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Preface

With the development of big data, data sharing has become increasingly popular and
important in optimizing resource allocation and improving information utilization.
However, the expansion of data sharing means there is an urgent need to address the
issue of the privacy protection—an area where the emerging blockchain technology
offers considerable advantages. Although there are a large number of research
papers on data sharing modeling and analysis of network security, there are few
books dedicated to blockchain-based secure data sharing.

Filling this gap in the literature, the book proposes a new data-sharing model
based on the blockchain system, which is being increasingly used in medical
and credit reporting contexts. It describes in detail various aspects of the model,
including its role, transaction structure design, secure multiparty computing and
homomorphic encryption services, and incentive mechanisms and presents corre-
sponding case studies. The book explains the security architecture model and the
practice of building data sharing from the blockchain infrastructure, allowing read-
ers to understand the importance of data sharing security based on the blockchain
framework, as well as the threats to security and privacy. Further, by presenting
specific data sharing case studies, it offers insights into solving data security sharing
problems in more practical fields.

This book is expected to help readers have a better understanding of learning
importance of data sharing security from the framework of blockchain and the
threats to security and privacy, as well as learning the security architecture model
and practice of building data sharing schemes from the blockchain infrastructure.
Hopefully, this book can motivate more innovative solutions for solving data
security sharing problems in more practical fields.

Beijing, China Meng Shen
Beijing, China Liehuang Zhu
Beijing, China Ke Xu

March 15, 2020
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Chapter 1 )
Introduction Check for

With the development of big data era, data sharing has become increasingly popular
and important, which can optimize resource allocation and improve information
utilization. But with the expansion of data sharing, privacy protection need to be
solved urgently. This chapter presents the data sharing background first, following
with the typical data sharing scenarios. Then a concise review of existing solutions
for data sharing is given. Finally, data sharing requirements and challenges are
summarized.

1.1 Background

With the increase in the amount of data and hardware computing power, not
only the effectiveness of traditional machine learning algorithms has improved
dramatically, but powerful new machine learning algorithms (i.e., deep learning)
have also advanced. Machine Learning (ML) technology have provided services in
many areas such as driverless cars, movie recommendations, and intelligent robots
[4, 11], where deep learning solves a variety of difficult tasks previously solved
hardly by traditional machine learning.

The amount of training data plays a key role in improving the model accuracy
[12, 16, 33]. Experiments performed by Google on 300 million images show that
the model’s performance increases linearly with the amount of training data [30].
While single institution generally has insufficient data for training ML models,
which needs to gather training data from multiple data sources [1-3]. For example,
in a product recommendation service based on a machine learning algorithm, the
product seller has data on the product and data about the user’s purchase, but it
does not have data on the user’s purchasing ability and payment habits. Thus, the
product seller seeks the institutions that own the demanded data for data sharing and
better data modeling results. However, the data usually involves user privacy, which
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prevents the sharing of user data. Besides, the proposed contract clearly stipulates
the scope of data transaction and data protection obligations, which poses new
challenges to data sharing. European Union implemented General Data Protection
Regulation on May 25, 2018, which aims to protect users’ personal privacy and
data security [31]. Cybersecurity Law of the People’s Republic of China has been
implemented in 2017 point out that network operators must not disclose, tamper
with, or destroy the personal information they collect [6].

On the other hand, in recent years, many different kinds of blockchain platforms,
such as HyperLedger, Ethereum, and EOS, have been proposed and applied to a
variety of security application scenarios. Blockchain is an open and distributed
ledger taking the form of a list of blocks originally designed for recording
transactions in cryptocurrency systems, which enables reliable transactions among
a group of untrusted participants. Blockchain has several desirable features, making
it inherently suitable for reliable data sharing:

e Decentralized. As a distributed ledger, blockchian is built on a peer-to-peer
network and does not require a trusted third party or central administrator.
Multiple copies of data recorded in the ledger exist in the system, avoiding data
loss at a single point of failure.

e Tamper-resistant. Blockchain uses consensus protocols, i.e., Proof of Work
(PoW) to manage the right to create new blocks. As a result, data manipulation
is impractical in terms of computational overhead, making the data recorded in
the block immutable.

* Traceability. The remaining participants can easily verify transactions between
two parties in blockchain system, and any transaction can be tracked.

Although blockchain has multiple advantages on data sharing, the potential
attacks on data privacy make it far from perfect for being a data sharing platform.
In blockchain, all transactions are recorded in blocks in plaintext, thus exposing
sensitive information in transactions to all participants (including opponents)
[8,23,25,26]. Therefore, when using blockchain as a data sharing platform, security
and privacy issues should be carefully addressed.

Data sharing optimizes resource allocation and improve information utilization,
while privacy concern is imminent. As an emerging technology, blockchain has
outstanding advantages in solving the privacy issues of data sharing. Although there
are a lot of research papers on data sharing and network security, there are few books
on blockchain-based secure data sharing.

This book proposes a secure data-sharing model based on the blockchain system.
Various aspects of the model, including its role, transaction structure design,
secure multi-party computing and homomorphic encryption services, and incentive
mechanisms, are described in detail in the following chapters. And corresponding
case studies for the functions of the proposed model are provided.



1.2 Typical Data Sharing Scenarios 3
1.2 Typical Data Sharing Scenarios

Data sharing has a long history in various research areas. The roles in data sharing
consists of data providers and data users, where data providers generally do not face
users directly. For example, Twitter licenses its data to companies Gnip, DataSift,
and NTT DATA for sale [7]. At present, the data intermediary in the United States
is a big industry, and the scale of transaction data in 2012 has reached 150 billion
US dollars [36]. The key to data transactions is the requirement for data quality,
including the accuracy, authenticity, integrity, and consistency of data.

Data sharing appears in various industries [24, 37, 38, 42], such as wise medical,
Internet of Vehicle, logistics management and credit agencies, etc. In the field of
wise medical, for a certain rare disease, the case data owned by a single hospital
cannot well support medical research. Sharing rare cases that are held locally by
multiple hospitals can improve the effectiveness of medical analysis. In Internet of
Vehicle, the vehicle manufacturer, vehicle management agency and vehicle social
network application provide services for users together. If one of the Internet of
Vehicle service provider desires to utilize user data for analyzing users’ vehicle use
behaviors, it need to gather data from different data sources of service providers.

From the perspective of data format, data sharing scenarios can be divided as
homogeneous data sharing and heterogeneous data sharing.

* Homogeneous data sharing. Multiple data owners have datasets with the same
data format (or same data attributes) and they want to conduct data analysis on
their joint datasets.

Two regional banks (Bank A and Bank B) may have very different user groups
from their respective regions, and their users intersections are small. But the two
regional banks have similar business, which means that the user data are collected
from the two regional banks have similar attributes. If they want to conduct an
analysis on user data for user market research or other purposes, using their own
local data may be insufficient for a comprehensive analysis. The two regional banks
could joint the two user datasets to obtain a larger data set for a comprehensive
analysis. Figure 1.1 visualizes this homogeneous data sharing of the two regional
banks.

* Heterogeneous data sharing. Multiple data owners have datasets with the dif-
ferent data format (or different attributes) and they want to conduct ML model
training on their joint dataset.

An example of heterogeneous data sharing have two companies: one is a bank
and the other is an e-commerce company. Their user intersections are large. The
bank records the users’ financial attributes, such as income and balance, etc. The
e-commerce company keeps user browsing history and purchase history, etc. The
two companies have different attribute spaces. Suppose the e-commerce company
wants to construct a product purchase prediction model. Then if the e-commerce
company could construct the prediction model on the joint dataset of the bank and
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Fig. 1.2 Heterogeneous data sharing

the e-commerce company, the model can be more accurate than constructing on the
dataset of the e-commerce company only, which are visualized on Fig. 1.2.

There are two mainly computation modes for data sharing: federated learning
and secure multi-party computation.

¢ Federated learning. Multiple data owners wish to train a machine learning
model by consolidating their respective data. In federated learning model, data
owners collaboratively train a model without expose their data to each other. In
most federated learning methods, data owners collaboratively train models by
exchanging model parameters.
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* secure multi-party computation. Secure multi-party computation aims at creating
methods for parties to jointly compute a function over their inputs while keeping
those inputs private. For ensuring security, the methods of secure multi-party
computation usually employ homomorphic encryption or differential privacy for
protecting participants’ privacy from each other without requiring a trusted third

party.

1.3 Taxonomy of Existing Solutions

Nowadays, existing solutions for data security protection among collaborative learn-
ing in the collaborative learning process through various cryptographic algorithms.
With the development of blockchain technology, blockchain has been gradually
applied to the process of collaborative learning of multiple parties with its technical
advantages such as decentralization and immutability. This section will introduce
and briefly analyze current representative studies (Table 1.1).

1.3.1 Multi-party Collaborative Learning Without Blockchain

In recent years, the amount of data in various industries has surged. In order to make
great use of this data, different institutions collaborate on machine learning and

Table 1.1 Summary of existing typical solutions

References Collaborative learning methods  Privacy-preserving techniques

[9] LIR Secure multi-party computation

[21] LOR Homomorphic encryption

[20] SVM & LIR & LOR & DL Secure multi-party computation

[19] LIR & LOR & DL Secure multi-party computation

[1] DL Differential privacy

[11] SVM Homomorphic encryption

[32] Federated learning Differential privacy

[17] Federated learning Homomorphic encryption

[10] Federated learning Differential privacy

[13] Federated learning Blockchain

[14] Federated learning Blockchain

[43] Federated learning Blockchain

[18] Federated learning Homomorphic encryption & Blockchain
[27] SVM Homomorphic encryption & Blockchain
[28] SVM Homomorphic encryption & Blockchain

[35] DL Threshold Paillier & Blockchain
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deep learning in a secure manner. At the same time, many corresponding studies are
under research. These studies focus on different machine learning and deep learning
methods, including linear regression (LIR) [5], logistic regression (LOR) [12, 41],
naive bayes [16], support vector machines (SVM) [34, 40], deep learning (DL) [29],
and so on. In terms of the required data types, the multi-party data participating
in collaborative computing mainly includes heterogeneous data and homogeneous
data. Some methods can be used for both heterogeneous data and homogeneous
data, such as [20], and some methods can only be applied to one of heterogeneous
data [9] or homogeneous data [5].

How to solve the problem of multi-party privacy protection in collaborative
computing is the focus of these methods. At present, two methods are popular:
homomorphic encryption and differential privacy. Homogeneous encryption algo-
rithm is used to achieve secure multi-party calculations, ensuring that data can still
be calculated in the encrypted state, and correct calculation results can be obtained
after decryption. Gascon et al. [9] train a linear regression classifier with vertically
partitioned datasets by a hybrid protocol. In this protocol, garbled circuits are used
in the two-party computation. A crypto service provider is needed in two-party
cases, and a crypto service provider and an evaluator is needed at the same time in
multi-party case. Nikolaenko et al. [21] design a privacy-preserving ridge regression
algorithm which can be divided into two phases and each phase uses homomorphic
encryption and Yao garbled circuits separately. In the algorithm, an evaluator and a
crypto service provider are essential to realize the algorithm. Mohassel et al. [20]
present a protocol for privacy preserving machine learning and this protocol is able
to support several machine learning algorithms such as linear regression, logistic
regression and neural network. In this scheme, two servers collect data from data
providers and train a model in a secure way by two-party computation. At the same
time, the two servers cannot collude. Mohassel et al. [19] construct a framework
where three servers are necessary to train linear regression, logistic regression and
neural network models based on three-party computation.

However, each of these methods has a disadvantage: it requires the introduction
of one or more third parties to participate in the calculation process. On the one
hand, the introduction of third parties will cause additional communication overhead
and reduce computing efficiency. On the other hand, the introduction of third
parties has potential privacy disclosure issues. For example, Francisco-Javier et al.
[11] use a two-server model based on partial homomorphic encryption to solve
the privacy protection problem when multiple data providers train SVM models.
In addition, in the real application process, setting up such a trusted third round
is not feasible. In terms of computing efficiency, a large number of encryption,
decryption, and homomorphic operations are designed in the calculation process
after the homomorphic encryption algorithm is introduced. Therefore, the overall
training time will be greatly increased compared to conventional training conditions.

Through the scheme of differential privacy algorithm, sensitive data is protected
by adding noise. Abadi et al. [1] apply differential privacy to protect sensitive
information in datasets during deep learning. Although differential privacy is an
efficient method of privacy protection, the introduction of perturbations has a
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negative impact on the accuracy of the final trained classifier. For some machine
learning algorithms, the negative impacts on the final training results cannot be
ignored. In contrast, homomorphic encryption is a more accurate privacy protection
scheme.

In the above scheme, the data needs to be shared more or less to complete the
calculation. With the development and maturity of the federal learning method, these
multi-party collaborative training algorithms can greatly protect the privacy of the
original data, and it has been cited in more and more studies [15, 39]. However, the
simple federal learning method is still not perfect in terms of privacy protection.
In recent years, there has been many researches to apply differential privacy and
homomorphic encryption algorithms to the process of federal learning, so as to meet
security requirements.

Liu et al. [17] proposed a secure federated transfer learning algorithm. This
method achieves important data privacy security in the process of multi-party
collaboration for deep learning through the addition of homomorphic encryption
algorithms. The differential privacy is introduced into the process of federated
learning, which ensures that the parameters of the client during training are not
leaked, and the balance of security and model effect is achieved [10, 32].

1.3.2 Multi-party Collaborative Learning with Blockchain

Many fields across the world have applied blockchain to data sharing solutions,
such as the medical industry, the energy industry [22], and so on. Compared with
the traditional data sharing schemes in their respective fields, the application of
blockchain technology has improved the trust and security issues in the data sharing
process to a certain extent. Based on a secure data sharing method using blockchain,
decentralized multi-party collaborative learning methods are studied.

The decentralized property of the blockchain fits the distributed learning charac-
teristics of federated learning, so many studies have applied the blockchain to the
federated learning process to ensure the transparency, security, and auditability of
the model process.

Mendis et al. [18] avoid introducing any central server through the blockchain,
and at the same time further strengthens the security in the federal learning process
through homomorphic encryption algorithms. In the end, the solution is verified to
prove its usability and efficiency performance in different scenarios.

Zhu et al. [43] consider the potential of byzantine equipment in the traditional
federated learning process, which causes unpredictable results to the training results,
a deep learning algorithm for blockchain is proposed. This method adds a layer of
security to the classic method to solve the problem of Byzantine equipment. The
consensus mechanism running in the blockchain has a natural advantage in solving
this problem. In the end, the scheme is experimentally verified to prove the safety
and effectiveness of the method.
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In addition to the privacy protection in the process of deep learning with multi-
party collaboration, the issue of incentives for participants is also considered [35].
Without reasonable incentives, data providers will not be willing to provide data
for training. This article proposes a secure and motivating deep learning training
program based on blockchain. With the help of blockchain, data confidentiality,
computational auditability, and effective incentives for participants are imple-
mented.

Kim et al. [14] pointed out that in the classic centralized federal learning process,
the time communication between each device and the central institution is very
large, and the central institution also increases the risk of data leakage. This article
uses blockchain technology to replace the central server and is responsible for
the entire data exchange during training. Experiments show that this decentralized
federated learning mechanism has improved communication overhead.

Related researches on traditional machine learning algorithms are also underway.
Shen et al. [27] apply partial homomorphic encryption algorithm to design secure
computing components, and based on these components, the SVM training process
is implemented. At the same time, the solution introduces the blockchain as a
data sharing platform, avoiding the introduction of trusted third parties, while
ensuring the transparency of the training process. This method uses homogeneous
datasets. Experimental results show that the method has advantages in accuracy
and efficiency. Shen et al. [28] uses a partial homomorphic encryption algorithm, a
secure SVM training method is implemented based on heterogeneous datasets. In
this solution, the blockchain plays a huge role, as a data sharing platform in the
model training process, ensuring that the data is open and immutable.

1.4 Data Sharing Requirements and Challenges

Data is an important driving force in the stage of big data era for social progress
and industrial development. With the promotion and application of big data tech-
nology and artificial intelligence technology, traditional industries are continuously
empowered through statistical analysis, machine learning model training, and deep
neural networks, which have improved efficiency and reduced costs, and solved
a series of industry pain points. For example, it has considerable advantages in
application fields such as mobile payment, online credit reporting, and e-commerce.
The progress and development of the industry has brought great convenience and
improvement to people’s lives in certain scenarios.

1.4.1 Integrity of Data Sharing

For a single entity, there are huge challenges when using data, for the terrible
integrity of the data. All industries and industries have accumulated a large amount
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of data, and these data can play an important role when they are shared. From the
perspective of data integrity, the integrity of data depends on the number of data
cases, the number of data attributes of a data case, and the quality of the data.

Insufficiency of Data Instances When an entity has small size of datasets in data
instances, it needs other entities’s data to enlarge the datasets size. The attributes
held by each entity are the same. We call these data homogeneous data. For example,
in a medical scenario, multiple medical institutions share patient medical data,
and the data samples of all patients contain the same attributes. Similarly, the
label values of the sample data are determined according to an unified standard.
Heterogeneous data refers to the intersection of the data samples provided by each
data source, but the data samples of each data source contain different data attributes.
Therefore, through the homogeneous data sharing, the integrity of the data can be
improved from the perspective of expanding the number of data cases.

Insufficiency of Data Attributes The attributes of data owned by a single insti-
tution are limited. In some scenarios, the data of other institutions are needed to
expand the attribute dimension of its own data. These data are the same instance,
but there is a complementary relationship on the attributes. We call these data
heterogeneous data. Similarly in the medical field, multiple medical institutions
have data for a certain patient, and the data attributes of these data are different.
Therefore, the data integrity can be improved from the perspective of expanding the
number of instance attributes of the data through heterogeneous data sharing.

Inferior of Data Quality During the process of data collection, transmission,
processing, and labeling, the data quality varies due to technical level, data volume,
and data source. Therefore, through data sharing, data from other institutions are
obtained, so as to comprehensively compare and screen out higher quality data, and
ultimately improve the quality of data analysis and model training results. Improved
data quality also helps improve data integrity.

1.4.2 Security of Data Sharing

It faces serious privacy leakage problems during the sharing process. Privacy
leakage may happen during the process of data transmission, data storage and so
on. The direct consequences of data privacy breaches include: reduced data value
and leakage of sensitive information. The above two problems may lead to more
serious consequences including: stricter data sharing restrictions, data providers are
afraid, unwilling or unable to share data.

Loss of Data Value The current data sharing method is mainly copy data sharing.
The data is directly copied to the data requester through a certain method, and the
data requester directly obtains the original data of the data. Although some privacy
protection measures such as encryption can be used to ensure that the privacy of
the data is not leaked during transmission, after the valuable data contained in the
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original data is diffused to other participants, the data cannot maintain its original
value. This problem is particularly acute when sharing high-value data.

Leakage of Sensitive Data Another problem with replicated data sharing is the
leakage of sensitive data. Even though the shared data may not contain private data,
after the data is acquired by malicious parties, some sensitive information may be
statistically obtained through certain data analysis methods. The leakage of this
information can have serious consequences to some extent.

Due to the above reasons, many regions and countries have introduced more
and more strict measures to restrict data sharing. From a positive perspective, these
measures have ensured the user’s privacy to a certain extent, but at the same time
they have hindered the data sharing in many industries.

1.4.3 Usability of Data Sharing

Many privacy protection schemes are currently used to protect privacy leaks during
data sharing. The introduction of cryptography schemes ensure that the privacy of
data is not leaked. However, after the introduction of the privacy protection scheme,
data sharing efficiency decreased, data calculation results were inaccurate, and the
need to introduce trusted third parties may reduced the data availability.

Low Efficiency When the cryptographic algorithm is introduced, the data sharing
mode is changed from replication sharing mode to computation sharing mode.
However, a large number of encryption and decryption operations are involved in the
calculation process. These operations will reduce the calculation efficiency. When
the amount of data increases, the excessive calculation time cannot meet the needs
of practical applications.

Low Accuracy The introduction of differential privacy protection calculations will
lead to the introduction of noise, which will cause the final calculation result
to be biased. During the machine learning or deep learning process, the error
of calculation will affect the model parameters, and will ultimately affect the
classification effect of the model, resulting in reduced accuracy of classification,
unable to meet the needs of the actual scene.

Indispensable Third Party Most secure collaborative training schemes based on
homomorphic encryption have to rely on a trusted third party to ensure the smooth
progress of calculation processes. However, it is difficult to find such a trusted
third party in real scenarios. As a result, the applicability of these schemes is very
poor, which cannot meet the requirements of cost performance and efficiency in
applications.
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1.5 Organization

In the following pages, the solutions to the problems encountered in the data sharing
will be introduced in detail. The second chapter describes the overall structure of the
blockchain, and briefly describes the application of the blockchain in data sharing.
The third chapter introduces the hierarchical structure of the blockchain-based data
sharing system, and gives an introduction to the functions of each layer. Chapter 4
details the homogeneous data sharing scheme based on the blockchain, and Chap. 5
details the heterogeneous data sharing scheme based on the blockchain. Chapter 6
provides a detailed introduction to secure data retrieval based on the blockchain.
Chapter 7 introduces the incentive scheme in the process of data sharing based on
blockchain.
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Chapter 2 )
Blockchain and Data Sharing Shethie

Data sharing is very common in the era of big data and artificial intelligence as
the convergence of data is the most prerequisite section of big data and machine
intelligence happens based on high volume data feed. Blockchain is a new emerging
technology, which holds vast possibilities and benefits to improve traceability and
accountability of its stored data. It has significant advantages in unlocking the full
potential of data sharing in multi-party scenarios. In this chapter, we introduce the
basics of blockchain, which are organized into five layers: data layer, network layer,
consensus layer, incentive layer and application layer. The details of each layer
are elaborated accordingly. Afterwards, we emphasize the strengths of blockchain,
including integrity, immutability, decentralization and verifiability. Finally, we make
a list of the threats and challenges of blockchain to be overcame.

2.1 Blockchain Overview

A blockchain [34] is a distributed ledger of all transactions that have ever been
executed. A block is the basic part of a blockchain which records some or all of the
transactions occurs in a time period, and once completed, goes into the blockchain
as permanent database. A new generated block contains the most recent executed
transactions. Blocks are linked to each other (chained block) in proper linear,
chronological order with every block containing a hash of the previous block. To use
conventional banking as an analogy, the blockchain is like a full history of banking
transactions. Transactions are entered chronologically in a blockchain just the way
bank transactions are. Meanwhile, blocks, are like individual bank statements. The
full copy of the blockchain has records of every transaction ever executed.

From the perspective of how the ledger is maintained, blockchain can be divided
into three categories, which are public blockchain, consortium blockchain and
private blockchain, respectively. In public blockchain systems, the ledger is open to
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the public. Anyone can be the maintainer of the ledger if they want. Bitcoin [17, 32]
and Ethereum [27, 31] are two typical public blockchain systems. A selected set of
nodes are responsible for the maintenance of the ledger in consortium blockchain
systems. These nodes usually represent their own organizations that constitute a
consortium, which cooperate for the same goal. Hyperledger Fabric [4, 10] is
the most widely used consortium blockchain [8, 14]. As for private blockchain
systems, only nodes from a single organization have the permission to maintain the
ledger. Thus, the ledger in a private blockchain is fully controlled by a standalone
organization.

Blockchain has some general components [1, 3, 7]. Generally, the architecture
of blockchain can be organized as five tiers, which are data layer, network layer,
consensus layer, incentive layer and application layer as shown in Fig. 2.1.

Application . Smart .
Layer Script Contract Chaincode DAPP
Incentive Token Issuing Token Distribution
Layer Mechanism Mechanism
Consensus| o] [Pos| [ bPos | [ PBFT | [ Ratt
Layer
Network P2P Propagation Validation
Layer Protocol Protocol Protocol
Asymmetric Hash
Data Merkle Tree Cryptography Function
Layer
Data Blocks Transactions Chained
Structure

Fig. 2.1 An overview of blockchain architecture
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2.1.1 Data Layer

Data layer contains the data structure of blockchain and the related techniques
exploited to build such construction.

e Chained Structure

Block [3] is the fundamental components of blockchain. Each a block records
transactions generated during a period. To provide immutability of the ledger data,
each block record the hash of the previous block in its block head, and then compute
the hash of the current block. Thus, blocks are linked linearly in chronological order
as shown in Fig. 2.2.

¢ Data Blocks

An example of Bitcoin block structure [3] is shown in Fig. 2.3. A block is
composed of the block header and the block body. Specifically, block header
includes fields of block version, merkle tree root hash, timestamp, nBits, nonce and
previous block hash. Block version indicates the validation rules nodes to follow.
Merkle root hash is computed on all the transactions in the block. Timestamp
records current time since January 1, 1970. NBits indicates the validation of a block
hash. Nonce is adjusted by the miner to validate a block. Previous block hash is a
256-bit hash value that points to the previous block.

IR R e

n-2 n-1 n n+1 n+2

Fig. 2.2 Chained structure of blockchain. Each block points to the previous one using the hash
value

Block Header
Merkle . Previous
Vilr(;iccljn Root 'It'lanr;es nBits Nonce Block
Hash P Hash
Block Body
Transaction Counter ™1 TX2 TXn

Fig. 2.3 Block structure of Bitcoin
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Merkle Root Hash

T

Hash 0 Hash 1
Hash 0-0 Hash 0-1 Hash 0-1 Hash 0-1
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Fig. 2.4 An example of merkle tree construction based on four transactions

e Merkle Tree

The merkle tree [3] is constructed by pairing each transaction with one other
transaction and hashing on them. The computed hashes are also paired with one
other hash and hased again. Such process repeats until only one hash remains, i.e.,
the merkle root. Figure 2.4 shows an example of how a merkle tree is constructed.

¢ Hash Function

The hash function is exploited to iteratively compute the hash of merkle root.
Besides, each block is hashed whose value is stored in the following block. In this
way, it is almost impossible to modify the ledger once the data is written. Hash-256
algorithm is used in Bitcoin [3].

¢ Transactions

There exists two kinds of transactions [3], i.e, coinbase transactions and common
transactions. Coinbase transactions are created by miners. Common transactions
can be generated by anyone who sends transaction proposal. Common transactions
contain the data generated from business applications.

* Asymmetric Cryptography

In blockchain systems, signature mechanism is the mainly used asymmetric
cryptography [3]. Bitcoin address is derived from the public key of a signature key
pair. Every transaction is signed by the sender using its signature private key to
prove its origin.
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2.1.2 Network Layer

Network layer includes the protocols utilized in the blockchain network, i.e., the
Peer-to-Peer (P2P) protocol exploited to construct the blockchain network, the
propagation protocol exploited to broadcast transaction proposals and new executed
transactions, and the validation protocol exploited to validate the transactions before
being committed to the ledger.

e P2P Protocol

All the blockchain network nodes are organized using certain P2P protocol.
Nodes in a P2P network [3] has equal power and perform the same tasks. Usually,
they have no central administrator as each node holds a copy of files—acting as an
individual peer. A P2P protocol prescribes how nodes are organized. P2P protocol
describes the mechanism that a node discoveries and connects with the other peers
when it starts at the first time. The protocol describes the strategy that a node
updates its connections to new peers when the connected peers are off-line. Also,
the protocol describes the mechanism that a node synchronizes its local data from
other peers.

* Propagation Protocol

The propagation protocol is usually acted as a sub-part of P2P protocol,
which performs the data synchronization task. In blockchain systems, transaction
proposals, executed transactions or blocks are needed to be broadcast to others when
a node initiates or receives such data. In bitcoin, when a miner discoveries a new
block, it broadcasts the new block to its peers using certain prescribed methods.

e Validation Protocol

Similarly, the validation protocol is more likely to be the specifications that
describe the rules that transactions are structured and how they are organized into a
block. For instance, in bitcoin, a miner would validate that the bitcoin of the input
addresses are unspent. Peers would re-validate the transaction and the hash value of
the new added block before they append it to their local blockchain.

2.1.3 Consensus Layer

Blockchain is a distributed ledger. Different from the traditional centralized ledger
systems, there is no central authority present to validate and verify the executed
transactions. Nonetheless, blockchain have to provide consistent ledger data to its
users, and this is where consensus comes into play. The consensus is core part of
any blockchain network.

Consensus [30] is a procedure through which all the peers in a blockchain
network reach an common agreement on the present state of the distributed
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without centralized authority. In this way, blockchain network achieve reliability
and construct trust among unknown peers in a distributed environment. Essentially,
the consensus guarantees that every new added block to each peers are consistent,
upon which is agreed by all the peers in the blockchain network.

Here, we discuss several most typical consensus algorithms, which are Proof of
Work (POW), Proof of Stake (PoS), Delegated Proof of Stake (DPoS), Practical
Byzantine Fault Tolerance (PBFT) and Raft. We discuss how they work in a precise
manner.

¢ PoW

PoW [29] is the consensus algorithm used in the Bitcoin [17]. Each node of
the network is calculating the hash value in the block header. There is a random
number (Nonce) in the block header so that miners can change to get different hash
values. The consensus requires that the computed hash value must satisfied with the
threshold set in the nBits field. Once a miner gets such hash value, it has the right to
generate a new block and broadcast the block to others. All the other nodes would
verify the correctness of the hash value. The new block will be attached to the main
block chain by other nodes only it is verified.

¢ PoS

PoS [28] is an alternative to the PoW for energy-saving as PoS can greatly save
computing resources. Miners must prove their ownership of the amount of tokens.
A user is more likely to be selected as a miner as long as he owns more tokens. It
is believed that users with more tokens have less motivation to attack the network.
However, it can ultimately leads to violate the original intention of decentralization,
since the user who owns the most tokens can dominate the network. Compared to
PoW, PoS significantly saves energy and is more efficient. Thus, many blockchains
that adopt PoW at the beginning gradually transit to PoS. For example, Ethereum
[31] is trying to transform from Ethrash (A variant of PoW) to Casper (A variant of
PoS).

* DPoS

DPoS [12] is a variant of PoS that can provide high scalability at the cost of
sacrificing the full decentralization characteristic. In DPoS, only a fixed number
of elected nodes (called block producers or witnesses) are selected to produce
blocks in a round-robin order. These block producers are elected by all the network
participants, who can get a number of votes proportional to the number of the tokens
they own, i.e., their stake. Alternatively, users can choose to delegate their votes to
another voter, who will further vote target block producers on their behalf. The
number of block producers in a DPoS network depends on the concrete rules of
that chain. A block producer is possible to be voted out power if it is found to be
malicious. In such condition, voters will not vote for them in the next round. By
significantly limiting the number of block producer, DPoS gains high scalability
and is able to handle transaction throughput that is multiple orders of magnitude
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greater that today’s PoW. However, it is noted that DPoS sacrifices decentralization
for high throughput. DPoS is now exploited in the Bitshares [19].

e PBFT

Pratical Byzantine Fault Tolerance (PBFT) is a replication algorithm introduced
in 1999 by Barbara Liskov and Miguel Castro [5], which was designed to work
efficiently in asynchronous systems tolerating byzantine faults. A PBFT system can
function well on the condition that the maximum number of malicious nodes must
less than or equal to 1/3 of all the node in the system. PBFT operates in rounds,
which are broken into 3 phases: request, pre-prepared, prepared and commit. In
PBFT systems, only one node being the primary node and others referred to as
secondary nodes. In each round, a primary node would be selected according to
some rules. Once the primary node receives a request from a client, the primary node
broadcasts the request to the secondary. The nodes (both primary and secondaries)
perform the service requested and then send back a reply to the client. The request is
served successfully only the client receives m 41 replies with the same result, where
m is the allowed maximum number of faulty nodes. Hyperledger Fabric supports
pluggable PBFT consensus module.

e Raft

Raft [18] is a consensus algorithm that is designed to be easy to understand.
It’s equivalent to (multi-)Paxos in fault-tolerance and performance. The difference
is that it’s decomposed into relatively independent subproblems, and it cleanly
addresses all major pieces needed for practical systems. To enhance the understand-
ability, Raft separates the key components of consensus, for instance, the leader
election, log replication, etc. Faft uses the “leader and follower” model, in which
a leader is dynamically selected among the ordering service nodes. The messages
of the followers are replicated from the unique leader. Raft systems can sustain the
loss of nodes, including the leader node, as long as there is a majority of ordering
nodes remaining. Thus, Raft is saide to be “crash fault tolerant”. Hyperledger Fabric
supports Raft as a pluggable consensus module.

2.1.4 Incentive Layer

Token is most widely used to implement the incentive mechanisms in blockchain
systems, e.g., BTC in Bitcoin system, ETH in Ethereum system, etc. Tokens
usually have monetary value, which can be exchanged with legal currency. It is
not necessary to all kinds of blockchain. Actually, public blockchain would exploit
token to stimulate the nodes to mine the new block because it’s computation-
consuming to package transactions into the new created block. In consortium
blockchain, the peers are usually self-motivated as they work collaboratively to
achieve the same goal. Nonetheless, it is also feasible to circulate tokens in a
consortium blockchain, which is usually for better management of digital assets.



22 2 Blockchain and Data Sharing

The issuing and distribution of tokens are the major parts of incentive mecha-
nisms [15]. Token issuing mechanism prescribes how the token is generated, which
would increase of total quantity of token. Token distribution mechanism prescribes
how the existing tokens are circulated among different users.

In Bitcoin system, the maximum and total amount of bitcoins that can ever exist
is 21 million. Right now, every time a new block generates, 12.5 bitcoins are issued
to the miner for circulation. Such mining awards is reduced every time 210,000
blocks are generated. Bitcoins can be circulated by simple money transfer from one
to another bitcoin address, or by transaction fees payed for miner from transaction
sender.

Token in Ethereum system is more complex than Bitcoin. 72,000,000 ETHs is
pre-mined into circulation. After that, new ETHs are mined into circulation as block
rewards, uncle rewards and uncle referencing rewards. Block rewards are given to
those who mines a new block on th main chain. Uncle rewards are given to those
who mines a new uncle block, which are mined out lately after the blocks in the main
chain. Bitcoin completely discards these uncle blocks. Uncle referencing rewards
are give to miner who references those uncle blocks. Such kind of token issuing
mechanism reduces the waste of computing. BTCs can be simply transfer from one
to another ethereum address. If a user want his smart contract to be launched by the
Ethereum nodes, ETCs need to be attached for supporting the execution of the smart
contract.

Hyperledger Fabric is the most widely used consortium blockchain. There is
no intrinsic token in the published version. Nonetheless, the official documents
declaim that Fabric is support for adding token into its system. Since the token
is not necessary in consortium blockchain, we do not discuss it here.

2.1.5 Application Layer

Developers can develop their business application using the underlying blockchain
as the append-only database. Such business logic is implemented using the pro-
gramming mechanism provide by blockchain systems, e.g., script, smart contract,
chaincode, etc.

* Script

Script [3] is a mini programming language provided in bitcoin, which is used
as a locking mechanism for bitcoins. A locking script is place on every output.
Correspondingly, an unlocking script must be provided in a transaction to unlock
an output when it is used as an input. A script consists of two parts: data and
OPCODES. OPCODES are simple functions that operate on the data.

¢ Smart Contract

Programs that run on the Ethereum Virtual Machine (EVM) are commonly
referred to as smart contracts [7]. Solidity is the most popular language for writing
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smart contracts on Ethereum. Smart contracts are usually consuming Ether when
they are running. They can control digital assets for creating new kinds of financial
applications. Once smart contracts are deployed to Ethereum, they will always run
as programmed, which means they cannot be further modified. A developer should
deploy a new smart contract when he wants to upgrade or patch the original one.

¢ Chaincode

Chaincode [6] functions similarly to smart contract. It is a terminology in
Hyperledger Fabric. Chaincode is a program written in Go, node.js, or Java that
implements a prescribed interface. In Hyperledger Fabric, chaincode runs in a
dependent docker container that is isolated from the other processes. The blockchain
ledger is initialized and managed by chaincodes. Applications need to invoke
chaincodes to change the ledger state.

* DAPP

DAPPs are kind of applications that encapsulate the script, smart contract, or
chaincode, which are invoked by SDK provided by the official or a third party.
They can usually provide user-friendly interfaces to ordinary users. In ethereum,
gaming and exchange are the most two popular DAPPs. There are many case studies
in hyperledger fabric, which extends blockchain into more and more sectors, e.g.,
manufacturing, healthcare, small business, supply chain, digital identity, retailers
and so on.

2.2 Strengths of Blockchain

* Integrity of Transactions

As a distributed ledger system, blockchain records and validate each and every
transaction made, which makes it secure and reliable. In the scenario of data sharing,
data consumers depend heavily on the reliability and trusthworthiness of data, which
is known as data integrity. The data integrity involves the maintenance of, and the
assurance of the accuracy and consistency of data over its entire life-cycle. Data
sharing [33] operation and the actual sharing data can be some extent encoded as
part transactions and further being recorded by the blockchain. In such condition,
the data consumer can put high trust on the sharing data as the blockchain provides
good data integrity [35].

e Immutability of Ledger

By design, blockchain is inherently resistant to the modification of data. The
immutability of blockchain ledger means that once the transactions are recorded
into blockchain, it cannot be edited or deleted. In addition, blockchains are also a
timekeeping mechanism for the data, thus the history of data is easily reportable.
As long as the data is shared upon a blockchain system, the recored sharing data
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is believed to be the original data provided by the data owner. Because of the
characteristic of immutability, it’s easy to compute the profits of the data providers
referring to the history of data sharing [22] transactions. Besides, data providers are
encouraged to share valuable data for higher repay.

* Decentralization of Ledger Maintenance

In blockchain systems, there is no central authority or third-party to intentionally
record the ledger. Instead, the blockchain ledger is maintained by a number of peers.
In such way, it is hard for an entity to modify or forge the ledger data, which is one of
the most drawbacks of centralized systems. For better maintenance, data providers
and consumers can negotiate the rules that all the network participants must conform
to. Any transactions that violate the prescribed rules are refused.

* Verifiability of Identity

In consortium systems, the blockchain ledger is maintained by a number of pre-
selected nodes who consist of a consortium. Only legitimate users can participates
in the network. In Hyperledger Fabric, in particular, there is a member mechanism
designed to control the network participants and authorize proper privileges to them.
Auditing of network participants can be useful in data sharing scenario [13]. A
consortium can choose to authorize the related user to participate their network.
Thus, it is believed that the new entrant is more likely to be an honest entity.

2.3 Security and Privacy Threats to Blockchain

¢ Attacks on Blockchain

There exists lots of attacks [11] on blockchain systems, e.g., 51% attack, eclipse
attack, selfish attack and so on. A miner with more computing resources will
calculate to find the nonce value faster than the others, which may leads to 51%
attack. In eclipse attack, a dishonest node try to control the victims from the rest of
the peers in the blockchain network. Selfish mining attack happens when a dishonest
miner has enough computing power to discover more blocks than the public chain.

* Privacy Leakage of Transaction Data

All transactions recorded on blockchain are stored in clear text. By using a
blockchain explorer, the data contained in each field of a transaction can be easily
known by others. The blockchain ledger is open to all the peers, so each peer can
know what data is stored in the ledger. In this way, sensitive data may be exposed
to public [16]. It may hinder users from sharing data as some users only want their
shared data can be only be visible to restricted users instead of everyone else. Thus,
data privacy-preserving [9, 21, 26] should be carefully considered.
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* Limits on Data Representation

All the data to be stored on blockchain is formated into a prescribed fields. In this
way, it is convenient for nodes to process transactions. However, data in different
sectors [20, 25] are totally different. A flexible data formate storage mechanism
which is generic to sectors is needed when data sharing involves participants
spanning cross different sectors [23, 24].

* Limits on Data Storage

Individual blockchain ledger are typically on the order of kilobytes [2] and only
limited data are held. However, the blockchain’s log structure implies that all the
transaction operations are recorded in the blockchain. That’s also what users expect
when they are sharing data with others. Many data operations happens when the
data are circulated through data consumers. Thus, there is a great demand of storage
not only for sharing data but also for data manipulation.

» Latency on Transaction Settlement

Unlike the centralization systems controlled by a single node, blockchain systems
are maintained by lots of nodes that are geographically dispersive. Transactions need
to be validated by lots of nodes before they are committed. Moreover, blockchain
systems using probabilistic consensus algorithm, enough blocks must be added
after the block encapsulating the committed transactions to make sure the non-
reversibility. This leads to low efficiency of transaction settlement. However, in
some real practice of data sharing, higher throughput of transactions are needed.

2.4 Summary

In this chapter, we introduce the basics of blockchain, which are organized into five
layers: data layer, network layer, consensus layer, incentive layer and application
layer. This five layers almost include everything of blockchain. The details of
each layer are elaborated accordingly. We emphasize the strengths of blockchain,
which include integrity, immutability, decentralization and verifiability. These
characteristics may enable blockchain to unlock the full potential of data sharing
in multi-party scenarios. Finally, we make a list of the threats and challenges, which
should be carefully considered.
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Chapter 3 )
Layered Data Sharing Architecture Shethie
with Blockchain

With the development of blockchain technology, innovative application scenarios
for data sharing combined with blockchain are emerging on a large scale [15, 22, 24].
However, due to the high research and development costs of building data sharing
blockchain applications in different scenarios [14], this chapter proposes a layered
data sharing architecture with blockchain. First, the architecture is outlined, includ-
ing design principles, functional overview, and layered elaboration. Then, the design
ideas of each layer are described in detail according to the overall architecture,
including the design of the entity layer, data repository layer, service layer and
application layer. The description of each layer not only helps to understand the
content of the layer, but also contributes to understand the relationship between the
layers. At the end of this chapter, a scenario example based on this architecture is
given and analyzed.

3.1 Architecture Overview

The design principles of layered data sharing architecture with blockchain include
the following four items:

* High security: Design secure computing components through homomorphic
encryption. The operations of data sharing and calculation are completed through
the secure computing component. Ensure that data privacy and calculated median
privacy are not leaked during data sharing.

» High availability: Collaborative calculation results based on shared data ensure
high accuracy. Compared with the calculation results on traditional plaintext data,
the calculation results based on this architecture have no loss of accuracy.
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* Decentralization: Based on the alliance chain, the process of sharing data and
multi-party collaborative training models does not require the participation of
trusted third parties and rely on smart contracts for management.

* High scalability: The number of participants supported can be expanded accord-
ing to actual application requirements. The types of participants and data
supported are diverse. It can meet the application requirements of different
scenarios without affecting overall performance.

The overall function of layered data sharing architecture with blockchain is
mainly reflected in four aspects, as shown in Fig. 3.1, from the bottom up, it
is the entity layer, the data repository layer, service layer and application layer.
The architecture is based on IoT equipment, vehicle network equipment, etc., and
surrounds underlying cloud platforms, such as public, private, and hybrid clouds.
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Fig. 3.1 Blockchain-based layered data sharing architecture
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And the underlying blockchain platforms, such as Hyperledger Fabric [1, 3] and
Stellar. This architecture is designed to provide one-stop services to effectively
implement rapid construction and deployment of blockchain applications, and
rapid implementation of smart contracts and scenarios. Its driving force lies in
the combination of secure data sharing with different industries, especially in
the financial and medical fields, such as trusted storage and smart healthcare.
Specifically, the functions of each layer are described below.

» Entity layer: The entity layer is the entity participating in data sharing and
calculation. They have different roles in different application fields. These
entities play the role of data provider or data requester in the process of data
processing. At the same time, the data provider needs to cooperate with the data
requester to complete the safe training process.

» Data repository layer: The data layer is mainly responsible for data storage. After
the data provider of the entity layer encrypts the data, it will upload it to the data
layer. The data repository layer is based on the consortium chain such as fabric.
At the same time, for the data not uploaded to the blockchain, this part will be
stored on the cloud platform.

* Service layer: The service layer is mainly responsible for the identity manage-
ment of the participants in the entity layer. Through the alliance chain platform
and other identity authentication measures, the identity of the participants is
guaranteed to be reliable and the data on the consortium blockchain is not leaked.
At the same time, it provides all kinds of safe computing operations for the shared
data of the secret state. The key management and contract management in the
operation process are also completed by the service layer.

» Application layer: Implement machine learning algorithm and other functions
based on various secure computing operations, and ultimately serve different
applications, including supply chain, etc. At the same time, it provides interfaces
to other industries to provide available functions.

3.2 Design of Entity Layer

The lowest layer of this layered data sharing architecture is the entity layer. In
order to meet the needs of researchers for different types of data and different
application scenarios, this layer is designed to include multiple entities such as
medical institutions [10, 17], IoT equipments in smart cities [19, 20], and vehicle
network equipments (i.e. roadside devices, mobile terminals, vehicles) [6, 21]. So
as to provide a basis for data source for the adaptation of various scenarios.

The researcher collects the required data from the entities in the target scene
domain for subsequent research. Therefore, the entity layer is a valuable asset for
researchers. Researchers usually obtain large amounts of data directly from them,
then perform certain special preprocessing on the obtained data, and then store the
data.
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After being authenticated, the participants in the entity layer join the alliance
chain as nodes, and then they can share or query the data on the alliance chain.
Because the architecture supports various types of physical devices, these devices
belong to different industries, and there are more than one entity group participating
in data sharing, so there are more than one alliance chain formed. On the one hand,
these alliance chains can be independent of each other, and on the other hand, data
isolation between different groups can be achieved on one alliance chain by setting
up channels.

The identities of the participants can be data providers, and they can also be
data requesters. Participants who are data providers need to pre-process the data.
These include standardization of data formats and data encryption. The private
key for data encryption is saved by itself, and the public key will be shared with
other participants in the alliance chain. Because the amount of data supported for
each transaction is limited, in order to improve the performance of shared data, the
original confidential data will not be directly uploaded to the transaction through the
chain, but the hash value of the confidential data will be uploaded to the blockchain.

For pre-processed data, upload it to the data layer through smart contracts. As a
participant of the data requester, the data is obtained from the blockchain through
smart contracts. If the data is hashed, then the dense data will be obtained by off-
chain transmission. The hash value of the dense data is compared with the hash
value obtained on the chain to verify the data content.

3.3 Design of Data Repository Layer

In order to meet the needs of different blockchain underlying technologies, the
underlying blockchain of the data repository layer of this layered data sharing
architecture is designed to be compatible with multiple open source blockchain
engine technologies, such as Hyperledger Fabric and Stellar [5, 8]. Researchers
can choose freely according to the scene, and each type of data sharing blockchain
technology has its own characteristics. Among them, Fabric-based technology has
a highly modular and configurable design, supports pluggable consensus protocols,
and can use mainstream development languages to develop smart contracts. Stellar-
based technology has features, such as security, trustworthiness, autonomous
controllability, high availability and flexible adaptation. It has strong financial
attributes and is therefore suitable for financial business scenarios. The consensus
mechanism determines the implementation method and application scenario of the
data consistency of the blockchain. The underlying architecture supports multiple
consensus algorithms, which can be selected based on different needs [12, 13].

In addition, the data repository layer of the layered data sharing architecture is
designed to enable researchers to collaboratively deploy data sharing blockchains on
public, private, and hybrid clouds. This cross-cloud networking capability makes the
deployment of secure data sharing blockchain easier and more flexible, the diversity
of infrastructure construction for data sharing blockchain application scenarios is
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improved. At the same time, cloud storage has unparalleled advantages in terms
of scalability, pay-as-you-go, reliability, availability, and security [11]. Different
application scenarios have different requirements for the storage system. The design
of this architecture can meet different needs and provide multiple storage solutions.
Cloud services follow standard blockchain underlying protocols, helping to build a
cloud platform that is compatible with network protocols [16, 18, 25], which can
reducing strong dependence on underlying technologies and improve the credibility
of the blockchain architecture itself.

The data involved in this layer is collected from the equipment at the entity
layer of the architecture. After processing such as encryption, data types such as
homogeneous data and heterogeneous data are formed, and then the corresponding
data is stored.

3.4 Design of Service Layer

Relying on the support of the underlying secure data sharing blockchain, the service
layer design of the layered data sharing architecture abstracts a series of service
modules and integrates service resources. In general, it includes three modules:
resource service, resource management, and computing components. The resource
service component mainly helps researchers quickly deploy secure data sharing
blockchain technology, provides rich functions, and reduces the barriers to entry
for data sharing blockchains. Among them, the one-click deployment and scene
adaptation functions allow users to choose a suitable deployment method according
to different scenarios. The resource management service mainly manages users and
certificates, and manages on-chain contracts. The computing component service
is designed based on homomorphic encryption algorithms (addition homomor-
phism, multiplication homomorphism, threshold addition homomorphism), helping
researchers to solve problems such as sharing calculation intermediate values based
on data in the data storage layer, and reading data from the chain. The service layer
focuses on the following services:

* Privacy Protection Service

As the secure data sharing function has higher requirements for management and
privacy protection, the architecture uses digital certificate-based management, as
well as multi-chain isolation, information encryption, and smart contract control to
protect private information [9, 26, 27].

* Contract Management

Data sharing blockchain business capabilities need to revolve around the core of
smart contracts to implement functions such as smart contracts, security isolation,
business definition, and digital protocols [2, 4, 23]. The smart contract integrated
development and debugging process designed by this architecture, as shown in
Fig. 3.2.
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* Key Management

Ensure the security of data from three aspects. The first is channel security.
During the key transmission process, the API interface enforces SSL/TLS two-way
authentication. The second is access security, which provides a complete access
control policy. Operations blocked by the policy are prohibited access. The third
is storage security, with a complete data encryption system. The root private key
is distributed into X shares through key distribution technology, and Y (X>Y) is
required to unlock the data.

3.5 Design of Application Layer

In order to meet the different needs of different researchers, the application layer
of the layered data sharing architecture also designed a web console and SDK and
API interface. The web console is suitable for business application scenarios. The
external API interface adopts the openAPI standard, and a multi-language version
of the SDK is provided to easily interface with external systems.

Data sharing applications are decoupled through interfaces and based on rich
service interfaces, this architecture can support multiple data sharing business
scenarios to meet the needs of each scenario.

The architecture is currently being implemented in multiple data sharing scenar-
ios, including electronic bills, supply chain finance, smart healthcare, and charity.
In the following, the electronic data scenario of trusted certificate for secure data
sharing blockchain is introduced as an example.

Driven by policy, economic, and social factors, the electronic certificate market
has shown a rapid development trend. Traditional electronic data certificate has
problems such as long process of fairness and records, slow evidence identification,
and the risk of fraud in records, etc., and the high cost of rights maintenance
in the process of data preservation. The decentralized features of the blockchain,
immutable data on the chain, shared and searchable on-chain records, and the
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multi-party trust and data sharing mechanism provided by the blockchain, make
blockchain technology a good solution for secure data sharing problem. It is helpful
to effectively solve the problems of notarization, long data records and business
processes, numerous documents, and data falsification and tampering in the real
data sharing business scenario. For example, Spain’s Stampery uses blockchain
technology to help judicial authorities, notarization, arbitration, auditing and other
authoritative institutions to record and deposit various legal documents [7].

Figure 3.3 shows the electronic data scenario architecture of the secure data shar-
ing trusted certificate. This electronic data trusted certificate platform architecture
can provide one-stop service for trusted certificate of electronic data, with features
such as simplicity, ease of use, openness and flexibility, multi-service application,
and credible guarantee. It uses electronic signatures, trusted timestamps, hashing,
blockchain and other technologies to ensure the integrity and reliability of electronic
data, while enhancing the legal validity of electronic documents. Electronic agree-
ments, contracts, orders, emails, web pages, voice, pictures, and other electronic
data can be stored in certificates, which are suitable for multiple industries. Users
don’t need to care about the underlying details of the blockchain to quickly realize
the trusted certificate of secure data based on the blockchain.

The bottom layer of the architecture platform can cooperate with multiple parties
to consensus, store, and endorse the data, which can make the electronic data
more credible, reduce the time required to judge the authenticity of the data,
reduce the need for judicial authentication or notarization, and can effectively
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improve the rights of the parties effectiveness. Obtain important electronic data files
such as business orders and protocols through an automated process, extract their
digital fingerprints through a hash algorithm, store them on a secure data sharing
blockchain trusted certificate platform, and record them in the blockchain. Utilize
its characteristics of decentralization and non-tampering, combined with electronic
signatures, time stamping and other technologies to ensure the integrity and
credibility of electronic data, protect the judicial rights of the architecture platform
and users, and improve efficiency. Promote the protection of rights and intellectual
property rights, and form a good atmosphere of honesty and trustworthiness in the
whole society.

3.6 Summary

In general, layered data sharing architecture with blockchain strives to provide
researchers with a secure data sharing blockchain service foundation and helps
researchers build highly secure and trusted blockchain services.The architecture
is designed to be compatible and supports multiple blockchain engines, which
enhances the capabilities of rights management, security control and privacy
protection according to the needs of different data sharing scenarios.

In the future, we hope that the layered data sharing architecture with blockchain
can continue to help the innovation of data sharing scenarios while reducing
the threshold of blockchain technology application. Utilize the characteristics of
blockchain technology such as decentralization, credibility, process-driven and
transaction traceability to further realize secure data sharing and highly unified
information. Users can conveniently, efficiently and securely enjoy the value of
blockchain technology, make value linkers, make due contributions to the pros-
perity of cloud technology and blockchain technology, and actively promote the
blockchain community and ecology Construction.
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Chapter 4 )
Secure Homogeneous Data Sharing s
Using Blockchain

Machine learning (ML) technology has been widely used in many smart city areas,
which employs a large amount of data from various IoT devices. As a typical ML
model, Support Vector Machine (SVM) supports efficient data classification, which
is applied in many application of real world, such as disease diagnosis and anomaly
detection. Training SVM classifiers usually requires to collect labeled IoT data
from multiple entities, which leads to data privacy concern. Most existing solutions
are based on an implicit assumption that an ideal server could be employed for
reliably collecting data from multiple data providers, but it is often not the case.
To bridge the gap between ideal assumptions and realistic constraints, this chapter
proposes secureSVM, a privacy-preserving SVM training scheme over blockchain-
based encrypted IoT data. SecureSVM utilizes the blockchain techniques to build
a secure and reliable data sharing platform among multiple data providers, where
IoT data is encrypted and then recorded on a distributed ledger. After detailing the
background of homogeneous IoT data sharing, we introduce the proposed method.
Then, we present the comprehensive experiments for demonstrating the efficiency
of secureSVM.

4.1 Background Description

Support Vector Machine (SVM) is a well-known supervised learning model among
all ML models, which efficiently performs data classification on many data analysis
applications. Therefore, SVM has been adopted in many fields to solve the real
classification problem in IoT-based smart cities. In the case of personal healthcare,
health records monitored by wearable IoT sensors can be fed to the SVM classifier
for accurate diagnosis. In the field of network intrusion detection, the SVM classifier
can be used to identify anomalies from a series of traffic data originating from
communication between IoT devices [24, 29].
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The construction of a supervised ML classifier (such as SVM) is called a training
phase. From a set of labeled samples, training phase trains a specific classifier.
Since training data sets owned by a single entity [38, 40], such as a hospital, are
often limited in terms of data volume and variety, for a long time, a keen need for
an effective mechanism is to train ML classifiers using a combination of data sets
collected from multiple institutions.

However, since the privacy concerns around data privacy, integrity and own-
ership, different institutions refuse to share their data with others. Sharing these
privacy data is seen as confidential information leakage [2, 18, 42]. What’s more,
during data sharing for training, data records may be tampered with or modified
without authorization by potential attackers, resulting in inaccurate classifiers.
Finally, because participants have access to the shared dataset and can be replicated
freely by others, the data provider may lose control of the data [33, 34].

A large amount of research attention has been attracted on the data privacy
issues of training ML classifiers. Existing methods utilize differential privacy or
cryptographic algorithms to protect the data privacy during ML training process
[1, 6, 27, 36, 39]. These methods relying on an assumption that the training data
can be collected reliably from multiple data providers for further analysis. But these
methods pay little attention to the concerns of data integrity and ownership.

To bridge the gap between ideal assumptions and realistic constraints, we
proposed secureSVM which employs blockchain techniques to build a secure data
sharing platform. Blockchain is essentially database of records designed to allow
the sharing of tamper-proof records among multiple parties [21, 28, 30]. Permanent
and immutable records on the blockchain can be audited for data and can be used
to confirm ownership of data records. This also helps quantify the contribution of
individual data providers and design incentive strategies to encourage sharing of
training data.

Incorporating blockchain into the ML training process remains a daunting task.
The first challenge is to design an appropriate training data format that is able
to accommodated on a blockchain. The second challenge is the construction of a
secure training algorithm employing use users’s data without revealing sensitive
information.

To address the above challenges, secureSVM uses blockchain-based encrypted
IoT data and employs a public-key cryptosystem, Paillier, to protect the privacy
of IoT data, where data providers encrypt their data locally by their own private
keys. By Paillier cryptosystem with blockchain techniques, secureSVM addresses
the concerns about data privacy, integrity and ownership. More precisely, IoT data
from data owners is encrypted by data owners’ private key and then recorded on a
distributed ledger. Data analysts who want to train the SVM classifier can access the
encrypted data by communicating with the corresponding data owners. To perform
training tasks based on encrypted data, this paper constructs security protocols for
two key operations in SVM training, namely secure polynomial multiplication and
secure comparison.
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4.2 Development of Privacy-Preservation ML Training

In recent years, smart cities are incorporating more and more advanced Internet-of-
Things (IoT) infrastructures, resulting a huge amount of data gathered from various
IoT devices deployed in many city sectors, such as transportation, manufactory,
energy transmission, and agriculture [31, 44]. Some institutions desiring to conduct
ML modeling on their joint dataset own IoT data with the same data format
falling in homogeneous data sharing [2, 10, 41]. To address the challenges posed
by homogeneous IoT data processing requirements, many innovations driven by
machine learning (ML) technology have been proposed [1, 3, 37].

The typical supervised learning consists of two phases: the training phase and
the classification phase. The training phase learns an ML model from a given
set of labelled samples. Existing studies on privacy-preserving ML training of
homogeneous data sharing are reviewed as below.

ML model training usually involves multiple participants, so the privacy goal is
to use the dataset gathered from the involved participants to train a ML model, while
protecting the data of a single participant from being learned by other participants.
Many solutions have been proposed over the past decades [8, 15, 16, 23].

Differential privacy (DP) is a commonly used technique to protect data privacy
in the publishing stage [1, 20, 45]. More specifically, DP ensures the security of
published data by adding carefully calculated perturbations to the original data
[5, 13, 35]. DP-based solutions can achieve high computational efficiency, as all
calculations are performed over plaintext data [17, 25, 43]. Abadi et al. [1] proposed
a DP-based deep learning scheme enabling multiple parties to jointly learn a neural
network while protecting the sensitive information of their datasets. However, the
resulting ML models with DP can be inaccurate as the perturbations inevitably
reduce the quality of training data. In addition, perturbations may not protect the
data privacy completely, as a bounded amount of sensitive information about each
individual training data is exposed.

Many homomorphic cryptosystem (HC) based methods are proposed to train
ML models based on encrypted data for achieving better privacy guarantees in
ML training [15, 23, 37]. HC-based solutions achieve higher data confidentiality
than DP-based solutions but have a higher time consumption [4, 8, 16, 22]. Fully
homomorphic Encryption (FHE) supports complex calculations of ciphertext (for
example, through any combination of addition and multiplication). The current
implementation of FHE causes encryption and calculation costs to be too high, mak-
ing it impractical in practical applications, Comparing to FHE, partial homomorphic
encryption (PHE) is more practical, but supports only one type of operation (i.e.,
addition or multiplication). Therefore, in order to enable complex computations,
existing solutions usually rely on a trusted third-party (e.g., the authorization server
[15]) or lead to inaccurate models by approximating complex equations with a single
type of computation [2, 3].

Serrano et al. [15] proposed a scheme based on a partial homomorphic cryptosys-
tem for secure SVM training with three parties: Data Owners, who own private
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data; an Application, which wants to train and use an arbitrary machine learning
model on the users’ data; and an Authorization Server. Graepel et al. [16] proposed
a secure machine learning algorithm using a homomorphic encryption scheme to a
computing service while retaining confidentiality of the training and test data.

4.3 Preliminaries

4.3.1 Notation

A unordered dataset D records m records with the size of | D|, where x; is the i-th
record in D and y; is the corresponding label of x;. Define w and b as two relevant
parameters of SVM. V; is the descend gradient in the iterative execution of the SVM
training algorithm, A is the learning rate. [[m]] represents the encryption of m under
Paillier. Table 4.1 summarizes the notations used in the following sections.

4.3.2 Homomorphic Cryptosystem

Cryptosystems generally include three algorithms:

» key generation (KeyGen).
e encryption (Enc).
e decryption (Dec).

Cryptosystems has a pair of keys (PK, SK). Among the pair of keys of public-
key cryptosystems, the public key PK is adopted for encryption, and the private key
SK is adopted for decryption.

Table 4.1 Notations

Notations Explanation

D Dataset

d Dataset dimension

Xi i-th record in dataset

Vi Class lable

V; Gradient

A Learning rate

m Size of dataset D

w, b The model parameters

[[m1] The encryption of m under Paillier

¢(N) The Euler phi-function
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Homomorphism means that a cryptographic system can map operations on
ciphertext to corresponding plaintext without knowing the decryption key, so it is the
homomorphism of the cryptographic system. We formally define the homomorphic
nature of a cryptographic system in Definition 4.1.

Definition 4.1 (Homomorphic [19]) A public-key encryption scheme (Gen, Enc,
Dec) is homomorphic if for all n and all (PK, SK) output by Gen(1"). It is possible
to define groups .#, C (depending on PK only) such that:

(i) The message space is M , and all ciphertexts output by Encpy are elements of
C.

(ii) For any m\,my € ., any c\ output by Enc,i(m1), and any cy output by
Encpr(my), it holds that

Decgi(o(ct, €2)) = o (my, my)

We adopt the homomorphic cryptosystem Paillier on our method. Paillier is
a public key encryption scheme with homomorphic properties that allows the
two important operations of secure addition and secure subtraction. Paillier is an
encryption system based on an assumption related to the hardness of factoring. Let
p and g are n-bit primes, N = pq. The public key is N, and the private key is
(N,¢p(N ))! in Paillier. Encryption function in Paillier is

c:=[[(14+ N)"rNmodN*|l,m € Zy 4.1
Decryption function in Paillier is

$(N) 2
— "";ZN U o) Tmod N 4.2)

For more details about Paillier, we refer the reader to [19].

4.3.3 Support Vector Machine

SVM is a supervised learning model which gives the maximum-margin hyperplane
that might classify the test data [9]. The form of the hyperplane is expressed as:

y=wlx+b,(x,y)eD (4.3)
wixi+b>1,y =+1 (4.4)
wixi+b>1,y =+1 (4.5)

ILet N > 1 be an integer. Then Z3; is an abelian group under multiplication modulo N. Define
¢(N)def |Z;‘\, | the order of the group Z3;.
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The optimization problem of the primary of SVM as follows:

1
min lul]
v (4.6)
St yi (wa,- +b) >1,i=1,2...... m.

4.4 System Model

We designed a data-driven ecosystem for the IoT, as shown in Fig. 4.1. The system
includes IoT devices, IoT data providers, blockchain-based IoT platforms and IoT
data analysts.

IoT devices are capable of sensing and transmitting valuable data over wireless
or wired networks such as ZigBee, 3G/4G, and WiFi. These data cover a wide
range of practical applications in smart cities, from environmental conditions to
physiological information. Due to the limited computing power of IoT devices,
these devices do not participate in the data sharing and analysis process.

IoT data providers collect all pieces of data from the IoT devices within their
own domains. As a valuable asset of data providers, IoT data usually contains
sensitive information. Thus, each data provider encrypts its IoT data using
partially homomorphic encryption and then records the data on blockchain.

IoT data providers collect IoT data from IoT devices in their respective domains
for machine learning training. As a valuable asset for data providers, IoT
data often contain sensitive information. As a result, each data provider uses
homomorphic encryption to encrypt their IoT data with their locally held private
keys and then records the data on the blockchain.

IoT data analysts aim to gain insight into IoT data recorded on the blockchain-
based platform by making full use of emerging analysis technologies, i.e.,
building a SVM model. The data analyst will communicate with the correspond-
ing data provider to obtain the parameters for training the SVM classifier.

P ——
Providers #1
: loT Data
P ‘ Processing
Blockchain-based
Data Sharing platform
Providers #N
\ loT Devices ) loT Data Providers

Fig. 4.1 System model of data-driven IoT ecosystem
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4.5 Threat Model

As described in Fig.4.1, each entity and its previous interactions have multiple
potential threats. Since we want to design a privacy protection scheme to train a
SVM model on the gathered data from multiple IoT providers, we consider the
threat to data privacy when interacting between data providers and data analysts.

We see the data analyst as an honest-but-curious adversary. That is, the data
analyst will honestly follow the pre-designed ML training protocol, but may be
curious about the content of the data and try to learn other information by analyzing
encrypted data as well as calculated intermediate data.

Based on the sensitive information available to data analysts, we consider the
following two threat models with different attack capabilities, which are commonly
used in the literature [32, 46]:

* Known Ciphertext Model. 10T data analysts can only access encrypted IoT
data recorded on blockchain-based platforms. IoT data analysts can also record
intermediate results during the execution of security training algorithms.

* Known Background Model. In this stronger model, the IoT data analyst is
assumed to be aware of more facts than what can be known in the

* known ciphertext model. In particular, the IoT data analyst can collude with one
or more [oT data providers to infer the sensitive data of other IoT data providers.

We make the following assumptions. Any two or more IoT data providers to
collude with IoT data analysts to steal the privacy of other participants; as honest-
but-curious adversaries, each participant performs the protocol honestly, but may
be interested in private information from other domains. As passive adversaries,
any two or more participants may collude with each other, trying to infer as much
privacy as possible from the values they learn.

4.6 The Construction of SecureSVM

This method assumes that a data analyst aims to use data collected from multiple
IoT data providers to train the SVM model. Each IoT data provider preprocesses the
IoT data instance, encrypts it locally using its own private key, and records it in a
blockchain-based shared ledger by generating transactions. Data analysts who want
to train the SVM model can access the encrypted data recorded in the global ledger.
During training, the interaction between the data analyst and each data provider is
necessary to exchange intermediate results (Fig. 4.2).
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Data Interaction

Data Provider Data Analyst

Blockchain-based
Data Sharing Platform

Fig. 4.2 An overview of secureSVM system

4.6.1 Encrypted Data Sharing via Blockchain

In order to promote model training without losing generality, we assume that data
instances of the same training task are preprocessed locally and represented by the
same eigenvectors [39].

To store encrypted IoT data on blockchain, We defined a particular transaction
structure. The transaction format consists of two main fields: input and output. The
input fields include the address of the data provider, the encrypted data, and the [oT
device type. The corresponding output fields include the data analyst address, the
encrypted data, and the IoT device type. The addresses in both fields are hash values
of 32 bytes. The encrypted data is from the homomorphic encryption Paillier. Based
on the assumption that the private key is 128 bytes, each encrypted data instance
stored in the blockchain is 128 bytes long. The IoT device type segment is 4 bytes.

After the new transaction is built, the node representing the data provider in
the blockchain network broadcasts the data provider in the P2P network, where
the miner can verify the correctness of the transaction. Using existing consensus
algorithms (such as the PoW mechanism), a specific miner node is eligible to
package the transaction in a new block and add that block to the existing chain.
Note that each block may contain multiple transactions.

4.6.2 Building Blocks

Gradient Descent The model parameters of SVM can be solved by several
optimization methods. These algorithms include sequential minimum optimization
(SMO) and gradient descent (GD). SMO is an optimization method of SVM
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biquadratic program [26]. Moreover, it performs well for linear SVM and data
sparsity. However, the large number of comparisons, dot product and division
operations [15] contained in SMO make it complex. Applying SMO in the
cryptographic manner lead to terrible computing and communication costs. The
SVM optimization algorithm based on GD is simple and efficient, involving a small
amount of comparison and vector multiplication. Therefore, we choose GD as the
optimization algorithm in SVM training algorithm to optimize the SVM model
parameters.

GD converts the SVM primary into an empirical loss minimization problem with
a penalty factor.

1 -
rvrvl}gz||w||2+c;L(w,b, (i, yi)) “.7)
1=
where the right part of the equation is the hinge-loss function
m m
C Y L(w,b, (xi, y)) = C Y _max{0, 1 — y; (wx; — b)} (4.8)
i=1 i=1

C is the misclassification penalty that usually takes the value ;l .
The basic form of GD is

Xn41 = X, — AVGrad (x,) 4.9)
The gradient calculation formula of the SVM is exhibited in Eq. (4.10), where
I| (wx + b) < 1] is the indication function, and if (wx + b) < 1 is true, the value is

1, otherwise it is 0. The steps of the SVM model training algorithm using gradient
descent are shown in Fig. 4.3:

m
Vi =aw, — Y I (wxi +b) < 1 x xiyi (4.10)

i=1

Secure Polynomial Multiplication Using Paillier’s homomorphic property, secure
additions can be described as

[y + ma]) = [[m1]] % [[m2]] (modN?) (@.11)
and the secure subtraction can be described as

(i1 = ma]] = [Im]] x [[on2)]1~" (modN?) (4.12)
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Algorithm 1 Gradient Descent Optimization Algorithm

Input: Training set D = {(z1,v1), (z2,%2) ..., (Zm,ym)}, learn-
ing rate A, maxlters 7.

Output: w”,b".

1: while cost < precision or t < T do

2 Compute V41 by Eq. (3).

3 Update '{‘IJf+1,br+[ by VH,l.

4: Compute cost by Eq. (2).

5

6

: end while
: return w*,b"*.

Fig. 4.3 Gradient descent optimization algorithm

[[m]]~! is the modular multiplicative inverse, which preforms that
[lm]] % [[m]]™'mod N = 1 (4.13)
[[m]]’1 can be computed by function
$N). [lm])™" = [[m]*™! (4.14)

Thereby, the secure polynomial multiplication can be obtained through ciphertext
manipulation, as shown in Eq. (4.15).

[am1 +bmaT] = [[m1“T] x [[m:"]] (modN?) (4.15)

The security of secure polynomial multiplication constructed by Paillier depends
on Paillier’s statistically indistinguishable. Thus, secure polynomial multiplication
is statistically indistinguishable, as Paillier is statistically indistinguishable [19].

Secure Comparison For party A and party B participating in the secure compari-
son algorithm, neither party can obtain any information other than that are inferred
from by the input. Our secure comparison protocol is shown in Fig. 4.4.

4.6.3 Training Algorithm of SecureSVM

For secure optimization model parameters, we design a privacy-preserving SVM
training algorithm. Suppose there are n data providers and a IoT data analyst. we
specify the secure SVM training algorithm in Fig. 4.5.
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Algorithm 2 Secure Comparison

Input A: [[a]],1.
Input B: A pair of keys (PK,SK)
Output B: (a < 1).
1: A uniformly picks three positive integers r1, r2 and r3, where
[rs — ra| < 71.
2: A sends [[ar; + r2]] and [[r1 + r3]] to B.
3: B decrypts and compares (ar; + r2) with (ry +r3), and tell the
results to A.
4: a > 1, if and only if (ar1 + r2) > (71 + r3); otherwise a < 1.
5: return (a < 1)

Fig. 4.4 Secure comparison

Algorithm 3 Privacy-Preserving SVM Training Algorithm
P’s Input: D = {(z1,1),(z2,%2),..., (Tm,ym)}-
C’s Input: learning rate A, maxlters T, a pair of keys (PK., SK).
C’s Output: w*b".

I: C initializes w!, b'.

: while cost < precision or t <T do

2

3 fori=11tondo

4; C sends [[w']] 10 P;.

5 for j =1 to mdo

6 P; computes [[y; (wz; — b)]] by secure polynomial
multiplication.

7 P; compare [[y; (wx; — b)]] with 1 by secure com-
parison.
P; updates Vi, and cost; ., and send to C.
9: end for
10: C decrypts Vi, and costy,,, and updates wys1,beq1.
11: end for

12: end while
13: return w*.b".

Fig. 4.5 Privacy-preserving SVM training algorithm

Except for legal input, each participant cannot infer any sensitive information of
other participants from the intermediate results of the algorithm’s running process
when facing honest-but-curious adversaries or any collusion.
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4.7 Security Analysis

This section presents the security analysis under the known ciphertext model and
the known background model. We adopt two security definitions: secure two-party
computation [14] and modular sequential composition [7]. We present our security
proof according to the ideas of these two definitions. For more details, we refer
the reader to [14] for secure two-party computation and [7] for modular sequential
composition.

Definition 4.2 (Secure Two-Party Computation [14]) A protocol 7 privately
computes f with statistical security if for all possible inputs (a, b) and simulators
S4 and Sp hold the following properties:?

{Sa, fala, b)} ~ {view} (a, b), output™ (a, b)}

{fi(a, b), Sg} ~ {output™ (a, b), viewy(a, b)}
Theorem 4.1 (Modular Sequential Composition [14]) Let Fi, F>,..., F, be
two-party probabilistic polynomial time functionalities and p1, p2, . . ., pn protocols
that compute respectively Fi, F, ..., F, in the presence of semi-honest adver-
saries. Let G be a two-party probabilistic polynomial time functionality and & a
protocol that securely computes G in the (Fy, Fa, ..., F,)—hybrid model in the

presence of semi-honest adversaries. Then, wP!-P2:Pn gecurely computes G in the
presence of semi-honest adversaries.

4.7.1 Security Proof for Secure Comparison

Two roles are involved in Secure Comparison: A and B. The functionis F
F(llallp, 1,PKg, SKp) = (¢, (@ < 1)) (4.16)
Proof The view of A is:
viewy = ([[a]lp, PKp) (4.17)

A receives no message form B, whose view only consists of his input and three
random numbers. Hence,

St ((a, 1); F(a, 1)) = view} ([[allB. 1, PKp) (4.18)

22 denotes computational indistinguishability against probabilistic polynomial time adversaries
with negligible advantage in the security parameter A.
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[[al]lg is encrypted by PKp, and the confidentiality of [[a]]p is equivalent to the
used cryptosystem Paillier. Therefore, A cannot infer the value directly.
The view of B is:

view’é = ((ar1 +r2), (r1 +1r3), PKg, SKp) 4.19)

S% runs as follows:

* Generates [ random coins and obtains [[(m 1, m2, ..., m;)]]p by PKp, where [ is
the length of a.

* B uniformly picks three positive integers cy, ¢z and c3, where |r3 — 2| < ry.

e Outputs ((mcy + ¢2), (c1 + r3), PKp, SKp)

The distribution of (a, rq, r2,r3) and (m, c1, c2, ¢3) are identical, so the real
distribution

((ary +12), (r1 +13), PKp, SKp) (4.20)
and the ideal distribution
((mcy + ¢2), (c1 + ¢3), PKp, SKp) (4.21)

are statistically indistinguishable. |

4.7.2 Security Proof for SVM Training Algorithm

The roles involved in Privacy-Preserving SVM Training Algorithm are n IoT data
providers P and an IoT data analyst C. Each IoT data providers behaves in the same
way. If we can prove that each one of them meets the security requirements, then
every data provider meets the security requirements. The function is F:

F(Dp;, PKc, SKc) = (¢, (wx, by)) (4.22)

Proof 10T data provider’s view is
view} = (Dp;, [[w']lc, PKc) (4.23)
[[w']]c is encrypted by PK¢, and the confidentiality of [[w']]¢ is equivalent to the
used cryptosystem Paillier. So each IoT data provider cannot infer the value directly.

Hence,

SE(Dp;; F(a, 1)) = viewh(Dp,, [[w']lc, PKce) (4.24)
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IoT data analyst’s view is

m m
viewp = (ZI|(wxi +b) < 1| x x;yi, Zmax{O, 1 — y;i(wx; — b)}, we, PKp, SKp)

i=1 i=1

(4.25)
Now, we need to discuss the confidentiality of
m
> I (wxi +b) < 1] x xiyi (4.26)
i=1
and
m
> max {0, 1 — y; (wx; — b)) (4.27)

i=1

Obviously, both of the equations are no-solution equations for the unknown x;
and y;. Except for brute force cracking, there is no better way to get the real value
of dataset D. We assume that each IoT data provider with a small dataset has 2-
dimensional 100 instances, and each dimension is 32 bits.> Under this circumstance,
the probability that IoT data analyst guesses success is 2,1*2400. It is a negligible
probability of success [19].

As secure comparison and secure polynomial multiplication used are secure
in the honest-but-curious model, we obtain the security using modular sequential
composition. |

4.8 Performance Evaluation
In this section, we use two real-world datasets to evaluate the performance of
secureSVM.

4.8.1 Experiment Setting

e Testbed

Each IoT data provider collects all data from [oT devices in its own domain and then
performs operations on IoT data. Since IoT providers and the data analyst usually

3Typically, single-precision floating-point occupies 4 bytes (32-bit) memory space.
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Table 4.2 Statistics of datasets

Instances Attributes Discrete Numerical
Datasets number number attributes attributes
BCWD 699 9 0 9
HDD 294 13 13 0

have adequate computing resources, the experiments are run on a PC equipped with
a 4-core Intel 17 (i7-3770 64bit) processor at 3.40 GHz and 8 GB RAM, serving as
IoT data providers and an IoT data analysts simultaneously. We implemented secure
polynomial multiplication, secure comparison, and secure SVM training algorithm
in Java development kit 1.8.

e Dataset

Two real-world datasets are used: Breast Cancer Wisconsin Data Set (BCWD) [12]
and Heart Disease Data Set (HDD) [11]. The statistics are shown in Table 4.2. We
show the average results of cross-validation of 10 runs. In each cross-validation, we
randomly take 80% to train the model, and the remainder for testing.

* Floating Point Setting

SVM training algorithms performs on floating point numbers. However, the oper-
ations of cryptosystem are carried out on integers. In order to encrypted data
correctly, it is necessary to previously perform a format conversion into an integer
representation. Binary floating point number D is expressed as D = (—1)% x M x2F
in the international standard IEEE 754, where s is the sign bit, M is a significant
number, and E is the exponent bit. In our implementation of secureSVM, we employ
it to perform the format conversion. We keep two decimal places for these.

* Key Length

The length of keys in public-key cryptosystems is approximated as the security of
the cryptosystem can provide. The short key length may be insufficient to provide
adequate privacy protection, and too short key may cause the plaintext space to
overflow. On the other hand, homomorphic operations runs on the ciphertext. A
long key length outputs a long ciphertext, which reduce the efficiency of the
homomorphic operation.

Therefore, the key length is an important hyper-parameter where we must
consider to avoid the possibility of overflow. In secureSVM, Paillier’s key N is set
to 1024-bit.
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4.8.2 Accuracy Evaluation

Two criterions are for evaluating ML classifiers: Precision P is calculated as

P=1,/(fp+1p)

Recall R is calculated as

R= tp/(fn + tp)

tp is the numbers of relevant (i.e., the positive class) that are classified correctly, f,
is the numbers of irrelevant (i.e., the negative class) that are classified correctly and
fn is the numbers of relevant that are classified incorrectly in the test results.

To evaluate the accuracy of the proposed privacy-preserving SVM training
scheme secureSVM whether it reduces the accuracy upon protecting the privacy of
each IoT data provider and securely training classifiers, we implemented the general
SVM with java named SVM. We run SVM and the proposed method secureSVM on
the two datasets. Table 4.3 summarizes the results of precision and recall.

The reasons that SVM and secureSVM have a different accuracy have two
aspects. The one is in order to allow floating point numbers to be processed
by the encryption system during training process, we truncated the precision of
floating point numbers. Truncated floating-point numbers may lose some parameter
accuracy. The other reason is that during each iteration of stochastic gradient
descent, the update parameter records are selected randomly. This randomness
makes the model inconsistent.

The proposed method has almost the same accuracy as SVM, as can be seen in
Table 4.3. This means that truncated floating-point numbers have a small effect on
model accuracy. Besides, BCWD with all numerical attributes and HDD with all
discrete attributes shows good robustness of the proposed methods on both types of
datasets.

4.8.3 Efficiency

* Building Blocks Evaluation

Table 4.4 shows the running time of the secure comparison and secure polynomial
multiplication (SPM) with encrypted datasets, which gives the time consumption of

Table 4.3 Summary of

i Precision Recall
accuracy pertormance Datasets secureSVM  SVM secureSVM  SVM
BCWD  90.35% 90.47% 96.19% 97.24%

HDD 93.89% 93.35% 89.78 90.87%
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Table 4.4 Performance of the building blocks in secureSVM

Datasets Total time P time C time Comparison SPM
BCWD 3195s 2233 953s 1769 s 3072s
HDD 1935 1324 s 601's 1050 s 1825

IoT data providers P and data analyst C. The results show that the building blocks
proposed in this paper have acceptable time consumption.

As the performance results in Table 4.4, secureSVM has acceptable time
consumption when training SVM classifiers which spends less than an hour with
encrypted datasets BCWD and HDD. In our experiments, we are not doing parallel
processing, where several P run in linear. In practice, P can be performed on
parallel processing when interaction with C to improve efficiency. Table 4.4 exhibits
the time accumulation spent by several P.

BCWD is a dataset with all numerical attributes and HDD is a dataset with all
discrete attributes. Facing with the different types of dataset, secureSVM shows
good robustness in terms of time consumption.

* Scalability Evaluation

In secureSVM, several [oT data providers participate in the data sharing and provide
IoT data. In this subsection, we evaluate whether the change in the number of P has
an effect on the time consumption. We divide the two datasets into several equal
parts to simulate the scenarios that several IoT data providers participate in. We
run secureSVM on the datasets and observe the time consumption changes with
different numbers of P.

The number of IoT data providers is varied from 1 to 5, the results of which are
shown in Figs. 4.6 and 4.7, where the x-coordinate represents the number of IoT
data providers involved in the computation, and the y-coordinate shows the time
consumption.

The time consumption of secureSVM is related to the amount of data and the
number of iterations in the gradient descent. In theory, the total amount of data does
not increase time consumption. With the same amount of data, the number of P
does not affect the time consumption. Figures 4.6 and 4.7 confirm the intuition.
Since when running the algorithm, other procedures in host used for the simulation
disturb the algorithm at a certain extend, the total time consumption has a slight
fluctuation,
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Fig. 4.6 Time consumption with different numbers of P on BCWD
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Fig. 4.7 Time consumption with different numbers of P on HDD

4.9 Summary

This section presents a novel privacy-preserving SVM training scheme, which
tackled the challenges of data privacy and data integrity with blockchain techniques.
Paillier is employed for designing the efficient and accurate privacy-preserving
SVM training algorithm.
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In homogeneous data sharing scenarios, multiple data owners have datasets
with the same data format (or same data attributes) and they want to conduct ML
modeling on their joint dataset. Labeled IoT data with the same data format from
multiple entities contain users’ sensitive data, which cannot be gathered directly
for ML training. Most existing solutions suppose that training data can be reliably
collected from multiple data providers, but reliably collected data is hard. To bridge
the gap between ideal assumptions and realistic constraints, this chapter proposes
secureSVM, which utilizes the blockchain techniques to build a secure and reliable
data sharing platform among multiple data providers, where IoT data is encrypted
and then recorded on a distributed ledger.
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Chapter 5 )
Secure Heterogeneous Data Sharing s
Using Blockchain

Big data play an extremely important role in different industries. Limited by the
data sources between different departments or organizations, data collected by them
differ greatly in attributes. These heterogeneous datasets form a complementary
relationship with each other, so data sharing between organizations is necessary.
Machine learning (ML) methods are widely used in big data processing, thus it
is necessary to train machine learning models based on heterogeneous data. In
the process of collaborative training machine learning based on heterogeneous
data, the current scheme has many challenges, including efficiency, security, and
availability in real situations. In this chapter, we propose a secure SVM training
mechanism based on the consortium blockchain and threshold homomorphic
encryption algorithm. By introducing the consortium blockchain, a decentralized
data sharing platform can be constructed, and a secure SVM classifier algorithm
can be built based on threshold homomorphic encryption. In order to ensure the
efficiency of the model training process, most of the training work is performed
locally based on plain text and only necessary shared data need to be encrypted.

5.1 Privacy Preservation of Heterogeneous Data

The development of cloud computing and edge computing has led to a proliferation
of data, such as the large amount of data generated everyday in vehicular social net-
works, which can be used to optimize the security, convenience and entertainment
of applications in vehicular social networks [2, 8, 27, 48]. Effective data analysis
methods need to be used in such scenarios, among which machine learning and deep
learning are particularly important [5, 13, 15, 44, 45]. Among the commonly used
machine learning methods, support vector machine (SVM) model has significant
advantages in performance and robustness, so it has a wide range of applications
[22, 40, 43].
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Take vehicular social network as an example. There are different entities in
vehicle networks, such as vehicle manufacturer, vehicle management agency and
vehicle social network application service provider. These entities have different
data sources, and the differences in the data sources cause the data to complement
each other in terms of attributes [1, 38]. We call the scenario as data heterogeneous
data. However, for a single organization, its dataset cannot cover the multi-
dimension, which has great limitations in the use process. Especially in the training
process of SVM classifier, the classification effect of the final model is highly
correlated with the quality of the data set, so it is difficult for a single organization
to train an ideal classifier through its own data. Therefore, it is necessary to share
heterogeneous data among multiple institutions. Through data sharing, a dataset
covering multiple attributes can be combined to improve the effectiveness of the
classifier. From another perspective, the dataset obtained after the fusion of these
heterogeneous data can be vertically partitioned into sub-data sets provided by each
unit according to the attributes.

However, in the process of data sharing, data privacy is facing serious challenges.
First of all, the heterogeneous data to be shared contains users’ privacy information.
With the increasing attention of the government and individuals to users’ privacy
issues, more and more regulations restrict the sharing of users’ data by enterprises.
As a result, direct data sharing is subject to increasingly stringent regulations.
In addition, for the data owners, the high value of heterogeneous data is mainly
reflected in the privacy of the data, that is, the data is only owned by itself, or a
small number of institutions. So if the data is shared directly, it becomes less private
and less valuable and data owners are unwilling to reduce the value of their data
[20].

For a long time, privacy disclosure issues raised in diverse scenarios has been
highly concerned [19, 25, 29, 31, 33, 50]. Among those scenarios, many researches
pay attention to train a machine learning classifier securely over both horizontally
and vertically partitioned datasets. Many existing solutions adopt secure multi-party
computation (SMC) to prevent privacy disclosure. Firstly, in those schemes, how to
balance security and efficiency issues still faces big challenges [28, 29, 41, 50].
Then, one or more aided servers are essential with the assumption that they are
trusted or semi-trusted during the training process. Obviously, in a real-world
scenario, it is impractical to provide such aided servers for the participants. To deal
with the two challenges of applying the privacy protection scheme to real-world
scenarios, we propose an efficient and secure SVM classifier training scheme based
on consortium blockchain where no third party is introduced [17, 24, 30, 36].

In this chapter, we propose a security SVM training mechanism based on
consortium blockchain for multi-source heterogeneous data sharing scenario, which
solves the above two problems. First, because the differential privacy protection
scheme introduces noise to the training results and the training process is not secure,
we adopt the scheme based on homomorphic encryption [16]. Different from other
privacy training schemes based on homomorphic encryption, in our scheme, datasets
do not need to be shared, and all the training work is based on plain text datasets,
avoiding the need for training based on private datasets in traditional schemes, so
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the efficiency is greatly improved. We use homomorphic encryption to protect the
necessary data that needs to be shared between multiple participants. In order to
further reduce the data sharing frequency in the training process of SVM model, we
adopted the training algorithm based on stochastic gradient descent. In one iteration,
each participant only needs to share data twice.The result is a balance between
security and efficiency [7, 18, 26, 34, 42].

Secondly, in order to improve the applicability of the scheme in real scenarios,
we avoid introducing trusted third parties and reduce data leakage caused by
trusted third parties. Through the threshold homomorphic encryption scheme, the
decryption of the secret data to be protected needs to be jointly decrypted by
participants exceeding the threshold value [6]. No organization can infer the clear
text data from the secret data. At the same time, if the traditional P2P data
transmission scheme is adopted, multiple participants need to establish connections,
maintain connections and transmit data with all other participants in the process of
data sharing.Such an approach is not desirable in terms of efficiency and safety.
We introduce block chain to establish a decentralized data sharing platform for
sharing secret data. When each participant shares data, they simply upload the data
to the data sharing platform. The access control and permission mechanism of the
consortium blockchain fully ensures the unknowability of the external data and the
openness and transparency of the internal data [14, 32, 35, 49, 51].

In this chapter, we propose a SVM training scheme that contributes more secure
and efficient heterogeneous data sharing. First, an open, reliable and transparent
data sharing platform was built based on blockchain technology. The operation of
the platform does not rely on trusted third parties. The data on the platform is visible
to members in the blockchain and not visible to the outside. After that, most of the
training work was completed locally by each participant based on clear text data.
We introduce threshold homomorphic encryption scheme to ensure a data privacy
protection scheme in a decentralized environment. All data that needs to be shared
can be fully protected by this scheme and maintain its homomorphic property. Our
scheme guarantees a controllable degree of privacy protection by setting the size
of the threshold. A large number of experiments based on real datasets prove the
feasibility and efficiency of the scheme.

5.2 Secure Machine Learning over Heterogeneous Data

Existing researches on privacy preserving machine learning are involved in many
ML methods including traditional methods such as linear regression [3], support
vector machine [39, 46], naive Bayes classifier [21], logic regression [12, 47] and so
on. Deep learning [37] is also focused in the last few years.

Many researches preserve the privacy of machine learning process with the help
of one or more third party [9, 11, 24-26]. It is a hard work to find such entity to
serve as a third party, thus these methods are unpractical when applied to real-world
in this aspect.
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Table 5.1 Notations Notations Description

DA The dataset of participant A

at The dimension of dataset D4

xi"‘ The i-th data instance of dataset D
Vi Number

5.3 Preliminaries

Consider a dataset D is combined with several participants who have its own dataset
D? p e A,B,...N, where xip represent the i-th instance in D”, and y; is shared
as a data label between all related i-th instance xl.X . When training a SVM classifier,
we define w as the model parameters, A, as gradient in the ¢ iteration, A as the
learning rate. Meanwhile, we assume that [[m]] as the encryption of message m
under Paillier. Table 5.1 shows the notations used in this paper.

5.4 System Model

We divide our system into three components based on their relationship with the
data. As shown in Fig.5.1, they are data device (DD), data provider (DP) and
blockchain service platform (BSP).

* Data Device: Refer to devices capable of generating data, including sensors,
mobile devices, and so on. Because the data directly collected from these devices
contains high-value information, these data are collected, processed, and then
used for data analysis.

N
Data @ . xm E
Sources Ei v lw <T@ I
Data
Providers [:E Providers #1 I:]Ei Providers #N
Partical . -
Model Training Secure Partial Model Training and Update
Blockchain-based l-@"l * @_l
Data Sharing Platform
Upload Contract Query Contract
N J

Fig. 5.1 Overview of secure SVM training scheme over heterogeneous data
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Data Provider: The equipment that generates the data is collected, stored, and
used by different parties. These participants are called participants and act as
data providers in our solution. Due to the different equipment, the collected data
is different, and due to the different data processing methods, the available data
after processing has different attributes and complement each other. In addition
to serving as data providers, these participants also act as model trainers to train
machine learning models in collaboration. According to the scheme in this paper,
most of the training work is done locally in participant.

Blockchain Service Platform: This is a service platform that runs on the
consortium blockchain. On one hand, it provides a transparent data sharing
platform distributed in participant, allowing participant to retrieve all the data
recorded in the BSP. At the same time, no one captured the data recorded on the
BSP for changes. On the other hand, BSP has strong security protections, making
data outside of participant invisible to entities. In addition, communication data
between the BSP and participant is also encrypted, preventing data leakage.

5.4.1 Threat Model

In the scheme, there is only one role of the data provider. We treat participants honest
but curious when it comes to the security model, that is, all participants are curious
about the data of other participants, but they will execute the scheme according to
the rules. In addition, due to the large number of interactions between participant
and BSP, potential threats in the interaction process are also considered.

Known Ciphertext Model. BSP is a common and transparent data sharing
platform for all participants. The data shared by each participant is visible to other
participants. These data include the dense intermediate value and the decrypted
calculation results.

Known Background Model. We assume that multiple participants can conspire
and collaborate to analyze shared data. Compared with the above threat model,
this model can obtain more information.

5.4.2 Design Goals

Under the above system model and threat model, we established the following three
system design goals to meet the system’s requirements for security, accuracy and
performance.

Data privacy is fully protected. Under the two threat models, during the entire
training process, the privacy of the original data and the shared intermediate value
will not be leaked, and the participants cannot infer valuable information from
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the shared data. Second, the data in the data sharing platform is guaranteed to be
invisible to the outside world.

» High accuracy of training results. Generally speaking, the introduction of privacy
protection schemes may introduce noise into the calculation process and cause
inaccurate calculation results. Our design goal is to obtain a classifier that is not
significantly different from conventional training conditions.

* Low training overhead. Similarly, the introduction of privacy protection schemes
will increase training overhead. These overheads are mainly caused by additional
computing operations such as encryption and decryption, and additional commu-
nication overhead. Therefore, our solution needs to ensure low training overhead
while ensuring security.

5.5 Secure SVM Training Scheme over Heterogeneous
Datasets

In this section, in order to clearly introduce the work of each participant in the
training process, we assume that three participants participate in the SVM model
training. The respective training sets are complementary in attributes. As shown
in Fig.5.2, the entire training process mainly includes three parts: local training,
gradient update judgment, and model update. In these three steps, two data sharing
and one decryption operation are involved. Finally, after multiple iterations, each
participant gets its own partial model and uploads it to the blockchain to form a
complete model together.

5.5.1 System Initialization

The data privacy protection method of this solution is based on a threshold
homomorphic encryption algorithm. Before training the model, a pair of public
and private keys needs to be generated for each participant. The public key is the
same and the private key is different. Through the secret sharing scheme combined
with the existing threshold key management scheme, such a key pair is negotiated
and distributed. In addition, the three participants join the consortium blockchain
data sharing platform as nodes, and they need to pass identity authentication
before joining. Finally, all participants need to initialize the model parameters and
preprocess the data set, including unified labeling and sample order.
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Secure training process in one iteration

Particiapants BSP

1.local calculation | 5 ne’s intermediate values
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>
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Fig. 5.2 Workflow of secure training over heterogeneous datasets

5.5.2 Local Training Process

In order to ensure the efficient training of the model, this solution puts most of the
work locally on three participants. During one iteration, all training work can be
done locally before the gradient update judgment. This section will introduce how
each participant can be trained locally based on its own heterogeneous data.

SVM optimization algorithm based on stochastic gradient descent (SGD) is easy
to perform. SVM based on stochastic gradient descent can be expressed in the
following form:

f(w) = ;wTw—i-CZmax(O, 1—yiwlx) (5.1)

i=1
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Algorithm 1 SVM based on SGD
Require: Training set D, learning rate A, maxlters 7.

Ensure: Trained model w*.
1: fort =1to T do
2 Select i; from D randomly.
3 Update A;41 by Eq.(5.2).
4 Update w;4 by Eq. (5.3).
5: end for

6

: return w*.

The right part of the equation is the hinge-loss function, where C is the

misclassification penalty and we take  as its value.

m
At each iteration, we use Eq. (5.2) to calculate the gradient.
Ay = hwy — T [(wx; < DIxpy; (5.2)

If I |(wx; < 1)] is true which means (wx; < 1), I [wx; < 1)] = 1; Otherwise,
I[(wx; <1)]=0.
Then we can update the w by Eq. (5.3).

Wil = wy — A4, (5.3)

Through one iteration of the training process over several heterogeneous datasets,
only when calculating /, data exchange between multiple participants is required.
The rest of the training operations are performed locally. We represent wx; by a in
the following sections.

1 i (wa.A +wBxB + wcx.c) <1
= ! ! ! 5.4
0 otherwise

The compete algorithm is described in Algorithm 2.

5.5.3 Privacy-Preserving Gradient Update Judge

The three participants need to share the calculated median value to the BSP
during the training model. This solution treats the shared data with a threshold
homomorphic encryption scheme to ensure data security and ensure that the gradient
can be calculated correctly. To judge how to update the gradients, here we use
additive homomorphic encryption to construct Egs. (5.5), (5.6) and (5.7).
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Algorithm 2 Partial model training process

Require: Training set D4, DB, D€, learning rate A, maxIters 7.

Ensure: Trained model w*.

1:

R A

All participants perform the following operations simultaneously. Take partici-
pant A to describe in detail.
fort =1to T do

Select i; randomly.

Calculate y Zfﬁl Wi X;.

Cooperate with other participants to judge how to update gradient by
Eq.(5.9).

Update A;41 by Eq.(5.2).

Update w; 4 by Eq. (5.3).
end for
Get several partial model parameters and combine them.

return w*.

[lall =) _a'l=]]lla'll (5.5)
i=1 i=1

(201 =[0)_ril = [ it (5.6)
i=1 i=1

Il

[lary + r2]] = [lar]]l[r2]] = [[Z allllr2]]
= (5.7)

~

= | [Uallllr2]] = [[a]]"[[r2]]

i=1

In order to determine the update method of the gradient, the method adopted

in this solution is to compare the encrypted calculation result with the constant 1.
In Algorithm 3, the security comparison algorithm in three participant scenarios is
introduced in detail.

It is obvious that for integer a, if (ar1+r2) >(r1 + r3), we can derive thata > 1,

otherwise a<l1.
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Algorithm 3 Privacy-preserving gradient update judge
Input A: [[a']] from participant .
Input B: r{, [[ré]], ré from participant i.
Ensure: a>1 or a<l.
1: Each participant i picks three positive integers r{, ré, ré, where |r§ - ré| <r{,
and encrypts ré to get [[ré]].
2: Each participant i uploads [[ai1], r{, [[ré]], ré
3: Each participant i downloads all the other participants’ [[a'1], r{, [[ré]], ré.
4: Each participant i calculates [[a]], [[r2]] by Eq. (5.5) and Eq. (5.6), and calcu-
lates ri and r3 where rp = > 1, r{ andry = > 1, r_i;.
5: Each participant i calculates [[ar] + r2]] by Eq. (5.7).
6: Each participant i decrypts [[ar] + r2]] by sub-private key SK' and uploads it
to BSP.
7: Each participant i downloads all other decrypted values from participants to
recover (ary + r2), and compares (ary + rp) with (1 + r3).
8: If (ar1 + r)>(r1 + r3), a>1; Else a<1.
9: return a>1 or a<l.

5.5.4 Data Sharing on BSP

Participant relies on BSPs to securely calculate intermediate values. BSP simplifies
complex point-to-point communication between participants. Participant completes
data on-chain and data query by calling smart contracts. During the iteration process,
each participant uploads data twice: calculating the intermediate value (IV) and the
decrypted value (DV), respectively. These two data are also read twice.

1. The Format of IVs

Iteration Round: When multiple data providers train the model collabora-
tively, some data needs to be exchanged in each iteration. Therefore, in order
to represent the data exchanged in each round and to distinguish it from other
rounds of data, a field is required to indicate the training round. Iferation Round
is maintained by smart contracts.

DP ID: A field that identifies the owner of the data. When a node calls a
contract to upload data, its address will be automatically recorded in this field.

Training Intermediate Value: The intermediate value of the encrypted state
during model training. The values provided by each participant will be summed
and compared to the magnitude of 1 in the encrypted state.

r1: An unencrypted random positive integer which is used to compare.

r2: An encrypted random positive integer which is used to compare.
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Table 5.2 Attributes of IV Attributes  Details

IR Current training round

DPID A unique identifier of a DP

TIV It is encrypted by DP

r A random positive integer (unencrypted)
123 A random positive integer (encrypted)

r3 A random positive integer (unencrypted)
RPI It is generated randomly between 1 and m

Table 5.3 Attributes of DV Attributes  Details

IR Current training round
DP ID A unique identifier of a DP
DV Partial decrypted values from each participant

r3: An unencrypted random positive integer which is used to compare.

Random Positive Integer: It is generated randomly by each participant and
its value is between 1 and m, the sum of which determines the data instances
selected in the next iteration (Table 5.2).

2. The Format of DVs

Iteration Round: Similar function described in IVs.

DP ID: Similar function described in I'Vs.

Decrypted Value: Each participant decrypts the result obtained based on his
own private key. By combining all these values, each participant can obtain the
final decryption result (Table 5.3).

5.6 Security Analysis

Goldreich described in detail the current widely accepted security definition in the
paper [10], which builds an ideal model by establishing a trusted third party T to
establish secure communication with other participants. Since the ideal model is in
an absolutely secure state, if the model constructed under the real protocol is not
different from the ideal model, then we consider the real protocol to be secure. An
attacker in an ideal model can perform the same attack as in a real model.

The definition of computing security for a secure multiparty computing protocol
is given below.

Definition 5.1 The multi-party computation protocol with n participants under the
cryptography model is considered to be computation security, if for any attacker A,
there exists a corresponding simulator § in the ideal model interacting with A, and
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satisfying the following conditions:

(1) The running time of S is the polynomial of A’s running time.

(2) For any input set, the n+1 outputs produced by the multi-party computation
protocol are computationally indistinguishable from the n+1 outputs produced
by the ideal model.

We conducted a security analysis based on the above idea. Thus we acquire the
information which an attacker can get from the ideal model and the real protocol.
Then we compare them and prove they are indistinguishable.

In our scheme, n participants are involved to share their encrypted intermedi-
ate values to calculate F: F([[all', ..., [[all", 1,7}, [[r 0, rd, ..o 7, (0500, 7).
Assume that the attacker has corrupted a set of participants A = P, ..., Pja).
Then all the data the attacker obtained in the ideal model is the output F of the
participants and the input:

([[a]]“, Tl LA A AL Al r;"A‘) .

We construct a simulator S that simulates all the data the attacker gets in the real
model based on the data the attacker obtained in the ideal model. Firstly, we analyze
the information that the attacker can get in the real protocol.

Input Phase Since all the participants share their encrypted input:

([ N 173 R W (12 | N R N 3 | )

The attacker is able to get all of them. Especially for the corrupted participants,

the attacker also gets all ... ailAl r21, R réA‘.

Computation Phase At each step of the calculation phase, the attacker obtains data
[[x + y]] based on [[x]] and [[y]].

Output Phase In the output phase, the attacker gets the result:

F(([all, ..., [all, 1rl, (ea 0, ra oo P L5, 7).

Then we construct the simulator S of the polynomial time. § takes a'l, ... a4l
and rzl, ...,y and F as the input. The following step SO simulates the information

calculated based on the input.

Step SO S generates the encrypted data [[a/]], ..., [[a/ 1], (1A', ..., [[7*1]]
and [[F]] based on a'l,...,a'™l )} ... ¥} and F. Then, S can simulate the
calculations based on those encrypted data such as [[a! 4+ ai2]] and [[ré'1 + réz]].

Step S1 After step SO, we can simulate part of the calculated intermediate

values which are defined as [[a/!]], ..., [[a/I"], [[rgl]], e [[r{’]]. Then for the
remaining intermediate values that cannot be directly simulated by S0, S simulates
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them by selecting the random numbers to generate the corresponding ciphertext.
According to the threshold cryptosystem’s security, these simulations are successful.

Step S2 Based on steps SO and S1, we can simulate all the values calculated in the
computation phase.

Step S3 F is one of S’s input, so S can easily get a simulation of F.

From the above simulation process, the information obtained by the attacker
from the ideal model and the information obtained from the real model are
computationally indistinguishable. You can prove the security of the solution.

5.7 Experiments

In this section, we carry out a large number of experiments to verify the training of
our scheme on different datasets. We will evaluate the results from the aspects of
accuracy, training efficiency and scalability. At the same time, a certain theoretical
analysis has been carried out on the evaluation results.

5.7.1 Experimental Settings

We simulate several participants in our experiments using our secure SVM algo-
rithm to train the model. First, the model training program and data upload program
are implemented by java and go respectively. Finally, the Java program was runned
on a PC (3.60GHz AMD Ryzen 5 2600X six-core processor and 32 GB RAM)
to simulate the entire training process. The Go program runs on the consortium
blockchain (structure 1.3) in the form of consortium code in a virtual machine with
4 GB of memory.

Because the operations in the threshold Paillier scheme are in integer space,
before model training, we first map floating point numbers in the data set to
integer space. By using integers to represent floating-point numbers, the problem
of unavoidable floating-point operations during SVM training is solved. According
to the international standard IEEE 754, any binary floating point number D can be
expressedas D = (—1)° x M x 2% s represents a sign bit, M represents a significant
number, and E represents an exponent bit.Before model training, we also need to set
the parameters related to the threshold Paillier, including the key N is set to 256 bits,
and the threshold ¢ is set to the number of participants. To evaluate the performance
of our solution on a real dataset, we used a dataset under real conditions. To
evaluate the performance of our scheme, we use the real-world datasets Breast
Cancer Wisconsin Data Set (BCWD) [23] and Australian Credit Approval Data Set
(ACAD) [4]. The detail information about the two datasets is list in Table 5.4. For
these two data sets, we divide them vertically into three heterogeneous sub-data sets
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Table 5.4 Statistics of
datasets

Datasets name Instances number Attributes number
BCWD 699 9
ACAD 690 14

according to their attributes. Each data set has an average number of attribute values
and is retained by each participant.

The model training parameters are set as follows: the maximum number of
iterations for model training is 1500, the learning rate for model training is 0.00095,
and the number of samples selected from the training data set per iteration is 1.

5.7.2 Accuracy

In terms of model training accuracy, we use two criteria: accuracy P and recall R to
evaluate the proposed secure SVM training scheme. Where P is calculated by the
formula P = t,/(fp +tp) and is calculated by the equation R =1, /(f, + 1), Tp
in the formula represents the number of positive examples of correct classification,
fp represents the number of negative examples of correct classification, and f, is a
positive example of incorrect number classification.

Through this experiment, we plan to prove that after introducing the privacy
protection scheme, the accuracy of the classifier trained by our proposed SVM
training scheme will not be significantly reduced. To prove this inference, we have
done it through a comparative experiment. The classification results of the SVM
classifier (PP-SVM) under our proposed security scheme are compared with the
conventional SVM classifier (SVM) without privacy protection (Table 5.5).

Through the experimental results, we find that compared with the SVM clas-
sifiers trained under normal conditions, there is no obvious loss of accuracy in the
accuracy of the classifiers obtained by our proposed secure SVM method. This result
validates our inference. In theory, because the threshold Paillier scheme does not
cause loss of accuracy to the accuracy of the calculation, it finally guarantees a high
accuracy of the classifier.

Table 5.5 Performance of
classifier accuracy

Precision Recall
Dataset PP-SVM SVM PP-SVM SVM
BCWD 0.9160% 0.9122% 0.9958% 0.9958%
ACAD 0.8870% 0.9176% 0.8198% 0.8146%
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5.7.3 Efficiency

In this section, we will evaluate the efficiency of our proposed scheme from time
overhead and scalability.

After theoretical analysis and experimental verification, the total training time
in our scheme is mainly composed of two parts: calculation time overhead and
communication time overhead. The calculation time overhead is mainly composed
of local training time (LTT) and gradient update judgment time (GUJT). At the same
time, the communication time overhead mainly consists of calling smart contracts
to upload and query data time. In order to obtain the total time cost and composition
during the training process, we conducted related experiments.

In the experiment, we simulated three participants and trained part of the model
on their own data set during each round of iteration. In this process, there is
no encryption and decryption operation, this time-consuming part is named LTT.
Secondly, in order to update the gradient and parameters of the model, each
round requires a secure gradient update operation. In this process, encryption and
decryption operations are designed to eliminate communication time. This part of
the time is called GUJT.

The detailed time cost information is shown in Fig. 5.3. The results of the time
cost statistics are shown in Tables 5.6, 5.7, and 5.8. Experimental results show that
model training takes very little time. And because a large number of encryption
and decryption operations are avoided, the communication time in the total time
accounts for a large proportion, and the calculation time overhead is not large.

Compared with the calculation overhead, the communication overhead is too
high, but the consortium blockchain as a data sharing platform requires consensus

Total Training Time

] ! v
Local Training Time Gradient Update Communication Time

Judge Time *
Local Calculation | 18T & 2nd Communication |

v ! Y

| Encryption Operations | | Decryption Operations | | Homomorphic Calculations |

Fig. 5.3 Time calculation

Table 5.6 Performance of
classifier efficiency

Total time overhead
Dataset Total time
BCWD 384,649 ms
ACAD 393,261 ms
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Table 5.7 Performance of
calculation time

Calculation time overhead
Dataset Local training time Gradient update judge time
BCWD 65ms 8064 ms
ACAD 58 ms 8247 ms

Table 5.8 Performance of communication time

Communication time overhead

Dataset First communication time Second communication time
BCWD 186,034 ms 190,486 ms
ACAD 189,332 ms 195,624 ms

between the nodes, so such time overhead cannot be avoided, which is a sacrifice of
security.

5.7.4 Scalability Evaluation

As the number of participants increases, more experiments will be performed to
evaluate the scalability of the scheme. In these experiments, the dataset is split
vertically into three to five parts, and each participant holds one of them. The results
are shown in Figs. 5.4 and 5.5.

From Fig. 5.4, we can conclude that the number of participants does not affect
the classifier accuracy. However, Fig.5.5 shows that increasing the number of
participants has a negative impact on computational time overhead. Theoretically,
experiments performed with four participants take longer to encrypt and decrypt in
the gradient update decision process, compared to experiments performed with three
participants. However, the total communication time has not increased significantly.

Fig. 5.4 Accuracy with
different numbers of
participants
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Fig. 5.5 Time consumption of dataset BCWD with different numbers of participants

The way to define airtime in a round of iteration is the time interval between when
data is first uploaded to the BSP and when participant last queries the data. On
the other hand, each participant performs almost the same amount of work before
uploading the data, so all participants upload data and receive the returned data
almost simultaneously. Increasing the number of participants from 3 to 5 does not
change the communication time much. Communication time mainly depends on the
number of iterations fixed at 1500 in all experiments.

5.8 Summary

In this section, we propose an effective and secure SVM training scheme that helps
multiple data providers train SVM classifiers on vertically partitioned datasets. The
target of this chapter is to combine consortium blockchain technology and threshold
Paillier to create a decentralized and secure SVM training platform. To achieve high
performance, most training operations are performed locally on raw data, so there
are only a few intermediate values that need to be shared across platforms. Extensive
experiments have been performed, and the results show that this scheme can train
accurate SVM classifiers at lower time cost.
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Chapter 6 )
Secure Data Retrieval Using Blockchain Shethie

Medical IoT devices are gradually being widely used, and acquisition requirements
such as image type and quantity are also changing. Retrieving medical images can
help diagnose the condition and improve treatment timeliness. However, medical
images contain a large amount of sensitive patient information, which can easily
cause privacy leakage. At the same time, existing research cannot protect the
sensitive information of medical images or achieve data sharing [15]. Therefore, it is
of practical significance to study the realization of medical image data sharing and
retrieval under privacy protection. This chapter proposes a medical image retrieval
system based on emerging blockchain technology that can protect image privacy
and give a system model and a threat model. Later, we not only capture specific
feature vectors based on medical images but also design the transaction structure
accordingly, so as to achieve the purpose of privacy protection [6, 21]. Finally, the
effectiveness and safety are demonstrated through theories and experiments [23].

6.1 Overview

Medical image retrieval, as an important diagnostic method for doctors to judge
the patient’s condition is of considerable significance to the entire medical field.
However, today’s hospitals are isolated information islands. There are both technical
barriers and trust crises in sharing data between hospitals.

Existing solutions using cloud services as a medium for data transmission and
sharing [13, 20], but the cloud service itself as a “semi-honest” third party, there is
arisk of leaking data privacy, and the frequency of interaction with users is high, so
the process is usually cumbersome [8, 14, 24].

The emergence of blockchain has brought a new dawn to solve trusted data
sharing [17, 19]. The decentralized point-to-point structure of the blockchain can
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solve the problem of untrustworthy third parties. At the same time, the open
distributed ledger also ensures that the security of the data cannot be falsified.

Our solution wants to solve the problem is that the user uploads a medical image,
and the system platform can help him retrieve the image with the highest similarity
to the image he provides. The platform search for similar conditions and treatment
options to achieve the purpose of assistive care. Our data sources should be as wide
as possible, and the image providers are multi-party hospitals, not single ones, thus
ensuring reference value. On this basis, to ensure the security of images provided
by hospitals and the security of user-uploaded images.

The retrieval function is implemented on the blockchain. The scheme is mainly
carried out in two steps. One is to establish a full node similar to the function of
“miner” node, as the medical image retrieval service node of the system. The node
has all the medical image information on the chain and is a trusted third party. The
service node is used to establish an index table for the image library. When the user
makes an access request, the service node searches the image information with the
highest similarity through the index table and returns it to the user, thereby ensuring
data security and ensuring retrieval efficiency. The second is to write a smart contract
running on the chain, which can be automatically executed when the user makes an
access request and provides retrieval for the user.

6.2 System Model

The system model designed by this scheme is shown in the following figure. There
are four main roles, namely hospital nodes, image retrieval service node, regulatory
agencies, and data users. The system diagram is shown in Fig. 6.1.
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Fig. 6.1 Blockchain based medical image retrieval system
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As shown in Fig.6.1, the block represents four character entities. In this
ecosystem of blockchain image retrieval, all hospitals and users are registered in the
regulatory agencies and joined the alliance chain at first. After the hospital nodes
encrypt the features of the diagnostic images of different types of patients, it is
packaged and uploaded to the alliance chain for distributed storage together with the
corresponding medical treatment information. The image service node synchronizes
and updates, and acquires all existing encrypted image feature information from the
chain and downloads it to a local database for storage and index. A smart contract
is deployed on the image retrieval service node to process the data user’s access
request, and the user is searched for the image with the highest similarity, thereby
helping the user to judge the condition and achieve the auxiliary treatment effect.

* Hospital Node

The hospital node is the provider of image data, extracting the features of the
patient diagnosis image collected by the IoT device. It encrypts the feature using
the hospital’s private key, then generates a transaction and uploads it to the alliance
chain. The input of the transaction is the encrypted image feature, and the output
is a public address that is convenient for the image retrieval node to download. The
design of the scheme is based on the alliance blockchain, so it is necessary to submit
identity information to the regulatory authority for registration.

* Image Retrieval Service Node

The image retrieval service node is a full node on the alliance chain platform and
performs the task of image retrieval on the platform. In this system, the transaction
medical data uploaded by each hospital is output to a public address. The image
retrieval service node obtains the encryption features of all medical images on the
chain by accessing the public address, and downloads them into a local database,
then indexes all the image information to improve the retrieval efficiency. The image
retrieval service node automatically updates the index every so often. On this image
retrieval service node, run a piece of smart contract code. When the user proposes an
image data retrieval request, the code is automatically executed, and the encrypted
image feature most similar to the image provided by the user is found through
indexing and secure multi-party calculation.

* Regulatory Agencies

Regulatory agencies play a role in maintaining the smooth operation of the
entire blockchain platform. They can prevent malicious nodes from tampering with
the data on the chain while preventing malicious users from forging transactions
or attacking smart contracts. In addition, regulatory agencies are responsible for
verifying the legality of the authentication information of the hospital and third-
party users. When hospital nodes and data users join the alliance chain platform,
they need to register an account with regulatory agencies.
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¢ Data Users

When data users want to use the platform for retrieval, they submit the encryption
features of their images to the smart contract. After identity authentication, the
image retrieval service node performs image retrieval based on content similarity
on the image features in the database and returns similar image features, image
numbers, and diagnostic treatment information associated with the image are
queried for the smart contract. After receiving the search result, the smart contract
verifies the integrity of the result and confirms that the verification result is correct,
then returns it to the user for reference. If the data user additionally wishes to obtain
the original image of the retrieved result, it is done by paying the hospital a certain
amount of bitcoin.

6.2.1 Threat Model

* Privacy Disclosure

Privacy leaks caused by members without access rights. They are members
who have not been registered and certified by a regulatory agency and legally
joined to the sharing platform. They may be information thefts, malicious attack
nodes, unauthorized hospital nodes or user nodes. During the whole process of
system operation, members without access rights may threaten the privacy of image
information on the platform. For example, when the hospital node uploads the
encrypted image feature set to the alliance chain, the image retrieval service node
obtains image data from the chain, or when the user makes access for a request to
retrieve. At the same time, they may also steal private information from the image
directly from the set of encrypted image features stored on the alliance chain. Image
feature encryption is usually used to prevent this type of attack. First, using features
to represent images can save storage space and does not leak original images.
Second, encrypting features can better protect data safety.

e Data Tampering

In the process of uploading image information by the hospital node, although the
alliance chain platform can ensure that the uploaded image data will not be deleted
or tampered with, there may be a potential attacker tampering with the image data
that has not been uploaded to the blockchain, or the smart contract is tampered
with to achieve some of the personal business objectives of the individual (the
image retrieval service node in this design is a trusted third-party node). Defense
of this type of attack usually takes the form of a federated chain or a private chain.
All members need to register on the chain and provide their own authentication
information to ensure that the image providers that are connected to the chain to
operate the data are safe and reliable.
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* Forgery Attacks

If the user needs to obtain the original information of the image, the user needs to
pay a certain amount of bitcoin. But how to set access rights to ensure that users do
not spread or falsify data or even illegally sell the data, is still a problem that needs
to be resolved.

6.2.2 Design Goals

The design goal of our proposed privacy-based blockchain medical image retrieval
program mainly includes the following three aspects:

* Image Feature Privacy Protection

The privacy protection of image features is a significant indicator in the encrypted
image retrieval service. Since the hospital node wants to upload the image features
to the blockchain, there may be some nodes that do not have access rights try
to acquire and analyze the content information of the image from the chain, and
perform illegal transactions. Therefore, the design of this scheme should ensure that
the image service retrieval node on the blockchain is a trusted third party. The person
without access rights cannot analyze the privacy information of the image content,
the image feature privacy information, and the similarity from the encrypted image
feature or transaction information.

* Image Retrieval Accuracy

Image retrieval accuracy is an important indicator to ensure the basic functions
of the search platform. Image retrieval on the system platform is mainly done by
the image retrieval service node. The information is stored in the local database
by acquiring and synchronizing the image feature data on the chain and indexing
the data. The process of retrieving is performed by smart contracts, so the retrieval
accuracy depends on the service node on the one hand and the smart contract on the
other. We should ensure that the effect of encrypted search and plaintext search in
this scheme is within the same level.

 Efficiency of The Program

The efficiency of the system scheme includes image feature encryption effi-
ciency, the efficiency of encryption feature storage to the chain, efficiency of image
retrieval service node downloading and updating data, system platform processing
transaction efficiency, retrieval index establishment efficiency, and encrypted image
feature retrieval efficiency. The efficiency of image feature retrieval under encryp-
tion should be at the same level as that under plaintext, ensuring the credibility and
validity of the scheme.



86 6 Secure Data Retrieval Using Blockchain

& XX

)

Hospital | 5 j;\oge data upload—~ | Blockchain Distributed 3 secure
_ Node Ledger Storage |~ multiparty —» Image Retrieval
Image feature .“Imag_e foalire Varsacion computation | Service Node |
encryption
Lo | format module Image feature
retrieval index
module
1 registration Similar image
feature search
module
Regulatory

Authority |+ 1 redistration DataUser |—4 data access request—s
Search process

Emagefegture *— 5 encrypted image — | design module
encryption diagnostic information

module

Fig. 6.2 System architecture and workflow diagram

6.2.3 System Architecture

This section mainly introduces the system architecture of the solution and explains
the operation and connection between the modules. The design of this scheme
mainly includes five key modules. The system architecture diagram of each module
is shown in Fig. 6.2. The modules are briefly introduced as follows.

* Image Feature Encryption Module

Hospital nodes and data consumer nodes use the image feature encryption
module. When the medical node uploads the image of the patient, the image feature
needs to be extracted, and then the feature is encrypted by the method used by the
encryption module. Then packaged and uploaded to the chain to realize the security
protection of the data. When the data user makes a query request to the system, it
needs to extract and encrypt the image features in the same way, and submit it to the
image service retrieval node for a search query.

* Image Feature Transaction Structure Module

Drawing on the transaction structure of data in the traditional Bitcoin trading
system, this scheme redesigns the transaction structure of the image retrieval
process. In the system, the input side of the transaction is the encrypted image
feature information packaged and uploaded by the hospital node, and the output
is a public address, which is convenient for the image service retrieval node to
download. More importantly, it is necessary to design that the encrypted feature
information of the image and the diagnostic information corresponding to the image
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are stored in the transaction of the block, so the transaction structure on the alliance
chain platform can satisfy the image retrieval demand.

* Image Feature Retrieval Index Module

Considering the huge number of image features uploaded by hospital nodes
in real application scenarios and the long time of each retrieval, a retrieval index
module is designed to facilitate the execution of smart contracts and speed up the
efficiency of the query process.

* Similar Image Feature Retrieval Module

This module is a content-based image retrieval method and a secure multi-party
computing encryption design [18, 27]. In this system, multi-party hospital nodes
are participating in data sharing. Therefore, it is considered to encrypt the image
features by means of secure multi-party computation [4, 22]. Then the method of
calculating the feature similarity by Euclidean distance is improved for the content-
based image retrieval in the traditional mode, in order to comply with this design.

» Retrieval Process Design Module

Based on the image feature retrieval index module, the search process design
module is designed to respond to the user’s data retrieval access request using a
smart contract. The user issues an image retrieval request to provide an encryption
feature of the image to be queried, and the smart contract uploads the user’s query
request to the image retrieval service node. The node searches for images that are
closest to the image feature to be queried according to the index, and the result of
the query will be packaged with the corresponding diagnostic information returned
to the smart contract together. The smart contract verifies the integrity of the search
result then finally feeds back to the user, helping the data user assist in diagnosing
the disease condition.

The workflow of the system design is described as follows:

First, the system scheme is established on the alliance chain. So the hospital
nodes and the data user nodes must first register the identity authentication
information on the regulatory authority node. In order to ensure the security in the
whole retrieval process, and ensure that the unregistered node will not Malicious
attacks and take potential threats to the system.

Second, the hospital node initiates the image feature encryption module to
package the image features of the patients and upload them to the alliance chain. The
image feature transaction structure module should be designed before the system
runs. The most significant change in the transaction structure is mainly the input,
output, and storage content compared to the bitcoin system. In the second step of
the process, the packaged image feature data are output to a public address, then the
transaction generated.

Then, the image retrieval service node downloads the encrypted image features
uploaded by the hospitals from the output public address of the transaction, stores
them in the local database, indexes the data based on the method of secure multi-
party calculation, and starts the image feature retrieval index module.
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The next step, when the data user needs to access the image on the data sharing
platform, the user activates the image feature encryption module to process the
image to be retrieved and submits the encrypted image feature to the smart contract.
The smart contract transmits the information to the image retrieve service node.
At this point, the image retrieval service node initiates the retrieval process design
module to retrieve for the user. The retrieval is based on the image similarity to do
the content-based image retrieval. Find the most matching image information for the
user’s image based on the image feature set and the index generated by the index
module.

Following that, the feedback result of the image retrieval service node is first
verified integrity by the smart contract. Then the result of the verification is returned
to the user, including the hospital information, the number corresponding to the
similar encrypted image features, and the diagnosis result corresponding to the
images.

6.3 Design of Trading Format

6.3.1 Image Feature Encryption

The system is an image retrieval platform based on privacy protection. Therefore,
the feature encryption of data is essential to protect data security. Each hospital
node needs to extract the features of the image before uploading the data to the
blockchain.

The hospital node first extracts the features of the image. This scheme adopts
MPEG—7, which is called “Multimedia Content Description Interface” and is used
to describe various features of images. Standard features include color, texture, and
shape descriptors. In this system, the color structure histogram, edge histogram
descriptor, and region shape descriptors are mainly extracted. The color histogram
contains the color and structure information of the image, and the feature extraction
adds the color and structure information of the pixels in the 8%8 panes to the
descriptor. Edge histograms can further improve the accuracy of retrieval when
used in conjunction with other image features such as color features. The region
shape descriptor takes all the pixels that make up a shape within a frame, while the
descriptor is robust to small deformations of the boundary.

The process of encrypting features is as follows. Assume the eigenvector of an
image e = {m, ma, ..., m;}. Among them [ is the dimension of the image feature
e. The feature is encrypted in a secure multi-party calculation, the sum of ¢ and ¢?
are processed first.

First, select two prime numbers a and b of the same length so that a — 1 can
be divisible by b. In the computation of this feature encryption, the parameter a
is exposed to all hospital nodes, data consumers, and image retrieval service node.
Select the random number % and calculate the /1 and h; according to Egs. (6.1)
and (6.2).
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Second, each hospital node p; randomly selects a number ¢; and calculate R; in
corresponding each dimension m ; of feature e in Eq. (6.3).

Third, according to Eq. (6.4), the ciphertext em ; corresponding to each dimen-
sion m ; is obtained, and the em ; and em ;2 can be calculated [10].

hy =h eV mod a 6.1)

ho =h® mod a* (6.2)

Rj = (ho“+1 /by i-1)“ (6.3)

em; = (1 + mja) R; mod a? (6.4)

6.3.2 Image Feature Transaction Structure

Based on the particularity of sharing data, the scheme redesigned the structure of the
hospital nodes packaging and uploading data to the alliance chain, which facilitates
the collection of data and retrieval process by the image service node. The design of
the transaction structure is shown in Figs. 6.3 and 6.4.

The content stored in this trading system is divided into three parts: retrieval
information, transaction information, and time information. A transaction refers
to the process in which a hospital node packs and uploads image features and
related information to the alliance chain for storage and outputs to a fixed address.
The transaction consists of two parts, input, and output. The search and output
information of the input and output are in the same format, except for the transaction

‘o 4 |s ?s 20 |z4 31
 URL |  Image label type (16 bytes) |
Image index number (32 bytes)

Retrieve The sum of the encrypted feature values (128 bytes)

Information

The sum of the squares of the encrypted feature values (128 bytes)

Trading Information Hospital input address (32 bytes) |
| Time Information Timestamp | 0 e

Fig. 6.3 Image feature input transaction
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Image index number (32 bytes)

Retrieve The sum of the encrypted feature values (128 bytes)
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The sum of the squares of the encrypted feature values (128 bytes)

Trading Information Output address (fixed) (32 bytes)
Time Information Timestamp

Fig. 6.4 Image feature output transaction

information part. The input party is the hospital node, and the output party is a fixed
transaction address in the design of the system, which is convenient for the image
service retrieval node to download.

In the retrieval information part, the original image URL occupies 4 bytes of
memory, which is convenient for the user to verify when needed. Assign 16 bytes to
the image type label, where the label represents the patient’s disease type, and the
image is sorted in advance for easy retrieval. The image index number is the number
of the image, which occupies 32 bytes. Considering that the number of images
is gradually increased, large storage space is allocated. The sum of the encrypted
feature values and the square of the encrypted feature values respectively occupy
128 bytes of storage space, because the feature encryption method adopted by the
system is a secure multi-party calculation. When content-based image retrieval is
performed, it is necessary to use these two values to find similar images and match
the related images.

In the transaction information section, the input address of the 32-byte hospital
node is input, and the output is a fixed output address of 32 bytes. In the time
information section, a timestamp is kept to record the time of each transaction.

6.4 Feature Extraction

6.4.1 Image Feature Retrieval Index Library

The image retrieval service node stores the downloaded image feature set in a local
database, and indexes the data to improve the retrieval efficiency of the encrypted
image. The way to the index is to create an index for each image dataset uploaded
by each hospital node. Because the use of secure multi-party computation in the



6.4 Feature Extraction 91

Table 6.1 Encrypted image retrieval index table

Hospital node Image index

number number Yioiem i em?

HN-1 IMNUM-1 HN-1-IMNUM-1-SUM1 HN-1-IMNUM-1-SUM1
HN-2 IMNUM-2 HN-2-IMNUM-2-SUM2 HN-2-IMNUM-2-SUM2
HN-n IMNUM-n HN-n-IMNUM-n-SUMn  HN-n-IMNUM-n-SUMn

process of feature encryption involves the em; and em jz’ the calculation em =

{em1, ems, ..., em;} and em = {em12, ems?, ...,emﬂ}, that are Z§=1 em; and

Z§=1 em;?, so we index the sum of the features and the squares of the features,
simplify the indexing process, and speed up the search. The index Table 6.1 created
is shown below.

6.4.2 Similar Image Feature Retrieval

In this system approach, the task of the image retrieval service node is to retrieve
images of features most similar to the images provided by the user to assist the user
for the diagnostic information reference. The academic community usually uses the
similarity between image features to estimate the similarity of images. The higher
the similarity, the smaller the distance between features. The images are searched
using Euclidean distance and the results are sorted according to the similarity of the

images. Assuming the feature vectors of the two images are E = {m1, ma, ..., m;},
F ={ny,na, ..., n;} the Euclidean distance between them is as shown in Eq. (6.5)
below.

EucDis = \/(ml — n1)2 + (my — n2)2 + ...+ (m — nl)2

I l l
= Zmiz—i—Zniz—ZZmini

i=1 i=1 i=1

(6.5)

Through this formula, the similarity between the two images can be calculated.
Therefore, in the index table, we design the inclusion of the sum of the encrypted
image features in the table to improve the calculation speed.



92 6 Secure Data Retrieval Using Blockchain

6.5 Secure Data Retrieval

6.5.1 Image Retrieval Process Design

When a user makes an access request, he submits the encryption features of an
image to the smart contract. The smart contract receives the request and verifies
the user’s identity. After the verification, the information submitted by the user
is uploaded to the image retrieval service node. The retrieval service node starts
the image similarity search process, finds the image feature information that most
matches the user, and returns it to the smart contract, which verifies the integrity of
the retrieval results and ensures that the data is accurate before returning to the user.

In the process design, we introduce the smart contracts for two aspects: one is
not to let the user directly connecting with image retrieval service node, to protect
the user privacy, the second is in the scheme design of image retrieval service node
is a reliable third party, but with the expansion of the volume, it needs to have a
regulatory role in ensuring the quality of service node, so consider adopting smart
contracts to verify the integrity of the results.

6.5.2 Image Retrieval Service Update

The image retrieval service node may add, delete, or update the indexed image
feature nodes. Whenever the number of images submitted by the hospital node
increases to a certain level, the retrieval service node needs to update the index
table. In the system design, the scheme can support dynamic operations of adding,
deleting, and updating on the retrieval service node.

* Add

When the number of images uploaded by the hospital nodes to the public address
on the chain is increasing, the image retrieval service node will download all the
image feature information from the public address every time a fixed time, and add
the new image data to the search library.

e Delete

If the image retrieval service node finds that the downloaded image has duplicate
uploaded image information, it will delete the downloaded image, delete the
encrypted image features from the encrypted image database, and their correspond-
ing numbers and related records in the index table.

* Update

Due to the need for data privacy protection, the hospital node may want to change
the parameters used to encrypt the image features after uploading a batch of images.
Then the hospital node re-encrypts the batch of images. At this point, the hospital
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nodes will re-encrypt the image information after re-encryption and upload it to
the chain. When the image retrieval service node receives the images, it checks
the image number and finds the same number of images, which will overwrite the
previous version with the latest version.

6.6 Implementation and Evaluation

6.6.1 Experimental Setup

In the field of medical imaging, MedPix1 is widely used as an open-source
online database. The database covers medical images, teaching cases, and textual
metadata for different clinical topics, including cases from more than 12,000
patients, and a total of nearly 59,000 medical images. The audience includes doctors,
medical professionals, medical researchers, and medical students. The medical
image database is classified according to types such as disease location (organ
system), pathological category, patient file, image type, and label, which facilitates
the extraction of different types of data. We selected 10 label classifications from the
data set, each with 25 images, and a total of 250 medical images were used as query
targets to conduct experiments and evaluate the system solution. The total number
of uploaded images we set is 10,000.

The experimental platform uses Win7 operating system and Core (TM) i5-
4200U CPU. The experimental environment uses Hy-perledger fabric, which is a
good carrier for realizing the alliance chain in the blockchain. Because the mining
process is not required, the transaction speed is breakneck. At present, it can reach
a throughput of at least 1000/s times. The contract controls the transaction logic in
the form of a chain code. The programming language used is Go.

For the third party, it will extract the EHD edge histogram features of each image
to be queried [25]. Assume that the extraction data provider extracts a medical image
with a gray level of 8 and pixels of 640*480. The third party encrypts the features
of the image, according to ImgFeaEnc. Assume that the values of prime numbers p,
q,h (a — 1 can be b divide) are selected to encrypt the image features.

The third party sends to the smart contract according to the feature set EQ of
the image to be queried and the verification identity ID. After the smart contract
verifies the legality of the transaction, it is uploaded to the image retrieval service
for retrieval. The image retrieval service will query similar images according to the
established index table ¢.

After a third party submits the retrieval request, the image retrieval service will
calculate the similarity based on the euclidean distance using the image to be queried
by the third party and the image feature set in the index database. The images in the
index database are derived from the image features in the transaction information
parsed from the public address by the retrieval service. The retrieval service extracts
the third and fourth items from the index table ¢ and sequentially calculates the
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similarity with the third-party image to be queried. After traversing the entire index
database, the top K encrypted images with the highest similarity to the query image
are obtained, and then the retrieval results are returned to the third party through a
smart contract.

6.6.2 Time Complexity

The time complexity [5, 12] targets the complexity of medical image feature
encryption time, image retrieval service indexing time, and similarity retrieval time
for encrypted medical images [16]. For medical image feature encryption time,
this article uses a secure multi-party calculation to encrypt it. Assuming that the
dimension of a medical image feature is n, the time complexity of encrypting the
feature is O(n), if there are m n-dimensional, The time complexity of encryption is
O(mn). The image retrieval service node will automatically download image feature
information from the public address after a certain period, and establish an index
database to improve retrieval efficiency. The complexity of establishing retrieval
time has a linear relationship with the number of image features. When the number
of features is m, the complexity of establishing the retrieval time is O(m).

We analyze the statistics of the upload time of encrypted features and the
plaintext feature when the number of images uploaded to the chain is from 5000 to
10,000, as shown in Fig. 6.5. The upload time range of both schemes is from 80s to
1805, and the upload time increases with the number of images. For the encryption
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feature upload time and the plaintext feature upload time, when the number of
uploaded images is more than 6000, there is a relatively obvious increase in the
upload time, and the upload time has increased by about 19%. The time overhead
brought by the encrypted on-chain over the plaintext on-chain does not exceed 5 s,
which is within the acceptable range.

At the same time, we also performed a set of control experiments in this scheme
to test the relationship between the number of images uploaded in a transaction and
the time of uploading on a hospital node. As shown in 6.6, the on-chain time for
processing a transaction ranges from 100 ms to 200 ms. The time when the plaintext
feature is uploaded and the time when the feature is encrypted with the number of
images are consistent. When the number of images in a transaction is less than 3, the
processing time of the chain fluctuates greatly, due to the characteristics of different
images. When the number of images is greater than 7, the time of the chaining of
encrypted feature images depends on the number of images. When it is larger than
7 sheets, there is a clear improvement.

The encryption feature upload time and the plaintext feature upload time are
listed separately, as shown in Fig. 6.6. Both the encryption feature upload time and
the plaintext feature upload time increase with the number of images. Considering
the upper limit of transaction throughput, the maximum number of images uploaded
in one transaction is 10. Moreover the on-chain time of plaintext and ciphertext is
the same. It shows that the overhead of the ciphertext of this scheme is not large.
Under the same retrieval accuracy, the use of ciphertext can more effectively protect
the privacy and security of image data.
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A good search solution should have a short search time. Figures 6.7 and 6.8
respectively show that when the number of images returned to the user after the
image retrieval service node retrieves ranges from 50 to 100, from the client Time
trend of the retrieval request to the retrieval node to return the retrieval result. Here
we set the total number of retrieved images to 10,000. The total running time in
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the figure refers to the time from when the user initiates an image retrieval request
transaction to the smart contract calling the retrieval node for similarity retrieval of
the image, and then returns the retrieval result to the smart contract for data integrity
verification, and finally returns the result to the user total time. That is, the sum of the
retrieval time of the Fig. 6.8 and the processing time of the corresponding Fig. 6.7.
When the number of retrieved images increases from 50 to 100, the total running
time increases from 89ms to 97 ms, and the time overhead is minimal, which
illustrates the efficiency and feasibility of our retrieval scheme. The retrieval time in
Fig. 6.8 refers to the running time of the retrieval service node, searching for similar
images from the index database, and then performing similarity calculation. It can
be seen that the retrieval time increases with the number of images, and the smart
contract processing time is unchanged. Figure 6.8 is the node retrieval process time
and the smart contract processing request time. Processing time refers to the sum
of the two periods when the user submits a retrieval access request to the smart
contract, and the smart contract feeds back the processing result to the user. The
processing time increased slightly with the increase in the number of images. The
average processing time was 95 ms, and the processing time was relatively stable.
We compare the scheme with the similar scheme [18] in the case of ciphertext
and plaintext, and analyze the retrieval time under the same number of image
retrievals as shown in Fig. 6.9. The comparison of retrieval time between the total
number of retrieved images from 2000 to 10,000 was analyzed. It is found that the
total time consumed by the encryption feature scheme is basically the same as the
total time consumed by the plaintext scheme, and the retrieval time of the similar
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scheme is basically about half of the scheme. Combining the above Figs. 6.7 and
6.8, the total retrieval time of our scheme is the communication overhead of the
node processing the retrieval process plus the smart contract processing the user
request and feedback, and the proportion of communication overhead and retrieval
processing time is also 50% each. Therefore, compared with the comparison
scheme, this scheme only has communication overhead. In the comparison scheme,
the author ignores the communication overhead on the cloud.

6.6.3 Storage Complexity

The storage complexity [2, 26, 28] increases with the number of image features,
and the indexing time of the image retrieval service node also increases, because
the storage space occupied by the image is increasing. Assuming that the number of
medical image features is m, the storage complexity of the system scheme can be
expressed as O (m).

This section compares the encryption image feature storage complexity, retrieval
index storage complexity, and plaintext image feature storage complexity of the
scheme. The data obtained are shown in Table 6.2. The following table lists the
increase in storage space when the number of image processing increases, and
also calculates the storage overhead caused by encrypted image features [3, 30].
Experiments were performed on changes in the number of images from 2000 to
10,000 encrypted image features, plaintext image features, and retrieval index time.
It can be seen from the table that as the number of images in the image set increases,
the storage space required for the encrypted image set, the encrypted image feature
set, and the retrieval index table will also increase. Encryption increases the storage
space of the image. In this solution, the storage index of 10,000 images requires
approximately 284 KB of space, and the encryption feature of 10,000 images
requires approximately 112 MB of space. Therefore, it can be seen that the storage
space required for the retrieval index is the smallest, which is more helpful to
improve retrieval efficiency. It can be seen that under the same number of images,
the storage space occupied by encrypted image features is larger than the space

Table 6.2 Image retrieval storage space table

Number of Encrypted image Plaintext image
images (photos) features (KB) features (KB) Search index (KB)
2000 21,870 21,285 42
4000 47,454 35,843 89
6000 71,152 70,761 165
8000 91,951 87,820 216

10,000 115,423 90,648 284



6.7 Summary 99

Table 6.3 Comparison of retrieval accuracy of various schemes

The proposed method Cheng’s method [18]
Encrypted Plaintext Encrypted Plaintext
Images returned Precision Recall Precision Recall Precision Recall Precision Recall
20 36.96 6.56 36.96 6.56 34.80 6.96 34.80 6.96
40 30.94 10.94 30.94 10.94  29.85 11.94 29.85 11.94
60 30.40 16.40 30.40 16.40 29.00 17.40 29.00 17.40
80 27.92 1992 27.92 19.92  27.40 21.92  27.40 21.92
100 27.64 25.64 27.64 25.64 26.64 26.64 26.64 26.64

occupied by plaintext image. However, it is basically on order of magnitude, and
the increase in storage space does not exceed 5%, which is an acceptable range.

6.6.4 Retrieval Accuracy

Retrieval accuracy [7, 9, 29] and recall rate [1, 11] are two very important evaluation
indicators in the field of image retrieval. As shown in the image retrieval accuracy
Eq. (6.6), TP stands for accurate classification, and judges the number of similar
images of the same type as FP. FP stands for the number of similar images that
were originally misidentified as two different types of images. As shown in the
image retrieval recall in Eq. (6.7), FN represents the number of images that should
be determined to be similar but misidentified to be of different types. We will get
the accuracy comparison of encrypted search, plaintext search and Cheng’s search
scheme [18] from Table 6.3. The results are shown below. From the experimental
results, the retrieval accuracy and recall rate in the case of plaintext and ciphertext
are the same, and the retrieval accuracy rate and recall rate of the comparison scheme
is not much different.

TP
= (6.6)
TP+ FP
TP
— 6.7)
TP+ FN

6.7 Summary

This chapter introduces the design and implementation of a retrieval platform based
on privacy protection for federated chain encryption. The system model and threat
model are first defined, and the design goals of the solution are described. In the
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solution design part, the system architecture is first introduced, the workflow of the
role composition and distribution is explained, followed by the design of several
detailed modules. Image feature encryption is a privacy protection issue that solves
the problem of uploading images from hospital nodes.

The image feature retrieval index library is designed to speed up the retrieval
process and improve retrieval efficiency. This scheme the image retrieval method
based on content similarity, adopts smart contracts to simplify and constrain the
retrieval process, and provides a synchronous update of retrieval service to ensure
real-time data update. The specific introduction and implementation of the above
program are realized.
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Chapter 7 )
Data Sharing Incentives with Blockchain <o

With the development of big data, various industries have put forward demands for
data storage and data sharing. In the medical industry, various medical institutions
will apply data sharing to medical diagnosis, thus giving rise to third party institu-
tions that can perform pathological diagnosis through machine learning. The current
data sharing schemes among multiple participants are constrained by efficiency
and security problems, which could be solved by blockchain. No participant in a
data-sharing collaboration tends to make an effort without compensation. Existing
studies on medical data sharing have rarely concerned about the reasonable incentive
mechanism for multi-party cooperation. In this chapter, we aim to achieve trusted
data sharing by establishing fair and cooperative patterns, exploring the application
of Shapley value in distributing revenues among the data sharing participants. After
introducing the design goal and theory of Shapley value used in our method in
Sects. 7.1 and 7.2, we derive the topological relationships among the participants
and gradually develop the computational process of Shapley value revenue distribu-
tion in Sects. 7.3 and 7.4, respectively. In Sect. 7.5.1, we discuss the laws of revenue
distribution and the rationality in incentives. Lastly, a summary is drawn in Sect. 7.6.

7.1 Overview

Big data and machine learning technologies have been widely used in the medical
field [13, 25], in which a large amount of medical data resources can be transformed
into valuable knowledge that helps scientific decision-making [18]. Some artificial
intelligence (AI) companies have been able to use medical data (such as medical
images) to build predictive models and alliance with medical institutions to provide
diagnostic services to patients [7, 22]. Thus, they pay much attention to the problem
of medical resource allocation, which depends heavily on the proper collection,
management, and utilization of health information [10, 27].
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Generally, as the information collection may be distributed independently in
multiple organizations [17, 21], trustworthy data sharing is particularly significant
in improving the quality and efficiency of services. When obtaining enemy intelli-
gence, practical intelligence can only be obtained if a considerable price is given
[15, 16]. In the same way, for the data owner to provide real and reliable data, a
particular incentive mechanism is also needed. The behavior of data sharing and
service provision should be profit-driven. However, there is no such research on the
incentive mechanisms of data sharing based on blockchain [16, 17].

The existing data sharing schemes in peer-to-peer network and cloud environ-
ment can protect data security through encryption [19] and data recovery [4], but
cannot completely avoid the risk of a single point of failure and potential attacks for
the centralized storage. Azaria et.al [1] proposed MedRec, a decentralized record
management system for electronic medical records using blockchain technology,
providing a secure access to medical data and comprehensive, immutable log. Xia
et.al [3] proposed a blockchain-based data sharing framework that ensures sensitive
data sharing by employing the secure cryptographic techniques. They also presented
MedShare, a blockchain-based system that solves the problem of medical data
sharing among medical big data custodians in a trust-less environment.

The advantages of blockchain in the area of medical information is remarkable,
which are especially embodied in the following aspects:

* The distributed architecture makes medical data accesible. Users have the
opportunity to hold more shared data from different medical institutions through
the blockchain system.

e The features of “de-centralization”, “de-trusting” and “tamper-resistant” can
solve the problems of information security and data integrity.

* Once uploaded, the medical data is stored on the blockchain permanently, and
any medical service provider with corresponding authority can get read directly,
leaving out the process of sending repeated data by data owners.

e It is able to promote data transactions and bilateral agreements of data owners
and service providers by the application of digital currency via blockchain.

Practically, an efficient incentive mechanism must be exploited to encourage
more stakeholders of data sharing to take part in the coalition and to provide reliable
data actively. In general transactions, the data owners might be paid all at once,
and share their data that is required. The smart contract of Blockchain can provide
a reliable platform where revenue distribution is dynamic, and each participant is
paid continually as new revenues flow into the coalition from patients. This form
of revenue distribution seems more reasonable, as it can encourage participants to
improve the quality of services and to provide reliability of data for more profits.

In this chapter, we aim to achieve trusted data sharing by establishing fair and
cooperative patterns, exploring the application of Shapley value in distributing
revenues among the data sharing participants. We propose a basic business model for
medical data sharing and describe a viable trading process based on the Blockchain
system. Then we construct a cooperation model for intelligent healthcare service. To
the best of our knowledge, it is the first attempt to explore the incentive mechanism
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of Shapley value revenue distribution in the coalition of medical data sharing.
Considering the Blockchain scenario, the incentive schemes we presented not only
distribute revenues to data owners and third parties providing services but also
treat miners in the Blockchain as the indispensable participants rewarded in the
cooperation.

The remainder of this chapter is organized as follows: Sect. 7.2 introduces the
theory of Shapley value used in our method. Then, the data sharing business model
and cooperation model are represented in Sect. 7.3. Section 7.4 presents an incentive
mechanism with revenue distribution among data owners and miners. We discuss the
laws of revenue distribution and rationality of the designed models in Sect.7.5.1.
Lastly, a summary is drawn in Sect. 7.6.

7.2 Introduction to Shapley Value Theory

In data sharing, reasonable revenue distribution becomes the part of incentive
mechanism to ensure reliable collaboration. Game theory provides a variety of
solutions for the revenue distribution, such as the core, the nucleolus, and the
Shapley value. The Shapley value, proposed by Lloyd Shapley [14, 23], serves as
an appropriate mechanism for a set of players to share revenues generated by the
corresponding coalition. In practice, the revenue changes dynamically along with a
set of players joining a coalition in a particular order.

The Shapley value is most accompanied by collaboration and sharing scenarios.
Some solutions based on Shapley value are suitable for other industries. A lot
of efforts have been made to explore the cooperative solution of Internet service
providers by using Shapley value by Ma et al. [11]. Cai and Pooch [2] applies
Shapley values in wireless mobile ad hoc networks to encourage collaborative work
and reward service providers based on contributions. Zheng et al. [26] use the
improved Shapley value method to solve the problem of closed-loop supply chain
allocation in the third-party reclaim mode.

Shapley values embody the concept of hard work and, like a miner, effectively
motivate the active participation of all members [5]. Therefore, when constructing
our model, we leverage Shapley value and consider fairness in the distribution to
avoid equalitarianism and consume less computing resources.

We consider a set of participants denoted as 4. N = |.4"| denotes the number
of the participants in this set. We call any nonempty subset S € .4 a coalition
of the participants. A coalition can generate revenues by sharing medical data and
providing medical analysis services through internal cooperation. For each coalition
S, we denote v(.#") as the worth function, which measures the total revenue
produced by the service which all members of this coalition S play a part in. To
be specific, v(./") defines as the revenue produced by the whole set of participants
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A . Let SP;(S) denote the income earned by the participant i in coalition S, then
we have:

v(A) =D SPi(S) (7.1)

ieS

Thus we can measure the contribution of each participant to a coalition through
the worth function v, which can be defined as follows.

Definition 1 The marginal contribution of participant i to a coalition S € A"\ {i}
is defined as A; (v, S) = v(S U {i}) — v(S) [28].

In this case, the Shapley value can be computed as the Eq. (7.2) shows, where IT
is a set of all N! orderings of .4” and S(r, i) is the set of players preceding i in the
ordering .

i (N, v) = ]\1” XI:YA,'(U, S(r,i)) VieN (7.2)
Te

Thus, the Shapley value of a player i can be interpreted as the marginal
contribution A; (v, S) where S is the set of players in .4 preceding i in a uniformly
distributed random orderings. This definition expresses that the numerical change
of revenue A; depends on the orderings. However, the Shapley value only depends
on the values {v(S) : § € ./'}. We may simplify the computing process as we only
take the revenues of all coalitions into account.

@i (N, v) = Z w(lsDlv(s U {i}) —v(s)] Vi e N (7.3)
SES,'
where w(|s|) = 4 ‘Tilj/“jl)!‘slg can be considered as the weighting factor and S;
denotes a collection of all subsets of N excluding the player i. Note that the Shapley
value defined by Eqs. (7.2) and (7.3) satisfies the property of effectiveness:

D @il v) = () (7.4)
ieN

The Shapley value mechanism reasonably measures the contribution of each
player through computing the increment of revenues as it takes part in a coalition.
In this section, we focus on calculating the Shapley value revenue distribution for
data sharing participants and analyzing its effect on incenting cooperation.
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7.3 Data Sharing Cooperation Model

In this section, We introduce a business model to describe the application of
blockchain in medical services and design a cooperation model with miners
participating.

7.3.1 Business Model

The current research shows that blockchain technology has a great advantage in the
field of e-health for its property of decentralization, tamper proof, and openness. In
the case of data sharing, data owners, such as hospitals, publish their medical data
via blockchain transactions [9]. The legal third-party research institutions access
to the available data to train their respective data analysis models and provide
diagnostic services for revenues. In this business scenario, the content providers
and receivers have incentives to do the above. We describe the business model in
detail, as shown in Fig.7.1.

Figure 7.1 describes a shared business model based on the blockchain. It explains
how to realize data sharing and revenue distribution through information interaction
and capital flow. The data owner holds various types of medical data. When a user
requests a third party to obtain a pathology report, the third party submits a medical
data request to the data owner, and the data owner shares their data on the blockchain
network. In general, medical data is encrypted before uploading to protect privacy.
After the third party obtains the data and provides services for the users who have
already paid, the platform treats the fees paid by the users as revenues and distributes
them to the data owners who provide the relevant data and the third parties who
provide the services.

We use smart contract to control revenue distribution automatically. The smart
contract can be used as a trusted intermediary to perform payment functions and
manage capital flows. In the business model, participants continue to get paid as new

6) Pay for Service

7) Revenue Distribution 7) Revenue Distribution

©)

Smart Contract

2) Data Demand 3) Data Sharing m
—_—

4) Data Acquisition

1) Require Service / 3
Q
—  —

5) Feedback Report Third Party

Users Blockchain Data Owner

Fig. 7.1 Business model in data sharing
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revenue flows into the alliance. This form of revenue distribution seems reasonable
because it encourages participants to be held accountable for the outcome of the
collaboration.

7.3.2 Cooperation Model

Through the blockchain sharing platform solution, medical data can be securely
and efficiently shared. Data owners share their medical data through a blockchain
network. After getting the data from the data owner, authorized third-party research
institutions train their diagnostic models by applying advanced computing technolo-
gies such as big data analysis, machine learning, and data mining to obtain their
diagnostic models and obtain benefits by providing diagnostic services.

In a blockchain-based data sharing system, data owners and third parties act as
senders and receivers of medical data, respectively. Besides, the miners’ recorded
data on the blockchain plays an irreplaceable role and contributed to the cooperation.
Therefore, we should also design incentive mechanisms to encourage miners to
participate in cooperation to promote information exchange.

We categorize participants as three types: third parties, miners and data owners.
The participants are defined as 4" = 7 U .# U s, where F = {T1,---, T|.7|}
denotes a set of third parties, .# = {M1, --- , M| 4|} denotes a set of miners, and

= {Hi1, - -, H |} denotes a set of data owners. We denote #Z = {1, --- , R} as
the set of services provided by .7 . The elements in % represent the sequence number
of services and R is the number of service types. The set of services provided by 7;
is denoted by R; C Z. Similarly, we denote 2 = {1, --- , D} as a set of different
types of medical data. The elements in & are corresponding to those in %, thus we
have 2 = %, and the number of data types D satisfies D = R. The types a data
owner H; shares are in D; C Z. When T; provides the service r € R; and H;
shares the data of type d € D; that satisfies d = r, it means that H; shares type
d data to T;. There may be more than one type of data shared by H matchlng the
request of 7;. Such relationship is represented by a connection, Which goes through
a group of miners.

Figure 7.2 shows a cooperation model where |.7| = 3, || = 4, |.#| = m and
X =P = {a, b, c}. All the miners in group .# act the same functionally and only
one works at a time. The data owners in Fig. 7.2 contain a total of three types of data:
a, b and c. However, the type of data contained by each owner is different, and the
type of data required from users is different. For example, the service requirement
S P, aims to two kinds of data: b and c. Thus 7> receives the data from H,, H3, and
H,, which contains these two kinds of data and joins the alliance of data sharing,
and each sharing is processed by a miner M.

The revenue of the system consists of multiple payments. We define the payment
S P! as shown in Eq. (7.5).

SP =a,x] VT, € T (7.5)

1 1
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Fig. 7.2 Cooperation model based on blockchain

where o, is the charge for each service r and x; denotes the number of times that
third party T; provides service r in a period time (equals zero if 7; does not provide
service r during the period or r ¢ R;). The payment SP; is the periodical charge
produced by 7; providing service r. If service r is out of the business of 7;, we have
SP/ = 0 for xj = 0. We assume that all third parties charge the same amount for
the same service so that they compete fairly in business.

7.4 Incentive Mechanism and Revenue Distribution

In this section, we explore the distribution of Shapley value gains among data
sharing participants, taking into account the contribution differences of data owners
and the importance of the roles in the cooperative alliance, which also includes
specific rules regarding the distribution of miners’ revenue.

7.4.1 Revenue Distribution Among Data Owners

In terms of the quality of service, the performance of prediction models can be
evaluated by these commonly used metrics: Precision, Recall and F1 score [19, 20].
However, there is often taken F1 score, which quantifies the tradeoff between
Precision(P) and Recall(R), as the overriding evaluation parameter (F1 = 2 ;,)_’;I;).
In the scenario where the third party provide only one service, we infer the
contribution of each data owner to the revenue from the F1 score of the data-trained

predictive model.
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We assume that the data owner H; € J¢can provide data that satisfies the
service r, i.e., D; = {r}. The total revenue belonging to the group of data owners
is represented by v(7°). Assuming that all the data owners have positive impact on
the alliance. We mainly target the arbitrary data owners in 5% and observe the F1
score of the prediction model trained on the data provided by them.

We leverage the equation of A;(F1,s) = F1(s U {i}) — F1(s) to quantify the
contribution of the F1-score of each participant, where F'1(s) is the F1 score of the
prediction model trained by the coalition s from data owners. It is similar to the
marginal contribution A; (v, S) defined in the Eq. (7.2).

For any regular system (.77, v), we calculate the Shapley value combining with
F1 score as shown in Eq. (7.6).

Ai(F1,s) ,
@i(A.v) =Y w(s|) Pl VOO Vied. (7.6)

SESi

where S; = {s|s € J7/{i}} represents the set of all data owner subsets of .77,
excluding participant i. Since we use a unary method to divide F'1(5¢) in Eq. (7.6),
the attributes represented in the Eq. (7.4) are satisfied, i.e., Y @;(J,v) = v(I7).

ie
Theorem 1 shows how to distribute revenue for data owners through the Shapley
value. We define @y, as the Shapley value allocated to the data owner H;.

Theorem 1 (Shapley Value for Data Owners) We assume that the data owner 7
shares data for the same service. We define S',, = {H| A" C #° /{H;}} as a set of
all subsets of €, excluding the data owner H;. Based on the marginal contribution
to the Fl-score of the prediction model, the Shapley value revenue of each data
owner is defined as the Eq. (7.7).

o, (A, v) = @'y (H)(H) VH; € H, (1.7)

where the normalized Shapley values {‘/’}1’ BN (pgﬂ} are represented as Eq. (7.8)
shows.

AHi(Fl,%/)

P ()= Y w(A) 1)

H'eS’,

VH; € . (7.8)

The normalized Shapley value (p;I can be considered as the percentage of total
revenue v(J€) received by the data owner H,. It is essentially an accumulation of
the marginal contributions Ay, (F1, 7).
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Fig. 7.3 Simple cooperation model

7.4.2 Revenue Distribution in Cooperation Model

Before calculating the revenue distribution in the multi-role cooperation model,
we first build a simple model that provides a single service, as shown in Fig.7.3.
The simple model contains three groups of participants, but only one service
requirement. The data owner and a third party form a complete data flow in which
all connections go through the miner.

Under the simple model, the coalition .4 = 7 U .# U 7 provides service r
and |7 | = 1. The revenue comes from the service generated by the only third party
Ty, ie., v(A) = (x,x(’). We define ¢p,, oM, and @7, as the Shapley value revenues
distributed to H;, My and T respectively.

Theorem 2 (Shapley Value For Simple Model) The coalition of 7 containing a
single third party To, a set of miners #, and a set of data owners, F€. For the data
owners, we define Sy ={H' | C H, H' # B} as a set of all non-empty subsets
of A and S, ={H'|.AH' C A [{H;}} as a set of all subsets of S, excluding H;.
For the miners, we define Syy={M'\M' C M, ' +£B} as a set of all non-empty
subsets of M, and Py as the probability of miner My mining a block. Assuming all
data owners share the data of the service type d, which satisfies d = r. The Shapley
value revenue for each participant is defined in Eq. (7.9).

(S, M, T) = @y (K, M, TY(N) VH; € A,

om (M, T) = Pe| Mo, M, T)(N) YMy € M, (7.9)
o1 (I, M, T) = @r (I, M, T)0(N),
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where the normalized Shapley values (pj}_[, (pﬁ,l and @t are represented as follows.

4 ,
i B ¥4 , A, (F1, )
oL, M, 9)—%026; ,,;El:(’" )w(%|+m+1> Pl

F1(#")

oM, M, D=y w'+1) Pl

H'SH

L)
_ L4 , F1(")
or o, M, %—%%H;(m )w(WI+m) Pl

(7.10)

We consider Py|.#| as the “Expectation” of the weight of miner My of the
©um,. Then, we derive the normalized Shapley value from Eq. (7.6). Although third
parties and miners will not cause changes in FI values, cooperation is necessary.
Calculating the score of F1 is only meaningful when there are three types of
participants in the alliance, otherwise the value of F1 is 0. Therefore, we remove
all zero-value marginal contributions and derive the above Eq. (7.10).

We aggregate the results of all included simple models to distribute the total
revenue in the cooperation model as shown in Theorem 3, where the ¢, , ¢, and
@r; denote the Shapley value revenues distributed to H;, My and T respectively.
The revenue of the cooperation model is denoted as Eq. (7.11).

2| 17|
v(A) =D > SP. (7.11)

r=1 j=1

Theorem 3 (Shapley Value For Cooperation Model) We assume that in a set
of cooperative alliances, the data owner ¢, miner M, and third party T are
included. The third party T; is responsible for providing a set of services R; C %,
and the data owner H; shares the medical data D; C 9 required by the service.
The data owner H; connects to the third-party T; only if R; N D; # ) and all
connections pass through the miner group. The Shapley value of each participant is
expressed as the Eq. (7.12).

7|
o (A, M T) =Y Gy (A, MATHSP],
reD; j=1
17|
om (A, M T) =Pl Y Y omu (S, M AT;)HSP], (7.12)
re? j=1

o1, (A, M, T) =Y or(H, M ATHSP],

reR;
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where (pj}_[, om and 1 are defined in Theorem 2. The revenue S P; generated by the
third party T is supposed to be proportionally allocated to the miners and paid to
the data owner who provides data of type d, where d = r.

7.4.3 Mining Revenue

In this section, we focus on the revenue distribution mechanism among miners who
use different consensus in the blockchain. Assuming that the data shared on the
blockchain is large enough, the revenue allocated to each miner can approach the
ideal value in practice. In the following, we discuss several of the most common
consensus mechanisms.

The consensus is a mechanism that achieves Blockchain system reliability in the
presence of several faulty processes [12]. The users distributed in the network do
not need to trust the other side of transactions, as well as a central authority. As long
as the public protocols of blockchain are widely acknowledged, all participants will
comply with predetermined rules voluntarily and honestly.

Under the consensus, all the responsible nodes determine the validity of each
record and keep the same ledger. The functions of consensus are ensuring the
authenticity and consistency of the blockchain system. Some consensuses develop
mining mechanisms to incent participant nodes to keep the records legal, which
generates rewards, such as PoW(Proof of Work), PoS(Proof of Stake), etc [24].
Here, mining is broadly defined as a behavior of striving for recording right.

¢ Proof of Work(PoW)

Under the PoW mechanism, miners compete for record blocks through a large
number of calculations [8]. Hashrate is a unit of hash/s, which is used to
calculate the capacity of miners. In our method, we define ¢ as the hashrate
of miner M. Assuming that the proportion of each miner’s revenue is equal to
the probability of mining a block. Therefore, the revenue ratio can be expressed
as the formula (7.13).

||
P = Ck/Zci VM € M. (7.13)
i=1

¢ Proof of Stake(PoS)

The PoS mechanism is also used to record blocks. Under this rule, miners
holding more shares are more likely to get rights. We assume that a miner M
holds wy tokens, and the coinage on this point is ay, so the share of this miner
is wiak. However, the coinage will be reset when the miner wins a competition.
Assuming the interest rate is /, when a miner mines the current block, he will
get wy tokens, and a; days of coinage will be paid wyayl /365 tokens. For
every miner, the growth of coinage is synchronous. Therefore, the miner’s share
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increase is proportional to the number of their tokens. The formula (7.14) is used
to infer the revenue ratio of M} for each miner.

4|
Pe=wi/Y wi VM €. (7.14)
i=1

* Practical Byzantine Fault Tolerance(PBFT)

The PBFT algorithm is used to solve the Byzantine problem, which is also
a consensus mechanism and is applicable to the consortium blockchain [6].
Under PBFT algorithm, nodes take turns acting as leader nodes, sending current
messages to all other nodes. After synchronizing messages between other nodes,
new blocks will be generated. Assuming that all nodes have the same chance
to become leader nodes, we consider that all normal nodes have equal pay,
excluding wrong nodes and malicious nodes. Suppose that n blocks are generated
in a cycle, we define Ay C {1, ---,n} as the set of the sequence number of the
round that makes node Mj a healthy node. We also define ¢; as the number of
normal nodes in the ith round, as shown in Eq. (7.15). Thus the revenue ratio of
each node is defined as the Eq. (7.16).

||
qizzl{iGAk} Yi e{l,... ’n}, (715)
k=1
1 1
n qi
i€Ag

Our work is to explore the optimal revenue distribution scheme under various
consensus mechanisms. Other consensus mechanisms not mentioned above can also
be applied to the scenarios as well, which will be studied in the future.

7.5 Performance Evaluation

7.5.1 Incentive Effect

In this section, we discuss the laws of revenue distribution under the models
developed in the previous section and explore the incentive effect and rationality
of the incentive mechanism.

Based on the previous introduction, we mainly infer the contribution of each
data owner to the revenue from the F1 score of the third-party prediction model. We
explore the impact of the contribution of the data owner on the revenue distribution
by fixing the role size of each cooperative group. We change the F1 score of a
prediction model, and set a unit model that || = 2, |.#| = 5 and |.T| = 1.
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We define ¢ » = ) ¢p, as the aggregate Shapley value for the group of data
H;e
owners,p. s = Y. u, as the aggregate Shapley value for the group of miners
Mye

and ¢ 7 = @7, as the aggregate Shapley value for the group of third party.

We first consider the situation that the two data owners contribute equally to
Fl-score. Figure 7.4 eliminates the differences between the two data owners by
synchronize their Fl-score (F1({H1}) = F1({H>2}) = Fy). Figures 7.5, 7.6, and 7.7

illustrate how the revenue of ¢, ¢ and ¢ o change with the overall contribution
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Fig. 7.4 The Shapley value revenue with different F1 score in data owners and unit data owner
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Fig. 7.5 The Shapley value revenue under the simple model with different F1 scores in data
owners
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Fig. 7.6 The Shapley value revenue under the simple model with different F1 scores in miners
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Fig. 7.7 The Shapley value revenue under the simple model with different F1 scores in third
parties

of the shared data changing. We observe that the Shapley value of data owners
decreases and that of miners and the third party increase when the Fl-score ratio
Fy/ F () increases.

As for a general situation that the F1-score of each data owner changes diversely,
we find that the aggregate Shapley value revenues of each group are only related to
the sum of Fl-scores, i.e., F1({H1}) + F1({H>}), which is illustrated in Figs. 7.4
and 7.5. The observation is the same in the case of more data owners in the coalition.
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The result of revenue distribution will not change when the sum of F1-score ratios
of all subset of data owners remains unchanged.

We understand trends in revenue distribution in terms of the importance of
cooperation. When F1 scores are low, collaboration dramatically improves the
quality of service for data owners. Therefore, the involvement of each data owner
has a significant impact on the system, which means that the data owner should
receive more revenue.

The distribution of revenue under several roles follows the pattern in each unit
model. In general, data owners should be encouraged to participate in more sharing
patterns, encouraging them to increase their income by providing real, valid data, as
shown in the Shapley value formula element of Theory 2.

7.5.2 Incentives Rationality

In order to verify the rationality of the incentive mechanism and the rationality of
participants’ willingness to join the cooperative alliance, we analyze the changes
in the revenue distribution of the three roles by setting up experiments under the
condition that the number of data owners changed. We fix the number of miners
(|.#| = 5) and set all Fl-scores to the same value. Miners can only benefit from
participation. The results show in Fig.7.8, which verify that when the number
of data owners increases, so does the benefit to the third party, thus verifies the
motivation of the third party to participate in the validation.

1.0

Percentage of revenue

4 s 6 7 8 9 10
||

._.
[ S
(%)

Fig. 7.8 The Shapley value revenue under the simple model with a variable size of the data owner
group
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The motivation for third parties to cooperate with more data owners is twofold.
On the one hand, valuable data contributes to the accuracy of their prediction
models, which may attract more customers. On the other hand, third parties can
get more revenues from the coalition with more data owners, which can be studied
in Fig.7.8. It is necessary for miners to join in coalition for benefits. They are
responsible for recording the shared data and making it credible. There is no doubt
that the stakeholders, third parties are motivated to participate in a coalition with
more miners for the consideration of information security.

The proposed model solves the problem of the permission of participants through
the consortium blockchain and ensures that the shared data can be used safely and
reasonably. We design an incentive mechanism suitable for the dynamic distribution
of benefits among multiple clouds, which can encourage participants of the sharing
consortium to provide reliable data and realize the collaborative sharing mechanism.

However, the scheme has the problem of transparent propagation, and the data
shared in the platform is not anonymous or encrypted. We consider that some
patients are eager to hide their inspection reports or other sensitive data in the
medical data sharing situation. It is still a challenge to judge contributions when
roles or data are unknown. Therefore, in the future work, we will consider and
optimize the design of this aspect.

7.5.3 Data Effect on Participants

To explore the impact of medical data on the revenue among participants, we
use several intelligent algorithms commonly used in third-party data processing
agencies in healthcare scenarios to train prediction models for evaluation, including
Support Vector Machines (SVM), Random Forest (RF) And K Nearest Neighbors
(KNN). Among them, we use a data set on thyroid disease published by the Garavan
Medical Institute in Sydney, Australia. We select 4427 data samples from the data
set as the test set to measure the accuracy of the prediction model, and from the
other 723 samples as the test set.

Figure 7.9 shows the relationship between the number of samples of the medical
data shared by the data owners and the benefits obtained.

We take the case of the number of data owners | H| = 2 in a medical data sharing
scene. Supposing there is a data owner set H = {Hp, H>}. We select samples for
all the training set samples for H; and H; to construct the training set. The data
shared by the data owner H» contains 1000 samples, and the number of medical
data samples divided by the data owner H; is 500, 1000, 1500, 2000, 2500, 3000,
each of the values is simulated 100 times, and the revenue distribution results of the
data owner under different sample sizes are calculated.

In this setting, we use three algorithms to build prediction models on the training
set under various combinations and calculate the data owners’ data when sharing
different numbers of thyroid disease samples. The F1-index of the predictive model
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obtained by standardized Shapley values and model learning on data shared in the
alliance.

According to Fig.7.9, it can be seen that under the same conditions, when the
data owner H; increases the number of shared data samples, it increases its revenue
and reduce the revenue of the data owner H». Goals are in line with expected results.
When the data owner increases the number of shared data samples, the prediction
model obtained by the learning algorithm has a better prediction effect. It can be
considered that the data owner’s contribution has increased, so he should get higher
returns as compensation.

With other conditions unchanged, increasing the number of data samples shared
by the data owner, H; increases their revenue, which is consistent with the design
goals and expected effects of the incentive mechanism.

When the data owner increases the number of shared data samples, the prediction
model obtained by the learning algorithm has a better prediction effect. It can be
argued that the contribution of the data owner is improved and a higher revenue
should be received as a reward. This proves that the incentive mechanism proposed
in our method can motivate users with medical data to actively share more data.

7.6 Summary

In this section, we propose a blockchain-based Shapley value solution to stimulate
cooperation in medical data sharing. We build a business model to describe the
application of blockchain in medical services and design a cooperation model with
miners participating. It is the first attempt to explore an incentive mechanism based
on blockchain and Shapley values. Finally, we also prove that the solution can
effectively motivate participants to share reliable data. Our method applies not only
to medical data sharing but also to other data sharing scenarios. In this solution, there
is no algorithm designed to support confidentiality for private data. In the future, we
will leverage the encryption or other methods to build a more secure sharing model,
and investigate other factors affecting contribution and distribution to achieve the
evaluation of incentive mechanisms in practice effect.
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Appendix A
How to Develop Smart Contract

A smart contract is a piece of code deployed on a Shared, copied ledger that can
maintain its status, control its assets and respond to incoming external information
or assets. It can process information, receive, store and send value.

An intelligent contract program is more than just a computer program that can
be executed automatically. It is more like a participant in the system. Think of it
as a trustworthy person. As Fig. A.1, once a smart contract is established, it can be
executed automatically without mediation, and no one can stop it from running.

A.1 History

In the 1990s, computer scientists engaged in research on digital contracts and
currency, Nick Saab (Nick complained first proposed the “smart” contract, the claim
its commitment to the existing contract law and business practices related to transfer
to the Internet, can only make the stranger through the Internet can be achieved
before offline business activities, and achieve the real full e-commerce. Despite
its benefits, the idea of smart contracts has languished—mainly in the absence of
blockchains that would allow it to work.

It wasn’t until 2008 that the first cryptocurrency, bitcoin, was introduced,
along with modern blockchain technology. Blockchain originally emerged as the
underlying technology of bitcoin, and various blockchain forks led to great changes.
Smart contracts were still not integrated into the bitcoin blockchain network in 2008,
but there brought it to the surface 5 years later. Since then, various forms of smart
contracts have emerged, among which there smart contracts are the most widely
used.
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Smart contract model

External input data * : Action 1
> Preset Preset g
response response
conditions rule
External input data . : Action 2
Contract Contract
status value

Fig. A.1 Smart contract model

A.2 Development Platform and Language

More than 40 platforms already support smart contracts. Many languages can
support the development of smart contracts: solidity, C/C++, Golang, Java, Nodejs,
etc.

A.2.1 Ethereum

Ethereum was one of the first platforms to introduce the concept of smart contracts
into the blockchain and has received the greatest support from the developer
community. It claims to have implemented Turing’s complete intelligent contract
platform. The contract code is executed by each miner in the Ethereum network
on the EVM (Ethereum Virtual Machine). It is the most widely used platform for
blockchain projects.

The platform writes smart contracts in solidity’s language. Solidity achieves
turning-like completeness quite well but compared with modern development
languages such as C++, C#, and Python, solidity has no advantage. If writing smart
contracts is not efficient, the implementation costs are high.

A.2.2 Enterprise Operation System

The EOS.IO based blockchain USES Web Assembly (WASM) to execute the
application code provided by the developer. WASM is compiled from C/C++
programs using LLVM and Clang, which means that users need C/C++ development
skills in deploying blockchain applications. Although EOS.IO can be developed
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using C, the EOS.IO C++ API is recommended. These APIs provide greater type
safety and are easier to read.

To improve the speed of transactions, EOS has made a series of optimizations,
including the use of dPoS as a consensus mechanism, parallel execution, staged
execution, etc. EOS was considered a good alternative to Ethereum due to its high
scalability, no transaction fees, and the use of C++ as a smart contract language.
But EOS is still not widely used, and many of its advantages and disadvantages as a
smart contract platform have yet to be tested.

A.2.3 HyperLedger Fabric

Hyperledger Fabric is one of the Hyperledger projects led by the Linux Foundation.
It is the first distributed ledger platform for enterprise application scenarios, with
contributions from many technologies and financial giants including IBM, Intel,
Cisco, DAH, jp Morgan chase, R3, etc. It has received extensive attention and
development in banking, supply chain, and other fields, and now has more than
200 enterprise members.

Hyperledger Fabric is a distributed book solution platform, the goal is to achieve
a common permissions block Chain (Permissioned Chain) of the underlying infras-
tructure, in order to apply to different occasions, adopts the modular architecture to
provide swappable and extensible components, including the consensus algorithm,
encryption, security, digital assets, intelligent contracts, and identity authentication,
etc.

Hyperledger Fabric itself is written in the Go language, so its smart contracts also
support the Go language.

A.2.4 Quorum

Quorum is an enterprise-class blockchain platform launched by J. P. Morgan. It
is an alliance chain that is based on Ethereum and offers additional services. The
main difference between Quorum and Ethereum is that it provides Transaction and
Contract privatization; Provides a variety of consensus mechanisms; It has network-
based and node-based access management and higher performance than Ethereum.

Similarly, Quorum, which also writes smart contracts in solidity’s language,
retains the gas mechanism in Ethereum but reduces the price of gas to zero, which
reduces the transaction cost to zero while taking advantage of the security features
provided by gas restrictions. Also, by using constellation, the ability to send private
transactions between two or more participants in a network is added, making it more
suitable for enterprise users.
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A.3 Ethereum Private Blockchain Setup

Take Ethereum, the most popular smart contract platform, as an example to show
the process of smart contract execution (Fig. A.2).

A.3.1 Ethereum Wallet

Ethereum wallet has functions such as account creation, exchange of Ethereum
COINS, deployment of smart contracts, transfer of Ethereum coins (ETH), backup
of wallet, etc. These functions are operated through the interface or menu after
launching the client program. The smart contract part requires the implementation
to write the corresponding code and then release it through the client.

Ethereum-wallet Transaction Data

TxHash: Transaction hash value
Initiate transactions and conduct__ | From: User account

smart contract interactions To: Smart Contract address
Data: Called functions and

RPC interface parameters

hd

Local EVM
v
result

Block data

Local EVM

v !
Calculate Calculate
result result

Block data Block data

Fig. A.2 Ethereum smart contract execute process
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A.3.2 Go Ethereum

Geth (Go Ethereum) is a client software written in Go language and implemented
Ethereum protocol. Geth can manage the related API, call the API, dig and stop
mining through command operation in the background.

A.3.3 Setup Private Blockchain

* Config the foundation block: The foundation block of Ethereum is a manually
configured genesis.json file that needs to be manually configured with chainld
and extraDate (Fig. A.3).

* Create a storage directory: Place the genesis block file genesis. json in the parent
directory. For example, if the installation directory is E:\Ethereum\ geth, the
JSON file will be placed in the ‘Ethereum’ directory. Create a new MyChain
folder to store private chain block data.

* Generate the creation block based on gensis.json: Enter the following command
in the terminal to generate the foundation block: geth init genesis.json --datad
ir"MyChain". When “Successfully wrote genesis state” appears, the creation
block data is successfully generated.

 Start the Ethereum private chain node: Enter the following command to start the
Ethereum client: geth --datadir "MyChain" --networkid 2333 --rpc --rpccors
domain"x" --rpcapi eth, web3, personal --nodiscover --allow-insecure-un
lock console. MyChain is the blockchain data storage directory, --networkid
is the id set in the previous creation block, --rpc and other parameters are
used to realize the interaction between external programs and Ethereum, the
API includes eth,web3, personal, --nodiscover stands for single-node mode,
--allow-insecure-unlock stands for allowing account to unlock (insecure), and
console stands for launching Ethereum console (Fig. A.4).

e Generate Ethereum account: Enter personal.newaccount() in the client to
generate the Ethereum account, and enter the password to generate the Ethereum
address.

¢ Check account balance: Enter web3.eth.get Balance("your account address")
or web3. fromWei(eth.get Balance(eth.accounts[1]), 'ether’) in the client to
view the account balance.

e Unlock the account: Accounts need to be unlocked before mining and trad-
ing. In the client, type: personal.unlockaccount("youraccount address",
"password") or personal.unlockaccount(eth.accounts[0], " password") to
unlock the account.

* Begin to dig: Using the following command, miner.start(), the initial mining
will generate DAG data for Ethereum consensus, after which the mining will
generate new blocks and rewards.
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Fig. A4 Startup Ethereum client

» Stop to dig: When you stop digging, type mine.stop() to stop. Checking the
balance again, you can see that the mining bonus has been transferred to your
Ethereum account.

A.4 Ethereum Smart Contract Development

Solidity’s syntax is close to Javascript and it is an object-oriented programming
language. As a truly decentralized contract that runs on a blockchain network, it’s a
bit different:

* The Ethereum base is based on an account rather than UTXO, so there is a special
address data type in solidity that locates the user, contract, and contract code.
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* Since the embedded framework of the solidity language supports payments, there
are keywords, such as “payable”, that enable payments to be implemented at the
language level.

* Since you are using a blockchain network for data storage, you need to determine
whether each variable is stored in memory or on a blockchain.

* Solfat’s anomaly mechanism is also quite different. In order to ensure the
atomicity of contract execution, all execution would be canceled if an anomaly
occurs.

A.4.1 Development Tool

You can use geth to write and run smart contracts, or you can use remix-ide,
a browser compiler that you don’t need to install. Remix-IDE url: http://remix.
ethereum.org. You can also choose to install the remix-ide on your local computer.
Download via url: https://github.com/ethereum/remix-ide or install via npm install
remix-ide -g. Once the installation is complete, executing the remix-ide launches an
8080 port, opens the browser and enters remix-ide to open the remix compiler.
Remix provides a development environment for solidity smart contracts, which
can be easily compiled, deployed, executed, and even faulted, suitable for beginners
with little programming experience. However, version control, testing, and other
development tools are not available. In fact, it is more convenient and professional
for developers to compile and deploy DApp using Truffle3, Ganache, and web3.js.

A.4.2 Hello World

» AsFig. A5. Create a new file in the menu on the left side of the ide and name it
“helloworld.sol”. Enter the contract and compile. Contract contents: the function
update receives a parameter of type unit, representing the amount transferred by
others; Returns two parameters, one of type address, representing the address of
the sender, and one of the final amount. The function of this function is to add up
the amount and return it.

* After the contract is compiled, click “deploy” to deploy the contract.

* Run smart contracts: As shown in Fig. A.6, first check the current balance is
1024, then call the update function, and input the parameter is 2048. Click run
to check the result in the last returned log, and the balance successfully becomes
3072.
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