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Abstract—Phrase search allows retrieval of documents
containing an exact phrase, which plays an important role in
many machine learning applications for cloud-based Internet of
Things (IoT), such as intelligent medical data analytics. In order
to protect sensitive information from being leaked by service
providers, documents (e.g., clinic records) are usually encrypted
by data owners before being outsourced to the cloud. This, how-
ever, makes the search operation an extremely challenging task.
Existing searchable encryption schemes for multikeyword search
operations fail to perform phrase search, as they are unable to
determine the location relationship of multiple keywords in a
queried phrase over encrypted data on the cloud server side.
In this paper, we propose P3, an efficient privacy-preserving
phrase search scheme for intelligent encrypted data process-
ing in cloud-based IoT. Our scheme exploits the homomorphic
encryption and bilinear map to determine the location relation-
ship of multiple queried keywords over encrypted data. It also
utilizes a probabilistic trapdoor generation algorithm to protect
users’ search patterns. Thorough security analysis demonstrates
the security guarantees achieved by P3. We implement a proto-
type and conduct extensive experiments on real-world datasets.
The evaluation results show that compared with existing mul-
tikeyword search schemes, P3 can greatly improve the search
accuracy with moderate overheads.

Index Terms—Artificial intelligence, cloud, encrypted data,
Internet of Things (IoT), phrase search.

I. INTRODUCTION

PHRASE search, which allows users to search for
sentences or documents containing a specific phrase

that consists of a set of consecutive keywords [1], serves
as an important building block in many machine learning
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applications for cloud-based Internet of Things (IoT) [27]. For
instance, it can be applied to intelligent clinical data analytics
collected from medical IoT devices, which retrieves medical
records related to a certain disease (e.g., myocardial infarc-
tion) and feeds machine learning algorithms to obtain portent
symptoms of the disease. It can also be applied to the emerg-
ing entity-oriented search [21], which identifies the records
within which the exact description of an entity (e.g., person
or event) occurs. The resulting records can be utilized for sit-
uation assessment and intelligent decision making. Another
application scenario refers to the semantic search in knowledge
graphs, which searches for entities with semantic similarity
(e.g., titles, positions, and interests) and provides input signals
to machine learning models for recommendation of products,
news, and advertisements.

The combination of cloud computing and IoT enables pow-
erful processing of data beyond individual IoT devices with
limited capabilities. This, however, raises a great concern
about the security and privacy of IoT data stored in the cloud,
as untrusted cloud service providers may get access to sensi-
tive data or even result in data leakage accidents [25], [26]. In
order to protect data privacy, data owners can opt to encrypt
their sensitive data before outsourcing the storage of the data to
remote cloud servers. For instance, a healthcare company may
store their encrypted patients’ records in the cloud, and allow
only the authorized users to perform phrase search over these
records. This naturally imposes a requirement on the cloud-
based search engine to perform phrase search operations over
encrypted data.

Many schemes [2], [4], [5], [7], [8], [11], [14]–[16],
[18]–[20], [23], [29]–[35], [38] have been proposed to
enable efficient search operations over encrypted textual data,
as summarized in Table I. Existing solutions to the single-
keyword and multikeyword search problems cannot be used
to perform phrase search over encrypted documents, because
they are unable to determine the positional1 relationship of
the keywords composing a phrase in the encrypted environ-
ment. For instance, the conjunctive keyword search scheme [4]
will return a document if it contains each keyword at least
once, regardless of whether these keywords appear con-
secutively as a phrase. Therefore, if we use this scheme
for phrase search, we would end with inaccurate results
(see Section VI).

1We use the terminologies of positional information and location informa-
tion interchangeably in this paper.
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TABLE I
SUMMARY OF PRIOR SOLUTIONS AND P3

There are a limited number of studies targeting the phrase
search problem over encrypted data [20], [30], [38]. These
solutions, however, generally involve notable limitations as
shown in Table I, e.g., by either requiring resource-consuming
multiple rounds of client-server interactions, or relying on a
trusted third-party (TTP) for search result refinement on the
behalf of the client.

Since the client-side IoT devices usually have constrained
computing and storage resources, we aim at developing a
phrase search scheme that achieves all of the attributes listed
in Table I. The main challenge is to enable cloud servers to
make a judgement on whether the keywords occurring in an
encrypted document are consecutive or not, without leaking
sensitive information.

In this paper, we propose P3, a new privacy-preserving
phrase search scheme over cloud-based encrypted data. We
take advantage of the inverted index structure to build a secure
index that achieves greater flexibility and efficiency. The
inverted index is one of the most popular and efficient index
structures for plaintext search. Compared with the diverse self-
designed index structures [4], [5], [23], [29], [32], the inverted
index structure can improve retrieval efficiency and scalability
in practice. To tackle the challenge of determining the posi-
tional relationship of queried keywords over encrypted data,
we resort to the homomorphic encryption and bilinear map,
which enables the client to obtain exact search results from a
single interaction with the cloud server. As the phrase search
is a special case of multikeyword search, our solution can also
perform conjunctive multikeyword search efficiently.

The main contributions of this paper are as follows.
1) We propose a secure single-interaction phrase search

scheme that enables phrase search over encrypted data
in cloud-based IoT, without relying on a TTP.

2) We employ the combination of homomorphic encryption
and bilinear map to determine the pairwise positional
relationship of queried keywords on the cloud server
side. It can be used as a building block in other relevant
application scenarios.

3) We implement a prototype of P3 and conduct exten-
sive experimental evaluation using real-world datasets.
Results demonstrate that P3 greatly improves the search
accuracy with moderate overheads.

The rest of this paper is organized as follows. We summa-
rize the related work in Section II and present the problem

formulation in Section III. We describe the proposed scheme
in Section IV and provide the security analysis in Section V.
We evaluate P3 through extensive experiments in Section VI
and discuss the limitations in Section VII. Finally, we conclude
this paper in Section VIII.

II. RELATED WORK

The privacy-preserving data processing problem
has attracted great research attention during the last
decade [12], [17], [36], [37]. The secure searchable encryp-
tion problem was first addressed by Song et al. [28], which
was index-free and could merely support exact single keyword
search. In order to extend the functionality and efficiency
of searchable encryption, follow-ups have proposed various
schemes that support single keyword search [7], [18], [33] and
exact or fuzzy multikeyword search [4], [5], [11], [15], [16],
[19], [23], [29], [31], [32], [34], by using either self-designed
indexes or the typical inverted index structure. Several
attempts have been taken to extend the fuzzy multikeyword
search scheme to support phrase search, either by treating
a predefined phrase (e.g., network security) as a single key-
word [6] or introducing a TTP server on the client side [38].

Tang et al. [30] proposed a phrase search construction over
encrypted cloud data, but failed to implement and evaluate
their proposal in real-world application scenarios. For each
individual phrase recognition, this construction needed two
rounds of communications between the client and the server,
and also required a large number of trapdoors generated by
the client. Poon and Miri [20] proposed a phrase search
scheme with relatively low storage and computational over-
head. However, they failed to present a complete threat model,
a security definition, or a reasonable security proof. Therefore,
it remains unclear about the privacy guarantees provided by
the proposed method.

In contrast to the existing phrase search solutions, the
phrase search scheme proposed in this paper is a single-
interaction scheme without a TTP. Therefore, it can achieve
higher flexibility and lower communication overhead.

III. PROBLEM FORMULATION

In this section, we formally define the secure phrase search
problem in intelligent processing of encrypted data. We denote
several keywords whose locations in the documents are con-
secutive are a phrase. We denote a keyword collection of the
documents and their corresponding document identifier and
location information as an index, and an encrypted index as a
secure index. We refer to a searched phrase as a query and an
encrypted query as a trapdoor.

A. System Model

The privacy-preserving phrase search system over encrypted
data involves three entities, namely an IoT data owner, a
cloud server, and one or multiple users, as illustrated in
Fig. 1. The data owner generates a secure searchable index
for the document set and outsources the secure index along
with the encrypted document set to the cloud server. When
an authorized user, say Alice, performs a phrase search over



2000 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

Fig. 1. System model of cloud-based phrase search over encrypted data.

the encrypted documents, she first acquires the corresponding
trapdoor from the data owner through the search control mech-
anism (e.g., broadcast encryption [7]), and then submits the
trapdoor to the cloud server. Upon receiving Alice’s trapdoor,
the cloud server executes the predesigned search algorithms
and replies to the user with the corresponding set of encrypted
documents as the search results. Finally, the user decrypts the
received documents with the help of the data owner.

We assume that both the user and the data owner have lim-
ited computation and storage capacities on a practical basis.
Existing key management mechanisms [9], [10], [22] can be
employed to manage the encryption capabilities of authorized
users.

The above scheme is formally defined as follows.
Definition 1 (Privacy-Preserving Phrase Search Scheme):

A privacy-preserving phrase search scheme consists of the
following polynomial time algorithms.

1) KeyGen(τ, d): Let τ and d be security parameters as
inputs of KeyGen(·), and a master key Mk be an output.

2) IndexGen(Mk, �): It executes on the data owner side and
takes the master key Mk and the document collection �
as inputs and the secure index ̂I as an output.

3) TrapdoorGen(Mk,Q): Given the master key Mk and a
query Q from a user, it outputs the secure trapdoor TQ.
This process is also performed on the data owner side.

4) Query(̂I,TQ): Given the secure index̂I and the trapdoor
TQ, it performs search operations on the cloud server
side and returns query results.

B. Security Model

Similar to the existing searchable encryption solu-
tions [31], [32], we consider the cloud server as an honest-
but-curious adversary. That is, the cloud server would honestly
follow the predesigned phrase search protocols and correctly
provide the corresponding services to users, but, it may be
curious about the contents of the documents and attempt to
learn additional information by analyzing the trapdoor and
indexes. For instance, it would infer the keywords in the index
and trapdoors, as well as their locations in the documents.

Motivated by [4], [13], [23], and [32], we consider the fol-
lowing two threat models with different attack capabilities,
depending on the sensitive information that can be obtained
by the cloud server.

1) Known Ciphertext Model: The cloud server can only
access the encrypted document set and the correspond-
ing secure index that are outsourced by the data owner,
and the trapdoors submitted by users. The cloud server

is also capable of recording the search history, such as
the search results in terms of encrypted documents.

2) Known Background Model: In this stronger model, the
cloud server is assumed to be aware of more facts than
what can be known in the known ciphertext model. In
particular, the cloud server can learn the statistical infor-
mation, such as keyword frequency in the document
set. Furthermore, given such statistical information, the
cloud server may infer the keywords in a queried phrase.

Our scheme aims at protecting privacy associated with the
phrase search operation, which consists of three types of pri-
vacy, namely the document set privacy, the index privacy, and
the trapdoor privacy. The document set privacy can be easily
achieved by encrypting the documents using a block cipher,
such as AES, before outsourcing them to the cloud server.
Therefore, in this paper we focus on the latter two aspects,
which are described as follows.

1) Index Privacy: Since the secure index can be regarded as
a representation of the encrypted documents, any further
information (e.g., keywords) should not be deduced from
the index by the cloud server, except for the relationship
between a trapdoor and its corresponding search results.
In general, index privacy refers to the information of
keywords, document identifiers, and keyword locations.
Here, the keyword location privacy is guaranteed once
the location information of all keywords is protected.
We assume that the relationship between the keyword
locations can be revealed to the cloud server, which does
not go against the keyword location privacy.

2) Trapdoor Unlinkability: The trapdoors are used by the
cloud server to perform matches with the secure index.
Intuitively, the trapdoors should not reveal any valuable
information (e.g., search frequency). The unlinkability
means that the cloud server is unable to associate a
trapdoor with the corresponding search phrase, i.e., the
trapdoors generated for the same plaintext phrase should
be different in multiple queries (e.g., queries submitted
by multiple users or at different time periods).

C. Definition and Notation

Now, we introduce the main notations and the rest of the
notations are summarized in Table II.

1) �: A finite set of documents stored in plaintext, denoted
as � = (f1, f2, . . . , fm), where fi is the ith document.

2) W: A finite set of keywords extracted from the document
set �, denoted as W = (w1,w2, . . . ,wμ), where wi is
the ith keyword in W.

3) I: An inverted index of the document set �, denoted
as I = (Iw1 , Iw2 , . . . , Iwμ), where Iwi is the inverted
list corresponding to wi. For each inverted list, we have
Iwi = (wi,�i1,�i2, . . . , �ik), where �ij represents the
jth entity in Iwi . Let �ij = (fij,�ij) be a tuple of the
document identifier fij ∈ � (1 ≤ j ≤ k) and the loca-
tion identifier �ij. �ij is a list of keyword locations in
fij, which is denoted by �ij = 〈lj1, lj2, . . . , ljt〉. Here, ljr
(1 ≤ r ≤ t) is the location where the keyword wi appears
in the document fij.
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TABLE II
NOTATIONS FOR PHRASE SEARCH SCHEME

D. Preliminaries

Bilinear map is a function combining elements of two
groups (e.g., G1 and G2) to yield an element of a third
group (e.g., GT ). We now briefly review it. For simplicity,
we consider a special case where G1 = G2 = G.

Let G and GT be two (multiplicative) cyclic groups of a
finite order n, and g be a generator of G. A bilinear map e is
a function in

e : G×G→ GT (1)

with a useful property: for all u, v ∈ G and a, b ∈ Z, we have
e(ua, vb) = e(u, v)ab, yet e(g, g) is a generator of GT .

Homomorphic encryption is a cryptography primitive that
allows us to perform operations over encrypted data without
knowing the secret key or decrypting the data. Boneh et al. [3]
proposed a homomorphic encryption scheme based on finite
groups of composite order that supported a bilinear map,
which can be briefly described in the following three steps.

1) Key Generation: Assume that G and GT are two (mul-
tiplication) cyclic groups of finite order n, and e is a
bilinear map. Let g and u be two random generators of
G, and p, q be two big primes satisfying n = pq. Set
h = uq, then let pk = (n,G,GT , e, g, h) and sk = p.

2) Encryption: A message m can be encrypted to its
ciphertext c as follows:

c = gmhr ∈ G

where r is randomly picked in {0, 1, . . . , n− 1}.
3) Decryption: A ciphertext c is decrypted as follows:

cp = (

gmhr)p = gmpurpq = (

gp)m
(mod n).

Let ĝ = gp. One needs to compute the discrete log of
cp base ĝ to recover m.

This scheme has the additive homomorphism over the
encrypted data feature. Given the ciphertext E(a) and E(b),
we can get the result of a+ b by E(a) · E(b), i.e., E(a+ b) =
E(a) ·E(b). This feature allows us to calculate the sum of two
numbers by their ciphertexts without decryption.

IV. SECURE PHRASE SEARCH FOR INTELLIGENT

PROCESSING OF ENCRYPTED DATA

This section presents the proposed privacy-preserving
phrase search scheme over encrypted data.

Fig. 2. Structure and workflow of the proposed scheme P3.

Fig. 3. Example of the inverted index (encryptions are not shown).

A. System Overview

The structure and workflow of the proposed scheme, P3,
are depicted in Fig. 2, which mainly consists of the following
three modules.

1) Index generator, which is executed on the data owner
side. It takes the documents as the input and outputs the
corresponding secure index, as well as the encrypted
documents.

2) Trapdoor generator, which is also executed on the data
owner side. Given a user’s queried phrase, it generates
the corresponding secure trapdoor and replies to the user.

3) Phrase search algorithm, which is executed on the cloud
server side. Upon receiving a trapdoor from a user, it per-
forms a phrase search procedure over the secure index
and returns the search results.

In order to support phrase search, we leverage the inverted
index structure and store the keyword locations along with the
document identifier, as shown in Fig. 3 (see Section III-C for
explanations of notations). In the example illustrated in Fig. 3,
there are two files containing the keyword heart, namely Files
1 and 6. More precisely, the locations of heart in File 1 are
5, 12, and 20, respectively.

The phrase search procedure can be described as follows.
When the cloud server receives the trapdoor for a specific
phrase query from a user, it first locates the inverted lists for
the queried keywords, and then finds the documents that con-
tain all of the queried keywords. After that, the cloud server
identifies whether the locations of the keywords are consecu-
tive and returns only the relevant documents that contain the
exact phrase. As shown in Fig. 3, File 1 should be returned if
the user queries the phrase “heart attack.”
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Algorithm 1 EncKeywordForIndex(·)
Input: {wi,K, S,M1,M2}, where K is secret key of PRF π and S,

M1, and M2 are the secret keys of the secure kNN technique.
Define S(i) as the i-th bit in S.

Output: The encrypted keyword identifier ˜Zwi in the index.

1: Construct a vector ˜B = {π(K,wi)
0, . . . , π(K,wi)

d−1}T , where
d is the length of S and π(·) is a secure PRF primitive.

2: for i← 1 to d do
3: if S(i) = 1 then
4: Split ˜B(i) randomly into ˜Ba(i) and ˜Bb(i) with ˜Ba(i) +

˜Bb(i) =˜B(i).
5: else
6: Set both ˜Ba(i) and ˜Bb(i) to ˜B(i).
7: end if
8: end for
9: Encrypt ˜B as MT

1
˜Ba and MT

2
˜Bb.

10: Set ˜Zwi = {MT
1
˜Ba,MT

2
˜Bb}.

11: return ˜Zwi

It is easy to perform phrase search over plaintexts. However,
it is difficult for the server to determine whether or not the key-
words occur in documents as a phrase, given the encrypted
location information of each pair of keywords. To tackle this
challenge, we propose a series of designs based on the homo-
morphic encryption [3] and bilinear groups. We also utilize
the widely used secure kNN method [4], [23], [32] to achieve
trapdoor unlinkability.

B. Building Blocks

As described in Section IV-A, we should ensure privacy in
the index generation, the trapdoor generation, and the phrase
search procedures. We now introduce basic building blocks to
achieve these goals.

1) Keyword Representation in the Secure Index and the
Trapdoor: We utilize a similar technique as in [23] to achieve
the goals of index privacy and trapdoor unlinkability.

Our design is based on the following observation. Given
a polynomial function f (x) of degree m, which is denoted by
f (x) = (x−t1)(x−t2)· · ·(x−tm) = a0+a1x+· · ·+amxm, we can
extract the coefficients to form a vector A = {a0, a1, . . ., am}.
We can also construct another vector B = {t0, t1, . . . , tm}T ,
where t ∈ {t1, t2, . . . , tm}. Note that tm represents t to the
power of m. Since t is a root of f (x), we have AT · B = 0.

Based on the above knowledge, for any single keyword we
construct two vectors, A and B, as its representations in the
trapdoor and the index, respectively. Then, we can know if
a keyword in the trapdoor matches a keyword in the index
by checking whether AT · B = 0. Hence, we now focus on
constructing these two vectors for private-preserving matching.

To generate the encrypted keyword identifier ˜Zwi for each
keyword wi ∈ W, we utilize the secure kNN technique, as
depicted in Algorithm 1. The algorithm includes two steps,
where the first step is to create the vector ˜B (line 1), and the
second step is to obtain the encrypted keyword identifier ˜Zwi

by splitting ˜B randomly into two vectors ˜Ba(i) and ˜Bb(i) (lines
2–9). According to the value of each element in S, ˜Ba(i) and
˜Bb(i) are assigned with different values. We refer the readers
to [4], [23], and [32] for the rationale of secure kNN.

Algorithm 2 EncKeywordForTrapdoor(·)
Input: {wi,K, S,M1,M2}, where K is secret key of PRF π and S,

M1, and M2 are the secret keys of the secure kNN technique.
Define S(i) as the i-th bit in S.

Output: The encrypted keyword identifier ˜Ywi in the trapdoor.
1: Construct a keyword vector � = {wi,w′1, . . . ,w′d−2}, where d is

the length of S and {w′1, . . . ,w′d−2} are d− 2 dummy keywords.
2: Get a vector ˜� = {π(K,wi), π(K,w′1), . . . , π(K,w′d−2)}, where

d is the length of S and π(·) is a secure PRF primitive.
3: Construct a polynomial function of degree d − 1 as f (x) = (x−
π(K,wi)) × (x − π(K,w′1)) × · · · × (x − π(K,w′d−2)) = a0 +
a1x+ · · · + ad−1xd−1.

4: Extract the coefficients of f (x) to form the query vector ˜A =
{a0, a1, . . . , ad−1}T .

5: for i← 1 to d do
6: if S(i) = 0 then
7: Split ˜A(i) randomly into ˜Aa(i) and ˜Ab(i), where ˜Aa(i)+

˜Ab(i) =˜A(i).
8: else
9: Set both ˜Aa(i) and ˜Ab(i) to ˜A(i).

10: end if
11: end for
12: Encrypt ˜A as M−1

1
˜Aa and M−1

2
˜Ab.

13: Set ˜Ywi = {M−1
1

˜Aa,M−1
2

˜Ab}.
14: return ˜Ywi

To construct a secure trapdoor for a query Q, we also utilize
the secure kNN technique to construct the encrypted key-
word identifier ˜Ywi for each keyword wi ∈ Q, as described
in Algorithm 2. It consists of two steps, where the first step
(lines 1–4) is to create the vector ˜A, and the second step
(lines 5–12) is to spilt ˜A to obtain the encrypted keyword
identifier ˜Ywi .

Based on the above constructions, given an encrypted key-
word identifier ˜Ywi in a trapdoor, the cloud server can locate
an inverted list with an encrypted keyword identifier ˜Zwi , by
checking whether ˜YT

wi
·˜Zwi = 0.

The correctness of this construction is illustrated by

˜YT
wi
·˜Zwi =

{

M−1
1

˜Aa,M−1
2

˜Ab
}T ·

{

MT
1
˜Ba,MT

2
˜Bb

}

= (

˜Aa)T
(

M−1
1

)T
MT

1
˜Ba +

(

˜Ab
)T(

M−1
2

)T
MT

2
˜Bb

= (

˜Aa)T
˜Ba +

(

˜Ab
)T

˜Bb

= ˜AT ·˜B. (2)

The secure kNN method is vulnerable to linear analysis, and
this means that the cloud server may launch the linear analy-
sis on a large number of pairs of keyword identifiers between
the secure index and the trapdoors. To address this limita-
tion, we adopt dummy keywords in the procedure of trapdoor
generation (lines 1–3 in Algorithm 2). Therefore, for the same
keyword over multiple queries, we can obtain a different coef-
ficient vector ˜A (line 4 in Algorithm 2). Furthermore, due to the
property of the secure KNN technique, we can perform various
splittings over a coefficient vector ˜A. Hence, our construction
is secure against linear analysis.

2) Phrase Recognition: To protect the keyword location
privacy, we encrypt the keyword location through the homo-
morphic encryption scheme introduced in Section III-D.
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Note that in our scheme, we only publish (n,G,GT , e) to
the cloud server as the public key. Assume that a and b repre-
sent locations of two different keywords in a same document.
Without loss of generality, we also assume that a < b. If these
two keywords are consecutive, we have a − b + 1 = 0, i.e.,
b− a = 1. To determine the relationship between a and b on
the basis of their ciphertexts gahr1 and gbhr2 , the cloud server
sets x = a−b+1 and transforms this problem to an equivalent
problem of determining whether x is the ciphertext of 0, as

E(x) = E(a− b+ 1)

= gahr1 ·
(

gbhr2
)−1 · g1hr3

= gxhr (3)

where g1hr3 represents the ciphertext of 1.
Then, the cloud server further determines the relationship

between a and b depending on the result of

e
(

E(x), λp) = e
(

gxhr, λp) (4)

where λ ∈ G, p is the private key, and λp is the dispersal
factor that cannot be an identity of G.

Until now, the cloud server has known gxhr and λp. To
eliminate the random value r, it then computes e(gxhr, λp)

by bilinear maps. Note that a and b represent consecutive
locations if and only if the result of (4) is equal to 1,
as e(gxhr, λp) = e(g0hr, λp) = e(hr, λp) = e(h, λ)rp =
e(hrp, λ) = e(1, λ) = 1.

The idea of such a design comes from the fact that we
can eliminate the existence of the random value r for (hr)p =
urpq = urn = 1 (mod n). However, since the phrase recognition
procedure is performed by the cloud server, a user cannot send
p to the cloud server directly. Therefore, the user randomly
picks an element λ ∈ G and sends λp to the cloud server. Since
λ and p are both secret, the cloud server cannot infer p from λp.

Now, we briefly discuss the construction of the phrase
recognition process. First, at a high level, we want to pro-
tect the keyword location information, rather than the keyword
location relationship in the phrase search. This is because
revealing the keyword location relationship is inevitable to
perform phrase recognition. Second, the recognition method
can determine an arbitrary interval for two integers. In other
words, if we want to know whether the interval between two
locations a and b is d, we can just send gdhr to the cloud
server, where r is a random number. In addition, the ciphertexts
for the same d over multiple queries are different. This prop-
erty can prevent the cloud server from inferring the interval
d, because the cloud server cannot know the real value of d
even if it learns that a and b satisfy a certain relationship.

Note that this application scenario is different from the
well-known secure multiparty computation (i.e., SMC). In the
setting of SMC, set of parties with private inputs wish to com-
pute a function of their inputs while revealing nothing but
the result of the function, which is used for many practical
applications such as exchange markets. SMC is a collabo-
rative computing problem that solves the privacy preserving
problem among a group of mutually untrusted participants.
Thus, the SMC schemes are fully secure, they protect the loca-
tion relationship between keywords against the cloud server.

As a result, the phrase recognition procedure can only be per-
formed on either the user side or the data owner side, which
sacrifices the main benefit of offloading computation to cloud
servers. Therefore, we make a compromise that revealing the
relationship between keyword locations for better efficiency.

3) Division and Padding of Inverted List: To protect
the keyword privacy, it is necessary to hide its appearance
frequency in each document. We divide each inverted list to
make it contain η documents. Then, if the length of an (orig-
inal or divided) inverted list is smaller than η, we perform
a padding for the remaining entries. In the example shown
in Fig. 3, we choose η = 2 and divide “attack” into two
inverted lists, where the second list has a padding entry. More
precisely, each entity that we pad consists of an invalid doc-
ument identifier and some random numbers as fake keyword
locations.

In order to distinguish these invalid document identifiers
from the valid ones, we use a counter that is initialized as
−1 and gradually decrease it by 1 for each padded document
identifier. Due to the encryption of the invalid and valid docu-
ment identifiers, the cloud server cannot tell which document
identifer is invalid.

Since we utilize the probabilistic encryption, a same key-
word wi will have different ciphertexts (i.e., the encrypted
keyword identifier ˜Zwi ). Therefore, from the perspective of the
cloud server, it seems that each inverted list corresponds to a
unique keyword. In the performance evaluation, we select η
as the frequency median of all the keywords in the document
set. We leave the exploration of optimal η to the future work.

C. Scheme Details

This section describes the privacy-preserving phrase search
scheme in detail, which consists of four components.

1) KeyGen(τ, d): Given the security parameters τ and d,
the data owner generates the master key and the public key
by taking the following steps.

1) Generate two random τ -bit big primes p and q, and set
n = p ∗ q. Construct the bilinear groups G and GT and
the bilinear map e using the method introduced in [3].
Then, pick two random generators, g and u, from G,
and set h = uq. Note that h is a random generator of the
subgroup of G of order p.

2) Randomly generate a d-bit binary string S and two d×d
invertible matrices M1 and M2. Let S(i) be the ith bit of
S.

3) Let π be a secure pseudorandom function (PRF) prim-
itive and generate a τ -bit secret key K.

4) Let ν be a secure pseudorandom permutation (PRP)
primitive and generate a τ -bit secret key U.

The data owner keeps the tuple (p, g, h,K,U, S,M1,M2) as
the master key (i.e., Mk) and the tuple (n,G,GT , e) as the
public key (i.e., pk), which is published to the cloud server.

2) IndexGen(Mk, �): The data owner builds the secure
inverted index in the following steps.

1) Extract a distinct keyword collection W of size μ from
the document collection �. For each keyword wi ∈
W(1 ≤ i ≤ μ), build the inverted list Iwi as described in
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Fig. 3, which consists of the identifiers of documents that
contain keyword wi along with all the keyword locations,
i.e., Iwi = (wi,�i1,�i2, . . . , �ik), where �ij = (fij,�ij)

and �ij = 〈lj1, lj2, . . . , ljt〉, 1 ≤ j ≤ k, 1 ≤ r ≤ t. Set the
inverted index I = {Iw1 , Iw2 , . . . , Iwμ}.

2) For each Iwi ∈ I, encrypt the document identifier by
ν(U, fij) and encrypt the keyword locations.
More precisely, for each location ljy ∈ �ij, pick a ran-
dom number rjy ∈ {0, 1, . . . , n − 1}; then, we have the
encrypted location cjy as described by

cjy = gljy hrjy . (5)

To hide keyword frequencies, we should guarantee that
different keywords have the same frequency. Hence,
the data owner should further process Iwi via division
and padding. If �|Iwi | mod η� = 0, divide Iwi into
|Iwi |/η individual inverted lists, which are defined as
{Iwi1 , Iwi2 , . . . , Iwit }, 1 ≤ t ≤ |Iwi |/η. While if �|Iwi |
mod η� = 0, divide Iwi into 1 + |Iwi |/η individual
inverted lists, which are defined as {Iwi1 , Iwi2 , . . . , Iwit },
1 ≤ t ≤ 1+ |Iwi |/η. For Iwit where t = 1+ |Iwi |/η, the
data owner pads some random dummy document identi-
fiers and binary strings of length |cjy| to make sure that
the keyword document frequency is η.

3) For each inverted list Iwit of the keyword wit, encrypt the
keyword wit to obtain the encrypted keyword identifier
˜Zwit using Algorithm 1. Then, update wit with ˜Zwit . We
now get the secure inverted index ̂I = {{̂Iwit}}, where
1 ≤ i ≤ μ.

3) TrapdoorGen(Mk,Q): Given a query Q, a user can
retrieve the corresponding trapdoor from the data owner, which
takes the following steps.

1) For each wj ∈ Q, 1 ≤ j ≤ |Q|, generate the encrypted
query keyword identifier ˜Ywj using Algorithm 2.

2) We assume that the search distance β is 1. Pick a random
number r ∈ [0, n− 1], and then compute the ciphertext
of 1

C = g1hr. (6)

3) Randomly pick an element λ ∈ G, and then compute
the dispersal factor, ψ = λp, where λp is not an identity
of G.

The trapdoor TQ = {{˜Ywj},C, ψ}, where 1 ≤ j ≤ |Q|.
4) Query(̂I,TQ): Once the cloud server receives the trap-

door from the user, the cloud server first locates the inverted
lists corresponding to the queried keywords, by checking
whether ˜YT

wj
·˜Zwit is equal to 0. As described in Section IV-B,

an equality indicates a match of the queried keyword and the
inverted list. We assume that the corresponding inverted lists
arêIQ = {̂Iwi}, where 1 ≤ i ≤ k, i.e., k = |̂IQ|. Then, the server
identifies the documents containing the exact queried phrase
by determining the positional relationship of the keywords
using (3) and (4). Finally, the server replies to the user with
the search results, i.e., the corresponding encrypted documents
that contain the queried phrase.

V. SECURITY ANALYSIS

This section presents the security analysis under the known
ciphertext model and the known background model. We adopt
the security definitions in [7].

1) History: Let � be a file set and I be the index built from
�. A history over � is a tuple H = (�, I,w), where w is
a phrase containing k keywords w = (w1,w2, . . . ,wk).

2) View, denoted by V(H), is the encrypted form of H
under a certain secret key sk. In general, a V(H) consists
of the encrypted documents Encsk(�), the secure index
Encsk(I(�)), and the secure trapdoor Encsk(w). Note that
the cloud server can only know the views.

3) Trace: The trace of history, which is denoted by
Tr(H), consists of exactly the information we are will-
ing to leak about the history and nothing else. More
precisely, it should be the access patterns and the search
results induced by H. The trace induced by a his-
tory H = (�, I,w), is a sequence Tr(H) = Tr(w) =
{Rw, (δi)w⊂δi , 1 ≤ i ≤ |�|}, where w should occur in the
document δi as a phrase, and Rw indicates whether these
keywords constitute a phrase in the documents.

Theorem 1: Our phrase search scheme is secure under the
known ciphertext model.

Intuitively, given two histories with the same trace, if the
cloud server cannot distinguish which one is generated by a
simulator, we can say that it cannot learn additional informa-
tion about the secure index or the encrypted documents, except
for the access patterns and search results.

Proof: Assume that S is a simulator that can simulate
a view V

′
indistinguishable from the view obtained by the

cloud server. To achieve this, we construct the simulator as
follows.

1) S selects a random δ
′
i ∈ {0, 1}|δi|, δi ∈ �, 1 ≤ i ≤ |�|,

and then outputs �
′ = {δ′i, 1 ≤ i ≤ |�′ |}.

2) S first generates two random τ -bit big primes p′ and q′ to
obtain n′ = p′ ∗q′, and constructs the bilinear groups G

′
and G

′
T . Then, S selects two random generators g′ and u′

from G
′ and obtains h′ = u′q

′
. Finally, S randomly picks

a d-bit binary string S′, two d × d invertible matrices
M
′
1,M

′
2, a secure hash function π(·) with a secret key

K′, and a secure PRP primitive ν with the secret key U′.
Let sk′ = {p′, g′, h′,K′,U′, S′,M

′
1,M

′
2}.

3) S generates I
′(�′) with the same dictionary W as �. For

each wi ∈ W, S takes the following steps.
a) S picks a random binary string as the inverted

list I
′
wi

, which has the same length as the actual
inverted list Iwi . Ensure that if wi ∈ W and wi ⊂
δi, 1 ≤ i ≤ |�|, the inverted list I

′
wi

should contain
the identifier ν(U′, id(δi)) of δi. Meanwhile, if w
occurs in δi as a phrase, we should also ensure that
w occurs in δ

′
i as a phrase.

b) S gets ˜B′ = {π(K′,wi)
0
, . . . , π(K′,wi)

d−1}T
and computes Encsk′(˜B′). Finally, S obtains
Encsk′(I′(�′)).

4) S constructs the query w′ and the corresponding trap-
door as follows. For each wi ∈ w, S constructs the
encrypted keyword identifier ˜Ywj by Algorithm 2. Then S
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sets Encsk′(w′) = {{˜Ywj},Encsk′(1), λ′p
′ } as the trapdoor,

where λ′ is a random element of G
′ and 1 ≤ j ≤ |w′|.

5) Finally, S outputs the view V ′ = (�′,Encsk′(I′(�′)),
Encsk′(w′)).

The correctness of the construction is easy to demonstrate,
as the secure index Encsk′(I′(�′)) and the trapdoor Encsk′(w′)
generate the same trace as the one obtained by the cloud server.
Hence, we can claim that for any probabilistic polynomial-
time (P.P.T.) adversary, V ′ cannot be distinguished from V(H).
Furthermore, no P.P.T. adversary can distinguish the �′ from
Encsk(�) for the semantic security of the symmetric encryp-
tion. The indistinguishability of the index and trapdoors are
guaranteed and enhanced together by the indistinguishability
of the secure kNN technique, the random number intro-
duced in the splitting process, and the use of probabilistic
encryption.

Theorem 2: Our phrase search scheme is secure under the
known background model.

Intuitively, given a view generated by the simulator, if the
cloud server, who has several pairs of queried phrases and
trapdoors, cannot distinguish it from the view he owns, we can
say that the proposed phrase search scheme is secure under
the known background model.

Proof: Based on the above construction, we can claim
that no P.P.T. adversary can distinguish the view V ′ from
V(H) with a certain number of pairs of keywords and trap-
doors. Particularly, no P.P.T. adversary can distinguish the �′
from Encsk(�) for the semantic security of the symmetric
encryption. Due to the usage of the dummy keywords and
the probabilistic encryption, the same queries will have dif-
ferent trapdoors. Therefore, the P.P.T. adversary cannot launch
the linear analysis using the pairs of queried phrases and trap-
doors. Thus, the indistinguishability of indices and trapdoors
are guaranteed.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of P3 through
extensive experiments using real-world datasets.

A. Experiment Setup

Testbed: To simulate the cloud-based service environment,
we use an Aliyun server instance2 as the cloud server, which
is equipped with an Intel Xeon processor at 2.60 GHz and 8
GB RAM.

Dataset: We use a collection of the requests for comments
(RFCs) [24] as the real-world dataset for evaluation. Each
file contains a large number of technical phrases, e.g., error
detection. We randomly pick up 2500 files from the publicly
available RFCs. For each file in the dataset, we build a full-
text index, which is the same as the one commonly used by
modern search engines.

Methods to Compare: We compare P3 with a representative
phrase search solution [30] and the traditional multikeyword
conjunctive search scheme, which are referred to as PSSE
and conjunctive search, respectively. Since an implementation

2[Online]. Available: https://www.aliyun.com/

TABLE III
SUMMARY OF INDEX CONSTRUCTION OVERHEADS

of PSSE is not given in [30], we implement it using Java.
The conjunctive search scheme can be implemented simply
by ignoring the phrase recognition procedure in P3. Although
it is not an exact implementation of an existing solution in the
literature, it can still help us to understand the differences of
the results returned by the conjunctive multikeyword search
and the phrase search. We use a 128-bit security parameter in
all the three methods.

The threshold parameter η is set to be 32, which is as the
frequency median of all keywords in the document set. We
denote |Q| as the phrase length (i.e., the number of keywords
in the phrase) and m as the number of documents.

Query Sets: We generate the querying phrases by randomly
choosing phrases with semantics from the file set, e.g., sophis-
ticated terminals, interrupt characters, shared memory, etc. We
use the same query length setting as existing studies [1], where
|Q| takes the concrete values of 2, 3, 4, and 5.

B. Search Accuracy

We adopt a definition of the search accuracy widely used
in [32]. Given a phrase query, the search accuracy P is cal-
culated as P = tp/(fp + tp), where tp and fp are the numbers
of relevant (i.e., containing the exact phrase) and irrelevant
(i.e., containing all the keywords rather than the exact phrase)
documents in the search results.

We first fix |Q| = 2 and explore the numbers of matched
documents for each method with varying scales of the docu-
ment set, as shown in Fig. 4(a). Compared with the conjunctive
search scheme, P3 and PSSE can remarkably reduce the
number of matched documents.

The precision with respect to different query lengths for
each method is depicted in Fig. 4(b). Here, the plain index
phrase search scheme serves as the baseline of the precision.
We can see that the precisions of P3 and PSSE are 100% in
all the cases, whereas those of the conjunctive search scheme
are less than 20% in all the cases.

C. Search Efficiency

Index Construction: The index construction process is a one-
time, offline computation. The time and storage overheads of
the index construction are depicted in Table III. Clearly, the
overheads increase when the document set gets larger. For
the same document set, the index size of PSSE is much larger
than that of P3. As to the index construction time, P3 requires
slightly more time than PSSE, which is primarily caused by
the encryption operations of the keyword locations.

Trapdoor Generation: The trapdoor generation time for each
method with different query lengths is depicted in Fig. 5.
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(a) (b)

Fig. 4. Search accuracy with varying document sets and query lengths. (a) Number of documents in search results (|Q| = 2). (b) Precision with different
query lengths (m = 2500).

Fig. 5. Trapdoor generation time for different query lengths (m = 2500).

Fig. 6. Search time for different query lengths (m = 2500).

P3 has a higher time cost of trapdoor generation than the
conjunctive search scheme, because it needs extra operations
(e.g., generating dispersal factor) to generate additional infor-
mation for phrase judgement. Compared with PSSE, P3 can
reduce the time cost, especially when the query length is less
than 8. This is because PSSE needs two rounds of interaction
between the user and the cloud server, and during the second
interaction, it needs to generate a trapdoor for each docu-
ment that was returned in the first interaction. As the query
length increases, the number of documents returned in the first
interaction could drop, which leads to a fall of the trapdoor
generation time for PSSE.

Query Time: The query time is defined as the time interval
from the submission of a user’s trapdoor to the receival of the

Fig. 7. Search time for different numbers of indexed documents (|Q| = 2).

search results. For each queried phrase, we repeat the query
20 times and calculate the average search time to mitigate the
deviation caused by uncertain factors. Note that PSSE may
result in a huge index size (see Table III), which cannot be
loaded completely into the memory used in our experiments.
Therefore, we enable the query algorithms of P3 and PSSE
to dynamically load the partial index.

Fig. 6 shows the relationship between the search time and
the query length. The conjunctive search scheme takes the
shortest search time. However, such a scheme cannot provide
accuracy guarantees as discussed in Section VI-B. As to the
phrase search schemes, P3 can roughly reduce the average
search time of PSSE by half. This is because PSSE has a
large index size and thereby spends more time than P3 on
loading its index into the memory.

The search time with different document scales is shown in
Fig. 7. Here, we exhibit only the results for |Q| = 2 due to
space limitation. The search time for each of the three meth-
ods enlarges with the growth of the number of documents.
Compared with PSSE, P3 can greatly reduce the average
search time for different scales of document sets.

Communication Overhead: The communication time and
data volumes are depicted in Fig. 8. The communication time
means the transmission time of the trapdoors and search results
between the client and the cloud server. As the number of
indexed documents grows, the communication time becomes
higher for all three methods. In particular, P3 has the short-
est communication time, because P3 has the smallest data
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(a) (b)

Fig. 8. Communication overhead with different numbers of documents (|Q| = 2). (a) Communication time. (b) Communication data volumes.

volume. First, P3 has a higher search accuracy than the con-
junctive search scheme, and thereby gets a smaller volume of
search results that should be replied from the cloud server to
the client. Second, compared with PSSE, P3 only needs one-
round of interaction and avoids sending intermediate data to
the client for phrase recognition.

VII. DISCUSSION

Although the proposed scheme is more efficient than the
existing phrase search schemes, there are still two limitations.

First, compared with the conjunctive search scheme, P3
has to spend more time on phrase recognition, and thereby
increases search time. Second, P3 cannot directly support a
flexible index update due to the inherent feature of the inverted
index and the adoption of the padding strategy.

A possible way to mitigate these limitations is leveraging
the parallel processing techniques over server clusters. We can
partition the whole document set into several subsets, each
of which contain partial documents and is indexed indepen-
dently. Given a phrase query from the user, search operations
can be performed in parallel over the subsets, which helps to
shorten the search time. An offline update of the secure index
can be employed to deal with updates, e.g., add or remove of
documents and keywords. In particular, when a document has
to be updated, we only need to regenerate the index of the
corresponding subset which the document belongs to, thereby
reducing the index update overhead. We leave these attempts
for the future work.

VIII. CONCLUSION

In this paper, we presented a novel scheme, P3, which tack-
led the challenges in phrase search for intelligent encrypted
data processing in cloud-based IoT. The scheme exploits the
homomorphic encryption and bilinear map to determine the
pairwise location relationship of queried keywords on the
cloud server side. It eliminates the need of a trusted third
party and greatly reduces communication overheads. Thorough
security analysis illustrated that the proposed scheme provides
the desired security guarantees. The experimental evaluation
results demonstrated the effectiveness and efficiency of the
proposed scheme. In future work, we plan to further improve
the flexibility and efficiency of the scheme.
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