacks on victims with different conditions, the at-
tacker collects a small number of traffic traces between the victim
and its Guard Relay node in Tor network to fine-tune the trained
classifier for identifying the website the victim is visiting. To mit-
igate WF attacks, the victim can deploy a WF defense to protect
their connection privacy. Following prior work [2, 3, 26, 31, 32], we
assume that the attacker has prior knowledge of the specific defense
deployed by the user. Since all defenses are publicly available in Tor,
it is challenging for users to deploy private defenses [28]. Thus, the
attacker can collect traces generated under a specific defense and
perform adversarial training to improve the accuracy of classifier
against the corresponding defense.
Closed- and Open-World Scenarios. These scenarios are widely
used to assess the effectiveness of WF attacks and defenses. In a
closed-world scenario, the client is assumed to visit a limited set
of websites referred to as monitored websites. The adversary has
access to instances from this set to train a classifier aimed at dis-
tinguishing between these websites. In contrast, the open-world
scenario, which is more representative of real-world conditions,
involves the client visiting both monitored websites and a signifi-
cantly larger number of unmonitored websites. The attacker, having
access to only a subset of the unmonitored websites for training, at-
tempts to determine if the client is visiting any monitored websites,
and if so, identifies the specific website.

4 Design of Swallow
In this section, we present the key observation for our design and
introduce the overview of Swallow.

4.1 Key Observation on Tor Traffic Distributions
When a Tor user visits the websites through Tor networks, the
resulting Tor traffic contains a sequence of outgoing and incom-
ing packets. Tor traffic distribution roughly means the number of
packets transmitted over time during the website loading process.
Intuitively, the traffic distribution derived from visiting the same
website may vary under different network conditions (e.g., via dif-
ferent Tor guard relays). WF defenses also have an impact on traffic
distribution by introducing dummy packets or packet delay [8, 28].

To explore how the traffic distributions of the defended traces
change under different network conditions, we collect undefended

1576

CCS ’25, October 13–17, 2025, Taipei Meng Shen et al.

Chicago

0 5 10 15 20 25
Time (s)

Singapore

(a) Defended Traces with Front

Chicago

0 5 10 15 20 25
Time (s)

Singapore

(b) Defended Traces with Palette

Figure 2: Visualization of the distribution of defended traces
derived from visiting the same website via two different
guard relays located in Chicago and Singapore, respectively.
For ease of illustration, the outgoing (•) and incoming (•)
packets are plotted along Y-axis.

0k

20k

40k

Pk
t.N

um
be

r

Chicago Singapore

0 20 40 60 80 100
Label Index

25

50

Ti
m

e
(s

)

(a) Defended traces with Front

20k

40k

Pk
t.N

um
be

r

Chicago Singapore

0 20 40 60 80 100
Label Index

25

50

Ti
m

e
(s

)

(b) Defended traces with Palette

Figure 3: The average packet number and loading time of the
website traces.

traffic under various network conditions and simulate the corre-
sponding defended traces with a specific WF defense. Here, we
select a representative obfuscation defense Front [8] and a repre-
sentative regularization defense Palette [28]. We assume a client
in Los Angeles and select guard relays located in different cities
to visit the same set of websites (see Section 6.1 for more details
on the collection of datasets). We randomly select defended traces
that visit the same website from two guard relay locations (i.e.,
Chicago and Singapore) and visualize their distributions as shown
in Figure 2. We observe that the website loading time through the
guard relay located in Chicago is shorter than that in Singapore,
which holds for defended traces with both Front and Palette.

To verify that a similar pattern exists in the defended traces for
all 100 websites, we plot the average number of packets and the
loading time for each website, as shown in Figure 3. In all subfigures,
the website indices are ranked in ascending order according to
their loading time measured in Singapore. We can observe that
for the same WF defense, the average number of packets in the
defended traces from two different locations is nearly the same, but
the loading time shows significant differences. The loading time in
Chicago is much shorter than in Singapore, which is consistent with
the results in Figure 2. This is because the client is closer to Chicago,
resulting in lower round-trip latency. We use Ping to measure the
communication latency for LA-Chicago and LA-Singapore, which
are 52.9 and 182.6 ms, respectively.

1 1 0 1
2 1 2 0

1 1 0 1
2 1 2 0

Time

Time

Outgoing Packet Incoming Packet

Shorter loading time
Smaller time interval

Longer loading time
Larger time interval

Figure 4: An illustration of traffic distribution alignment by
flexibly adjusting the length of time interval 𝑠 based on the
loading time.

The above analysis indicates that the traffic distribution of the
defended traces varies among different guard relays. Thus, the di-
rection sequence of the packets used by the WF attacks TF [32] and
NetCLR [2] experiences significant changes, making it difficult to
achieve transferability when WF defenses are adopted. Intuitively,
to achieve transferability for WF attacks, we can align traffic distri-
butions to capture consistent traffic features that are robust under
different network conditions. More specifically, if we count the
number of outgoing and incoming packets transmitted in each time
interval, we can flexibly adjust the length of time interval based on
the loading time of traces to align different traffic distributions. As
illustrated in Figure 4, the traffic distribution with a longer loading
time is set with a larger time interval to align with the distribu-
tion with a shorter loading time. This motivates us to design a
transfer-robust WF attack by learning consistent traffic features
under different network conditions.

4.2 Overview of Swallow
In this subsection, we introduce Swallow. We design a novel trace
representation called Consistent Interaction Feature (CIF) based on
above observation. CIF aligns traffic distributions across different
network conditions to capture consistent features. Then we pro-
pose data augmentation methods based on CIF to simulate traffic
traces under various network conditions. Swallow leverages self-
supervised learning to pre-train an encoder on unlabeled traffic
instances, which can be fine-tuned with a few labeled samples to
quickly adapt to new network conditions. Swallow consists of three
modules, including Consistent Feature Representation, Robust Data
augmentation, and Few-Shot Website Identification.
Consistent Feature Representation. The consistent feature rep-
resentation module transforms raw traffic traces into a Consistent
Interaction Feature (CIF). Based on the above observation, CIF di-
vides the entire traffic traces into small time intervals, counting
the number of outgoing and incoming packets per time interval.
CIF dynamically adjusts the size of the time intervals based on the
network condition of the website to align the Tor traffic distribution.
The design details of this module are presented in Section 5.1.
Robust Data Augmentation. This module is designed based on
our robust trace representation, CIF, which can effectively sim-
ulate the variations of defended traces under different network
conditions. We design three data augmentation algorithms, each
simulating a fundamental type of network scenario: minor network

1577

Swallow: A Transfer-Robust Website Fingerprinting Attack via Consistent Feature Learning CCS ’25, October 13–17, 2025, Taipei

1 Consistent Feature Representation 2 3 Few-Shot Website Identification

Pre-Training Encoder

Empty IntervalOutgoing / Incoming Packets Original / Augmented Distribution

Robust Data Augmentation

Embedding Space

1. Training Phase

Pre-Trained Encoder

Predict
Linear Classifier

...

2. Testing Phase
...
...

a. Trace Fluctuation (Stable Loading Time)

Time

Pk
t.N

um
be

r

Time

c. Trace Flatten (Longer Loading Time)

Aggregate packets into
less time intervals

Time

b. Trace Aggregation (Shorter Loading Time)

...

...

Pk
t.N

um
be

r
Pk

t.N
um

be
r

...

...

Spread packets into
more time intervals

...

...

Adjust packet counts in
specific time intervals

Augmenting traces based on
differences in loading times

...

...

Website Traces

Consistent Interaction Feature

Time

 Feature Extraction

Time

Align traffic distribution with

fexible time interval size 𝑠

Original / Augmented CIF

Figure 5: The overview of Swallow.

fluctuation, low-latency, and high-latency environments. These
three scenarios correspond to three variations in website loading
time: stable, shorter, and longer loading time. This module helps
attackers improve the diversity of training data, thereby reducing
the reliance on large amounts of labeled traffic instances. We will
present the details in Section 5.2.
Few-Shot Website Identification. The few-shot website identifi-
cation module leverages self-supervised learning to capture con-
sistent features across diverse network conditions by ensuring the
similarity between an original trace representation and its corre-
sponding augmented trace representations. With these consistent
features, the model achieves high attack accuracy in new network
conditions, requiring only a few labeled traffic instances for fine-
tuning. We will present the details in Section 5.3.

5 Design Details
In this section, we present the design details of Swallow, including
the consistent feature representation module, the robust data aug-
mentation module, and the few-shot website identification module.

5.1 Consistent Feature Representation
The consistent feature representation module transforms raw traffic
traces into a CIF. We design this module based on a key observa-
tion that the packet distribution over time varies across network
conditions, with shorter website loading times corresponding to
denser packet distributions. For example, in low-latency network
conditions, the website loading time is shorter, with higher peak
packet counts in certain time intervals. This observation inspires
us to divide the entire trace into smaller time intervals and count
the number of outgoing and incoming packets in each interval.
To align feature distributions across different network conditions,
we propose CIF, which dynamically adjusts the time interval size

based on the loading time of the traffic trace. Specifically, longer
loading times, which typically indicate higher latency, trigger CIF
to enlarge the time interval. This ensures that delayed packets are
still captured within the current time interval.

We divide the entire trace into several small time intervals and
dynamically adjust their sizes based on the website’s loading time.
To adapt to the model’s input, the number of time intervals is fixed
to 𝑁 . The size of each time interval is defined as 𝑠 =

⌈
𝛼 × 𝑇

𝑁

⌉
. We

introduce an adjustment factor𝛼 to ensure that the time interval size
remains within a reasonable range. A reasonable time interval size
is crucial because an excessively large interval reduces the amount
of information that CIF can extract from the original traces, whereas
an excessively small interval results in fewer packets within the
window, making it more susceptible to network fluctuations. As
shown in Figure 3, we perform a statistical analysis of the website
loading times in our collected dataset. We observe that over 60% of
the traces have a loading time of less than 20 seconds. We define
both lower bound 𝜆 and upper bound 𝜇 bounds for the time interval
size to prevent issues caused by excessively long or short website
loading times.

The calculation process of CIF is shown in Algorithm 1. A visit to
a certain website results in a traffic trace, which is denoted by 𝐹 =

(𝑓1, 𝑓2, . . . , 𝑓𝑙), where 𝑙 is the length of the trace. Let 𝑓𝑘 = ⟨𝑡𝑘 , 𝑑𝑘 ⟩
be a tuple consisting of the packet timestamp and direction, where
𝑡𝑘 and 𝑑𝑘 are the arrival time and direction of the 𝑘-th packet,
respectively. Note that 𝑑𝑘 is 1 for an outgoing packet and −1 for
an incoming packet. Let𝑀 ∈ R2×𝑁 denote the CIF of the trace 𝐹 ,
where 𝑁 is the number of time intervals considered in CIF. Assume
that the size of each time interval is denoted by 𝑠 , the loading time
for a trace is 𝑇 , and 𝑠 can be calculated using 𝑠 =

⌈
𝛼 × 𝑇

𝑁

⌉
(line 3).

An element𝑚𝑖 𝑗 ∈ 𝑀 represents the number of incoming (𝑖 = 1) or
outgoing (𝑖 = 2) packets whose timestamps are between (𝑗 − 1) × 𝑠

1578

CCS ’25, October 13–17, 2025, Taipei Meng Shen et al.

Algorithm 1: Calculation of CIF
Input: A traffic trace 𝐹 , the trace loading time 𝑇 , the

number of columns of CIF 𝑁 , the adjustment factor
𝛼 , the lower / upper bound of time interval size 𝜆,𝜇

Output: CIF𝑀 = {𝑚𝑖 𝑗 |𝑖 ∈ {1, 2}, 𝑗 ∈ [1, 𝑁]}
1 Initialize the size of time interval 𝑠 as 0;
2 Initialize the size of CIF𝑀 as 2 × 𝑁 ;
3 s← 𝛼 × 𝑇

𝑁
;

4 s← max(𝜆,min(s, 𝜇));
5 for each packet 𝑓𝑘 = ⟨𝑡𝑘 , 𝑑𝑘 ⟩ ∈ 𝐹 do
6 𝑗 ←

⌊ 𝑡𝑘
𝑠

⌋
;

7 if 𝑗 ≤ 𝑁 then

8 𝑖 ←
{

1 if 𝑑𝑘 < 0
2 otherwise

;

9 𝑚𝑖 𝑗 ←𝑚𝑖 𝑗 + 1;
10 end
11 end
12 return𝑀 ;

and 𝑗 × 𝑠 (line 6-9). The final returned M is considered as CIF. We
evaluate the robustness of CIF in Section 6.4.

5.2 Robust Data Augmentation
The robust data augmentation module employs three augmentation
algorithms to generate simulated traffic trace based on original
traffic. Although CIF can effectively handle distribution differences
in various network conditions, real-world traffic traces often con-
tain small changes and anomalies that feature alignment may not
fully capture. Data augmentation introduces additional variability,
helping the model perform better when dealing with these subtle
changes in the real world.

We propose robust data augmentation strategies to simulate
variations in defended traces under different network conditions.
These strategies are built upon CIF, which remains robust across di-
verse network conditions and defenses. Our approach addresses the
limitations of existing methods. In computer vision, various data
augmentation techniques [30], such as flipping, rotating, scaling,
and cropping, have been widely adopted for images. However, these
techniques are not directly applicable to traffic traces, as they fail to
capture the unique variations introduced by different network con-
ditions. The SOTA WF attack NetCLR [2] introduces NetAugment,
which leverages packet direction sequences as the trace represen-
tation and converts them into bursts for data augmentation. The
direction sequence is easily obfuscated by WF defenses [18], which
makes NetAugment ineffective in simulating the variations of de-
fended traces across different network conditions (see Section 6.4).

Specifically, we propose RobustAugment, which consists of three
algorithms: trace fluctuation, trace aggregation, and trace flatten.
Each algorithm simulates a fundamental type of network variation:
minor network fluctuations, low-latency and high-latency envi-
ronments. These three scenarios correspond to three variations in
website loading time: stable, shorter, and longer loading time. The
implementation details of the RobustAugment algorithm are shown
in Algorithm 2. Following previous work [2], we do not modify

Algorithm 2: RobustAugment Algorithm
Input: Consistent Interaction Feature𝐶𝐼𝐹 , time interval size 𝑠 ,

website loading time 𝑡
Output: Augmented Consistent Interaction Feature𝐶𝐼𝐹𝑎𝑢𝑔

1 Initialize an augment strategies list 𝐿 = {Trace Fluctuation, Trace
Aggregation, Trace Flatten};

2 Select a random strategy 𝐹 from 𝐿;
3 𝐶𝐼𝐹𝑎𝑢𝑔 = 𝐹 (𝐶𝐼𝐹, 𝑠, 𝑡) ;
4 return𝐶𝐼𝐹𝑎𝑢𝑔 ;

50 100 150 200 250
Time Interval

300

200

100

0

Pk
t.

N
um

be
r

50 100 150 200 250
Time Interval

300

200

100

0

Pk
t.

N
um

be
r

Figure 6: CIF patterns when browsing the samewebsite under
the same network condition twice.

the first 20 packets of each trace, as these packets are used for the
initialization of the connection and the handshake, which remain
consistent on different websites.
Trace Fluctuation. Even within the same network condition, mul-
tiple visits to the same website may exhibit different traffic patterns.
This variation can result from minor network fluctuations during
each visit or changes in the website’s content. Figure 6 shows the
CIF patterns when browsing the same website under the same net-
work setting twice. It is evident that there are slight differences in
the CIF traffic patterns between two visits. Specifically, one visit
has a larger packet number in each time interval, while the other
has a smaller packet number. To simulate this variation, we ran-
domly modify the time interval value to generate augmented trace
representation.

The trace fluctuation algorithm dynamically adjusts time inter-
val values based on specific probabilistic parameters. If the time
interval value is empty, the algorithm probabilistically replaces it
with the average of neighboring intervals using a defined window
size𝑊𝑚𝑜𝑑𝑖 𝑓 𝑦 with probability 𝑟𝑝𝑎𝑑𝑑𝑖𝑛𝑔 . For non-zero time inter-
vals, we randomly choose to either increase or decrease the time
interval value. The modification process is controlled by the param-
eter 𝑟𝑚𝑜𝑑𝑖 𝑓 𝑦 . The implementation detail of the trace fluctuation
algorithm is shown in Algorithms 3 in the Appendix.
Trace Aggregation. As mentioned in Section 4.1, the packet rate
is faster in low-latency network conditions. Compared to high-
latency conditions, the time interval value tends to be larger, and
the website loading time is shorter. To simulate this variation, we
aggregate packets into certain time intervals and remove others.
Specifically, for each time interval, we remove it with a probability
of 𝑟𝑟𝑒𝑚𝑜𝑣𝑒 to simulate shorter website loading times. We increase
the time interval value with a probability of 𝑟𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 for the time
intervals that are retained. The implementation detail of the trace
aggregation algorithm is shown in Algorithm 4 in the Appendix.

1579

Swallow: A Transfer-Robust Website Fingerprinting Attack via Consistent Feature Learning CCS ’25, October 13–17, 2025, Taipei

RobustAugment

Original Trace

Augmented Traces

Target

Encoder Projection Head Prediction

Loss

Online

Figure 7: The pre-training phase of Swallow, which is based on a self-supervised learning framework BYOL [11].

Trace Flatten. In high-latency network conditions, the network
becomes more congested, resulting in a lower packet transmission
rate. This corresponds to a decrease in the time interval value, while
the website loading time becomes longer. To simulate this variation,
we flatten the entire trace and distribute packets across more time
intervals. We use 𝑟𝑖𝑛𝑠𝑒𝑟𝑡 to control whether a time interval should
be inserted. If so, a new time interval is inserted by averaging the
surrounding values within a defined window𝑊𝑖𝑛𝑠𝑒𝑟𝑡 . Additionally,
we decrease the time interval value with a probability of 𝑟𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 .
The implementation detail of the trace flatten algorithm is shown
in Algorithm 5 in the Appendix.

In summary, the above data augmentation simulates three sce-
narios that represent fundamental traffic variations: (1) minor fluc-
tuations commonly observed in stable networks, (2) high-density
traffic under low-latency conditions, and (3) dispersed traffic under
high-latency conditions. They provide comprehensive coverage of
typical network conditions.

5.3 Few-Shot Website Identification
To learn consistent features of network traffic and reduce reliance
on a large number of labeled traffic samples, the few-shot website
identification module leverages self-supervised learning to train
an encoder that captures the similarity between the original trace
representation and the augmented trace representation. Through
this process, the encoder learns the consistent feature of traces
under different network conditions, enabling attackers to achieve
high attack accuracy in new network conditions with only a few
labeled traffic instances for fine-tuning.

Swallow is based on a novel self-supervised learning framework
BYOL [11], which reduces the distance between positive pairs and
applies the skillfully-designed momentum mechanism to prevent
the hidden space from collapsing without negative pairs. BYOL uses
two neural networks to learn: the online and target networks. The
online network is defined by a set of weights 𝜃 and is comprised of
three stages: an encoder 𝑓𝜃 , a projector 𝑔𝜃 and a predictor 𝑞𝜃 . The
target network has the same architecture as the online network but
uses a different set of weights 𝜉 . The target network supplies the
regression targets necessary for training the online network. Its
parameters, denoted by 𝜉 , are maintained as an exponential moving
average of the online network’s parameters 𝜃 . Swallow consists of
two stages: the pre-training phase and the fine-tuning phase.
Pre-Training Phase. The process of how the attackers train the
pre-training encoder is shown in Figure 7. In the pre-training
phase, we train an encoder to transform trace representation into

low-dimensional embedding features. Specifically, two different
augmented traces 𝑣1 and 𝑣2 are needed as the inputs of the on-
line and target networks during the training phase. From the first
augmented trace 𝑣1, the online network outputs embedding fea-
tures 𝑦𝜃 ≜ 𝑓𝜃 (𝑣1) and a projection head 𝑧𝜃 ≜ 𝑔𝜃 (𝑦𝜃). The tar-
get network outputs 𝑦𝜉 ≜ 𝑓𝜉 (𝑣2) and the target projection head
𝑧𝜉 ≜ 𝑔𝜉 (𝑦𝜉) from the second augmented trace 𝑣2. We then out-
put a prediction 𝑞𝜃 (𝑧𝜃) of 𝑧𝜉 and ℓ2-normalize both 𝑧𝜃 and 𝑧𝜉 to
𝑧𝜃 ≜ 𝑞𝜃 (𝑧𝜃)/∥𝑞𝜃 (𝑧𝜃)∥2 and 𝑧𝜉 ≜ 𝑧𝜉/∥𝑧𝜉 ∥2. Finally, we define the
following mean squared error between the normalized predictions
and target projections.

L𝜃,𝜉 ≜

𝑞𝜃 (𝑧𝜃) − 𝑧𝜉

2

2 = 2 − 2 ·
⟨𝑞𝜃 (𝑧𝜃), 𝑧𝜉 ⟩

∥𝑞𝜃 (𝑧𝜃)∥2 · ∥𝑧𝜉 ∥2
. (1)

We symmetrize the loss L𝜃,𝜉 in Eq. 1 by separately feeding 𝑣2 to
the online network and 𝑣1 to the target network to compute L̃𝜃,𝜉 .
At each training step, we perform a stochastic optimization step to
minimize LSwallow

𝜃,𝜉
= L𝜃,𝜉 + L̃𝜃,𝜉 with respect to 𝜃 only, but not

𝜉 . After the training, we use the encoder 𝑓𝜃 to transform the trace
representations into low-dimensional embedding features.
Fine-Tuning Phase. In the fine-tuning phase, the attackers use
𝑁 labeled traffic traces to fine-tune the pre-trained encoder. We
replace the projection head with a fully connected layer to output
the probability for each class. Following prior work [2, 11], in the
fine-tuning phase, we use the labeled dataset to fine-tune both the
encoder and the fully connected layer.
Testing Phase. In the testing phase, the unknown traffic traces
collected by the attacker are fed into the encoder to obtain low-
dimensional embedding features. Then the trained fully connected
layer predicts the labels of the unknown traffic traces.

6 Evaluation
In this section, we evaluate the performance of Swallow with public
datasets and real-world datasets. We first describe the experimental
settings in Section 6.1. Then we make a comprehensive comparison
of Swallow with the SOTA attacks in both closed- and open-world
scenarios in Sections 6.2 and 6.3, respectively. Finally, we conduct
an ablation study on Swallow in Section 6.4.

6.1 Experimental Setup
Datasets. Considering that there are no public and comprehensive
Tor datasets collected under different conditions (e.g., locations
of guard relays, web browsers, and collection time), we construct

1580

CCS ’25, October 13–17, 2025, Taipei Meng Shen et al.

Table 1: Accuracy of WF attacks against defenses with 5 labeled traffic instances (Different Guard Relay Locations).

WF Attacks Accuracy (%)
Undefended WTF-PAD [16] Front [8] Surakav [4] RegulaTor [13] Palette [28] Tamaraw [4] UniDef1TrafficSliver [6]

DF [31] 42.87 27.77 9.06 8.21 3.45 4.06 7.68 1.53 9.34
Tik-Tok [26] 56.61 51.35 16.23 20.76 3.38 3.45 5.74 2.09 12.43
Var-CNN [3] 49.40 13.77 4.57 20.68 1.49 2.23 1.57 1.47 4.21

RF [27] 69.21 54.93 47.57 14.04 29.72 5.27 3.91 3.62 35.72
TF [32] 86.23 73.97 28.99 29.54 1.88 2.24 8.20 1.32 15.18

NetCLR [2] 87.21 74.18 18.40 19.92 1.90 2.34 7.21 1.94 9.24
Swallow 87.42 81.40 62.41 46.61 33.60 10.19 8.53 3.91 45.52
1 UniDef is a self-constructed defense where the distribution of Tor traffic for all websites is made uniform.

Table 2: Summary of Collected Datasets.

Dataset ID Location Browser Time Size
𝐷1 Chicago TBB 2024-7 100 × 100
𝐷2 Singapore TBB 2024-7 100 × 100
𝐷3 London TBB 2024-7 100 × 100
𝐷4 Johannesburg TBB 2024-7 100 × 100
𝐷5 Mumbai TBB 2024-7 100 × 100
𝐷6 Chicago TBB 2024-10 100 × 100
𝐷7 Chicago Chrome 2024-7 100 × 100
𝐷8 Chicago TBB 2024-7 4000 × 1

our own datasets using six cloud servers on Vultr [1], as shown in
Table 2. Five of these servers are used as our private bridges (i.e.,
the guard relays), which are located in Chicago, Singapore, London,
Johannesburg, and Mumbai. The rest server located in Los Angeles
is used as the Tor client to visit websites via Tor browser (TBB
version 10.5.10) or Chrome (version 112.0.5615.28).

We collect datasets in both closed- and open-world settings.
Following previous studies [9, 28], the websites are selected from
the Tranco [23] list, which combines five established rankings (i.e.,
Umbrella, Majestic, Farsight, CrUX, and Radar) while excluding
undesirable domains, such as those that are unavailable ormalicious.
We select the first 100 websites on the list (i.e., the most popular
websites) as the monitored sites, and each monitored website has
at least 100 instances. We also randomly select 4,000 websites as
unmonitored sites, where each site has only one instance.

In addition, we also use public datasets provided in recent studies
to evaluate the performance of WF attacks.

Wang dataset [35]. The dataset includes both closed- and open-
world websites. Closed-world websites are selected from lists of
blocked sites in some countries, and open-worldwebsites are chosen
from the Alexa Top Sites. The dataset was collected in 2013 using
TBB version 3.X.

• Wang100. The set of 100 closed-world websites, where each
website has 90 traffic instances.
• Wang9000. The set of 9,000 open-world websites, where
each website has 1 traffic instance.

DF dataset [31]. The dataset was collected in 2016 using TBB
version 6.X, including websites in both closed- and open-world
settings. All websites were chosen from the Alexa Top Sites.

• DF95. The set of 95 closed-world websites, where each web-
site has 1,000 traffic instances.

• DF40000. The set of 40,000 open-world websites, where each
website has 1 traffic instance.

Ethical Considerations. All guard relays used in our data collec-
tion are kept private and we do not accept requests from real Tor
users. We limit the number of clients in parallel (8 in our setup) to
reduce the burden on both the Tor network and the Web servers.
Furthermore, we retain only the packet timestamps and directions,
which are essential for our experiments, and we do not collect any
additional information.
WF attacks. To make a comprehensive comparison, we select six
SOTA WF attacks, namely DF [31], Tik-Tok [26], Var-CNN [3],
RF [27], TF [32] and NetCLR [2]. They are all built with the source
codes released by their authors. All WF attacks are trained and
tested on a server equipped with an Intel Core i7 3.4 GHz, 32GB
of memory, and a GeForce RTX 3080. To ensure a fair comparison,
we perform parameter tuning of these attacks to achieve similar or
better performance as reported in their original papers.
WF defenses. We select seven typical WF defenses, including
WTF-PAD [16], Front [8], Surakav [9], RegulaTor [13], Palette [28],
Tamaraw [4] and TrafficSliver [6]. We simulate each defense in
the undefended dataset to create defended datasets for closed- and
open-world evaluation.

6.2 Closed-World Evaluation
In this subsection, we evaluate the performance of attacks against
WF defenses in four typical scenarios where training and testing of
WF attacks are conducted under different conditions. Following the
assumption of closed-world evaluation, the clients can only visit
the set of monitored websites.
Scenario #1: Different Locations of Guard Relays. As men-
tioned in Section 4.1, the traffic patterns generated by visiting web-
sites using different guard relays exhibit significant differences. For
transferable WF attacks (e.g., TF [32], NetCLR [2] and Swallow),
we pre-train the classifier on the original dataset 𝐷1 (located in
Chicago), and fine-tune the classifier with the target datasets 𝐷2,
𝐷3, 𝐷4, or 𝐷5, respectively. During fine-tuning, we randomly select
𝑁 traffic instances (i.e., 𝑁 = {5, 10, 15, 20}) of each website from
the corresponding dataset, while the remaining instances are used
for testing. For traditional WF attacks (e.g., DF [31], Tik-Tok [26],
VarCNN [3], RF [27]), we directly train the classifier with the 𝑁
traffic instances of each website from the target dataset 𝐷2, 𝐷3, 𝐷4,
or 𝐷5 and test with the remaining instances, which is the same
as in previous studies [2, 32]. To eliminate the impact of sample

1581

Swallow: A Transfer-Robust Website Fingerprinting Attack via Consistent Feature Learning CCS ’25, October 13–17, 2025, Taipei

Table 3: Accuracy of WF attacks against defenses with various labeled traffic instances (Concept Shift).

N WF Attacks Accuracy (%)
Undefended WTF-PAD [16] Front [8] Surakav [4] RegulaTor [13] Palette [28] TrafficSliver [6]

5

RF [27] 59.02 56.25 42.25 16.81 16.26 7.31 36.64
TF [32] 84.98 79.94 10.96 31.45 3.01 2.77 13.97

NetCLR [2] 86.51 79.44 9.03 22.43 3.28 2.74 9.02
Swallow 86.54 81.15 61.26 43.57 19.35 10.10 45.99

10

RF [27] 72.62 72.31 62.18 37.51 21.09 10.46 48.51
TF [32] 90.01 83.02 12.65 34.78 3.36 3.02 16.29

NetCLR [2] 89.87 85.15 15.09 30.01 3.90 3.13 12.94
Swallow 90.06 86.62 76.48 52.97 23.54 13.08 56.55

15

RF [27] 89.14 74.10 71.81 47.14 25.64 13.52 58.02
TF [32] 90.48 83.64 12.82 36.59 3.64 3.57 17.28

NetCLR [2] 92.00 87.66 19.39 35.34 3.50 3.49 17.20
Swallow 92.35 89.80 79.45 58.68 26.98 14.12 61.24

20

RF [27] 89.75 83.97 75.35 55.78 27.15 16.10 61.58
TF [32] 90.83 84.03 13.64 36.75 3.86 3.45 17.39

NetCLR [2] 92.35 88.96 22.96 39.06 3.90 3.58 19.00
Swallow 93.49 91.15 83.69 60.84 27.94 16.23 66.47

selection on performance, we repeat each experiment five times
and obtain the average accuracy of each WF attack. In addition,
we construct an ideal defense where the distribution of Tor traffic
for all websites is made uniform, named UniDef. UniDef obfuscates
the number of packets for all websites within each time interval
to achieve a uniform distribution. However, it incurs over 200%
bandwidth overhead and 40% time overhead.

The performance of WF attacks with only five traffic instances
(𝑁 = 5) is shown in Table 1. Additional results for other sample
sizes are provided in Table 10 within the Appendix. These results
demonstrate trends and conclusions similar to those observed when
𝑁 = 5. TF, NetCLR, and Swallow still achieve an accuracy greater
than 85% on undefended traces with only five instances. This is
because they have learned how to extract generalized features
during the pre-training phase [11]. In contrast, traditional attacks
require more labeled instances for training and thus achieve an
accuracy below 70%.

For the obfuscation defenses WTF-PAD and Front, Swallow
achieves the best accuracy, with accuracies of 81.40% and 62.41%, re-
spectively. Particularly on Front, the accuracy of Swallow is higher
than that of NetCLR, TF, RF, Var-CNN, Tik-Tok and DF by 44.01%,
33.42%, 14.84%, 57.84%, 46.18% and 53.35% , respectively. The per-
formance of TF and NetCLR significantly declines on Front, where
both achieve accuracies below 30%. This is because TF and NetCLR
use direction sequence as their trace representation, which is not
robust against Front (see Section 6.4).

The regularization defenses not only insert dummy packets but
also introduce packet delay, providing stronger protection. Swallow
still achieves the highest accuracy under this setting. On Surakav
and RegulaTor, Swallow improves the baseline accuracy by an aver-
age of 30.13% and 28.76%, respectively, significantly outperforming
other attacks. Both TF and NetCLR, the two SOTA transferable
attacks, achieve accuracy of less than 3% on RegulaTor. Similarly,
CUMUL, DF, Tik-Tok, and Var-CNN almost completely lose their
classification ability against these defenses. Palette and Tamaraw
provide even stronger protection, reducing the accuracy of almost
all attacks to below 10%. Despite this, Swallow continues to achieve
the best performance, with an average improvement in baseline

accuracy of 7.14% and 2.85% on Palette and Tamaraw, respectively.
UniDef reduces the accuracy of all WF attacks to below 5%, close
to random guessing.

Splitting defenses, such as TrafficSliver, split website traffic to
limit the traces obtained by attackers. Swallow achieves the best
performance in this scenario, with an accuracy of more than 45% ,
Swallow improving the baseline accuracy by an average of 32.58%.
Under this defense, TF and NetCLR achieve accuracy of 15.10% and
9.24%, respectively, which are over 30% lower than that of Swallow.

The results show that Swallow can efficiently transfer across
different guard relays, achieving high attack accuracy with only 5
labeled traffic instances, with an average accuracy improvement
of 20.23% compared to the SOTA WF attacks. This is attributed to
CIF, which is more robust than other trace representations under
different guard relays and defenses (see Section 6.4). The data aug-
mentation further simulates network condition variations, enabling
the encoder to learn consistent features.
Scenario #2: Concept drift. Tamaraw reduces the accuracy of all
attacks to less than 10% by regularizing the packet sending. How-
ever, previous work [28] has shown it introduces high overheads.
Similar to Tamaraw, UniDef also requires a significant number of
dummy packets and delays, making real-world deployment im-
practical. Specifically, both defenses incur over 200% bandwidth
overhead and 40% time overhead, burdening the Tor network and
degrading user experience [20]. Therefore, they will not be con-
sidered in the subsequent experiments. Considering the poor per-
formance of CUMUL, DF, TikTok, and Var-CNN in above scenario,
these methods will not be included in the following experiments.

Concept drift means that changes in website content can lead to
variations in traffic patterns over time. Previous works [2, 32] have
demonstrated that concept drift reduces the accuracy of WF attacks.
To evaluate the performance of WF attacks in dealing with concept
drift, we conduct experiments with the collected datasets𝐷1 and𝐷6,
where they were collected in July and October 2024, respectively.
The website labels in both datasets are the same. Similar to the
setting in Scenario #1, we pre-train the classifier on dataset 𝐷1
and fine-tune it on dataset 𝐷6. During the fine-tuning phase, we

1582

CCS ’25, October 13–17, 2025, Taipei Meng Shen et al.

Table 4: Accuracy of the SOTAWF attacks against defenses with various labeled traffic instances (Different Browsers).

N WF Attacks Accuracy (%)
Undefended WTF-PAD [16] Front [8] Surakav [4] RegulaTor [13] Palette [28] TrafficSliver [6]

5

RF [27] 24.68 11.74 10.43 3.19 2.11 5.36 4.87
TF [32] 32.37 15.10 4.80 4.30 1.10 1.39 3.41

NetCLR [2] 38.26 12.39 4.87 4.69 1.25 1.52 2.13
Swallow 69.09 32.17 25.84 15.06 6.39 7.35 8.39

10

RF [27] 66.84 40.78 48.56 6.22 2.07 8.48 14.42
TF [32] 36.50 15.21 5.88 5.18 1.14 1.39 3.33

NetCLR [2] 50.86 19.61 8.20 5.61 1.26 1.79 2.81
Swallow 79.13 49.22 53.53 22.04 7.73 8.85 15.54

15

RF [27] 72.78 50.14 57.76 13.34 4.45 8.52 18.88
TF [32] 39.07 18.64 6.61 6.04 1.10 1.62 3.53

NetCLR [2] 65.10 25.10 10.76 6.58 1.28 1.97 3.67
Swallow 81.00 52.48 60.52 25.05 8.93 9.17 21.32

20

RF [27] 79.57 58.25 60.56 17.33 3.80 9.28 22.58
TF [32] 40.56 17.73 6.84 6.22 1.18 1.66 3.90

NetCLR [2] 65.47 28.01 12.91 7.17 1.28 2.00 4.14
Swallow 84.82 60.40 66.67 29.24 9.03 10.22 24.12

Table 5: Summary of Different Data Distributions Datasets.

Dataset ID Time TBB Version Size
Wang100 2013 3.X 100 × 90
Wang9000 2013 3.X 9000 × 1

DF95 2016 6.X 95 × 1000
DF40000 2016 6.X 40000 × 1

randomly select 𝑁 traffic instances for each website and use the
remaining instances for testing. The results are shown in Table 3.

Swallow outperforms the SOTA WF attacks in all settings. The
attack accuracy of TF and NetCLR is comparable to that of Swallow
on undefended traces, but decreases significantly under various
defenses. An interesting observation is that RF demonstrates greater
robustness than TF and NetCLR against different defenses, even
though it does not consider transferability in its design. When
more labeled instances are available (𝑁 = 20), its performance
becomes comparable to that of Swallow. However, with only 5
labeled traffic instances, Swallow achieves an accuracy of 61.26%
under Front, which is 19.01%, 50.30%, and 52.23% higher than that of
RF, TF, and NetCLR, respectively. This demonstrates that Swallow
outperforms RF when samples are limited, making it a more cost-
effective solution for attackers to adapt to new network conditions.
Scenario #3: Different Browsers. When users visit websites
through Tor, they generally use the Tor browser. However, some
users also visit websites via the Chrome browser with the Tor plu-
gin. There is a significant difference in traffic patterns when visiting
the same website using these two methods [28]. The traffic volume
of Chrome is much larger than that of the Tor Browser because the
traffic generated by the Tor browser does not include features that
potentially leak users’ privacy (e.g., SPDY and HTTP/2) [21]. For
transferable WF attacks (e.g., TF [32], NetCLR [2] and Swallow), we
pre-train the classifier on dataset 𝐷1 and fine-tune it on dataset 𝐷7.
For traditional WF attack RF [27], we directly train the classifier
with the 𝑁 traffic instances of each website from the dataset 𝐷7 and
test with the remaining instances, which is the same as in previous
studies [2, 32]. The results are shown in Table 4.

Swallow still demonstrates its robustness, significantly outper-
forming the baseline across all settings. Specifically, with only 5
labeled undefened traffic instances, Swallow improves accuracy
by 44.41%, 36.72%, and 30.83% compared to RF, TF, and NetCLR,
respectively. Compared to the previous two scenarios, the attack
performance of all WF attacks has decreased. This is because visit-
ing websites using Tor Browser and Chrome results in significantly
different feature distributions.

The accuracy of RF shows a significant decrease compared to
other scenarios, even though both its training and testing are con-
ducted on dataset 𝐷7. This is because visiting the same website
using the Chrome browser generates more packets compared to the
Tor browser. These additional packets may mask the distinguishing
features of the original website [28], reducing the differentiation
between websites. Even with more labeled instances (N = 20), TF
and NetCLR still achieve less than 20% accuracy on Front, Surakav,
RegulaTor, Palette, and TrafficSliver. In contrast, Swallow achieves
an average accuracy of 51.03% across these defenses.
Scenario #4 : Different Data Distributions. In the previous ex-
periments, we assume that only one network condition differs while
the website labels across all datasets remain consistent. To further
evaluate the performance of the WF attacks in a more realistic sce-
nario that covers cases in Scenario#1-#3, we conduct experiments
on the publicly available datasets Wang100 and DF95. As shown
in Table 5, there is a gap of 3 years in the collection time of these
two datasets. Since the authors do not disclose the website labels
in the dataset, we assume that the website labels are inconsistent.
The two datasets utilize different Guard Relays to visit websites and
also employ different versions of the TBB. These all ensure that the
data distribution of these two datasets is significantly different. For
transferable WF attacks (e.g., TF [32], NetCLR [32] and Swallow),
we pre-train the classifier on dataset Wang100 and fine-tune it on
dataset DF95. For traditionalWF attack RF [27], we directly train the
classifier with the 𝑁 (i.e., 𝑁 = {5, 10, 15, 20, 500}) traffic instances
of each website from the dataset DF95 and test with the remaining
instances, which is the same as in previous studies [2, 32].

As shown in Table 6, Swallow outperforms the SOTAWF attacks
in few-shot settings, achieving the best attack performance when

1583

Swallow: A Transfer-Robust Website Fingerprinting Attack via Consistent Feature Learning CCS ’25, October 13–17, 2025, Taipei

Table 6: Accuracy of the SOTA WF attacks against defenses with various labeled traffic instances (Different Data Distributions).

N WF Attacks Accuracy (%)
Undefended WTF-PAD [16] Front [8] Surakav [4] RegulaTor [13] Palette [28] TrafficSliver [6]

5

RF [27] 54.37 44.72 35.29 20.65 14.69 8.95 26.04
TF [32] 61.86 29.65 6.65 16.29 4.85 9.68 10.85

NetCLR [2] 75.41 26.57 9.14 17.81 5.37 7.01 10.18
Swallow 75.91 64.25 37.80 46.77 15.94 11.72 38.28

10

RF [27] 76.95 64.74 53.87 32.84 19.59 13.40 41.59
TF [32] 65.57 34.22 7.68 17.64 5.27 10.33 12.19

NetCLR [2] 84.44 40.26 12.80 24.36 5.66 8.97 13.29
Swallow 85.71 77.01 59.71 53.45 20.23 14.53 52.38

15

RF [27] 85.11 75.59 64.92 42.78 23.22 14.53 50.34
TF [32] 66.36 37.21 7.85 19.11 5.90 10.88 12.67

NetCLR [2] 87.13 50.71 17.83 30.08 6.43 10.19 15.87
Swallow 87.27 76.04 68.03 55.93 24.73 14.70 55.14

20

RF [27] 85.61 76.81 68.18 47.08 26.63 16.50 53.34
TF [32] 67.21 38.03 8.26 20.04 5.93 11.50 13.15

NetCLR [2] 89.92 56.76 21.07 33.18 6.72 11.10 17.51
Swallow 90.98 84.48 72.26 61.60 26.75 16.81 62.03

500

RF [27] 98.14 96.01 93.06 78.36 52.68 33.72 67.11
TF [32] 89.41 54.43 17.55 36.29 5.92 13.84 13.42

NetCLR [2] 97.36 87.05 69.57 60.71 15.54 18.32 16.29
Swallow 97.55 91.13 90.96 71.55 49.56 31.36 64.38

RF TF NetCLR Swallow

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec
is
io
n

(a) Undefended

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec
is
io
n

(b) WTF-PAD

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec
is
io
n

(c) Front

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec
is
io
n

(d) RegulaTor

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec
is
io
n

(e) Surakav

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec
is
io
n

(f) Palette

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec
is
io
n

(g) TrafficSliver

Figure 8: Precision-recall curves of WF attacks in the open-world scenario.

the number of samples is less than 20. Specifically, with only 5
labeled traffic instances, the accuracy of Swallow is higher than
that of NetCLR, TF, RF by 19.88%, 21.55%, 12.28% on average. TF
and NetCLR continue to show significant performance degradation
against defenses. For instance, with five labeled traffic instances,
their accuracies drop below 10% against Front, whereas Swallow
achieves 37.80%. When there are sufficient labeled instance for
training (𝑁 = 500), RF performs comparably to Swallow. This is
because RF is based on supervised learning and requires a large
number of labeled instances to train the classifier. However, its per-
formance significantly declines under limited-instance conditions
(𝑁 = 5). In contrast, the accuracy of the SOTA WT attack NetCLR
on RegulaTor and Palette remains below 20% in this scenario.

6.3 Open-World Evaluation
In this subsection, we evaluate the performance of each attack in
the open-world scenario. In the open-world scenario, users are free
to visit any website. At the same time, there may be attackers who

monitor a specific set of websites and use a trained classifier to
determine whether the website visited by users falls within this
monitored set. This is a more realistic and challenging scenario for
attackers. Specially, the WF attackers use binary classification to
identify monitored or unmonitored sites and then use the multi-
class classification to recognize the specific monitored site. In this
scenario, we use the same pre-trained model as in Scenario #4 of
the closed-world setting. Then the model fine-tunes and tests on
the closed-world dataset DF95 and the open-world dataset DF40000.
Following previous work [2], we use a dataset of unmonitored
websites that has an equal size to the monitored websites in the
fine-tuning phase. We randomly select 𝑁 = 10 instances from each
website in the monitored set, means that there are 95 × 10 traffic
instances selected from dataset DF95 and 950 traffic instances from
DF40000. To evaluate the performance of the SOTA WF attacks,
we select 95 × 50 monitored instances and 10,000 unmonitored
instances in the testing phase.

1584

CCS ’25, October 13–17, 2025, Taipei Meng Shen et al.

Table 7: The MMD loss under different WF defenses.

CUMUL [22] Direction
Sequence [2] TAM [27] CIF

WTF-PAD [16] 3.33 0.47 0.01 0.01
Front [8] 1.29 0.55 0.07 0.04

Surakav [9] 3.71 3.42 1.14 0.86
RegulaTor [13] 6.31 2.74 1.75 1.63
Palette [28] 3.43 0.91 0.83 0.81
Tamaraw [4] 5.67 4.12 2.50 2.37

TrafficSliver [6] 2.57 4.07 0.42 0.40
Average 3.76 2.32 0.96 0.87

Given the significant imbalance between monitored and unmon-
itored sets, the precision-recall curve is frequently employed in the
literature [27, 28, 31, 34]. If a monitored website is labeled correctly
(i.e., the highest output probability exceeds a pre-defined threshold),
it is classified as a True Positive (TP); otherwise, it is considered
a False Negative (FN). Similarly, if an unmonitored website is in-
correctly labeled as monitored, it is classified as a False Positive
(FP); otherwise, it is a True Negative (TN). Precision and recall are
then computed as TP / (TP + FP) and TP / (TP + FN), respectively.
By adjusting the threshold, the attacker can control the trade-off
between precision and recall.

The precision and recall curves of WF attacks tested on dataset
DF95 and DF40000 are shown in Figure 8. Swallow still outper-
forms the SOTA WF attacks in this scenario. On undefended traces,
Swallow achieves attack performance comparable to NetCLR. The
attack performance of TF drops significantly when transferred to
datasets with different feature distributions, making it less effective
than Swallow and NetCLR. Similarly, RF performs worse in the
open-world setting compared to the closed-world. This is due to its
reliance on traditional supervised learning, which requires more
labeled traffic instances to maintain effectiveness.

On defended traces, all attacks experience a significant perfor-
mance drop except for Swallow. For instance, on the obfuscation-
based defense WTF-PAD, when tuned for high precision (over 0.8),
the recall of the other three attacks falls below 0.1, while Swallow
maintains a recall greater than 0.4. RF, TF and NetCLR nearly lose
their classification capability against regularization-based defense
Surakav, RegulaTor and Palette and the splitting defense Traffic-
Sliver. Their recall drops to almost 0 across different threshold
settings, indicating that nearly all open-world websites are misclas-
sified as closed-world websites. In contrast, Swallow still maintains
a recall greater than 0.4 when precision is adjusted to 0.6.

The results show that Swallow can effectively distinguish de-
fended traffic instances from monitored and unmonitored websites,
even with limited labeled instances in the open-world scenario.
Our carefully designed data augmentation algorithms enhance the
model’s ability to generalize to new network conditions, enabling
it to effectively identify monitored websites under the interference
of unmonitored websites.

6.4 Ablation Study
In this subsection, we use quantitative measures to evaluate the
effectiveness of CIF and RobustAugment in transferring across
different network conditions on defended traces. Then we also

Guard Relays Times Browsers0

1

2

3

4

5

M
M

D
 L

os
s

0.63

2.18

4.50

2.15

0.27

1.30

0.40 0.27

0.92

0.27 0.22

0.84

CUMUL Direction Sequence TAM CIF

Figure 9: The MMD loss under different network conditions.

evaluate the impact of the three modules on the attack accuracy of
the Swallow.
Effectiveness of CIF. We useMaximumMean Discrepancy (MMD)
loss [10] to measure the effectiveness of CIF under different WF
defenses and network conditions that lead to variations in the traffic
distribution of Tor. MMD loss is commonly used to measure the
discrepancy between the feature distributions of the source and
target domains [27]. A lower MMD loss indicates that the trace
representation exhibits greater stability across different defenses
and network conditions. We compare CIF with three typical trace
representations used in SOTA WF attacks, namely CUMUL [22],
Direction Sequence [2, 32], and TAM [27].We simulate and generate
traces for seven defenses on the 𝐷1 dataset and calculate the MMD
loss between the defended traces and the traces without defense.

As shown in Table 7, CIF achieves the lowest average MMD loss
across all defenses, demonstrating that CIF is more robust compared
to other trace representations. CUMUL and Direction Sequence ex-
hibit significant instability when handling defenses, with average
MMD loss of 3.76 and 2.32, respectively, while CIF maintains a sig-
nificantly lower loss of 0.87. This is because CUMUL is a statistical
feature and Direction Sequence is a per-packet feature, both of
which are easily obfuscated by WF defenses [19]. CIF dynamically
adjusts time intervals to align the traffic distributions of Tor traffic,
resulting in a lower MMD loss on all defenses compared to TAM.
We also measure the MMD loss for all pairwise combinations of dif-
ferent network conditions. Figure 9 shows that CIF also achieves the
lowest MMD loss across all network conditions, with an average of
0.44, while CUMUL and Direction Sequence exhibit a significantly
higher MMD loss, with an average of 2.44 and 1.24, respectively.
Effectiveness of RobsuAugment. We measure the similarity
between augmented and target trace representations using nor-
malized Euclidean distance (i.e., Min-Max scaling) [25, 33], where
augmented trace representations are generated by RobustAugment
according to the original ones, while the target trace representations
represent the corresponding target domain. A lower distance indi-
cates higher similarity, illustrating better transferability across net-
work conditions. We compare RobustAugment with NetAugment,
a data augmentation strategy proposed by the SOTA WF attack
framework NetCLR [2]. We use the 𝐷1 dataset as the baseline, and
leverage RobustAugment and NetAugment to generate augmented
trace representations under different network conditions. We com-
pute the similarity between these augmented representations and
the target trace representations derived from the collected datasets

1585

Swallow: A Transfer-Robust Website Fingerprinting Attack via Consistent Feature Learning CCS ’25, October 13–17, 2025, Taipei

Table 8: The Euclidean distance between the augmented trace
representations generated by NetAugment (NA) and Robus-
tAugment (RA) and the target trace representation.

Network Conditions Defense NA RA

Undefended 0.37 0.22
WTF-PAD 0.56 0.22Guard Relays

Front 0.63 0.23
Undefended 0.42 0.18
WTF-PAD 0.62 0.18Times

Front 0.63 0.20
Undefended 0.33 0.31
WTF-PAD 0.47 0.32Browsers

Front 0.46 0.32

under three network conditions in three scenarios, i.e., without any
defense, and with WTF-PAD [16] and with Front [8].

Table 8 shows that the Euclidean distance of RobustAugment
under different network conditions is much lower than that of
NetAugment. RobustAugment exhibits relatively stable Euclidean
distances on both undefended and defended traces, whereas the
average distance of NetAugment is 0.50, showing a significant in-
crease particularly when dealing with defended traces. The reason
is that NetAugment leveraging Direction Sequence as the trace
representation is more easily obfuscated by WF defenses.
Impact on attack accuracy. We next evaluate the impact of three
modules on the attack accuracy of Swallow. To evaluate the effec-
tiveness of Swallow on pre-training datasets of different scales, we
conduct experiments in two settings, i.e., pre-training on 𝐷1 and
fine-tuning on 𝐷2 (𝐷1 → 𝐷2), and pre-training on DF95 and fine-
tuning on 𝐷1 (DF95→ 𝐷1). These experiments are conducted on
WTF-PAD and Front, with the number of labeled traffic instances
for fine-tuning fixed at 𝑁 = 5. The results are shown in Table 9.

Module #1: Consistent Feature Representation. To explore the im-
pact of CIF on the attack accuracy of Swallow, we replace it with
CUMUL and TAM. The trace representation of NetCLR [2] does
not include packet timing information of packet, while Swallow
requires timing information. As a result, the Direction Sequence
cannot be adapted to Swallow. The experimental results in Table 9
reveal that CUMUL and TAM cause average performance drops
of around 40% and 6%, respectively. This is because CIF is more
robust under different WF defenses and network conditions, as
demonstrated in Table 7 and Figure 9.

Module #2: Robust Data Augmentation. To explore the impact
of RobustAugment on the attack accuracy, we replace it with ran-
dom insertion of Gaussian noise and NetAugment during the pre-
training phase. The results show a significant decrease in the attack
accuracy of model, with an average drop of around 40% on WTF-
PAD traces. This is because RobustAugment can more effectively
simulate the variations in defended traces, as illustrated in Table 8.

Module #3: Few-Shot Website Identification.We use ResNet18 [12]
as the backbone for pre-training when designing Swallow. The
SOTA WF attacks [2, 27, 32] mainly use two other CNN-based
model architectures, which we refer to as the DF Backbone and
RF Backbone. We replace the pre-trained backbone with the DF

Table 9: Ablation study of key components in Swallow.

Category Variation 𝐷1 → 𝐷2 DF95→ 𝐷1
WTF-PAD Front WTF-PAD Front

Full - 83.33 66.59 69.80 60.27

Representation CUMUL 34.96 12.10 42.46 16.98
TAM 78.02 61.42 62.73 53.37

Augmentation Gaussian noise 31.35 30.58 35.33 30.43
NetAugment 34.96 12.10 32.77 13.17

Pre-training
Backbone

DF-Backbone 74.23 58.68 57.83 41.45
RF-Backbone 73.21 65.69 63.50 53.74

Framework SimCLR 61.78 64.57 66.92 53.74

Backbone and RF Backbone. Compared to using ResNet18 as the pre-
trained backbone, both DF-Backbone and RF-Backbone show an
approximately 10% performance decline on WTF-PAD traces. This
is because ResNet18 has a more complex network architecture [12],
allowing it to better learn how to extract consistent features from
the trace representation during the pre-training phase.

We adopt BYOL [11] for self-supervised pre-training, while the
NetCLR uses SimCLR [5]. To explore the performance difference, we
replace BYOL with SimCLR. The pre-training datasets 𝐷1 and DF95
contain 10,000 and 95,000 traffic instances. The attack accuracy of
SimCLR is on average 10% lower on average than BYOL. The reason
is that BYOL is well-suited for capturing the long-term data distri-
butions of CIF [11]. Moreover, BYOL does not consider negative
samples during pre-training, resulting in higher training overhead
compared to SimCLR. The training time of BYOL per epoch on
DF95 is only 79.51s, while SimCLR takes 228.46s, respectively.

7 Discussion
In this section, we discuss the limitations of the proposedWF attack
and potential directions for future work.
Low attack accuracy against SOTA defense. We comprehen-
sively evaluate the performance of Swallow across various scenarios
in Section 6. The results demonstrate that Swallow achieves higher
attack accuracy compared to other WF attacks, particularly when
dealing with defended traces. However, the attack accuracy of Swal-
low remains relatively low against some of the existing defenses,
such as the obfuscation-based defense Palette [28]. To address this
limitation and further improve performance against such defenses,
we can incorporate additional features that are both resistant to
WF defense obfuscation and highly discriminative among websites.
Evaluation on real-world deployed defenses. Following previ-
ous work [27, 28, 31], all WF defenses evaluated in this work are
simulated on undefended dataset. Their performance and overhead
may be different when being implemented in the real world, es-
pecially for the defenses that delay packets [4, 9, 13, 28]. In future
work, we will evaluate the attack performance of Swallow against
these defenses in real-world scenarios.
Multi-tab browsing and webpage fingerprinting. In this work,
we focus on identifying the websites users visit. Similar to previous
studies [2, 27, 31], we assume that users visit one website at a time
and only visit the homepage. However, in more realistic scenarios,
users may simultaneously visit multiple websites and navigate
beyond the homepage. These scenarios correspond to two key
problems: multi-tab browsing (MTB) [14] or webpage fingerprinting
(WPF) [37]. We can integrate Swallow into existing MTB and WPF

1586

Meng Shen et al.CCS ’25, October 13–17, 2025, Taipei

frameworks to enhance them. For example, we can enhance the
robustness of MTB across different network conditions by utilizing
CIF, and improve WPF via simulated webpage traffic variations
under different network conditions. We leave these as future work.

8 Conclusion
In this paper, we proposed Swallow, a robust and transferable WF
attack. Swallow can quickly transfer to new network conditions
while demonstrating superior robustness against WF defenses com-
pared to SOTA WF attacks. Specifically, we proposed a novel trace
representation CIF, which aligns traffic distributions across dif-
ferent network conditions. We designed three data augmentation
algorithms to expand the training dataset and simulate potential
variations under various network conditions. We conducted exten-
sive experiments to provide a comparison between Swallow and the
SOTA WF attacks. The results from various scenarios demonstrate
the superiority of Swallow over other WF attacks. In future work,
we will improve the attack accuracy on SOTA defense and evaluate
WF attacks against real-world deployed defenses.

Acknowledgment
This work is partially supported by National Key R&D Program of
China with No. 2023YFB2703800, NSFC Projects with Nos. U23A20304,
62222201, and 62132011, and Beijing Natural Science Foundation
with No. M23020. (Corresponding author: Meng Shen.)

References
[1] 2025. Vultr. https://www.vultr.com/
[2] Alireza Bahramali, Ardavan Bozorgi, and Amir Houmansadr. 2023. Realistic

website fingerprinting by augmenting network traces. In Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security. 1035–1049.

[3] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas Devadas. 2018. Var-CNN: A
data-efficient website fingerprinting attack based on deep learning. arXiv preprint
arXiv:1802.10215 (2018).

[4] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. 2014.
A systematic approach to developing and evaluating website fingerprinting
defenses. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. 227–238.

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597–1607.

[6] Wladimir De la Cadena, Asya Mitseva, Jens Hiller, Jan Pennekamp, Sebastian
Reuter, Julian Filter, Thomas Engel, Klaus Wehrle, and Andriy Panchenko. 2020.
Trafficsliver: Fighting website fingerprinting attacks with traffic splitting. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security. 1971–1985.

[7] Roger Dingledine, Nick Mathewson, Paul F Syverson, et al. 2004. Tor: The
second-generation onion router.. In USENIX security symposium, Vol. 4. 303–320.

[8] Jiajun Gong and Tao Wang. 2020. Zero-delay lightweight defenses against
website fingerprinting. In 29th USENIX Security Symposium (USENIX Security 20).
717–734.

[9] Jiajun Gong, Wuqi Zhang, Charles Zhang, and Tao Wang. 2022. Surakav: Gen-
erating realistic traces for a strong website fingerprinting defense. In 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 1558–1573.

[10] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and
Alexander Smola. 2012. A kernel two-sample test. The Journal of Machine
Learning Research 13, 1 (2012), 723–773.

[11] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan
Guo, Mohammad Gheshlaghi Azar, et al. 2020. Bootstrap your own latent-a new
approach to self-supervised learning. Advances in neural information processing
systems 33 (2020), 21271–21284.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[13] James K Holland and Nicholas Hopper. 2020. RegulaTor: A straightforward
website fingerprinting defense. arXiv preprint arXiv:2012.06609 (2020).

[14] Zhaoxin Jin, Tianbo Lu, Shuang Luo, and Jiaze Shang. 2023. Transformer-based
Model for Multi-tab Website Fingerprinting Attack. In Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security. 1050–1064.

[15] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt. 2014.
A critical evaluation of website fingerprinting attacks. In Proceedings of the 2014
ACM SIGSAC conference on computer and communications security. 263–274.

[16] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew Wright.
2016. Toward an efficient website fingerprinting defense. In Computer Security–
ESORICS 2016: 21st European Symposium on Research in Computer Security, Her-
aklion, Greece, September 26-30, 2016, Proceedings, Part I 21. Springer, 27–46.

[17] Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. 2020. Contrastive represen-
tation learning: A framework and review. Ieee Access 8 (2020), 193907–193934.

[18] Shuai Li, Huajun Guo, and Nicholas Hopper. 2018. Measuring information leakage
in website fingerprinting attacks and defenses. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. 1977–1992.

[19] Shuai Li, Huajun Guo, and Nicholas Hopper. 2018. Measuring information leakage
in website fingerprinting attacks and defenses. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. 1977–1992.

[20] Nate Mathews, James K Holland, Se Eun Oh, Mohammad Saidur Rahman,
Nicholas Hopper, and Matthew Wright. 2023. Sok: A critical evaluation of
efficient website fingerprinting defenses. In 2023 IEEE Symposium on Security
and Privacy (SP). IEEE, 969–986.

[21] Perry Mike, Clark Erinn, Murdoch Steven, and Koppen Georg. 2018. The Design
and Implementation of the Tor Browser [DRAFT]. https://2019.www.torproject.
org/projects/torbrowser/design/.

[22] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zin-
nen, Martin Henze, and Klaus Wehrle. 2016. Website Fingerprinting at Internet
Scale.. In NDSS, Vol. 1. 23477.

[23] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Kor-
czyński, and Wouter Joosen. 2018. Tranco: A research-oriented top sites ranking
hardened against manipulation. arXiv preprint arXiv:1806.01156 (2018).

[24] The Tor Project. 2024. https://metrics.torproject.org/.
[25] Yuqi Qing, Qilei Yin, Xinhao Deng, Yihao Chen, Zhuotao Liu, Kun Sun, Ke Xu, Jia

Zhang, and Qi Li. 2024. Low-Quality Training Data Only? A Robust Framework
for Detecting Encrypted Malicious Network Traffic. In NDSS.

[26] Mohammad Saidur Rahman, Payap Sirinam, Nate Mathews, Kantha Girish Gan-
gadhara, and Matthew Wright. 2019. Tik-tok: The utility of packet timing in
website fingerprinting attacks. arXiv preprint arXiv:1902.06421 (2019).

[27] Meng Shen, Kexin Ji, Zhenbo Gao, Qi Li, Liehuang Zhu, and Ke Xu. 2023. Subvert-
ing website fingerprinting defenses with robust traffic representation. In 32nd
USENIX Security Symposium (USENIX Security 23). 607–624.

[28] Meng Shen, Kexin Ji, Jinhe Wu, Qi Li, Xiangdong Kong, Ke Xu, and Liehuang Zhu.
2024. Real-Time Website Fingerprinting Defense via Traffic Cluster Anonymiza-
tion. In 2024 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society,
263–263.

[29] Meng Shen, Jinpeng Zhang, Liehuang Zhu, Ke Xu, and Xiaojiang Du. 2021.
Accurate decentralized application identification via encrypted traffic analysis
using graph neural networks. IEEE Transactions on Information Forensics and
Security 16 (2021), 2367–2380.

[30] Connor Shorten and Taghi M Khoshgoftaar. 2019. A survey on image data
augmentation for deep learning. Journal of big data 6, 1 (2019), 1–48.

[31] Payap Sirinam, Mohsen Imani, Marc Juarez, and MatthewWright. 2018. Deep fin-
gerprinting: Undermining website fingerprinting defenses with deep learning. In
Proceedings of the 2018 ACM SIGSAC conference on computer and communications
security. 1928–1943.

[32] Payap Sirinam, Nate Mathews, Mohammad Saidur Rahman, and MatthewWright.
2019. Triplet fingerprinting: More practical and portable website fingerprinting
with n-shot learning. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 1131–1148.

[33] Chao Wang, Alessandro Finamore, Pietro Michiardi, Massimo Gallo, and Dario
Rossi. 2024. Data augmentation for traffic classification. In International Confer-
ence on Passive and Active Network Measurement. Springer, 159–186.

[34] Tao Wang. 2020. High Precision Open-World Website Fingerprinting. In 2020
IEEE Symposium on Security and Privacy (SP). 152–167.

[35] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. 2014.
Effective attacks and provable defenses for website fingerprinting. In 23rd USENIX
Security Symposium (USENIX Security 14). 143–157.

[36] Renjie Xie, Jiahao Cao, Enhuan Dong, Mingwei Xu, Kun Sun, Qi Li, Licheng
Shen, and Menghao Zhang. 2023. Rosetta: Enabling Robust {TLS} Encrypted
Traffic Classification in Diverse Network Environments with {TCP-Aware}
Traffic Augmentation. In 32nd USENIX Security Symposium (USENIX Security 23).
625–642.

[37] Xiyuan Zhao, Xinhao Deng, Qi Li, Yunpeng Liu, Zhuotao Liu, Kun Sun, and Ke
Xu. 2024. Towards Fine-Grained Webpage Fingerprinting at Scale. In Proceedings
of the 2024 on ACM SIGSAC Conference on Computer and Communications Security.
423–436.

1587

https://www.vultr.com/
https://2019.www.torproject.org/projects/torbrowser/design/
https://2019.www.torproject.org/projects/torbrowser/design/
https://metrics.torproject.org/

Swallow: A Transfer-Robust Website Fingerprinting Attack via Consistent Feature Learning CCS ’25, October 13–17, 2025, Taipei

Table 10: Accuracy of the SOTAWF attacks against defenses with various labeled traffic instances.

N WF Attacks Accuracy (%)
Undefended WTF-PAD [16] Front [8] Surakav [4] RegulaTor [13] Palette [28] Tamaraw [4] UniDef TrafficSliver [6]

10

DF [31] 70.47 18.64 10.48 8.13 5.17 4.13 7.66 2.00 24.11
Tik-Tok [26] 89.88 77.66 29.98 39.75 5.04 4.42 8.53 2.36 19.95
Var-CNN [3] 68.49 12.20 4.73 38.27 1.20 1.38 4.24 1.40 7.38

RF [27] 86.46 73.06 67.15 44.08 35.48 11.31 8.87 3.89 53.97
TF [32] 91.35 76.91 28.95 32.74 2.37 2.72 8.21 1.46 17.51

NetCLR [2] 91.54 82.75 28.98 28.90 2.38 2.87 8.75 1.99 16.26
Swallow 91.68 87.42 78.20 50.18 40.97 11.83 9.88 4.07 57.81

15

DF [31] 79.58 34.40 17.39 9.23 5.32 4.09 7.80 2.01 33.93
Tik-Tok [26] 90.40 82.52 44.28 45.34 6.89 4.57 8.40 2.10 32.07
Var-CNN [3] 73.23 28.45 12.46 39.23 2.21 2.13 5.14 1.98 8.87

RF [27] 90.52 81.43 77.07 52.97 47.92 13.02 10.33 3.84 60.24
TF [32] 91.57 77.46 35.39 34.65 2.46 2.86 8.58 2.11 18.88

NetCLR [2] 91.68 85.66 38.45 32.48 2.45 3.24 8.89 2.38 16.78
Swallow 92.70 88.90 83.24 55.89 49.20 13.98 11.01 4.12 63.87

20

DF [31] 83.20 43.15 19.72 10.90 5.42 3.72 8.12 2.25 42.17
Tik-Tok [26] 92.22 84.07 52.67 47.45 7.50 4.67 8.72 2.64 38.45
Var-CNN [3] 77.10 33.60 19.65 41.58 2.30 2.32 4.60 1.43 9.68

RF [27] 91.92 83.40 79.77 55.85 50.52 13.49 11.38 4.02 65.25
TF [32] 92.03 78.68 40.58 36.22 2.51 3.15 8.14 2.62 19.06

NetCLR [2] 92.10 87.01 40.58 36.44 2.60 3.46 9.07 2.54 19.18
Swallow 92.93 90.45 85.84 59.56 52.22 14.28 11.52 4.23 66.66

Algorithm 4: Trace Aggregation Algorithm
Input:𝐶𝐼𝐹 = [𝑢,𝑑], loading time 𝑡 , interval duration 𝑠 , remove probability

𝑟𝑟𝑒𝑚𝑜𝑣𝑒 , increase probability 𝑟𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒
Output:𝐶𝐼𝐹𝑎𝑢𝑔

1 Let 𝑙𝑒𝑛 = length(𝑢) ;
2 Initialize𝐶𝐼𝐹𝑎𝑢𝑔 = [[], []], 𝑖 = 0;
3 while 𝑖 < 𝑙𝑒𝑛 and 𝑖 · 𝑠 < 𝑡 do
4 𝑖+ = 1;
5 foreach 𝑑𝑖𝑟 ∈ {𝑢,𝑑 } do
6 if random() < 𝑟𝑟𝑒𝑚𝑜𝑣𝑒 then
7 continue
8 end
9 if random() > 𝑟𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 then
10 𝑡𝑠 = 𝐶𝐼𝐹 [𝑑𝑖𝑟] [𝑖];
11 𝑡𝑠× = (1 + [0, 1]) ;
12 𝐶𝐼𝐹𝑎𝑢𝑔 [𝑑𝑖𝑟] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡𝑠) ;
13 end
14 end
15 end
16 return𝐶𝐼𝐹𝑎𝑢𝑔 ;

Algorithm 5: Trace Flatten Algorithm
Input:𝐶𝐼𝐹 = [𝑢,𝑑], loading time 𝑡 , interval duration 𝑠 , insert probability

𝑟𝑖𝑛𝑠𝑒𝑟𝑡 , shrink probability 𝑟𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 , number of windows for
averaging𝑊𝑖𝑛𝑠𝑒𝑟𝑡

Output:𝐶𝐼𝐹𝑎𝑢𝑔
1 Let 𝑙𝑒𝑛 = length(𝑢) ;
2 Initialize𝐶𝐼𝐹𝑎𝑢𝑔 = [[], []], 𝑖 = 0;
3 while 𝑖 < 𝑙𝑒𝑛 and 𝑖 · 𝑠 < 𝑡 do
4 foreach 𝑑𝑖𝑟 ∈ {𝑢,𝑑 } do
5 if random() < 𝑟𝑖𝑛𝑠𝑒𝑟𝑡 then
6 𝑡𝑠𝑖𝑛𝑠𝑒𝑟𝑡 = avg over𝑊𝑖𝑛𝑠𝑒𝑟𝑡 ;
7 𝐶𝐼𝐹𝑎𝑢𝑔 [𝑑𝑖𝑟] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡𝑠𝑖𝑛𝑠𝑒𝑟𝑡) ;
8 end
9 else
10 if random() > 𝑟𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 then
11 𝑡𝑠 = 𝐶𝐼𝐹 [𝑑𝑖𝑟] [𝑖];
12 𝑡𝑠× = (1 + [−1, 0]) ;
13 𝐶𝐼𝐹𝑎𝑢𝑔 [𝑑𝑖𝑟] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡𝑠) ;
14 𝑖+ = 1;
15 end
16 end
17 end
18 end
19 return𝐶𝐼𝐹𝑎𝑢𝑔 ;

Algorithm 3: Trace Fluctuation Algorithm
Input:𝐶𝐼𝐹 = [𝑢,𝑑], loading time 𝑡 , interval duration 𝑠 , padding probability

𝑟𝑝𝑎𝑑𝑑𝑖𝑛𝑔 , modification probability 𝑟𝑚𝑜𝑑𝑖𝑓 𝑦 , window size for
averaging𝑊𝑚𝑜𝑑𝑖𝑓 𝑦

Output:𝐶𝐼𝐹𝑎𝑢𝑔
1 Initialize𝐶𝐼𝐹𝑎𝑢𝑔 with zeros and index 𝑖 = 0;
2 Let 𝑙𝑒𝑛 = length(𝑢) ;
3 while 𝑖 < 𝑙𝑒𝑛 and 𝑖 · 𝑠 < 𝑡 do
4 𝑖+ = 1;
5 foreach 𝑑𝑖𝑟 ∈ {𝑢,𝑑 } do
6 𝑡𝑠 = 𝐶𝐼𝐹 [𝑑𝑖𝑟] [𝑖];
7 if 𝑡𝑠 == 0 then
8 if random() > 𝑟𝑝𝑎𝑑𝑑𝑖𝑛𝑔 then
9 𝑡𝑠 = avg over𝑊𝑚𝑜𝑑𝑖𝑓 𝑦 ;

10 end
11 else
12 if random() > 𝑟𝑚𝑜𝑑𝑖𝑓 𝑦 then
13 𝑡𝑠× = (1 + [−1, 1]) ;
14 end
15 end
16 𝐶𝐼𝐹𝑎𝑢𝑔 [𝑑𝑖𝑟] [𝑖] = 𝑡𝑠 ;
17 end
18 end
19 return𝐶𝐼𝐹𝑎𝑢𝑔 ;

A Details of Augmentation Algorithms
In this section, we provide the detailed implementation of the three
proposed algorithms: Trace Fluctuation, Trace Aggregation, and
Trace Flatten. These algorithms are designed to simulate various
network conditions and are presented in Algorithm 3, Algorithm 4,
and Algorithm 5, respectively.

B Evaluation on Different Guard Relays
The attack performance of the SOTA WF attacks with various la-
beled traffic instances (𝑁 = 10, 15, 20) is shown in Table 10, to com-
plement the results presented in Section 6.2. Swallow still achieves
the best performance under different labeled traffic instances.

1588

	Abstract
	1 Introduction
	2 Related Work
	2.1 WF Attacks
	2.2 WF Defenses

	3 Threat Model
	4 Design of Swallow
	4.1 Key Observation on Tor Traffic Distributions
	4.2 Overview of Swallow

	5 Design Details
	5.1 Consistent Feature Representation
	5.2 Robust Data Augmentation
	5.3 Few-Shot Website Identification

	6 Evaluation
	6.1 Experimental Setup
	6.2 Closed-World Evaluation
	6.3 Open-World Evaluation
	6.4 Ablation Study

	7 Discussion
	8 Conclusion
	References
	A Details of Augmentation Algorithms
	B Evaluation on Different Guard Relays

