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Abstract
Traffic encryption has been widely adopted to protect the confiden-

tiality and integrity of Internet traffic. However, attackers can also

abuse such mechanism to deliver malicious traffic. Particularly, ex-

isting methods detecting encrypted malicious traffic are not robust

against evasion attacks that manipulate traffic to obfuscate traffic

features. Robust detection against evasion attacks remains an open

problem. To the end, we develop Wedjat, which utilizes a causal

network to model benign packet interactions among relevant flows,

such that it recognizes abnormal causality that represents malicious

traffic and disrupted causality incurred by evasion attacks. We ex-

tensively evaluateWedjat with millions of flows collected from a

real-world enterprise. The experimental results demonstrate that

Wedjat achieves an accuracy of 0.957 F1-score when detecting vari-

ous advanced attacks. Notably, five sophisticated evasion attacks,

which have successfully evaded all existing methods, are accurately

detected byWedjat with over 0.915 F1. It demonstrates thatWedjat
achieves exceptional robustness against evasions. Meanwhile,Wed-
jat maintains an outstanding detection latency, i.e., it can predict

each packet in less than 0.125 seconds.
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1 Introduction
Traffic encryption protects the confidentiality and integrity of com-

munications by concealing private data in encrypted packets. Cur-

rently, over 98% of Internet users enable traffic encryption, such as
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Transport Layer Security (TLS) [37], which thwarts traffic surveil-

lance along routing paths [15]. However, attackers can also abuse

traffic encryption to conceal their malicious activities [12], e.g.,

data breach [52], malware delivery [51], and vulnerability exploit-

ing [41]. Existing study [12] shows that over 70% of network attacks

are launched through encrypted traffic. Traffic encryption can eas-

ily invalidate traditional Deep Packet Inspection (DPI) that detects

attacks by inspecting packet payloads [40, 43, 49, 57, 59].

To mitigate such threats, machine learning (ML) based malicious

traffic detection systems have been developed [20, 21, 23, 32, 38, 59],

which capture stealthy malicious traffic by learning traffic features,

for instance, the number of bytes in transferred packets. Powered

by advanced flow features extracted from sequences of packets [7,

20, 47], existing detection systems can capture stealthy attacks

constructed by encrypted traffic [3, 12] other than plain-text traffic

to complement traditional rule-based detection [49, 57, 59].

Unfortunately, existingmethods for encrypted traffic detection [12,

20, 21, 23, 30] are not robust against evasion attacks [1, 8, 13, 22,

26, 36, 48]. Specifically, attackers construct adversarial examples by

injecting perturbations into attack flows, for example, through in-

serting dummy packets, padding packets, and delaying packets[13,

19, 36]. Thus, attackers can easily evade existing detection systems

that heavily rely on coarse-grained flow-level features [7, 23, 31, 38].

In particular, sophisticated evasion attacks simultaneously manip-

ulate features of many concurrent malicious flows, resulting in

significant decreases in detection accuracy [3, 7, 13, 20, 21, 48].

To this end, we set out to develop a robust detection system for

detecting encrypted malicious traffic, which is robust against vari-

ous evasion strategies. We observe that evasion behaviors, which

manipulate traffic features, such as adding or delaying packets, vio-

late packet interactions regulated by network protocols and original

traffic behaviors. Thus, we can capture such anomalies by modeling

benign packet interaction patterns of relevant flows as between-

flow causality, and recognize abnormal packet interactions that

deviate from the benign patterns as the violation of the causality,

which are treated as malicious traffic, including that constructed

by evasion attacks.

In this paper, we develop Wedjat, a malicious traffic detection

system that utilizes a casual network to model packet interaction

patterns between massive real-world users. It can capture various

encrypted malicious traffic that deviates from the benign interac-

tion and different evading variants that violate normal behavior

patterns. Moreover, by utilizing interactions between different and

relevant flows, Wedjat is robust against flow-level, packet-level,
and multi-flow evasion attacks. Since evasion attacks manipulate

coarse-grained traffic features [7, 38, 59, 61], which inevitably ex-

hibits abnormal interaction patterns, allowing Wedjat to recognize
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Table 1: The comparison with the existing methods of malicious traffic detection.

Categories Model

Traffic

Feature

Detection

Granularity

Typical

Method

Detection Ability Detection Robustness

Encrypted

Traffic

Unseen

Traffic

Realtime

Detection

Packet-Level Flow-Level Multi-Flow

Fixed-Rule

w/o Payloads Packet Zeek [57] × × × × × ×

w/o Flow Features Flow Poseidon [59] × × × × × ×

Machine

Learning

AutoML Packet Binaries Packet nPrintML [23] ✓ × ✓ × × ×

Auto Encoders Packet Statistics Packet Kitsune [38] × × ✓ × × ×

RNNs Packet Byte segments Flow EBSNN [54] ✓ × × × × ×

Random Forest Packet Distributions Flow FlowLens [7] × × ✓ × × ×

K-Means Flow Frequency Features Flow Whisper [20] ✓ ✓ ✓ × ✓ ×

RNNs Packet Length Sequence Flow FS-Net [31] ✓ ✓ × × ✓ ×

Transformers Raw Data Trace Flow/Packet ET-bert [30] ✓ ✓ ✓ × ✓ ×

Graph Host Interactions Flow HyperVision [21] × ✓ ✓ ✓ ✓ ×

SVM Multi-Flow Statistics Multi-Flow Invariant Bag [8] × ✓ × ✓ ✓ ×

Causality Packet Interactions Flow/Packet Wedjat ✓ ✓ ✓ ✓ ✓ ✓

such patterns as significant violations of the causality and thus

capture evading malicious traffic.

Note that, it is non-trivial to model complex packet interaction

patterns among various encrypted packets with different encryp-

tion protocols on the Internet. First, Internet packets are unstruc-

tured data, which are generated by many different encryption proto-

cols [12, 37]. This necessitates a generic packet embedding method

independent of encryption protocols. Second, due to the large scale

of Internet traffic behaviors, users exhibit complex interaction pat-

terns that existing ML models find impossible to learn, especially

the between-flow relationships of traffic. Last, interactions between

multiple flows may incur high detection latency, making it difficult

to realize real-time detection.

To address these challenges, we model the relationship among

encrypted packets as a causal network that represents the seman-

tics of application layer protocols (e.g., HTTPS and SMTP). How-

ever, evasion behaviors, which manipulate traffic features such as

padding dummy packets [19], violate the semantics of the protocol.

Therefore,Wedjat effectively detects malicious packets by inves-

tigating the causality among packets. Specifically, we develop a

packet embedding method that clusters fine-grained packet-level

features. In this way, Wedjat can effectively convert unstructured

Internet packet data into numerical representations. Moreover,Wed-
jat utilizes a causal network, a probabilistic graph model, to model

interactions of packets in relevant flows. Finally, it utilizes belief

propagation to infer the most probable next behavior in real-time to

detect attacks, in particular, the stealthy attacks that are generated

by evasion behaviors. Moreover, the sparse casual network avoids

intensive computation and can boost real-time detection.

We extensively evaluate Wedjat in a top-ranked network infras-

tructure provider. Specifically, we collected 13 million flows from

real enterprise networks including malicious traffic associated with

real-world threats. The experimental results demonstrate thatWed-
jat can capture various unseen attacks with an accuracy of 0.9577

F1-score, thereby outperforming the five stat-of-the-art methods.

In particular, five evasion attacks, which can easily evade all exist-

ing malicious traffic detection [3, 8, 20, 21, 31, 38], are accurately

captured by Wedjat with over 0.9158 F1-score. Meanwhile, Wedjat
significantly improves the accuracy over existing methods on exist-

ing traffic datasets. Besides, Wedjat can realize real-time detection,

with its detection latency bounded by 0.125s.

The contributions of this paper are five-fold:

• We develop the first robust encrypted malicious traffic de-

tection system that utilizes the casual network model to

detect sophisticated and strategic evasion attacks by analyz-

ing between-flow interaction patterns.

• We design a packet embedding method that effectively con-

verts unstructured packets into numerical representations.

• We innovatively utilize the causality to model the complex

packet interactions among various encrypted flows for traffic

analysis.

• We devise a real-time inference-based detection process for

efficient classification of ongoing connections.

• We deployWedjat in a large-scale real-world enterprise to

extensively evaluate its performance.

The rest of this paper is organized as follows: In Section 2, we

formulate the problem. In section 3, we present the motivation and

high-level design of Wedjat. In Section 4, we present design details.

In Section 5, we experimentally evaluate Wedjat. Section 6 reviews

related works, and Section 7 concludes this paper.

2 Problem Statement
2.1 Design Goals
Wedjat aims to identify encrypted traffic generated by various Inter-

net attacks, in particular the malicious traffic generated by evasion

attacks. For instance, existing malware commonly uses TLS traf-

fic encryption protocols to communicate with botmasters [4, 28],

because encrypted packet payloads can evade traditional NIDSes

that rely on plain-text packet payloads. Therefore, Wedjat only
analyzes the features of ongoing Internet traffic at the gateway of

a network. In addition, Wedjat should capture unseen zero-day

attacks [38, 50], which means that it cannot obtain any prior knowl-

edge of the attacks, e.g., labeled datasets for training ML models.

Moreover, it should realize generic detection to capture various ad-

vanced attack traffic [15, 27], regardless of their speeds, durations,

and protocols. Besides,Wedjat should achieve real-time detection,

which allows existing defense systems to throttle attack traffic in

real time [34, 59].

In particular, we aim to develop robust detection against evasion

attacks. Specifically, existing evasion attacks inject perturbations

to manipulate traffic features, for example, through injecting and
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Figure 1: The overview of Wedjat.

revising benign packets. Moreover, unlike existing studies that focus

on specific evasion attacks [19, 20], we consider various evasion

attacks, particularly, those sophisticated attacks that manipulate

the features of many flows. In general, existing evasion attacks can

be categorized into three classes:

• Packet-Level Evasion. Attacker add noise to the feature of one

packet, e.g., through padding, delaying, and inserting packets [36],

which can easily evade existing packet-level detection [23, 38, 61].

• Flow-Level Evasion.Attackers obfuscate features of flows (e.g., the
flow completion time[7], flow length and duration[22] and the

number of bursts [1, 26]), by manipulating features of multiple

packets within one single flow [20].

• Multi-Flow Evasion. Attackers manipulate massive correlated

malicious flows, for example, by inserting benign flow among

malicious flows [21] and inject perturbations to many concurrent

malicious flows simultaneously [22].

Note that, the adversarial flow examples constructed by these

evasion attacks can easily evade many existing detection [7, 20, 21,

38, 47]. Since attackers can easily manipulate the coarse-grained

statistical traffic features utilized by these methods.

2.2 Problem Formulation
This paper focuses on addressing evasion attacks that will result

in the target distribution of testing samples being different from

the source distribution of training samples. Evasion attacks inject

perturbations to construct adversarial traffic examples, which in-

troduces drift in the distribution of traffic features. Specifically, let

𝐷𝑆 = 𝐷+
𝑆
∪ 𝐷−

𝑆
:= {(𝒙𝑆,𝑖 , 𝑦𝑆,𝑖 )}𝑛𝑆

𝑖
denote a labeled dataset which

obeys the source distribution P𝑆 , where 𝑛𝑆 = |𝐷𝑆 | is the scale of the
dataset. Note that, 𝐷+

𝑆
= {(𝒙𝑆 , +)} and 𝐷−

𝑆
= {(𝒙𝑆 ,−)} respectively

represent the dataset of benign samples from distribution P+
𝑆
and

malicious samples from P−
𝑆
. Meanwhile, 𝑦𝑖 ∈ Y = {+,−} where

label + and − indicate benign and malicious respectively. In the

detecting phase, given an unlabeled dataset 𝐷𝑇 = 𝐷+
𝑇
∪ 𝐷−

𝑇
:=

{(𝒙𝑇,𝑖 , ·)}𝑛𝑇
𝑖

sampled from the distribution P𝑇 , our objective is to
utilize training dataset 𝐷𝑆 to construct a ML model 𝑓 (·) and predict
the associated label of the any feature vector 𝒙𝑇 ∈ 𝐷𝑇

. We denote

the output label of sample 𝒙 as 𝑦 = 𝑓 (𝒙). From a probabilistic per-

spective, the process of prediction is to compute 𝑃 (𝑦 |𝒙) and can be

described as:

𝑦̂ = argmax

𝑦∈{+,−}
𝑃 (𝑦 |𝒙 ;𝐷𝑆 ) ∀𝒙 ∈ 𝐷𝑇 (1)

However, the target distribution of malicious data P−
𝑇
exhibits

various changes compared to the source distribution P−
𝑆
, which is

caused by evasion attacks described as 𝐸 (·). The serious phenom-

enon P−
𝑇
:= P−

𝐸 (𝑆 ) ≠ P
−
𝑆
is unknown to detector. Additionally, for

benign traffic, P+
𝑇
is similar to P+

𝑆
. Evasion can lead to misclassifica-

tion. For example, given a malicious flow 𝒂 labeled with −, 𝑓 (𝒂) = −
but 𝑓 (𝐸 (𝒂)) = + will happen simultaneously, which leads to poor

robustness. This is because, evasion attacks make 𝒂 be similar to

a benign sample, which can be defined as 𝑃 (𝐸 (𝒂) |−) < 𝑃 (𝐸 (𝒂) |+).
According to the Bayesian formula and the Full Probability formula

𝑃 (𝑦 |𝐸 (𝒂)) ∝ 𝑃 (𝐸 (𝒂) |𝑦)𝑃 (𝑦), hence 𝑃 (−|𝐸 (𝒂)) < 𝑃 (+|𝐸 (𝒂)) and
then 𝑦 → +.

3 Overview of Wedjat
3.1 Design Intuition
The evasion behaviors of attack traffic, which can easily manipu-

late traditional statistical traffic features (e.g., the number of pack-

ets), exhibit abnormal packet interactions that deviate from the

normal interactions as regulated by behaviors and network proto-

cols [15, 27, 37]. However, we observe that interactions of benign

and malicious traffic have distinct patterns. In particular, between-

flow pattern of malicious flows (even with evasion behaviors) are

distinct from that of benign flows
1
. Thus, we can use between-flow

and within-flow patterns to detect different evasion behaviors. To

achieve this, we leverage causality analysis based on the probabilis-

tic graph model to model packet interactions among Internet users

and recognize the violations of the causality which represent ab-

normal packet interactions associated with evasion behaviors and

attack behaviors. To effectively model packet interactions among

users, we define the causality between packets as below:

Definition 1. Causality refers to the dependency relationship
between variables. If the value or occurrence of the variable 𝑋 may
influence the variable 𝑌 , we call this relationship as causality, denoted
as 𝑋 =⇒ 𝑌 . Causality can be quantified by the conditional proba-
bility 𝑃 (𝑌 |𝑋 ), where 𝑃 (𝑌 |𝑋 ) ≠ 𝑃 (𝑌 ) indicates that the occurrence of
𝑌 is dependent on the occurrence of 𝑋 .

In this paper, we use within-flow causality to denote the proba-

bilistic dependency among packets from one flow and use between-

flow causality to indicate that among the packets from different

flows.

1
Detailed analysis can be found in Appendix C.



KDD ’25, August 3–7, 2025, Toronto, ON, Canada Li Gao, Chuanpu Fu, Xinhao Deng, Ke Xu, and Qi Li

3.2 High-Level Design
We developWedjat, which captures evasion attacks by analyzing

fine-grained packet interactions via real-time causality analysis.

As shown in Figure 1. In general, Wedjat models causal relation-

ships between packets and flows. That is, the nodes in the causal

network represent packets, while the edges represent conditional

probabilities between packets. Based on common benign causal

patterns, Wedjat utilizes known packets to infer unknown packets,

thereby identifying abnormal causality that indicates malicious

traffic and evading traffic detection. In specific, Wedjat includes
three modules:

Packet Embedding. We convert unstructured packets generated

by various encryption protocols into unified numerical represen-

tations. That is, we extract packet-level features and embed the

features into one single dimension, which serves as the input for

causality analysis. Meanwhile, we ensure that such numerical rep-

resentations can differentiate malicious packets. For this purpose,

we formulate an optimization problem upon the clusters of packet

features to purify the clusters and to score the clusters as either

benign or malicious. Subsequently, we calculate the similarity be-

tween each packet and the associated cluster. Finally, we produce

the numerical representation for each packet by combining the

score and similarity of the associated cluster.

Causal Network Construction. Wemodel causality among packets

of related flows from the same sources and destinations. Specifically,

we develop a causal network based on a Directed Acyclic Graph

(DAG), where one node denotes one packet and the edges denote

the probabilistic dependencies between nodes. Particularly, to re-

duce the complexity of inter-flow dependency between massive

packets, we design a network construction based on the semantics

of network protocols and optimize the network structure to com-

press redundant network nodes and edges for efficient detection.

Note that, the learning process does not rely on labeled malicious

traffic, thereby realizing detection for many unseen attacks.

Inference-based Detection. In this module, we recognize the de-

viations of the causality which denote the abnormal interactions

exhibited by malicious and evasion behaviors. To accurately de-

tect abnormal interaction patterns, we develop two-step detection

methods that capture coarse-grained flow-level abnormal interac-

tions based on fine-grained packet-level anomalies. Initially, we

derive the scores that indicate malicious degree from the packet

embedding module. Afterward, we compare the packet score with

the inference result provided by the causal network. In this way,

we effectively capture ongoing abnormal behaviors in real-time.

4 Design Details
4.1 Packet Embedding
In order to characterize unstructured packets from different pro-

tocols, we extract numerical information of arriving packets and

compress them to a numerical value for future network construc-

tion. The principle of mapping is to differentiate between normal

and malicious packets, as well as identify outliers representing

unseen packets. The mapped results should represent the benign

degree of packets. Hence, our objective can be written as a function

named𝑀𝑎𝑝 : R𝑑 → [−1, 1], and𝒑 ↦→ 𝑠𝑐𝑜𝑟𝑒𝒑 . For 𝑠𝑐𝑜𝑟𝑒𝒑 , we assign

benign, malicious and unknown packet to the interval [𝜖, 1],[−1, 𝜖]
and [−𝜖, 𝜖] respectively, where 𝜖 is a hyperparameter range from

0 < 𝜖 < 0.5 referring to the threshold whether it is an unknown

packet.

𝑠𝑐𝑜𝑟𝑒𝒑 = 𝑀 (𝒑) ∈
(𝜖, +1] , if 𝒑 ∈ 𝐷+

𝒑 ,i.e., 𝑃 (𝑦 = +|𝒑) > 0.5 + 𝜀

[−𝜖, 𝜖] , if 𝒑 ∈ 𝐷0

𝒑 ,i.e., |𝑃 (𝑦 = +|𝒑) − 0.5| ≤ 𝜖

[−1,−𝜖) , if 𝒑 ∈ 𝐷−
𝒑 ,i.e., 𝑃 (𝑦 = +|𝒑) < 0.5 − 𝜀

(2)

Packet Embedding is divided into four steps.

Feature Extraction. We first extract a training packet dataset

𝐷𝑆𝒑 = {(𝒑𝑆,𝑖 , 𝑦𝑆,𝑖 )}
𝑛𝑆𝒑
𝑖

from training flow dataset𝐷𝑆 , where 𝒑
𝑆,𝑖 ∈

R𝑑 refers to the 𝑖-th packet sample in 𝐷𝑆𝒑 and 𝑦𝑆,𝑖 ∈ Y refers to

the corresponding label, which depends on the label of the flow to

which the packet belongs. For each packet, we extract side-channel

information in its header segment, e.g., packet length, time-interval,

packet direction and so forth. Hence, each packet can be represented

as a d-dimensional vector:

𝒑𝑖 = (𝑝𝑖
1
, 𝑝𝑖

2
, . . . , 𝑝𝑖

𝑑
) (3)

Normalization is applied to all packet vectors.

𝒑̃𝑆,𝑖 = (𝑝̃𝑆,𝑖
1

, 𝑝̃
𝑆,𝑖
2

, . . . , 𝑝̃
𝑆,𝑖

𝑙
, . . . , 𝑝̃

𝑆,𝑖

𝑑
)

𝑝̃
𝑆,𝑖

𝑙
=

𝑝
𝑆,𝑖

𝑙
− min𝑖 (𝑝𝑆,𝑖𝑙

)
max𝑖 (𝑝𝑆,𝑖𝑙

) − min𝑖 (𝑝𝑆,𝑖𝑙
)
, 𝑖 ∈ [1, 𝑛𝑆𝒑 ]

(4)

Clustering. To map the d-dimensional vector of each packet to a

one-dimensional value, we apply Clustering to the training dataset

𝐷𝑆𝒑 . The objective of kmeans clustering is to partition the dataset

into 𝑁𝑐 non-overlapping clustersC = {𝐶1,𝐶2, ...,𝐶𝑁𝑐
}, where 𝑁𝑐 is

the predetermined number of clusters. The algorithm is to optimize

the following cost function:

C ∗ = argmin

C

𝑁𝑐∑︁
𝑖=1

1

|𝐶𝑖 |
∑︁

𝑘,𝑗 ∈𝐶𝑖

𝑑 (𝒑𝑘 , 𝒑 𝑗 ) (5)

where 𝑑 (·, ·) is the Euclidean distance function. The optimization

solving details are provided in the appendix A.1.

Purification. In order to better distinguish the benign packets and
malicious packets, namely purify these clusters, there are a variable

𝑁𝑐
∗
that need to be further determined. Therefore, we minimize the

following objective function (6), measuring the distance between

clustering results and ground truth:

𝑁𝑐
∗,C ∗ = argmax

𝑁𝑐 ,C

∑︁
𝐶 𝑗 ∈C

���𝑃 (𝑦 = +|𝐶 𝑗 ) − 𝐵𝑒𝑛𝑖𝑔𝑛𝑆𝑐𝑜𝑟𝑒𝐶 𝑗

���
𝐵𝑒𝑛𝑖𝑔𝑛𝑆𝑐𝑜𝑟𝑒𝐶 𝑗

=


1, if 𝑃 (𝑦 = +|𝐶 𝑗 ) > 0.5 + 𝜖

0.5, if
��𝑃 (𝑦 = +|𝐶 𝑗 ) − 0.5

�� < 𝜖

0, if 𝑃 (𝑦 = +|𝐶 𝑗 ) < 0.5 − 𝜖

(6)

where 𝑃 (𝑦 = +|𝐶 𝑗 ) = 𝐶𝑛𝑡 (𝑦𝑖=+)
𝐶𝑛𝑡 (𝑝𝑖 ∈𝐶 𝑗 ) denotes the benign probability of

each cluster, i.e., the portion of benign labels in each cluster. Details

are in Appendix B.
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Packet Score. The last step of packet embedding is to set the

value of packet points to construct nodes for the causal network.

We firstly compute the similarity of a given data point with respect

to its belonging cluster’s𝐶 𝑗 , namely, the distance between the data

and the cluster center it belongs to:

𝑠𝑖𝑚 (𝒑𝑖 ;𝐶 𝑗 ) =
1��𝐶 𝑗

�� ∑︁
𝑘∈𝐶 𝑗

𝑑 (𝒑𝑖 , 𝒑𝑘 ), 𝒑𝑖 ∈ 𝐶 𝑗 (7)

We set a threshold 𝜏𝑜𝑢𝑡 : if 𝑠𝑖𝑚(𝒑𝑖 ;𝐶 𝑗 ) < 𝜏𝑜𝑢𝑡 , we denote this

packet as a outlier point.

Moreover, the packet’s score can be computed as below equation:

𝑠𝑐𝑜𝑟𝑒 (𝒑𝑖 ) = 𝑠𝑖𝑚 (𝒑𝑖 ;𝐶 𝑗 ) ·
[
2 × 𝑃 (+|𝐶 𝑗 ) − 1

]
(8)

Note that

[
2 × 𝑃 (+|𝐶 𝑗 ) − 1

]
maps the benign probability interval

[0, 1] to the score interval [−1, 1]. Hence, the score of packets from
benign flows is near to 1, the score of packets from malicious flows

is near to -1 and the score of packets from unknown flows is near

to 0. The equation of our packet mapping module (2) is satisfied.

Note that the scores of packets are all continuous variables and it

may cause large complexity in the learning phase, so we discretize

them through the equal-width discretization method by dividing an

interval into equal parts. The smaller the partition size, the closer

to the original data distribution characteristics but the larger the

number of parameters.

4.2 Causal Network Construction
Our causal network involves nodes, edges, structure learning, and

parameter learning. We use the following three steps to construct

a causal network.

Bag Aggregation. The between-flow relationship brings about

notable information that can differentiate normal and malicious

traffic. Hence, we first aggregate flows from identical source IP and

destination IP pairs to bags of size 𝑁 ×𝑀 in preparation for network

construction. For nodes and edges, each node 𝑁𝑜𝑑𝑒𝑖, 𝑗 represents

a packet 𝒑𝑖, 𝑗 , namely, the j-th packet in the i-th flow of the bag.

Each directed edge represents a causality between the parent node

and the child node. The values of nodes are the numerical repre-

sentation of packets preliminarily obtained in equation 8 in Packet

Embedding. The parameters of these edges denote the conditional

probability of two nodes.

Fundamental Causal Network. We devise a fundamental causal

network because packets exhibit causality in both temporal order

and spatial location. For each node 𝑁𝑜𝑑𝑒𝑖, 𝑗 , we establish edges as

follows: 𝑁𝑜𝑑𝑒𝑖, 𝑗 ⇒ 𝑁𝑜𝑑𝑒𝑖−1, 𝑗 and 𝑁𝑜𝑑𝑒𝑖, 𝑗−1 ⇒ 𝑁𝑜𝑑𝑒𝑖, 𝑗 . In the

special case where i equals 1, only one edge, 𝑁𝑜𝑑𝑒𝑖, 𝑗 ⇒ 𝑁𝑜𝑑𝑒𝑖−1, 𝑗 ,
is constructed. Similarly, the same condition applies when 𝑗 = 1

is the case. Therefore, this constitutes a dynamic programming

process, and the algorithm details are in appendix 2.

Structure and Parameters Learning. In this process, we optimize

the network structure to obtain the maximum likelihood score via

randomly deleting edges from the fundamental network[10], thus

improving the inference speed. The computation of the maximum

likelihood score is also called parameter learning, which learns

the joint probability distribution of the causal network. We use the

Maximum Likelihood Estimation(MLE) method to estimate network

parameters, which can be described as:

𝜃∗ = argmax

𝜃

𝑙𝑛𝐿 (𝜃 ;𝐷+
𝑆 )

𝐿 (𝜃 ;𝐷+
𝑆 ) =

|𝐷+
𝑆
|∏

𝑘=1

𝑃 (𝒙𝑆,𝑘 ;𝜃 )
(9)

where 𝒙𝑆,𝑘 = 𝒃𝑆,𝑘 = {𝒑𝑆,𝑘
11

,𝒑𝑆,𝑘
12

, ...,𝒑𝑆,𝑘𝑛𝑚}, representing the k-th
sample, i.e., bag, in the dataset 𝐷+

𝑆
. Each 𝒙𝑆,𝑘 contains 𝑁 flows and

𝑀 packets in each flow. The equation (9) above can be reformulated

as follows:

𝐿 (𝜃 ;𝐷+
𝑆 ) =

|𝐷+
𝑆
|∏

𝑘=1

𝑃 (𝒑𝑆,𝑘
11

, 𝒑𝑆,𝑘
12

, ..., 𝒑𝑆,𝑘
𝑁𝑀

;𝜃 )

=

|𝐷+
𝑆
|∏

𝑘=1

𝑁∏
𝑖=1

𝑀∏
𝑗=1

𝑃 (𝒑𝑆,𝑘
𝑖 𝑗

|𝑝𝑎𝑟𝑒𝑛𝑡 (𝒑𝑆,𝑘
𝑖 𝑗

) )

=

|𝐷+
𝑆
|∏

𝑘=1

𝑃 (𝒑𝑆,𝑘
11

)
|𝐷+

𝑆
|∏

𝑘=1

𝑁∏
𝑖=2

𝑃 (𝒑𝑆,𝑘
𝑖,1

|𝒑𝑆,𝑘
𝑖−1,1 )

|𝐷+
𝑆
|∏

𝑘=1

𝑀∏
𝑗=2

𝑃 (𝒑𝑆,𝑘
1, 𝑗

|𝒑𝑆,𝑘
1, 𝑗−1 )

·
|𝐷+

𝑆
|∏

𝑘=1

𝑁∏
𝑖=2

𝑀∏
𝑗=2

𝑃 (𝒑𝑆,𝑘
𝑖,𝑗

|𝒑𝑆,𝑘
𝑖−1, 𝑗 , 𝒑

𝑆,𝑘
𝑖,𝑗−1 )

(10)

Optimal parameters 𝜃 are obtained by computing the derivative

of the log form of Eq. (10) and setting it equal to zero. Note that,

the learning process only involves training benign samples because

we only learn the invariant causality from benign traffic.

In general, it is challenging tomodel relationships among packets

across multiple flows because of the vast scale of Internet packets.

For example, 𝑁 concurrent flows, each containing𝑀 packets, will

incur a complexity of𝑂 (𝑀𝑁 ∗𝑀𝑁 ).Wedjat addresses this challenge
by compressing the causality network to effectively model the

complex interactions.

4.3 Inference-based Detection
We design a unique packet label inference mechanism that aims to

use the inference algorithm to predict the score of the next packet

based on the arrived packet and the network structure parameters.

In the case where the difference between the predicted score and

the newly arrived packet obtained by the mapping mechanism is

greater than the setting threshold 𝜏𝑝 , it is considered that the packet

does not conform to the pattern of benign traffic. If the number of

such situations in traffic is greater than a certain threshold 𝜏𝑓 , the

entire traffic is malicious.

Packet Label Inference. Upon the arrival of each data packet, the

discrepancy between its observed value and the predicted value is

computed. If this discrepancy surpasses a predefined threshold, the

packet is classified as a Malicious packet.

The observed value is the score obtained through Packet Embed-

ding, i.e., the probability that a packet is indeed benign: 𝑠𝑐𝑜𝑟𝑒𝑖 =

𝑃 (𝑦 = +|𝒑) = 𝑀 (𝒑). We use the belief propagation algorithm[10]

to calculate:

𝑠𝑐𝑜𝑟𝑒∗𝒑𝑖,𝑗 = argmax

𝑠𝑐𝑜𝑟𝑒
𝑃 (𝒑𝑖,𝑗 = 𝑠𝑐𝑜𝑟𝑒 |𝒑1,1, . . . , 𝒑𝑖−1, 𝑗−1 ) (11)

if |𝑠𝑐𝑜𝑟𝑒𝒑𝑖,𝑗 − 𝑠𝑐𝑜𝑟𝑒∗𝒑𝑖,𝑗 | > 𝜏𝑝 , this packet is abnormal.

Flow Label Inference. For each flow label, we compute the pro-

portion of anomalous packets in a single flow, namely, Flow-wise
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Inference Accuracy(FIA).

𝐹𝐼𝐴(𝒇𝑖 ;𝑀 ) = 1

𝑀

𝑀∑︁
𝑗

𝐼 ( |𝑠𝑐𝑜𝑟𝑒𝒑𝑖,𝑗 − 𝑠𝑐𝑜𝑟𝑒∗𝒑𝑖,𝑗 | > 𝜏𝑝 ) (12)

where 𝐼 (·) is an indicator function that takes the value 1 when the

condition is satisfied. If the FIA of each flow is greater than a certain

threshold 𝜏𝑓 , the entire traffic is malicious. For ongoing traffic, we

obtain the real-time label through computing 𝐹𝐼𝐴(𝒇𝑖 ; 𝑙) under the
sequence of packets up to the current latest packet 𝒑𝑖,𝑙 .

5 Experimental Evaluation
5.1 Experiment Setup

Implementation. We prototype our method with more than 5,000

lines of code
2
. Specifically, we utilize the Python with DPKT li-

brary to parse PCAP packet files and to assemble them into flows

and bags based on their five-tuple. More precisely, the constructed

datasets comprise packet labels and features (e.g., packet lengths,

timestamps, directions, etc.), which are saved in JSON format and

stored with MongoDB. We set 𝑁 = 3 and𝑀 = 10 by default, which

trades off between accuracy and efficiency.

Datasets. To extensively evaluateWedjat, we collaborate with
a top-ranked network infrastructure provider and use real-world

datasets for evaluation. Currently, Wedjat is deployed as an offline

attack investigation tool in a Security Operations Center (SOC) [2],

which analyzes encrypted traffic collected from the gateway of an

enterprise network. We validated our results of Wedjat by using 21-
day real-world datasets. Wedjat is utilized to capture all malicious

flows, which enables identifying vulnerabilities and performing

comprehensive forensic analysis in real time.

Specifically, the large-scale dataset from enterprise networks

consists of 735,997 TLS-encrypted malicious flows and 12,436,861

benign encrypted flows. We randomly select 100,000 bags of ma-

licious and benign flow evenly. More precisely, the set of bags

comprises 122,073 benign flows and 134,456 malicious flows, respec-

tively. Meanwhile, we utilize existing public datasets, i.e., CICIDS-

2017 [44], to complement the real-world datasets, thereby validat-

ing the results and avoiding the issue of dataset bias. Such dataset

covers traffic of 12 different attacks, e.g., malware traffic, flooding

traffic, and botnet traffic. Similarly, we evenly select benign and

malicious flows that make up 1,404 and 1,627 bags of traffic. Figure

2 plots the distributions of packet length and direction. Note that,

we randomly split the 20% of the whole dataset as a testing set,

while the remaining 80% samples are used as the training set. Note

that, the labels are only used as ground truth, to calculate detection

accuracy. Wedjat does not use labels for training the causal model.

Baselines. We compare Wedjat with five state-of-the-art ma-

licious traffic detection methods. These baselines utilize various

features and ML models, covering both supervised [3] and unsu-

pervised [19] methods, flow [31] and packet [38] based methods,

single-flow [31] and multi-flow [21] based methods.

• Kitsune. Kitsune [38] employs autoencoders to learn statistics of

packet-level features, which utilize unsupervised ML to capture

various unseen attacks.

2
The source code ofWedjat is available at: https://anonymous.4open.science/r/Wedjat

(a) Enterprise (b) CICIDS-2017

Figure 2: Probability density functions of packet length with
direction.

• Enhanced + SVM. Anderson et al. [3] developed an enhanced

feature set for encrypted traffic detection, which consists of a

Markov chain transformation and statistics, e.g., minimum and

mean of packet lengths. For end-to-end detection, we apply a

Support Vector Machine(SVM) model to learn these features.

• FS-Net. FS-Net [31] is a deep learning-based method that lever-

ages multi-layer bidirectional gated recurrent units (Bi-GRUs)

to capture abnormal sequential features from packet length se-

quences for traffic detection.

• Whisper. Whisper [20] utilizes K-Means to cluster the frequen-

cies of packet-level features, thereby identifying outlier samples

as malicious traffic.

• Hypervision. Hypervision [21] utilizes a graph to represent

interaction patterns among hosts. It detects abnormal interaction

patterns by analyzing the statistics of graph structural features.

We emphasize thatWedjat is an unsupervised approach; thus,

we focus on comparing unsupervised baselines, including existing

robust detection against single-flow evasions [19, 21]. These meth-

ods heavily rely on statistical traffic features, which are not robust

against evasion attacks.

Selected Evasion Attacks. We simulated five evasion attacks, in-

cluding Random Delaying, Random Padding, FRONT [22], WTF-

PAD [26], and DFD [1]. Note that, the last three evasion strategies

are injection-based methods.

• Random Delaying. It randomly chooses and delays original

packets by randomly generating a millisecond-level delay time.

• Random Padding. It pads a random amount of data to packet

payloads under the restriction that the packet size is less than

the Maximum Transmission Unit (MTU).

• FRONT. FRONT[22] injects multiple packets at the stage of flow

establishment to obscure the most distinguishable features. It

sets injection times to follow a Rayleigh distribution.

• WTFPAD.WTFPAD[26] injects packets at sparse gaps in flow

to prevent long gaps from becoming distinguishing features.

• DFD. DFD[1] injects dummy messages into every outgoing burst

with a certain disturbance rate to obfuscate burst patterns.

These evasion attacks indicate that existing systems are vulnera-

ble to simple evasion strategies, such as injecting benign packets

for effectively obfuscating flow patterns. In the experiment, we

measure performance degradation caused by evasion attacks with

different overheads, i.e., delaying time intervals and amount of in-

jected data. Specifically, time overhead is defined as the proportion

of total delaying time to the original flow completion time, and data

https://anonymous.4open.science/r/Wedjat
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Table 2: Accuracy comparison without evasion attacks.

Dataset Method Non-Evasion Scenario
Pre Rec F1

Enterprise

Kitsune 0.9223 0.7913 0.8518

Enhanced+SVM 0.8864 0.9896 0.9352

FS-Net 0.9830 0.9798 0.9814

Whisper 0.9323 0.9117 0.9219

Hypervision 0.9170 0.9632 0.9395

Wedjat 0.9387 0.9775 0.9577

CICIDS-2017

Kitsune 0.9524 0.9016 0.9263

Enhanced+SVM 0.7128 0.8316 0.7676

FS-Net 0.9865 0.9816 0.9841

Whisper 0.9180 0.9516 0.9345

Hypervision 0.9624 0.9833 0.9727

Wedjat 0.9441 0.9866 0.9649

overhead means the sizes of inserted and padded packets divided

by the total size of packets.

Evaluation Metrics. We measure the accuracy by using precision,

recall, and F1-score as primary metrics. Moreover, we mainly pay

attention to the recall value of malicious samples, which is a critical

indicator of robustness. This is because the distribution of malicious

samples exhibits significant drifts in the presence of evasion attacks,

and thus causes noticeable decreases in the recall value of detectors.

5.2 Accuracy Evaluation
We conduct experiments on two datasets without evasion attacks,

which allows us to confirm the correctness of the established base-

lines. According to Table 2, on the real-world dataset, Wedjat out-
performs other unsupervised detection methods that claimed to

achieve robust detection for some specific evasion attacks [19, 21]

by achieving a 98.11% F1-score. Such performance is comparable to

FS-Net deep learning-based detection which incurs high overheads.

Moreover, Wedjat significantly improves the accuracy in terms of

precision and recall over existing methods, where Wedjat achieves
93.87% precision and 98.66% recall. Similarly, on the public dataset,

Wedjat achieves an accuracy of 96.71% F1 which is comparable

to existing systens that are not robust against evasion attacks (cf.

Section 5.3). Note that, Wedjat achieves similar accuracy on the

enterprise dataset and the public dataset, which indicatesWedjat
has stable performance across various network environments. Ad-

ditionally, Wedjat only raises an average of 5.53 false alarms per

hour, which can be manually managed by operators, according to a

recent false positive alarm study [18].

Furthermore, we measure the accuracy under critical settings to

clarify known issues [5, 25] in existing detection sytems [19, 21, 38]:

• Datasets Bias.We also use other public datasets [16, 17]. Specifi-

cally,Wedjat achieves 0.9097 and 0.9367 F1-score when detecting

IoT attack traffic [17] and DNS-over-HTTP attack traffic [16],

respectively. These results are similar to the results on the CIC

datasets. The reason for mainly using the CIC public dataset is

its significantly larger size than other public datasets.

• Ablation Studies.We disabled the packet embedding by directly

using packet lengths, which resulted in 5.18% F1 drop. Meanwhile,

we replace the causal network with traditional unsupervised ML

used by Kitsune [38], which incurs 10.29% F1 drop.

• Concept Drifting. We trained the model on traffic data from

Tuesday on the CIC dataset and tested it on data from the subse-

quent three days. We observed that Wedjat achieved an F1-score

of 0.8022, which is significantly higher than the 0.5549 F1-score

achieved by Whisper.

• Domain Generalization. We train the model on the public

dataset and evaluate its accuracy on the dataset generated under

real-world deployment.Wedjat achieves 0.7422 F1, outperforming

the 0.6767 F1 achieved by FS-Net. All baselinemodels fail to detect

attacks that differ from those in the training datasets.

5.3 Robustness Evaluation
To extensively validate the robustness against various evasion at-

tacks, we implement five sophisticated evasion strategies that ma-

nipulate packets of all malicious traffic in testing sets. Moreover,

we adjusted the parameters of these evasion strategies to set the

data overheads and time overheads for each evasion strategy at 50%.

Table 3 and Table 4 present the deterioration in detecting accuracy

of our method and baselines across two datasets under different

evasion strategies.

Robustness evaluation in real-world scenarios. We evaluate and

compare Wedjat with the baselines on the real-world enterprise

traffic. As shown in Table 3, we observe a significant decrease in

recall and F1 of baseline methods. Specifically, Kitsune suffers from

49% ∼ 73% decrease in recall, where the random padding evasion

strategy decreases recall and F1 to 49.33% and 63.23%. This indicates

that 50% the malicious flows are misclassified as benign flows, and

the attacker can effectively evade Kitsune. The detection perfor-

mance of other baselines also exhibits significant decreases. For

example, the recall of Hypervision drops to below 0.4 in the pres-

ence of WTF-PAD and DFD evasion strategies. Since such evasion

strategies can obfuscate the statistical features that Hypervision

relies on. Moreover, even if Hypervision analyzes inter-flow corre-

lations, existing evasion attacks can still simultaneously obfuscate

many flows. In comparison, our method achieves robust detection

with a recall of over 89% across five evasion strategies.

Robustness evaluation on public datasets. To eliminate the effect

of dataset bias, we further conduct robustness evaluation on public

datasets. As shown in Table 4, Wedjat achieves over 90% precision,

recall, and F1 scores on the public dataset, in the presence of three

evasion strategies, random delaying, random padding, and WTF-

PAD. Additionally, the decrease of recall for ourmodel is bounded by

10%, thereby significantly outperforming other methods. Under the

FRONT and DFD advanced evasion attacks, the recall of Wedjat is
significantly higher than other malicious traffic detection methods.

Robustness evaluation with increasing overheads of evasion attacks.
In addition, we compared the accuracy decreases under evasion

attacks with various overheads. Figure 3 illustrates that, as the

attacker invests more resources, the evading malicious traffic be-

comes more successful in evading detection by baselines. This is

because larger overheads allow attackers to have more data or time

resources to craft sophisticated evasion attacks, altering the origi-

nal malicious features to a greater extent, and making them more

difficult to detect. Figure 3 shows that, as evasion attacks introduce

more overheads, the F1-score of our method remains above 80%,
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Table 3: Accuracy comparison under different evasion attacks with 50% overhead. (Enterprise Dataset)

Method Random Delaying Random Padding FRONT WTF-PAD DFD
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

Kitsune 0.9158 0.7270▼ 0.8106▼ 0.8806 0.4933▼ 0.6323▼ 0.8812 0.4944▼ 0.6335▼ 0.8754 0.4699▼ 0.6115▼ 0.8919 0.5849▼ 0.7065▼

Enhanced+SVM 0.8663 0.8215▼ 0.8433▼ 0.8224 0.5870▼ 0.6851▼ 0.8541 0.7366▼ 0.7910▼ 0.8517 0.7258▼ 0.7838▼ 0.8524 0.7551▼ 0.8008▼

FS-Net -
1

- - 0.9775 0.7358▼ 0.8396▼ 0.9686 0.5215▼ 0.6780▼ 0.9718 0.5823▼ 0.7283▼ 0.9728 0.6289▼ 0.7639▼

Whisper 0.8978 0.5816▼ 0.7059▼ 0.9066 0.6424▼ 0.7519▼ 0.9110 0.6779▼ 0.7773▼ 0.9078 0.6517▼ 0.7587▼ 0.8872 0.5407▼ 0.6719▼

Hypervision 0.8913 0.7152▼ 0.7936 0.8894 0.7012▼ 0.7842 0.8813 0.6474▼ 0.7465 0.8200 0.3973▼ 0.5353▼ 0.7964 0.3541▼ 0.4902▼

Wedjat 0.9372 0.9517 0.9444 0.9337 0.8986 0.9158 0.9366 0.9424 0.9395 0.9351 0.9190 0.9269 0.9360 0.9331 0.9345
1
FS-Net is only based on packet length and is immune to the Random Delaying Evasion Strategy.

2
We mark ▼ for a significant performance degradation compared to the non-evasion scenario.

Table 4: Accuracy comparison under different evasion attacks with 50% overhead. (CICIDS-2017 Dataset)

Method Random Delaying Random Padding FRONT WTF-PAD DFD
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

Kitsune 0.9326 0.6233▼ 0.7472▼ 0.9161 0.4916▼ 0.6399▼ 0.9201 0.5183▼ 0.6631▼ 0.9151 0.4850▼ 0.6339▼ 0.8897 0.3633▼ 0.5159▼

Enhanced+SVM 0.6981 0.7750 0.7345 0.6156 0.5366▼ 0.5734▼ 0.6516 0.6266▼ 0.6389▼ 0.6616 0.6550▼ 0.6582▼ 0.6178 0.5416▼ 0.5772▼

FS-Net - - - 0.9391 0.4883▼ 0.6425▼ 0.9694 0.4233▼ 0.5893▼ 0.9652 0.3700▼ 0.5349▼ 0.9799 0.6516▼ 0.7827▼

Whisper 0.8996 0.7616▼ 0.8249 0.8874 0.6700▼ 0.7635▼ 0.9003 0.7683▼ 0.8291 0.8671 0.5550▼ 0.6768▼ 0.8583 0.5150▼ 0.6437▼

Hypervision 0.9603 0.9283 0.9441 0.9581 0.8783 0.9165 0.9551 0.8166▼ 0.8805 0.9514 0.7516▼ 0.8398 0.9494 0.7200▼ 0.8189

Wedjat 0.9394 0.9050 0.9219 0.9403 0.9200 0.9301 0.9358 0.8516 0.8917 0.9394 0.9050 0.9219 0.9340 0.8266 0.8771

(a) Random delaying strategy. (b) Random padding strategy. (c) FRONT injection strategy.

Figure 3: Comparison of F1-scores with baselines under various evasion attacks with increasing overheads.

which indicates a slight drop in performance under highly potent

evasion attacks. Overall, attackers can increase the number of in-

jected bytes or delayed time intervals, which incur more overheads,

to more effectively evade existing methods, whereas they cannot

evade robust detection of Wedjat.

5.4 Efficiency Evaluation
We analyze the default setting of the causal network in Figure 4. We

observe that the average prediction latency for a packet is 0.1213

seconds. Meanwhile, our model can produce detection results for

each packet within 0.125 seconds. Additionally, we analyze the

effect of different network scales on detection latency. Figure 5 in-

dicates that, when the number of nodes is less than 50, the average

detection latency is bounded by 0.5 seconds. However, as the scale

of the network increases to 3×25 and 4×25, the average detection
latency exhibits gradual increases and exceeds 1.000s. Such obser-

vation underscores the impact of network scale on packet inference

efficiency, offering valuable insights for further optimizing network

structures. In addition, We measure the overheads of the packet

embedding module and the casual network module, which incur la-

tency of 0.0034s and 0.1180s, respectively. Note that, Wedjat incurs

lower detection latency which is 6.56 times lower than that of the

existing method, i.e., FS-Net, which incurs 0.7965s per flow latency.

Figure 4: Prediction latency
for each packet (3 flows × 10
packets in each bag).

Figure 5: Average packet pre-
diction latency for different
scales of casual networks.

6 Related Work
ML based Malicious Traffic Detection. ML based detection cap-

tures network attacks by investigating the features of traffic, which

outperform traditional signature-based methods [49, 57]. For super-

vised detection, Barradas et al. developed Flowlens that employed

random forests to learn the distribution features on programmable
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switches [7]. Similarly, Zhou et al. developed NetBeacon that imple-

mented decision trees on Intel Tofino switches [61]. Siracusano et
al. developed N3IC that installed binary neural networks on Smart-

NICs [47]. Moreover, Holland et al. [23] developed nPrintML that

learned every byte in packet headers. For unsupervised detection,

Mirsky et al. developed Kitsune that learned packet-level features

by using autoencoders [38]. Tang et al. [50] detected malicious

HTTP traffic with unsupervised language models. Bilge et al. [9]
clustered features extracted from NetFlow data to capture traffic of

malware. Note that, these methods are not robust against evasion

attacks [1, 13, 20, 22, 26, 36]. Additionally, existing methods extract

traditional non-robust features, and employ causal detection to

weight and select these features. Thus, the existing methods, such

as the approach developed by Zeng et al. [58], are vulnerable to
manipulations by evasion attacks

Encrypted Traffic Detection.Most existing methods cannot ef-

fectively capture encrypted attack traffic, as traffic encryption con-

ceals packet payloads and thus invalidates signature-based detec-

tion [49, 57] and Deep Packet Inspection(DPI) [40, 43]. Meanwhile,

encryption protocols obfuscate traffic features to evade ML-based

detection. Most existing detection systems for encrypted traffic

are task-specific [4, 12]. For example, Zheng et al. detected cross-

fire attack detection on SDN switches [60]. Similarly, Xing et al.
designed a programmable switch based method to capture link

flooding attacks [56]. Tegeler et al. developed BotFinder that ana-

lyzes time-scale flow features to detect encrypted traffic of malware

communications [51]. Anderson et al. detected malware encrypted

traffic via TLS headers [3]. Moreover, graph learning methods are

leveraged to capture various encrypted traffic [21, 24, 39]. Note

that, the methods focus on classifying traffic of known Categories,

which is entirely different to our malicious traffic detection for

recognizing unknown attacks.

Encrypted Traffic Classification. Wedjat identifies encrypted
traffic associated with malicious behaviors, which is different from

studies on encrypted traffic classification, which infer if encrypted

traffic is generated by certain applications [45] to jeopardize user

privacy. For instance, web fingerprint attacks classify encrypted Tor

traffic to infer the websites accessed by users [42]. Similarly, Siby et
al. classified encrypted DNS traffic [46]. Moreover, Bahramali et
al. classified the encrypted traffic generated by instant messaging

applications, which can infer the content of the messages [6]. Ede et
al. classified the encrypted traffic generated by Android apps [53].

Causal Analysis. Causal analysis discerns and quantifies causal

relationships (Causality) between variables, e.g., Causal Graphi-

cal Models (CGMs)[35], Structural Causal Models (SCMs)[11], and

other probabilistic networks. CGMs, particularly Bayesian Net-

works, represent causal assumptions and dependencies via directed

acyclic graphs (DAGs). SCMs extend CGMs by incorporating spe-

cific functional relationships and counterfactual reasoning. Other

frameworks like Markov Random Fields (MRFs) and Conditional

Random Fields (CRFs) explore dependencies using undirected graphs.

Causal analysis is widely used in domain generalization[62],such as

Unaligned Image-to-Image Translation[55], Motion Prediction[33],

and Recommendation Systems[29]. In this paper, we design the

Causal Network to model the complex relationships among pack-

ets, which is different from these previous works, i.e., we bag the

variables (packets) to effectively analyze inter-flow relationships,

and compress the network for efficient detection.

7 Conclusion
In this paper, we developWedjat, which utilizes a causal network

to model benign interactions from packets among relevant flows,

such that it recognizes abnormal causality that represents mali-

cious traffic and disrupted causality incurred by evasion attacks.

We extensively evaluate Wedjat with millions of flows collected

from a real enterprise. The experimental results demonstrate that

Wedjat achieves an accuracy of 0.957 F1-score when detecting vari-

ous advanced attacks. Notably, five sophisticated evasion attacks,

which have successfully evaded all existing methods, are accurately

detected by Wedjat with over 0.915 F1. This demonstrates Wed-
jat exhibits exceptional capability in robustness against evasion.

Meanwhile, Wedjat maintains an outstanding detection latency,

predicting each packet in less than 0.125 seconds.
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A Algorithm
A.1 Distance-Based K-Means Algorithm
The algorithm 1 is a greedy search for distance-based clustering[14]

in the packet embedding module.

Algorithm 1: Distance-based K-Means

Input :Packets Dataset 𝐷𝑆𝒑 = {(𝒑𝑖 , 𝑦𝑖 )}
𝑛𝑆𝒑
𝑖≥1 , Number of

clusters 𝑁𝑐 , distance function 𝑑 (·, ·)
Output :Cluster assignments C ∗ = {𝐶1, ...,𝐶𝑁𝑐

}
Initialize 𝑁𝑐 clusters 𝐶1,𝐶2, . . . ,𝐶𝑁𝑐

randomly where each

cluster 𝐶 𝑗 is a set containing 𝑛 𝑗 points and each point is a

member of exactly one cluster;

repeat
for 𝒑𝑖 in 𝐷𝑆𝒑 do

compute 𝑗∗ = argmax

𝑗

1

|𝐶 𝑗 |
∑
𝒑′∈𝐶 𝑗

𝑑 (𝒑𝑖 ,𝒑′);

Assign each packet vector point 𝒑𝑖 to the nearest

cluster center 𝐶 𝑗∗ based on the max average

similarities;

end
Update clusters. 𝐶 𝑗 = {𝒑𝑖 | 𝑗∗ = 𝑗};

until convergence;

https://www.unb.ca/cic/datasets/iotdataset-2023.html
https://www.unb.ca/cic/datasets/iotdataset-2023.html
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Figure 6: Clustering Results under different number of clusters. For packet-level multi-dimensional features clustering, we
employed the T-SNE algorithm to display the clustering results for different values of parameter 𝑁𝑐 . The metric refers to the
output value of the objective function in equation (6).

Figure 7: Clustering Results of different numbers of clusters.

A.2 Foundational Network Construction
Algorithm 2 demonstrates the construction of the foundational

network, which models the interactions regulated by behaviors and

Internet protocols. It is divided into two steps. Firstly, to model

the within-flow packet interactions, we assign edges for successive

packets, which represent the continuous behaviors. Secondly, to

model the between-flow interactions governed by protocols, edges

are established for packets at the same location of different flows.

B Parameter Selection of Packet Embedding
The first training phase of our method is to obtain the optimal clus-

tering results of the packet embedding module. It simultaneously

clusters malicious and benign packets from the training set, aim-

ing to purify each cluster as much as possible, such that the ratio

of malicious or benign packets in each cluster approaches 1. This

process involves optimizing 𝑁𝑐 , namely the number of clusters. We

select the parameter and clustering results that maximize cluster

purity as the output model for the first training phase.

The parameter 𝑁𝑐 is optimized by maximizing the average purity

of all clusters, as determined by the formula 6. As Figure 6 shows,
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(a) Patterns of Benign Traffic Bags.

(b) Patterns of Malicious Traffic Bags.

Figure 8: Different patterns of benign and malicious traffic. Each bag originates from the same IP Pair. Each row signifies a flow,
with each cell representing a packet’s length. Darker shades indicate larger values.

Algorithm 2: Foundational Network Construction

Input :Number of flows in each bag 𝑁 , Number of

packets in each flow𝑀

Output :Edges Set 𝐸𝑑𝑔𝑒𝑠 = {𝑒}
Denote 𝑒 := 𝑁𝑜𝑑𝑒𝑖 ⇒ 𝑁𝑜𝑑𝑒 𝑗 .

for 𝑖 =1 ,2, ... , N do
for 𝑗 =1 ,2, ... , M do

𝐸𝑑𝑔𝑒𝑠 ∪
{
𝑁𝑜𝑑𝑒𝑖−1, 𝑗 ⇒ 𝑁𝑜𝑑𝑒𝑖, 𝑗

}
, if 𝑖 ≠ 1;

𝐸𝑑𝑔𝑒𝑠 ∪
{
𝑁𝑜𝑑𝑒𝑖−1, 𝑗 ⇒ 𝑁𝑜𝑑𝑒𝑖, 𝑗

}
, if 𝑗 ≠ 1;

end
end

we visualize the process of selecting this parameter, presenting

the clustering results and average purity for different numbers

of clusters. Figure 7 below indicates that when 𝑁𝑐 equals 7, the

average purity of all clusters reaches its maximum value of 0.725348.

Therefore, we fix 𝑁𝑐 at 7 and utilize the clustering results as the

model in the first module. This model is employed in the packet

classification during the detection phase.

C Empirical Observations
We randomly choose and visualize several malicious bags and be-

nign bags respectively in Figure 8. We observed that there is a

significant difference in the between-flow relationships between

malicious and benign traffic. Specifically, the interactions in mali-

cious bags appear more irregular and elusive, which demonstrates

that the between-flow packet interactions are distinguishable and

critical factors in malicious traffic detection.
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