
Analysis, Modeling, and Implementation of
Publisher-side Ad Request Filtering

Liang Lv1, Ke Xu1,2, Haiyang Wang3, Meng Shen4, Yi Zhao1, Minghui Li5, Guanhui Geng5 and Zhichao Liu5

1Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
2Beijing National Research Center for Information Science and Technology (BNRist), Beijing 100084, China

3Department of Computer Science and Engineering, University of Minnesota at Duluth, the United States
4School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China

5Baidu Inc., Beijing 100193, China

{lvl16@mails.,xuke@}tsinghua.edu.cn, haiyang@d.umn.edu, shenmeng@bit.edu.cn, zhaoyi16@mails.tsinghua.edu.cn,

{liminghui, gengguanhui, liuzhichao04}@baidu.com

Abstract—Online advertising has been a great driving force for
the Internet industry. To maintain a steady growth of advertising
revenue, advertisement (ad) publishers have made great efforts to
increase the impressions as well as the conversion rate. However,
we notice that the results of these efforts are not as good as
expected. In detail, to show more ads to the consumers, publishers
have to waste a significant amount of server resources to process
the ad requests that do not result in consumers’ clicks. On the
other hand, the increasing ads are also impacting the browsing
experience of the consumers.

In this paper, we explore the opportunity to improve publish-
ers’ overall utility by handling a selective number of requests on
ad servers. Particularly, we propose a publisher-side proactive ad
request filtration solution Win2. Upon receiving an ad request,
Win2 estimates the probability that the consumer will click if
serving it. The ad request will be served if the clicking probability
is above a dynamic threshold. Otherwise, it will be filtered
to reduce the publisher’s resource cost and improve consumer
experience. We implement Win2 in a large-scale ad serving system
and the evaluation results confirm its effectiveness.

Index Terms—Online Advertising, Publisher-side, Ad Request
Filtering, Utility Optimization

I. INTRODUCTION

Online advertising is the primary revenue model of Internet

companies [1]. A typical ad serving procedure is shown in

Figure 1. When a consumer uses an app or browses a webpage,

the integrated ad unit1 sends an ad request to the publisher’s

ad servers. This request carries such information as the ad

unit ID and the consumer ID to identify itself. The ad servers

take the request and query the data management platform for

the consumer profile, e.g., demographic characteristics and

browsing history. After that, the ad servers forward the ad

request as well as the consumer profile to the ad exchange

platform, where advertisers bid through a real-time bidding

mechanism. The ad exchange platform determines the winner

to maximize the expected revenue by considering both ex-

pected Click Through Rate (CTR) [2] and the bid. The winning

1An ad unit is a piece of code that integrated into the apps and webpages.
It requests ads of specific sizes from the publisher and displays the returned
ads at a specific position.

Ad Servers

(1) 
Request

(6) 
Response Ad Exchange 

Platform

Data 
Management 

Platform

(4) Bid request

(5) Winning ad

Consumer PublisherConsumer

Fig. 1: The flow chart of an ad serving procedure.

advertisement is then returned and presented in the ad slot2

on the consumer’s device. The publisher usually makes money

when the consumer takes a certain action, e.g., clicks on the

advertisement.

Given the critical role online advertising plays, the pub-

lishers have made efforts to improve the advertising revenue

by increasing the impressions [3] and the conversion rate [4].

To show more ads to more consumers with a reasonable

latency, the publishers have to deploy large-scale Internet

Data Centers (IDCs) to improve their service capabilities [5].

In addition, the publishers have developed intricate CTR

prediction solutions [6]–[10] to improve the conversion rate by

displaying ads that the consumers are interested in. The above

measures, which are expected to maintain a steady growth of

the advertising revenue, make the processing of ad requests

on the publisher side especially expensive.

However, these measures do not achieve the desired results

in real-world ad serving systems. A study from Yahoo! [11]

shows that the CTRs of many ads are below 0.1%. Also, as

given in Table I, beneficial requests3 account for less than

0.5% on multiple platforms in Baidu’s ad serving system.

In other words, although a huge amount of ads are display

every day, only a small portion of them are preferred and

clicked by the consumers across all industries. It indicates

2Ad slots are the spaces in the apps or webpages where the ads are shown.
3We define beneficial requests as the ad requests that the returned ads are

clicked by the consumers, and define non-beneficial requests as those do not
result in clicks. Given that Cost-Per-Click (CPC) [12] is the dominant pricing
model for online advertising, beneficial requests can bring revenue to the
publishers and display ads that the consumers are interested in.

2223



that the publishers have wasted a significant amount of IDCs

resource to process the non-beneficial requests. To make the

matter worse, increasing online ads have caused negative

effects on the consumers’ browsing experience. More and

more consumers feel online ads annoying and intrusive, and

apply adblockers [13], [14] to minimize annoyance.

TABLE I: Beneficial request ratio of representative ad units.

Ad unit Platform Beneficial
request ratio

i Android app 0.316%
ii iOS app 0.306%
iii Android WAP 0.454%
iv iOS WAP 0.215%
v WWW 0.074%

We attribute the above phenomenon to the fact that the

existing ad serving systems prefer to handle all the incoming

ad requests. The ad serving system is like a hard-working

employee who has to distribute flyers to all random strangers

who pass him/her on the street. Such a preference is based

on the assumption that all the consumers are interested in

some ads on the publishers’ ad servers. However, this is not

always the case. Doing a selective distribution is obviously

more efficient.

In this paper, we aim to answer the following question:

Is there an effective approach to enhance the publishers’
advertising income without harming consumers’ browsing
experience? Rather than directly increasing the advertising

revenue, we attempt to improve the publisher’s income by

reducing its resource cost. We for the first time explore the

potential of serving the ad requests selectively and propose

a publisher-side proactive ad request filtration solution, Win2.

In detail, Win2 predicts the clicking probability of each ar-

rival ad request. If the clicking probability is larger than a

dynamic threshold, the ad request is passed to the ad serving

system where appropriate ads are matched and returned to

the consumer; otherwise, the ad request is filtered and no

advertisement will be returned. Intuitively, the performance

of Win2 heavily relies on the value of the threshold. To

compute the optimal value, we formulate the threshold compu-

tation problem and design a dynamic threshold computation

mechanism. Moreover, we also share the implementation of

Win2 on Baidu’s large-scale ad serving system with extensive

evaluation results.

It should be mentioned that, an alternative opportunity to

show less ads that are not of interest to consumers is before

the Step (5) in Figure 1: if the predicted CTRs of all the

candidate ads are below a certain threshold, no advertisement

will be returned and displayed. However, we notice that CTR

prediction is almost at the end of the ad serving procedure,

hence just not returning ads after CTR prediction is insufficient

to lower the publishers’ resource cost. Win2 works before

serving an ad request and attempts to serve less non-beneficial

requests. Therefore, Win2 can reduce the publishers’ resource

cost effectively and thus increase the advertising income.

The paper is structured as follows. Section II surveys the

related work. Before proposing the design of Win2, we analyze

a strawman approach in Section III to inspire our solution.

Section IV introduces the architecture of Win2. Section V

formulates the threshold computation problem and proposes

the dynamic computation mechanism. The implementation

of Win2 is detailed in Section VI. We evaluate Win2 in

Section VII. Section VIII discusses the applicability of Win2
in multiple pricing models. Section IX concludes the paper.

II. RELATED WORK

AdBlock. The adblocker consumer market is growing steadily

in recent years and there were 600 million devices running

adblocking softwares globally as of 2016 [15]. The earliest

adblocker was developed by Aasted Sorensen in 2002 [16].

The traditional adblockers are mostly utilizing manually cu-

rated rules to identify and block ads [17], [18]. To reduce the

configuration overhead, the work from Kushmerick et al. [19]

adopts machine-learning approaches in adblockers. Since then,

an increasing number of machine-learning-based adblockers

are proposed to detect the ads patterns in HTTP requests [20],

HTML DOM [21] and JavaScript code [22].

It is known that the adblockers can improve the consumers’

browsing experience and enhance their web engagement [23].

However, adblocking significantly reduces the publishers’ rev-

enue that could have been generated if the ads were displayed

and clicked [24]. Based on the research from Adback [25],

a single publisher’s annual revenue loss due to adblockers

can reach over one billion dollars. As a counter measure,

publishers resort to anti-adblockers to detect and block the

adblockers [26], [27], which unfortunately further motivate

the birth of anti-“anti-adblockers” to block and fool anti-

adblockers [28]. The arm race between the publishers and the

consumers is a war that leaves no winners [29], [30].

Different from adblocking, the implementation of Win2
is on the publisher side. Instead of blocking all the ads

indiscriminately, Win2 is designed to smartly recognize and

filter the non-beneficial ad requests. As a result, Win2 not

only improves the consumers’ browsing experience, but also

reduces the overheads of the ad serving system without

impacting advertising revenue.

Click Through Rate (CTR) Prediction. Nowadays, more

and more publishers are aiming to attract the consumers’

interests by pushing relevant ads to them. For example, the

leading publishers such as Google [6], Facebook [7], Bing [8],

Yahoo! [9] and Twitter [10] all highly rely on their CTR pre-

diction systems for ads delivery. Recent years, it also attracts

increasing attention in academia. The related studies develop

a variety of machine-learning models for CTR prediction,

including linear classification [31], collaborative filtering [32],

tensor factorization [33], deep neural network [34], convo-

lutional neural network [35], recurrent neural network [36],

factorization machine [37], adversarial networks [38] and

transfer learning [39], to name just a few. Besides, there are

also studies on feature engineering [40], cold start [41] and

feedback delay [42] in CTR prediction.

2224



Win2 is orthogonal to CTR prediction. CTR prediction is a

part of ad serving process, while Win2 works before serving

an arrival ad request. Moreover, CTR prediction solutions try

to enhance advertising revenue by recommending relevant ads

to the consumers, while Win2 attempts to lower resource cost

by serving less non-beneficial requests.

III. STRAWMAN SOLUTION AND INSPIRATIONS

In this section, we start our discussion with the analysis

a strawman solution for non-beneficial request filtration and

explore its limitations to inspire our solution.

An intuitive approach to detect non-beneficial requests is to

train a binary probabilistic classifier to predict the clicking

probability of the ad requests, and the ad requests whose

clicking probability are below the discrimination threshold4

are classified as non-beneficial requests. To understand the

basic performance of this intuitive approach, we adopt the

XGBoost [43] classifier as a strawman solution, and validate

its performance with the trace data of the ad serving system

of Baidu. In the classification, the discrimination threshold of

the classifier is set to its default value, i.e., 0.5.

Table II lists the datasets used in evaluation. Trainset con-

tains 3 millions of ad requests that are received in 30 minutes,

where the non-beneficial requests are down-sampled so that

the non-beneficial requests have the same frequency as the

beneficial requests. Testset1 (T1) and Testset2 (T2) respectively

contains all the ad requests received in 3 minutes, where the

non-beneficial requests are nearly 200 times of the beneficial

ones. We use the trainset to train the XGBoost classifier, and

use the trained classifier to classify the instances in the testsets.

In the evaluation, we compare the strawman solution with a

baseline, Random, which randomly assigns the ad requests

into beneficial and non-beneficial categories.

Predictive Performance. We first validate the correlation

between the predicted clicking probability and the actual out-

come of the ad requests (i.e., beneficial or non-beneficial). Fig-

ure 2(a) shows the Receiver Operating Characteristic (ROC)

curves of the Strawman and Random. ROC, which is a graph

of true positive rate against false positive rate for all possible

discrimination thresholds, is commonly used to describe and

compare the predictive performance of machine-learning mod-

els. The more convex the ROC curve, the better the predictive

performance. Moreover, we compute the Area Under ROC

Curve (AUC) of the two solutions. AUC ranges in value from

0 to 1, and a larger AUC generally means a better predictive

performance [34], [44]. Particularly, an AUC of 0.5 means that

the classifier has no predictive capacity. AUC of Strawman on

T1 and T2 are 0.837 and 0.834, respectively, while that of

Random on the two testsets are respectively 0.501 and 0.500.

The above results reveal that the outcome of the ad requests

are predictable; however, the prediction of the XGBoost clas-

sifier is not 100% correct. In fact, it is easy to understand,

4Discrimination threshold is the probability at which the positive class is
chosen over the negative class in classification. An ad request is classified
as a beneficial request if its clicking probability is above the discrimination
threshold, or it is classified as a non-beneficial request.

TABLE II: Details of datasets.

Dataset Time range Instances number

Trainset
(down-sampled)

30 minutes 3 millions

Testset1 (T1) 3 minutes 9 millions

Testset2 (T2) 3 minutes 9 millions

0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.2

0.4

0.6

0.8

1

Tr
ue

 P
os

iti
ve

 R
at

e

Strawman
Random

(a) ROC

0 0.5 1
Discrimination Threshold

0.994

0.996

0.998

1

N
PV

Strawman
Random

(b) NPV

Fig. 2: Performance of Strawman and Random on T1. We omit

the performance curves on T2 for clarify, since both solutions

have a similar performance on the two testsets.

since we try to estimate the clicking probability based only

on the ad request itself. However, the consumers’ clicks

depend not only on the information carried in the ad requests,

but also on the consumer profile, consumer behavior, and

advertising campaign [34], etc. Therefore, it will be inefficient

to improve the predictive performance by improving the design

of machine-learning models of the estimator.

Classification Performance. We next validate the classifica-

tion performance, i.e., given the predictive performance of the

classifier, can the default discrimination threshold (i.e., 0.5)

classify the ad requests correctly? Since we focus on iden-

tifying and filtering non-beneficial requests, i.e., the negative

instances, we compute the Negative Predictive Value (NPV) as

the discrimination threshold shifts in Figure 2(b). NPV reflects

how many true negatives are correctly classified. We can see

that the NPV of Random is around always 0.995. This is

because non-beneficial requests account for about 99.5% in

the testsets. The NPV of Strawman is below 0.996 when the

discrimination threshold is 0.5, which is only slightly better

than Random.

This reveals that the typical fixed-value discrimination

threshold is insufficient to accurately classify the non-

beneficial requests. However, we note that the NPV of Straw-

man is relatively high when the discrimination threshold is

small. For example, the NPV is above 0.9999 when the

discrimination threshold is below 0.15. Thus, Strawman shows

the great potential to identify the most likely negative instances

by selecting a proper discrimination threshold.

Summary. Rather than attempting to classify all the ad

requests correctly by improving the predictive performance

of the classifier, we aim to recognize the most likely non-

beneficial requests by computing the optimal discrimination

threshold. Therefore, we will take two steps to identify and

filter the non-beneficial requests in Win2. We first predict the

2225



Request 
Filtration

Click 
Estimation

Win2

Request

Return ads if the request is not filtered

Publisher Ad 
Serving 
System

Fig. 3: The high-level architecture of Win2

clicking probability of the ad requests with a probabilistic

estimator, and then computing the optimal discrimination

threshold in classification. Moreover, we notice that the predic-

tive performance of the estimator changes over time (although

it is stable). It is understandable because the characteristics of

the consumers and ads may change in different time slots. It

motivates us dynamically update the discrimination threshold

according to the predictive performance of the estimator to get

the optimal result.

IV. WIN2: ARCHITECTURE

In this section, we describe the architecture of the publisher-

side proactive ad request filtration solution Win2. As discussed

in Section III, we filter non-beneficial requests in two steps.

Thus, as shown in Figure 3, there are two main modules of

Win2, namely Click Estimation and Request Filtration.

Click Estimation is a supervised probabilistic estimator that

is trained based on the click log of the ad serving system. The

entries in the click log are like {(r, click(r))}, where r is an ad

request that consists of several key-value pairs, and click(r) ∈
{0, 1} denotes the outcome of r with 0 representing non-click

and 1 representing click. Features are extracted from the ad

requests r to train the estimator. In operation, once receiving an

ad request, the trained estimator takes the ad request as input,

and computes the probability that the consumer will click if

serving it. A higher probability indicates a higher likelihood

that the consumer would click if an advertisement is matched

and returned. Then, Click Estimation sends the ad request and

its clicking probability to Request Filtration.

Request Filtration has two main functions, i.e., classifi-

cation and filtering. Particularly, this module maintains the

discrimination threshold. Upon receiving an ad request from

Click Estimation, Request Filtration compares its clicking

probability with the discrimination threshold. The request will

be classified as a non-beneficial request if its clicking proba-

bility is less than the discrimination threshold, otherwise it will

be classified as a beneficial request. After that, the predicted

non-beneficial requests are dropped and thus no advertisement

will be returned; the predicted beneficial requests are passed to

the ad serving system, where proper ads are matched, returned

and then displayed. In this way, the publisher is expected to

serve less non-beneficial requests, while the consumers are

expected to see less uninterested ads.

Obtaining a good discrimination threshold is the most

critical and challenging issue in Win2. As shown in Section III,

a small threshold filters less requests with a higher precision,

while a large threshold filters more requests with a lower

precision. Thus, we face a trade-off between the amount of

ad requests filtered and the precision of classification, which

makes the selection of discrimination threshold non-trivial. We

will explorer the optimal discrimination threshold calculation

in the next section.

V. DYNAMIC THRESHOLD COMPUTATION

In this section, we formulate the threshold computation

problem with utility-based optimization. Such a method has

been shown to be a natural choice to explore the relationship

between the publishers and consumers [45]. After that, we

propose the dynamic computation mechanism to solve it.

Table III summarizes the notations in this section.

A. Time-Slotted System

It is known that both publishers’ and consumers’ wellbeing

are related to the number of ads displayed and clicked in a

period of time. We, therefore, consider our model as a time-

slotted system, which has been a common practice for utility

optimization in digital marketing [46], [47].

Suppose a publisher runs a variety of products (i.e., apps

and webpages) that contain a set of ad units A. In every

slot t, a set of consumers Mt use the publisher’s products

and the integrated ad units send ad requests to the publisher.

The publisher applies Win2 for ad request filtration, and an ad

request will be served only when it is classified as a beneficial

request. For simplicity, we assume the ad serving system

returns one and only one piece of advertisement to serve an ad

request. The consumers will click if they are interested in the

ads displayed. Suppose the publisher adopts the CPC pricing

model, i.e., it gains from the consumers’ clicks.

Since Win2 runs on the publisher side, to encourage the

publishers to implement and deploy the system, we set the

discrimination threshold to maximize publisher utility without

compromising consumer utility in each time slot.

B. Consumer Utility

In this time-slotted system, each advertisement causes an

annoyance to the consumer. However, clicking an interesting

advertisement can satisfy a consumer’s informational and

emotional needs, which will benefit the consumer [48]. In-

spired by the consumer utility modeling work in targeted

advertising [45], we define the utility of a consumer as the

wellbeing brought by the clicks minus the annoyance cost

brought by the ads displayed.

In time slot t, the ad serving system serves∑
a∈A rtam(p̂t) ad requests sent by consumer m,

and
∑

a∈A rtam(p̂t) ads are displayed to consumer

m accordingly. Among them,
∑

a∈A ktam(p̂t) ads are

clicked. Hence, the utility of consumer m is expressed as

U t
m(p̂t) =

∑
a∈A (vm · ktam(p̂t)− cm · rtam(p̂t)), where cm

denotes the average nuisance cost for consumer m to see

an advertisement, and vm denotes the average surplus in the

utility of m brought by a click.

2226



TABLE III: Summary of notations

Notations Meaning
Mt Set of consumers in time slot t;
A Set of ad units;

p̂t
The value of the discrimination threshold in time slot t.
Especially, p̂t = 0 means that all the ad requests are
regarded as beneficial requests and served.

cm
Average nuisance cost for consumer m to see an adver-
tisement;

vm
Average surplus in utility that a beneficial request (i.e., a
click) brings to consumer m;

rtam(p̂t)
The number of ad requests of ad unit a sent by consumer
m that will be served in time slot t if the discrimination
threshold is equal to p̂t;

ktam(p̂t)
The number of beneficial requests of ad unit a sent by
consumer m that will be served (i.e., the number of clicks)
in time slot t if the discrimination threshold is equal to p̂t;

U t
C(p̂t)

Consumer utility in time slot t if the discrimination
threshold is equal to p̂t;

φa
Average revenue of a beneficial request (i.e., a click) of
ad unit a;

θa
Average resource cost for the publisher to serve an ad
request of ad unit a;

V t
A(p̂t)

Advertising revenue of the publisher in time slot t if the
discrimination threshold is equal to p̂t;

St
A(p̂t)

Resource cost of the publisher in time slot t if the
discrimination threshold is equal to p̂t;

U t
P (p̂t)

Publisher utility in time slot t if the discrimination thresh-
old is equal to p̂t;

We define the consumer utility as the total utility of all the

consumers in the time slot:

U t
C(p̂

t) =
∑

a∈A,m∈Mt
(vm · ktam(p̂t)− cm · rtam(p̂t)).

(1)

C. Publisher Utility

The publisher utilizes IDCs resources to offer ad services

and gains from the consumers’ clicks. Hence, we consider

publisher utility as a trade-off between resource cost and

advertising revenue.

In time slot t,
∑

m∈Mt rtam(p̂t) ad requests from ad

unit a are served by the ad serving system, and thus∑
m∈Mt rtam(p̂t) ads are displayed in the ad unit. Among

them,
∑

m∈Mt ktam(p̂t) ads are clicked by the consumers.

The publisher’s advertising revenue is equal to the product

of the number of clicks and average revenue per click. Thus,

the advertising revenue in time slot t is expressed as:

V t
A(p̂

t) =
∑

a∈A,m∈Mt
(φa · ktam(p̂t)), (2)

where φa denotes the average revenue of a click of ad unit a.

The resource cost for the publisher to provide ad ser-

vice includes server cost, infrastructure cost and power con-

sumption in the IDCs, .etc. We notice that these costs are

generally in proportional to the IDCs resource needed to

provide service [49], [50], and it is common sense that the

resource demand in the production systems is approximately

in proportional to the arrival rate of service requests [51]. Thus,

we define the resource cost as a linear function of the number

of ad requests served in the slot:

St
A(p̂

t) =
∑

a∈A,m∈Mt
(θa · rtam(p̂t)), (3)

where θa represents the average resource cost to serve an ad

request of ad unit a.

We present publisher utility as the difference between the

advertising revenue and the resource cost:

U t
P (p̂

t) = V t
A(p̂

t)− St
A(p̂

t). (4)

D. Utility Optimization

In every time slot t, Win2 determines a proper discrimination

threshold p̂t to maximize publisher utility while not harming

consumer utility. We formulate the problem as:

maximize
p̂t

U t
P (p̂

t) = V t
A(p̂

t)− St
A(p̂

t)

subject to U t
C(p̂

t) ≥ U t
C(0),

V t
A(p̂

t) =
∑

a∈A,m∈Mt
(φa · ktam(p̂t)),

St
A(p̂

t) =
∑

a∈A,m∈Mt
(θa · rtam(p̂t)),

U t
C(p̂

t) =
∑

a∈A,m∈Mt
(vm · ktam(p̂t)

−cm · rtam(p̂t)),

U t
C(0) =

∑
a∈A,m∈Mt

(vm · ktam(0)

−cm · rtam(0)).

In the formulation, rtam(p̂t) and ktam(p̂t) are related to

the predictive performance of Click Estimation, and thus are

difficult to be expressed as the formulae of p̂t. As a result, it is

non-trivial to solve the problem via optimization techniques.

To decide the optimal threshold in each time slot, we propose

a dynamic threshold computation mechanism.

E. Design of Dynamic Threshold

The main challenge of threshold computation is to evaluate

the precision of the classifier, i.e., estimate the value of

rtam(p̂t) and ktam(p̂t) as p̂t shifts. Notice that we can hardly

tell whether a filtered ad request is a true negative in the

online scenario, because no advertisement was displayed to

the consumer once the request is dropped. To mitigate the

challenge, we apply the following implementations to better

estimate the predictive performance of Click Estimation and

compute the optimal discrimination threshold accordingly. The

detailed design of Request Filtration with dynamic threshold

computation is given in Figure 4.

Traffic Splitting. As illustrated in Section IV, Click Estima-

tion tags each ad request with its clicking probability and send

the tagged requests to Request Filtration. In Request Filtration,

we use Traffic Splitting to randomly assign the ad requests

into two groups, namely treatment group and control group.

The control group is passed to and served by the ad serving

system. The treatment group is sent to Filter, which drops the

ad requests that are classified as non-beneficial.

Threshold Computation. By analyzing the predicted click-

ing probability and the actual outcome of the ad requests in the

control group, it is easy to infer the predictive performance of

the estimator. In each time slot t, Threshold Computation com-

putes a list of (p,
∑

m∈Mt−1 r̄t−1
am (p),

∑
m∈Mt−1 k̄t−1

am (p)|p ∈

2227



Filter

Control Group

Treatment 
Group

Click 
Estimation

Win2

Request

Return ads if the request is not filtered

Publisher

Threshold
Computation

Discrimination
Threshold

Traffic 
Splitting

log

Request 
Filtration

Ad 
Serving 
System

Ad 
Serving 
System

Fig. 4: Detailed design of Request Filtration

(0, 1], a ∈ A) based on the click log of control group in the

previous time slot, where r̄t−1
am (p) and k̄t−1

am (p) respectively

denotes the number of ad requests and the number of beneficial

requests of ad unit a from consumer m in the control group

whose clicking probability are greater than p. After that, it

decides the discrimination threshold according to Algorithm 1.

In each iteration, we increase p by Δp, and compute both

sides’ expected utility if the discrimination threshold is set to

p. Finally, we set p̂t as the p that is expected to maximize

publisher utility without lowering consumer utility and send

p̂t to Filter.

Filter. Filter stores the discrimination threshold and filters

the ad requests according to the threshold. It updates the

threshold when receiving p̂t from Threshold Computation.

Algorithm 1: Dynamic Discrimination Threshold

Computation in Win2

Input: {(p,∑m∈Mt−1 r̄t−1
am (p),

∑
m∈Mt−1 k̄t−1

am (p))|p ∈
(0, 1], a ∈ A};

Output: Discrimination threshold p̂t in time slot t;
1 Ū t−1

P max =∑
a∈A,m∈Mt−1 (φa · k̄t−1

am (0)− θa · r̄t−1
am (0));

2 Ū t−1
C min =∑

a∈A,m∈Mt−1 (vm · k̄t−1
am (0)− cm · r̄t−1

am (0));

3 p̂t = 0;

4 for p = 0 to 1 do
5 p = p+Δp;

6 Ū t−1
P =∑

a∈A,m∈Mt−1 (φa · k̄t−1
am (p)− θa · r̄t−1

am (p));

7 Ū t−1
C =∑

a∈A,m∈Mt−1 (vm · k̄t−1
am (p)− cm · r̄t−1

am (p));

8 if Ū t−1
P max < Ū t−1

P and Ū t−1
C min ≤ Ū t−1

C then
9 Ū t−1

P max = Ū t−1
P ;

10 p̂t = p;

11 return p̂t;

VI. SYSTEM IMPLEMENTATION

Win2 is implemented in 3000+ lines of C code. The compo-

nents of Win2 are instantiated as container groups [52] in the

IDCs. The containers are managed by an orchestrator, which

automatically scales the containers horizontally or vertically

based on the arrival rate of ad requests. We implemented Re-

mote Procedure Call (RPC) interfaces for the communication

between the components of Win2.

Click Estimation. The main component of Click Estimator

is the probabilistic estimator. It should be emphasized that

any kind of probabilistic estimator can be applied in Win2. In

fact, we face the trade-off between effectiveness and efficiency

when designing the estimator. Notice that a large-scale ad

serving system can receive tens of thousands ad requests in a

second [5] and the feature vectors of ad requests could easily

reach billions of dimensions after encoding [6]. Thus, we use

XGBoost for efficiency and scalability consideration.

In operation, we train the estimator of Click Estimation

incrementally with the help of a distributed machine learning

platform of Baidu. More specifically, the classifier is trained

every 24 hours, and we use the click log of the control group

in the previous day as the trainset. To train the estimator, we

apply the logistic regression as loss function and use the L2

regularization to penalize the complexity of the classifier.

The feature space can generally be divided into three

categories, i.e., identification features, hardware features and

software features. Identification features are used to identify

an ad request, e.g., timestamp, ad request ID and ad unit ID,

etc. Hardware features are related to the consumers’ hard-

ware, such as Collision resistant Unique IDentifier (CUID),

International Mobile Equipment Identity (IMEI), IDentifier

For Advertisers (IDFA) and network (e.g., cellular network or

WiFi). Software features are related to the software platform,

such as User Agent (UA), Operation System (OS), OS version,

app name and app version. The feature space is one-hot

encoded and the dimension reaches tens of millions.

Request Filtration. Request Filtration has three components,

namely Traffic Splitting, Threshold Computation and Filter.

Traffic Splitting adopts hashing-based techniques [53] to

split the ad requests. Particularly, Traffic Splitting applies a

hash function with a subset of the fields in the ad requests,

and then equally splits the requests into 100 bins according

to the hashing value. The 100 bins are then mapped to two

groups (i.e., treatment and control) according to the allocation

table. The table specifies that which bin should be assigned to

which group. The default split ratio is 90/10, where 90 bins

of the ad requests are assigned to the treatment group, and 10

bins are assigned to the control group. Operators can tune the

split ratio by adjusting the allocation table.

The click log of the ad serving system is stored in a

distributed file system, and Threshold Computation accesses

the log through C API. For efficiency consideration, Threshold

Computation randomly samples the entries in the log to

compute the optimal discrimination threshold. Filter simply

compares the clicking probability field of the ad request with

the current discrimination threshold, and sends the request to

the ad serving system if it has a greater clicking probability.

VII. PERFORMANCE EVALUATION

We deployed and evaluated Win2 in a large-scale in-feed5 ad

serving system of Baidu. The system runs in IDCs that consist

5In-feed ads are the ads placed inside a feed, i.e., a list of articles or news.

2228



of tens of thousands of servers, and serves several billions ad

requests from tens of ad units in a day.

In the evaluation, we seek to understand: 1) How much

utility improvement can Win2 bring to the publisher and

consumers? 2) What are the performance of the main modules

of Win2? 3) Given that we focus on publisher and consumer

utility improvement, an interesting question is, what is the

effect of Win2 on advertisers’ wellbeing?

Summary of Results:
• Utility improvement. Evaluation results show that Win2

enhances publisher utility and consumer utility by up

to 1.05% and 213.51%, respectively, which substantially

outperforms alternative designs.

• Performance of main modules. The AUC of Click

Estimation is always above 0.83, and the predictive

performance is stable. Given the performance of Click

Estimation, the optimality gap between our solution and

the theoretical lower bound is below 2% and 6% for

publisher utility and consumer utility, respectively. It

reveals that Requests Filtration can always select the near

optimal discrimination threshold.

• Advertisers’ wellbeing. Evaluations show that Win2
tends to increase the clicks of the advertisers’ ads by

showing the ads to more consumers who are interested

in them, which will improve advertiser utility.

A. Experimental Setting

Baseline. As far as we know, there is no previous researches

have focused on proactive ad request filtration on the publisher

side. In the evaluation, we compare Win2 with the rule-based

ad request filtration solution that currently runs in this ad

serving system, i.e., Ad unit Based Filtration (ABF). ABF
reduces IDCs resource utilization by filtering the ad requests

of the ad units with low beneficial request ratio.

The work flow of ABF is given in Figure 5. Upon receiving

the ad requests from the consumers, Traffic Splitting randomly

assigns the requests into treatment group and control group.

The treatment group is sent to Filter and the control group is

served by the ad serving system. In each time slot t, Filtration

List Generation computes a pair list {(a, brrt−1

a )|a ∈ A}
based on the click log, where brr

t−1

a denotes the beneficial

request ratio of ad unit a in the control group in slot t−1. After

that, it updates the filtration list according to Algorithm 2. In

the algorithm, r̄t−1
am (0) and k̄t−1

am (0) respectively represents the

number of ad requests and beneficial requests of ad unit a
in the control group in slot t − 1. Filtration List Generation

adds the ad units into the filtration list Lt in order of lowest

beneficial request ratio, until publisher utility is expected to be

maximized without lowering consumer utility. Finally, it sends

the filtration list Lt to Filter, which drops the ad requests of

the ad units a ∈ Lt in the treatment group.

Parameters. We run both solutions for 30 minutes and each

time slot is 3 minutes. The utility of consumer m is related

to cm and vm in Equation (1), where cm denotes the average

nuisance cost for each ad and vm represents the average incre-

ment in utility a click brings. Since there is no prior research

Request

Return ads if the request is not filtered

Publisher
Ad 

Serving 
System

Filter

Control Group

Treatment 
Group

Filtration List 
Generation

tt

Ad unit Based Filtration

Traffic 
Splitting

log

Fig. 5: The baseline solution ABF.

Algorithm 2: Filtration List Generation in ABF

Input: Pair list {(a, brrt−1

a )|a ∈ A};

Output: Filtration list Lt in time slot t;
1 B = A;

2 Sort the ad units in B by brr
t−1

a from low to high;

3 Ū t−1
P max =∑

a∈A,m∈Mt−1 (φa · k̄t−1
am (0)− θa · r̄t−1

am (0));

4 Ū t−1
C min =∑

a∈A,m∈Mt−1 (vm · k̄t−1
am (0)− cm · r̄t−1

am (0));

5 Lt = {};

6 for each ad unit a ∈ B do
7 B = B\{a};

8 Ū t−1
P =∑

a∈B,m∈Mt−1 (φa · k̄t−1
am (0)− θa · r̄t−1

am (0));

9 Ū t−1
C =∑

a∈B,m∈Mt−1 (vm · k̄t−1
am (0)− cm · r̄t−1

am (0));

10 if Ū t−1
P max < Ū t−1

P and Ū t−1
C min ≤ Ū t−1

C then
11 Ū t−1

P max = Ū t−1
P ;

12 Lt = Lt ∪ {a};

13 else
14 break;

15 return Lt;

focusing on the parameter settings of consumer utility in online

advertising, we experimentally set cm = 1, vm ∈ [1, 160] in

the evaluation. We set vm below 160 because consumer utility

is positive when vm > 160, which is inconsistent with the

fact that most consumers have negative attitudes toward online

advertising. The larger vm, the greater the surplus in consumer

utility brought by clicks. Publisher utility is related to the

advertising revenue V t
A(p̂

t) and the resource cost St
A(p̂

t). In

the evaluation, we empirically set V t
A(p̂

t) as the advertising

revenue in slot t − 1, and St
A(p̂

t) as the average power

consumption and depreciation cost of the IDCs in a time slot.

B. Utility Improvement

Figures 6 and 7 respectively compares the utility improve-

ment of publisher and consumers in Win2 and ABF. For both

publisher and consumers, the utility improvement is defined

as the percentages by which their utility is enhanced by ad

request filtration. When vm is 160, Win2 enhances publisher

utility and consumer utility by up to 1.05% and 213.51%,

2229



0 2 4 6 8
Time Slot

2

4

6

8

10

12

Pu
bl

is
he

r U
til

ity
 Im

pr
ov

em
en

t 10-3

Win2
ABF

Fig. 6: Publisher utility im-

provement.

0 2 4 6 8
Time Slot

0.5

1

1.5

2

2.5

C
on

su
m

er
 U

til
ity

 Im
pr

ov
em

en
t

Win2
ABF

Fig. 7: Consumer utility im-

provement (vm = 160).

0 2 4 6 8
Time Slot

0.05

0.1

0.15

0.2

0.25

TN
R Win2

ABF

Fig. 8: True Negative Rate.

0 2 4 6 8
Time Slot

2

3

4

5

6

FN
R

10-3

Win2
ABF

Fig. 9: False Negative Rate.

0 50 100 150
0

0.5

1

1.5

2

2.5

C
on

su
m

er
 U

til
ity

 Im
pr

ov
em

en
t

Win2
ABF

Fig. 10: Consumer utility im-

provement (vm ∈ [1, 160]).

0 2 4 6 8
Time Slot

0.8

0.85

0.9

A
U

C

Fig. 11: AUC of Click Esti-

mation.

Fig. 12: Feature importance

in Click Estimation.

0 2 4 6 8
Time Slot

0.9999

0.99992

0.99994

0.99996

0.99998

1

N
PV

Win2
ABF

Fig. 13: Negative Predictive

Value.

respectively, while ABF improves them respectively by up to

0.29% and 110.00%.

Figures 8 and 9 further analyse the True Negative Rate

(TNR) and False Negative Rate (FNR) of the two solutions.

TNR tells the proportion of non-beneficial requests that are

correctly identified and filtered. The higher TNR, the more

non-beneficial requests will be identified and filtered. FNR

tells the percentage of beneficial requests that are predicted as

non-beneficial and filtered. The lower FNR, the less beneficial

requests will be filtered. Win2 filters 24.60% of the non-

beneficial requests and 0.17% of the beneficial requests in

average, which significantly outperforms ABF. In other words,

from publisher perspective, Win2 saves up to 24.6% of the

resource cost at the expense of 0.17% of advertising revenue

loss, which finally results in the 1.05% improvement of

publisher utility; from consumer perspective, Win2 reduces up

to 24.6% of the annoying ads at the expense of blocking 0.17%

of the ads that the consumers are interested in, which leads to

the 213.51% consumer utility improvement.

Moreover, to observe the impact of parameter settings on

consumer utility, Figure 10 shows the consumer utility im-

provement in time slot 5 as vm varies in [1,160]. In both Win2
and ABF, consumer utility improvement increases with vm,

since a larger vm means that consumers are more satisfied by

viewing and clicking interested ads. Win2 increases consumer

utility by 213.51% and by 24.83% in the best case and worst

case, respectively. It shows that Win2 can effectively improve

consumer utility independent of the value of vm.

C. Performance of Win2 Modules

Click Estimation. To validate the predictive performance of

the estimator, we compute the AUC in the ten time slots. As

illustrated in Figure 11, the AUC is always above 0.83, which

confirms that the outcome of the ad requests are predictable

and the the estimator performs stably in operation.

Besides, a benefit of using gradient boosting algorithm is

that it can tell the feature importance6 in prediction, which

helps to understand the opportunity to improve the ad serving

system. Figure 12 shows the 5 features that are most corre-

lated to the outcome of the ad requests, namely ad unit ID

(which decides the position and size of the ads displayed),

context (i.e., the topic that the consumer is browsing, e.g.,

sports, entertainment, technology, etc.), consumer’s location

information, refresh count (i.e., the number that the consumer

refreshes the feed in the session, which indicates the dwell

time of the consumer) and client version (i.e., version of the

apps or web browsers). It reveals that, to increase clicks for

the publishers, more emphasis should be given on the above

factors in ads recommendation.

Request Filtration. To understand that whether Request Fil-

tration can select proper discrimination threshold, Figure 13

shows the NPV after classification in the 10 time slots. The

NPV of Win2 is always above 0.99996, while that of ABF is

mostly below 0.99992. It indicates that Request Filtration can

effectively identify the most likely non-beneficial requests by

selecting proper discrimination thresholds.

Moreover, given the predictive performance of Click Es-

timation, we compare Win2 with the offline global optimal

solution where the discrimination threshold is exactly set to

the value that maximize publisher utility in that time slot.

Figure 14 illustrates the optimality gap between Win2 and

the optimal solution. The gap of publisher utility is below

2%, while that of consumer utility is less than 6%. It also

shows that Request Filtration can obtain the near optimal

discrimination threshold.

6Feature importance quantifies the contribution of a feature on the predictive
performance of the estimator. A higher feature importance score means a
larger increment in predictive error if dropping this feature.

2230



0 2 4 6 8
Time Slot

0

0.02

0.04

0.06

0.08

0.1

O
pt

im
al

ity
 G

ap

Fig. 14: Optimality gap of

both sides’ utility in Win2.

0 2 4 6 8
Time Slot

5

5.5

6

6.5

7

B
en

ef
ic

ia
l R

eq
ue

st
 R

at
io

10-3

Origin
Win2
ABF

Fig. 15: Beneficial request ra-

tio before and after filtration.

D. Advertisers’ Wellbeing

In addition to publishers and consumers, the advertisers are

also important participants in online advertising. An adver-

tiser’s wellbeing is in proportional to the number of its ads that

clicked by consumers, because more clicks usually mean more

interested consumers know about the advertiser’s products.

Prior researches show that cumulative exposure to online ads

can prompt consumers to filter out the excess ads [54], and

reducing exposure to the ads increases consumer engagement

with the web by 28% in average [23]. We notice that Win2
reduces the consumers’ exposure to uninterested ads. Hence,

Win2 tends to encourage consumers more engaged. Figure 15

further compares the ratio of beneficial requests before and

after filtration. It can be seen that, Win2 enhances this ratio

by up to 30% by filtering out the non-beneficial requests.

Therefore, Win2 shows the potential to increase ad clicks

for the advertisers by encouraging consumers more engaged

(thus increase the number of ad requests) as well as enhancing

the ratio of beneficial requests. Quantifying the effect of Win2
on advertiser utility is an important part of our future work.

VIII. DISCUSSION

The pricing models in online advertising can be divided into

two categories, namely performance-based pricing model and

exposure-based pricing model [55].

Performance-based advertising, where the advertiser pays

when an advertisement results in a consumer’s action (e.g.,

a click), accounts for more than 60% of the global online

advertising revenue [56]. In this paper, we assume the pub-

lisher adopts the CPC pricing model, which is the most

popular performance-based pricing model. Besides CPC, an

emerging performance-based pricing model is Cost Per Ac-

tion (CPA) [57], where the publishers gain from clicks that

subsequently see consumers complete specific actions, such

as download, registration, or sign-up. We note that Win2 is

applicable to the CPA pricing model, since the ad requests

filtered by Win2 are unlikely result in clicks, not to mention

further actions.

Exposure-based model is the earliest pricing model in

online advertising, where the advertiser pays for each time

an advertisement is exposed to the consumers. Publishers gain

more by displaying more ads in such pricing models, which is

inconsistent with our assumption in this paper. Thus, Win2 is

not fit for exposure-based pricing model, since filtering any ad

requests can result in revenue loss to the publishers. Improving

publisher utility without harming consumer utility in exposure-

based pricing model is a part of our future work.

IX. CONCLUSION

Online advertising plays an important role in the Internet

ecosystem. Solutions have been proposed to improve the pub-

lisher’s advertising revenue, but the situation is not satisfactory.

In this paper, aiming to improve the publisher’s advertis-

ing income as well as consumer experience, we propose a

publisher-side proactive ad request filtration solution Win2.

Win2 estimates the clicking probability of ad requests with

a probabilistic estimator, and then filter the ad requests that

unlikely result in clicks. With the help of Win2, the publisher’s

income is increased by lowering resource cost and consumer

experience is improved by viewing fewer uninterested ads. We

implement and deploy Win2 in a large-scale ad serving system.

Evaluations show that Win2 enhances publisher utility by up

to 1.05% and consumer utility by up to 213.51%.

ACKNOWLEDGMENT

Ke Xu is the corresponding author. Ke Xu’s work was in

part supported by China National Funds for Distinguished

Young Scientists with No. 61825204, NSFC Project with

No. 61932016, Beijing Outstanding Young Scientist Program

with No. BJJWZYJH01201910003011 and Beijing National

Research Center for Information Science and Technology

(BNRist) with No. BNR2019RC01011. Meng Shen’s work

was in part supported by NSFC Projects with No. 61602039

and No. 61972039, and Beijing Natural Science Foundation

with No. 4192050.

REFERENCES

[1] IAB, “Iab internet advertising revenue report,” Interactive Advertising
Bureau, Tech. Rep., 2018.

[2] G. A. Help, “Clickthrough rate (ctr),” https://support.google.com/
adsense/answer/6157482?hl=en, 2019, [Online; accessed June-2019].

[3] ——, “Impression,” https://support.google.com/google-ads/answer/
6320?hl=en, 2019, [Online; accessed June-2019].

[4] ——, “Conversion rate,” https://support.google.com/google-ads/answer/
2684489?hl=en, 2019, [Online; accessed May-2019].

[5] A. Gupta and J. Shute, “High-availability at massive scale: Building
google’s data infrastructure for ads,” Proc. of BIRTE, 2015.

[6] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady,
L. Nie, T. Phillips, E. Davydov, D. Golovin, S. Chikkerur, D. Liu,
M. Wattenberg, A. M. Hrafnkelsson, T. Boulos, and J. Kubica, “Ad
click prediction: A view from the trenches,” in Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ser. KDD ’13, 2013, pp. 1222–1230.

[7] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Her-
brich, S. Bowers et al., “Practical lessons from predicting clicks on ads
at facebook,” in Proceedings of the Eighth International Workshop on
Data Mining for Online Advertising. ACM, 2014, pp. 1–9.

[8] T. Graepel, T. Borchert, and R. Herbrich, “Web-scale bayesian click-
through rate prediction for sponsored search advertising in microsoft’s
bing search engine,” in International Conference on International Con-
ference on Machine Learning, 2010, pp. 13–20.

[9] Y. Tagami, S. Ono, K. Yamamoto, K. Tsukamoto, and A. Tajima, “Ctr
prediction for contextual advertising: Learning-to-rank approach,” in
Proceedings of the Seventh International Workshop on Data Mining for
Online Advertising, ser. ADKDD ’13, 2013, pp. 4:1–4:8.

[10] C. Li, Y. Lu, Q. Mei, D. Wang, and S. Pandey, “Click-through prediction
for advertising in twitter timeline,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2015, pp. 1959–1968.

2231



[11] X. Wang, W. Li, Y. Cui, R. Zhang, and J. Mao, “Click-through rate
estimation for rare events in online advertising,” Online Multimedia
Advertising Techniques & Technologies, 2011.

[12] G. A. Help, “Cost-per-click,” https://support.google.com/google-ads/
answer/116495?hl=en, 2019, [Online; accessed Feb-2019].

[13] I. Faizullabhoy and A. Korolova, “Facebook’s advertising platform:
New attack vectors and the need for interventions,” arXiv preprint
arXiv:1803.10099, 2018.

[14] J. Wielki and J. Grabara, “The impact of ad-blocking on the sustain-
able development of the digital advertising ecosystem,” Sustainability,
vol. 10, no. 11, p. 4039, 2018.

[15] S. Blanchfield, “The state of the blocked web,” PageFair, Tech. Rep.,
2017.

[16] Wikipedia, “Adblock plus,” https://en.wikipedia.org/wiki/Adblock Plus,
2019, [Online; accessed July-2019].

[17] A. Plus, “Surf the web with no annoying ads,” https://adblockplus.org/,
2019, [Online; accessed April-2019].

[18] EasyList, “Easylist overview,” https://easylist.to/, 2019, [Online; ac-
cessed April-2019].

[19] N. Kushmerick, “Learning to remove internet advertisements,” in Agents.
Citeseer, 1999, pp. 175–181.

[20] P. L. Szczepanski, A. Wi?niewski, and T. Gerszberg, “An automated
framework with application to study url based online advertisements
detection,” Journal of Applied Mathematics, Statistics and Informatics,
vol. 9, no. 1, pp. 47–60, 2013.

[21] V. Krammer, “An effective defense against intrusive web advertising,” in
2008 Sixth Annual Conference on Privacy, Security and Trust. IEEE,
2008, pp. 3–14.

[22] U. Iqbal, Z. Shafiq, P. Snyder, S. Zhu, Z. Qian, and B. Livshits,
“Adgraph: A machine learning approach to automatic and effective
adblocking,” arXiv preprint arXiv:1805.09155, 2018.

[23] B. Miroglio, D. Zeber, J. Kaye, and R. Weiss, “The effect of ad
blocking on user engagement with the web,” international world wide
web conferences, pp. 813–821, 2018.

[24] B. Shiller, J. Waldfogel, and J. Ryan, “The effect of ad blocking on
website traffic and quality,” The RAND Journal of Economics, vol. 49,
no. 1, pp. 43–63, 2018.

[25] Adback, “Worldwide ranking of websites losing revenue due to adblock-
ers,” https://www.adback.co/revenue-loss-adblock-websites-ranking,
2019, [Online; accessed April-2019].

[26] IAB, “Ad blocking: Who blocks ads, why and how to win them back,”
Interactive Advertising Bureau, Tech. Rep., 2018.

[27] S. Zhu, X. Hu, Z. Qian, Z. Shafiq, and H. Yin, “Measuring and disrupting
anti-adblockers using differential execution analysis,” in The Network
and Distributed System Security Symposium (NDSS), 2018.

[28] S. Zhu, U. Iqbal, Z. Wang, Z. Qian, Z. Shafiq, and W. Chen, “Shad-
owblock: A lightweight and stealthy adblocking browser,” in The Web
Conference. Web4Good, 2019.

[29] S. Nichols, “Adblock plus blocks facebook block of adblock plus
block of facebook block of adblock plus block of facebook ads,”
https://www.theregister.co.uk/2016/08/12/facebook block shock/, 2016,
[Online; accessed April-2019].

[30] R. Nithyanand, S. Khattak, M. Javed, N. Vallinarodriguez, M. Falahraste-
gar, J. Powles, E. De Cristofaro, H. Haddadi, and S. J. Murdoch, “Ad-
blocking and counter blocking: A slice of the arms race,” foundations
of computational intelligence, 2016.

[31] M. Richardson, E. Dominowska, and R. Ragno, “Predicting
clicks:estimating the click-through rate for new ads,” in International
Conference on World Wide Web, 2007, pp. 521–530.

[32] A. K. Menon, K. P. Chitrapura, S. Garg, D. Agarwal, and N. Kota, “Re-
sponse prediction using collaborative filtering with hierarchies and side-
information,” in ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2011, pp. 141–149.

[33] L. Shan, L. Lei, C. Sun, and X. Wang, “Predicting ad click-through
rates via feature-based fully coupled interaction tensor factorization,”
Electronic Commerce Research & Applications, vol. 16, no. C, pp. 30–
42, 2016.

[34] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li,
and K. Gai, “Deep interest network for click-through rate prediction,”
in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, 2018, pp. 1059–1068.

[35] B. Edizel, A. Mantrach, and X. Bai, “Deep character-level click-
through rate prediction for sponsored search,” in Proceedings of the 40th

International ACM SIGIR Conference on Research and Development in
Information Retrieval, ser. SIGIR ’17, 2017, pp. 305–314.

[36] Y. Zhang, H. Dai, C. Xu, J. Feng, T. Wang, J. Bian, B. Wang, and T.-
Y. Liu, “Sequential click prediction for sponsored search with recurrent
neural networks.” in AAAI, vol. 14, 2014, pp. 1369–1375.

[37] J. Pan, J. Xu, A. Lobos, W. Zhao, S. Pan, Y. Sun, and Q. Lu, “Field-
weighted factorization machines for click-through rate prediction in
display advertising,” the web conference, pp. 1349–1357, 2018.

[38] Y. Deng, Y. Shen, and H. Jin, “Disguise adversarial networks for click-
through rate prediction,” in Proceedings of the 26th International Joint
Conference on Artificial Intelligence. AAAI Press, 2017, pp. 1589–
1595.

[39] B. Dalessandro, D. Chen, T. Raeder, C. Perlich, M. H. Williams, and
F. Provost, “Scalable hands-free transfer learning for online advertising,”
in ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2014, pp. 1573–1582.

[40] H. Cheng, R. v. Zwol, J. Azimi, E. Manavoglu, R. Zhang, Y. Zhou,
and V. Navalpakkam, “Multimedia features for click prediction of new
ads in display advertising,” in Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2012, pp. 777–785.

[41] K. S. Dave and V. Varma, “Learning the click-through rate for rare/new
ads from similar ads,” in Proceedings of the 33rd international ACM
SIGIR conference on Research and development in information retrieval.
ACM, 2010, pp. 897–898.

[42] O. Chapelle, “Modeling delayed feedback in display advertising,” in
Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2014, pp. 1097–1105.

[43] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining. ACM, 2016, pp. 785–794.

[44] Y. Zhao, M. Qiao, H. Wang, R. Zhang, D. Wang, K. Xu, and Q. Tan,
“TDFI: Two-stage Deep Learning Framework for Friendship Inference
via Multi-source Information,” in Proceedings of IEEE INFOCOM,
2019, pp. 1981–1989.

[45] J. P. Johnson, “Targeted advertising and advertising avoidance,” The
RAND Journal of Economics, vol. 44, no. 1, pp. 128–144, 2013.

[46] Y. Zhao, H. Su, L. Zhang, D. Wang, and K. Xu, “Variety Matters: A
New Model for the Wireless Data Market under Sponsored Data Plans,”
in Proceedings of IEEE/ACM IWQoS, 2019, pp. 23:1–23:10.

[47] Y. Zhao, H. Wang, H. Su, L. Zhang, R. Zhang, D. Wang, and K. Xu,
“Understand Love of Variety in Wireless Data Market under Sponsored
Data Plans,” IEEE Journal on Selected Areas in Communications (J-
SAC), 2020.

[48] G. Brajnik and S. Gabrielli, “A review of online advertising effects on the
user experience,” International Journal of Human-Computer Interaction,
vol. 26, no. 10, pp. 971–997, 2010.

[49] Z. Zhou, F. Liu, H. Jin, B. Li, B. Li, and H. Jiang, “On arbitrating
the power-performance tradeoff in saas clouds,” in INFOCOM, 2013
Proceedings IEEE, 2013, pp. 872–880.

[50] S. Chen, Y. Wang, and M. Pedram, “Resource allocation optimization
in a data center with energy storage devices,” in Industrial Electronics
Society, IECON 2014 - Conference of the IEEE, 2015, pp. 393–399.

[51] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska, “Dynamic right-
sizing for power-proportional data centers,” IEEE/ACM Transactions on
Networking (TON), vol. 21, no. 5, pp. 1378–1391, 2013.

[52] L. Lv, Y. Zhang, Y. Li, K. Xu, D. Wang, W. Wang, M. Li, X. Cao, and
Q. Liang, “Communication-aware container placement and reassignment
in large-scale internet data centers,” IEEE Journal on Selected Areas in
Communications (J-SAC), vol. 37, no. 3, pp. 540–555, 2019.

[53] Z. Wang, Internet QoS: architectures and mechanisms for quality of
service. Morgan Kaufmann, 2001.

[54] J. D. Rumbo, “Consumer resistance in a world of advertising clutter:
The case of adbusters,” Psychology & Marketing, vol. 19, no. 2, pp.
127–148, 2002.

[55] S. Kumar, Optimization Issues in Web and Mobile Advertising: Past and
Future Trends. Springer, 2015.

[56] IAB, “Iab internet advertising revenue report,” Interactive Advertising
Bureau, Tech. Rep., 2017.

[57] Wikipedia, “Cost per action,” https://en.wikipedia.org/wiki/Cost per
action, 2019, [Online; accessed Apr-2019].

2232


