
MINOS: Regulating Router Dataplane Actions in Dynamic
Runtime Environments

Lei Xu† Ke Xu† Meng Shen§ Kui Ren¶ Jingyuan Fan¶ Chaowen Guan¶ Wen-Long Chen‡
†Tsinghua National Laboratory for Information Science and Technology, Beijing, China
†Department of Computer Science and Technology, Tsinghua University, Beijing, China

§School of Computer Science & Technology, Beijing Institute of Technology Beijing, China
¶Department of Computer Science and Engineering, State University of New York at Buffalo, USA

‡College of Information Engineering of Capital Normal University, Beijing, China
l-xu12@mails.tsinghua.edu.cn,xuke@tsinghua.edu.cn,shenmengnetlab@gmail.com,

kuiren@buffalo.edu,jfan5@buffalo.edu,chaoweng@buffalo.edu,cwl@csnet1.cs.tsinghua.edu.cn

ABSTRACT

Programmable routers are emerging as a promising alterna-
tive which facilitates the deployment of new network technolo-
gies, for example, software-defined networking; meanwhile,
theirs programmability and openness also bring risks of se-
curity vulnerabilities. Prior work has concentrated on code
security and encryption to improve router action honesty.
In this paper, we exploit the feasibility of regulating ac-
tions on run-time dataplanes by detecting unexpected packet
processing operations, which finally provides an honest and
backdoor-proof router to operators. The main challenge is
to monitor and regulate the action of router dataplane in
dynamic runtime environment. Hence we propose Minos, a
framework to regulate router actions on dataplanes. Minos
takes Action Identifier (AID) as input to perform lookups in
a pre-defined white list called Regulated Action Table (RAT),
and it finally verifies that the action is (ab)normal. In the end,
Minos achieves a pair of irreconcilable goals for security, i.e.,
costs and effectiveness. We implement and evaluate Minos on
Click and DPDK, separately. And our evaluation results show
that Minos captures mal-actions with 2 mega-byte spatial
costs and no more than 9% performance loss in both Click
and DPDK.

CCS CONCEPTS

• Networks → Routers; Network security;

KEYWORDS

Router Security, Router Actions, Minos

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ACM TUR-C ’17, May 12-14, 2017, Shanghai, China

© 2017 ACM. ISBN 978-1-4503-4873-7/17/05. . . $15.00
DOI: http://dx.doi.org/10.1145/3063955.3063996

1 INTRODUCTION

The past decade has witnessed large strides that have been
taken in bringing high capacity, performance and analytical
models into router designing [2, 4, 20, 21]. Programmable
routers are emerging as a promising alternative which facili-
tates the deployment of new network technologies [6].Those
advances come at the cost of increasing risks of security
vulnerabilities.

In the recent years, routers running software to imple-
ment packet processing functions are susceptible to attacks
increasingly, leading to system crash and information leak
[1, 3, 5, 15–18]. Typically, Cisco router was reported to have
found backdoors on devices [12, 13], which becomes a major
concern for governments and operators. Even though all the
modules and the invokings of modules in routers have been
confirmed to be normal, they may be leveraged to achieve
unexpected actions. For example, hacker is able to obtain
privilege to manipulate router operation or alter the router
behavior by particular updating model [11].

A big challenge of router security is to design a both effec-
tive and efficient mechanism for the dataplane that consists
of various of functions. Prior work has concentrated on code
security and encryption to improve router action honesty.
Dobrescu et al. proposed a static verification tool to check
security vulnerabilities on software dataplane [24]. Kim et al.
utilized source authentication and path validation to prevent
routers from doing unexpected actions [14]. They focus on
static code verification and encryption cooperation among
network nodes.

This paper is to exploit the feasibility of regulating ac-
tions on dataplanes to detect unexpected packet processing
operations1. An action that is permitted by the operator is
referred to as a normal action, or otherwise mal-action. The
main problems this paper has addressed are listed as follows:

How to identify an action in run-time dataplanes?
Given a white list of all normal actions, how to ver-

ify the normality of real-time actions both efficiently
and effectively?

1A mal-action may be caused by many reasons, such as a malicious
operation by an attacker or a bug in dataplane design. Instead of
focusing on identifying the reasons of them, this paper targets on
mal-action detection.

1

In real-time router dataplane, the more effectively the
verification performs, the more performance it consumes. Bal-
ancing these two seemingly irreconcilable goals represents
a fundamental challenge in dataplane security design. To
improve efficiency, we propose to verify pairs of adjacent
components instead of entire action which lead to a bitmap
construction of the white list. However, this comes with a
few trade-offs that there are mal-actions that may escape
verification. As a result, we introduce weight and the mecha-
nism of removing loops in an action. Finally, the proposals
of design complete these two seemingly incompatible goals.

This paper proposes Minos, a security framework by which
all the actions of a router, not only normal actions but also
mal-actions, will be monitored and justified in runtime. Con-
structing this framework needs two steps: an identification
mechanism to identify distinguishable router actions, and a
verification mechanism to check if the router action is legal.
These two aspects together warrant the honesty of router
actions in the end.

The three main contributions of this paper are listed as
follows.

• We design the framework of Minos and use a bit-map
construction to verify actions on router dataplanes,
providing a security mechanism easy to be imple-
mented by the third party.

• We introduce weight and removing loop mechanisms
to prevent mal-actions from escaping verificationn,
and prove that these methods are effective.

• We implement Minos on researchable Click and com-
mercialized DPDK, separately. Evaluations show
that Minos captures all the mal-actions with 2 mega-
byte spatial costs and no more than 10% performance
loss in both Click and DPDK.

The rest of this paper is organized as follows. Section 2
summarizes the related work in the field of router security.
Section 3 provides the characteristics of components. After
that, the adversary models are presented in Section 4. Section
5 details the architecture and mechanisms of Minos. Then
practical implementation and experimental results are illus-
trated in Sections 6 and 7. Finally the paper is concluded in
Section 8.

2 RELATED WORK

Router security is of significance due to its crucial role in the
Internet. The efforts in the field have been gradually concen-
trated on two main directions. On the one hand, industry
spearheaded the security technology by configuring profiles
ahead of time or repairing vulnerabilities after the emergence
of security issue [3, 10, 19]. These protection measures require
manual work and are hard to be automated. On the other
hand, researchers recently expended considerable effort to
leverage encryption and verification mechanisms to guarantee
honest action of routers [14, 24, 28].

Kim et al. concerned source authentication and path vali-
dation to safeguard user data and transport by encryption

 19 8

 8 6

 8

 1

 2

 6

 6

 2

 2

 1

 8

 1

 4

 2

 1

 4

 7

 6

 2

 2
 2

 1

 3

 6

 1

 1

 1
 3

 3

 3

 1
 2

 2

 2

 2

 1 2
 1 2

 2

 2

 3

 3

 2

 2

 2

 2

 2

 2

 1

packet_make1

packet_data
FromDevice@6

c0

Paint@11

ip

CheckIPHeader@2

rt

packet_kill ar00

todevice0

arpq1

todevice1

FromDevice@14

c1

packet_clone

arpt DropBroadcasts@34

cp1

gio1

FixIPSrc@37

packet_uniqueify

dt1

fr1

arpq0

Paint@19

DropBroadcasts@24

cp0

gio0

FixIPSrc@27

dt0

fr0

ar1

Figure 1: The invoking relationships of components
on a typical router dataplane.

[14]. They leveraged a lightweight secure protocols to pre-
vent router from doing malicious actions. They have used
encryption to locate the root cause of and react to malicious
actions. Dobrescu et al. provided an effective verification tool
for software dataplane of router [24]. Their approach serves
the purpose of checking exceptions and is a static analysis
tool. These proposals are orthogonal and complementary to
our approach which focuses on monitoring router actions in
real time.

Control-Flow Integrity (CFI) is provided to prevent ma-
licious transfer of control flow [25]. CFI is utilized to vali-
date that a subtly targeted destination code is correct and
harmless. The recent implementations [25–27] extended CFI
technology onto commercial operating system kernels and
GCC and LLVM. Minos in this paper provides another way
to monitor control flow in dataplane.

3 COMPONENTS & ACTIONS

This section is the answer to the first question in Section
1, which is how to identify an action in run-time dataplane.
We investigate components and actions of router dataplanes,
and on the basis of observations we design CID and AID to
represent components and actions.

Since this paper focuses on the security of software router
platform that consists of various functions, the component
in this paper has two properties. First, it is a packet-related
processing unit that directly operates on packets. Second, it
is a real-time processing unit on runtime router dataplanes.
An action is considered as a pipeline of components in this
paper.

3.1 Observations in Router Dataplane

This subsection investigates the components on the data-
plane of Click router. We configure the Click router with two
interfaces and basic routing functions. According to the dec-
laration of component above, we view two types of processing
unit as component. The first is the element whose member
functions operate on packets. The second is all the member
functions of Packet class.

2

0

0.1

0.2

0.3
1

pac
ke

t_
dat

a

pac
ke

t_
m

ak
e1

pac
ke

t_
kil

l

Fro
m

Dev
ice

@
14 c1

Fro
m

Dev
ice

@
6 c0

pac
ke

t_
uniq

ueif
y rt

Chec
kIP

Hea
der

@
2 ip

to
dev

ice
1

to
dev

ice
0
ar

pt

Pain
t@

19

ar
pq1

ar
pq0 fr1dt1

FixI
PSrc

@
37
gio

1
cp

1

Dro
pBro

ad
ca

st
s@

34 fr0dt0

FixI
PSrc

@
27
gio

0
cp

0

Dro
pBro

ad
ca

st
s@

24

Pain
t@

11

pac
ke

t_
clo

ne
ar

1
ar

00

N
or

m
. C

ou
nt

 b
y

M
ax

TCP
UDP

Figure 2: The invoking times of components among
distinguishable actions.

Before presenting observations, we list four conclusive re-
sults. First, the last component of router action is either
SendPacket or KillPacket. Second, a router dataplane in real
time does not contain a large number of components. Third,
the set of regulated router actions is small comparing with
the complete permutation set of all components. Fourth,
the number of components within an AID is small. The fol-
lowing explores three perspectives from the perspective of
the relationships between components, the characteristics of
component and actions.

1) The Invoking Relationships of Components:
This subsection describes the relationships of components
among distinguishable actions on real time dataplanes. The
action that has different components or different orders of
components with other actions is viewed as a distinguishable
action. For example, A-A-B and A-B are distinguishable from
each other. The relationship topology in the mix scenario
(TCP and UDP) is plotted in Fig. 1. In this figure, the
node plotted by rectangle is the invoked component, the
unidirectional edge represents the invoking relationship where
the caller arrows toward callee. The number on the edge
indicates the number of distinguishable actions using the
edge. Although the figure is deduced from two-port IP router,
the conclusion of multi-port router is still similar to that in
Figure. 1, because the actions of each port are similar. The
relationship topology is not too much complex and there are
loops within. Some components is invoked frequently while
others is invoked rarely.

2) The Characteristics of Components: This sub-
section analyzes the invoking times of components among
distinguishable actions. As shown in Fig. 2, the invoking time
of each component is normalized by the maximum count - the
invoking time of packet data. The x -axis shows the names of
the invoked components. The light-purple and purple bars
represent the times in TCP and UDP scenarios. The con-
clusion is that the frequently-invoked components account
for a small minority. Although more and more components

0 5 10 15
0

1

2

3
1

Actions

N
or

m
. C

ou
nt

 b
y

M
ax

 (
10

−
4)

TCP
UDP

(a) The invoking times of actions.

0 5 10 15 20 25
0

0.5

1

of components per action

C
D

F
 (

%
)

TCP
UDP

(b) The number of involved compo-
nents per action.

Figure 3: Observations of components and actions in
the example.

CTAG CW CID

8 bits 8 bits

WAID AW CID CID

AID

Figure 4: The formats of CTAG and WAID.

are designed, the realtime components on the running router
dataplane are still the minority.

3) The Characteristics of Actions: This subsection
provides the characteristics of distinguishable actions on
router dataplanes, including the invoking times and the num-
ber of components, as shown in Fig. 3. To begin with, the
numbers of distinguishable actions are 16 and 13 for TCP and
UDP scenarios, respectively, which is a small set of actions.
Meanwhile, 13 distinguishable actions are the same in both
TCP and UDP scenarios. In summary, the invoking times of
actions are directly related to upper applications, and the
numbers of distinguishable actions and components within
an action are small.

3.2 Design of CTAG and WAID

We propose Component Identifier (CID) to represent com-
ponent and Action Identifier (AID) to represent action. We
use binary number as CID, as it costs as small space and
time as possible to be identified in real time. Based on the
above observations, we use 8 bits of binary number for CID,
Component Weight (CW) and Action Weight (AW).

Component TAG (CTAG) and AID with Weight (W-AID)
is shown in Fig. 4. AID is the the CID sequence in the order of
performing within action. AW is the sum of CWs in an action.
The use of CID and AID is to achieve efficiency in checking
router actions while the use of CW and AW is to achieve
effectiveness to prevent mal-actions from escaping checking.
The details of CW and AW are deferred to SubSection 5.4.1.

4 ADVERSARY MODELS

We aim at defeating mal-actions that are not permitted by
operators. This section provides three typical mal-action

3

Comp1 Comp2

Clone

(a) Cloning pkt.

Comp1 Comp2

Access

(b) Reading pkt.

Comp1

Kill

Comp2

(c) Dropping pkt.

Figure 5: Typical examples of mal-actions.

Comp1 Comp2 KillPacketSendPacket

Data Plane

Centralized Manager

Attacher CTable Disabler Checker RAT

Interface,

CTAGs

InterfaceComponent

Information

Figure 6: The construction of Minos.

examples in Fig. 5 to illustrate their features in dataplanes.
The three examples are also similar to the adversary models
in [14]. In Fig. 5, the components are plotted by rectangle
and the invoking relationships are plotted by arrows.

In Fig. 5(a), the normal action is shown in blue-violet solid
arrows while the mal-action of copying packet is shown in
red dotted arrows. The feature of these mal-actions is that it
is parallel to the corresponding normal action and thus leads
to information leakage. As shown in Fig. 5(b), the Access
component is invoked unexpectedly, and then the control
flow returns to the expected component, i.e., Comp2, leading
to information leak or even altering payload. As shown in
Fig. 5(c), after invoking Kill component, the mal-action is
finished, leading to interruptive communications.

The above three representative mal-actions are probably
utilized by adversaries, causing information leak, revenue loss
and even state conflicts. In this paper, Minos is designed to
defeat all the mal-actions.

5 DESIGN OF MINOS

In this section, we will detail the construction, the verification
and the initialization of Minos, giving the answers to the
second question in Section 1.

5.1 The Construction of Minos

The core of Minos is Centralized Manager (CM) which consist-
s of five parts. This subsection briefly introduces the function
of each part.

Figure 6 shows the five parts contained in CM. Attacher
is a function that attaches CTAGs to WAID in temporary
packet header and CTable stores all the CTAGs, both of
which will be discussed in Section 5.2. Regulated Action
Table (RAT) shown in Section 5.3.2 is a bit map storing all
the normal WAIDs. Checker is a function used to check the
correctness of WAID in RAT, whose details will be given out

S1

A1 A2
E1

B1 B2

X1 X2

S2
E2

Figure 7: The normal AIDs without intersections ex-
cept the first and last CIDs of AIDs and without loop
within any AID.

in Sections 5.3 and 5.4. Lastly, Disabler is used to deal with
mal-actions, which is presented in Section 5.5.

The following subsections presents the details of these
mechanisms in Minos.

5.2 Attacher and CTable

This subsection explains the roles of Attacher and CTable.
Once invoked, a component will attach its 8-bits CID to the
tail of WAID in the temporary header of the packet, which
is completed by Attacher. In addition, Attacher has to run
another two tasks. One is to add 8-bits CW or EW to AW
of WAID. The other is to check if the same CIDs exist in a
WAID. If so, Attacher will increase the CID of the current
component by 1 until no such CID exists in the WAID. Then
it attaches the increased CID to WAID instead of the original
CID.

The CTable is used to assign CWs and CIDs to components.
The CWs and CIDs are calculated by the algorithm from
normal AIDs, which will be described in Section 5.6. When
the components submit their information, the CTable will
assign corresponding CTAGs to the components.

5.3 The Efficiency of Minos

Router dataplane is sensitive to performance, hence we con-
sider the efficiency of Minos as the first priority factor. This
section describes the two mechanisms - Checker and RAT -
that help improve performance of Minos.

5.3.1 Basis Idea of Verification. The Checker is used to
verify whether the coming action or AID is normal. An
AID implies the invoking relationships between its CIDs. In
Minos, Checker reverts to checking each pair of adjacent CIDs
within AID instead of the entire AID. Hence, the verification
is simplified as checking the relationship between adjacent
CIDs in an action.

Checking two adjacent CIDs rather than AIDs that have
variable lengths offers two advantages. First, a pair of CIDs
has fixed and shorter length than AID, simplifying the search
algorithm. Second, two-CID entry makes the construction of
RAT more regular.

Checking pairs of adjacent CIDs is effective only when all
the AIDs satisfy two conditions: no intersection with each
other and no loop within any AID. The following lemma
provides this conclusion formally.

4

Definition 5.3.1. AID is a directed path where node is
CID and directed edge is the invoking relationship between
CIDs. The set Normal whose elements are normal AIDs cor-
responds to a directed graph G〈N,E〉 where N denotes CIDs
and E denotes relationships between CIDs. The elements of
set RAT are all pairs of adjacent CIDs of Normal AIDs.
Use the elements of RAT to construct new AIDs whose first
and last CIDs are the same as the first and last CIDs of AIDs
in Normal. All the new AIDs form set Check.

Lemma 5.1. If all the AIDs in G has no intersections with
each other except the first and last CIDs of AIDs and no loop
within any AID, Check = Normal.

Proof. Without loss of generality, use the graph in Fig.
7 as G of Normal, where S1 and S2 are the first CIDs
while E1 and E2 are the last CIDs of G. The AIDs in G
have no intersections with each other except the first and
last CIDs and no loop within any AID. According to the
constructing process of new AIDs from RAT , we can deduce
that Normal ⊆ Check. Now we prove Normal ⊇ Check.
If there is an AID α in Check which does not belong to
Normal. Besides, assume α has the first CID S1 and the
last CID E2. According to the constructing process of Check,
α is constructed by the pairs of adjacent CIDs of AIDs in
G. G has no intersections except the first and last CIDs of
AIDs and no loop within any AID. Then α is S1B1B2...E1

which belongs to Normal, the assumption does not hold,
Normal ⊇ Check. In conclusion, Normal = Check. �

In Section 5.4, the solutions are provided when the above
conditions are released.

5.3.2 The Construction of RAT. As described above, the
target of verification is two adjacent CIDs, leading to the
16-bit entry of RAT. RAT uses bitmap as its storage and
search construction. In addition, 16-bit leads to 216 entries
of bitmap, i.e., 8 Kilo Bytes (KB), an acceptable size to be
deployed.

In RAT, the address of entry is the catenation of two
CIDs. And the value 1 of entry indicates a normal rela-
tionship between the two CIDs while the value 0 means a
mal-relationship. RAT is only readable upon the router’s
running, which prevents attacker from alternating its content.
The content of RAT is calculated from normal WAIDs by
Algorithm 1 described in Section 5.6.

5.4 The Effectiveness of Minos

As shown in Fig. 7, the efficiency of Minos is based on two
conditions. Once the two conditions are released, the effec-
tiveness of Minos will decrease. This subsection presents the
solutions to this challenge.

5.4.1 The Component and Edge Weight. When normal
AIDs have intersections, the mal-AID that is constructed
by the pairs of normal adjacent CIDs exists. Figure 8(a)
gives an example. Two normal AIDs, ABCE1 (plotted by
blue-violet arrow) and ADCE2 (plotted by pink arrow), are

A B C E1

D E2

4-ABCE1 5-ADCE2 4-ABCE2

1 1 1 1

2 1

(a) The two WAIDs that have un-
shared CIDs.

A

B

7-ABCFDE

C

6-ACBDFE
1

D

F

E

1

1 1

1 1

6-ABDFDE

1

(b) The two WAIDs that share all
CIDs with each other.

Figure 8: Examples of Component Weight (CW) and
Edge Weight (EW).

S1

A1 A2
E1

B1 B2

X1 X2

S2
E2

CW_S1

CW_A1 CW_A2
CW_E1

CW_B1 CW_B2

CW_E2

CW_X1 CW_X2

CW_S2

Figure 9: The normal WAIDs that have no conflict-
ing AIDs and no loop within any AID.

presented, where A, B, C, D, E1, E2 are CIDs. According to
the method in Section 5.3.1, all the pairs of adjacent CIDs,
i.e., AB, BC, CE1, AD, DC and CE2, are recorded in RAT.
If both mal-AIDs ABCE2 (plotted by red dotted arrow) and
ADCE1 (not plotted for clarity) are checked in RAT, they
will be regarded as normal AIDs for that their all the pairs
of adjacent CIDs exist in RAT.

To crack this hard nut, we provide components and actions
with Component Weight (CW) and Action Weight (AW),
respectively, where CW is a number and AW is the sum of
CWs in an action. The AID with AW is called as WAID. If
two actions have the same AW and they have intersections
with each other except the first and last CIDs, they are called
conflicting actions or conflicting AIDs. Finally, the problem
is to identify and remove conflicting AIDs. The following
Lemma describes the features of CW and AW.

Lemma 5.2. Let CW be the number for CID and AW be
the sum of CWs in AID. i) An AID has only one AW. ii)
If two AIDs have at least one unshared CID, they can have
different AWs by adjusting the CW of the unshared CID.

Proof. Lemma 5.2 is evident and the proof of it is skipped.
�

According to Lemma 5.2, in order to remove conflicting
AIDs, we need to adjust the CWs of unshared CIDs of the
conflicting AIDs to make the AWs of these conflicting AIDs
different. We add CW by 1 to adjust CW. For instance, in
Fig. 8(a), B, D, E1 and E2 are unshared CIDs. By adding 1
to CW of D to 2, the AWs of AIDs ABCE1 and ADCE2 are

5

4 and 5, respectively. Hence they are no longer conflicting
AIDs.

In addition to checking pairs of adjacent CIDs for AID,
AW is verified as well. And the entry of RAT is a triplet of
AW-CID-CID, leading to the size of 224 bits, i.e., 2 Mega
Bytes (MB), still acceptable to be deployed. The algorithm
to assign suitable CWs to CIDs to remove conflicting AIDs
is deferred to Algorithm 1 in SubSection 5.6. The following
lemma proves the effectiveness of AW mechanism during
verification.

Definition 5.4.1. WAID is a directed path where node has
CID and CW and directed edge is the invoking relationship
between CIDs. The set NormalW whose elements are normal
WAIDs corresponds to a directed graph GW 〈 N,E〉 where
N is CIDs with CWs while E is the relationships between
CIDs. The entry format of RAT is triplet AW-CID-CID and
elements of RAT are from normal WAIDs of NormalW . Use
the elements of RAT to construct new WAIDs whose first
and last CIDs are the same as the first and last CIDs of
WAIDs of NormalW . All the new WAIDs form set CheckW .

Lemma 5.3. If all the WAIDs in GW have no conflict-
ing AIDs and no loop within any AID, then CheckW =
NormalW .

Proof. The proving process is similar to that of Lemma
5.1. Use the graph in Fig. 9 as GW of NormalW , where S1

and S2 are the first CIDs while E1 and E2 are the last CIDs of
G. The WAIDs in GW have no conflicting AIDs and no loop
within any AID. According to the constructing process of new
AIDs from RAT , we can deduce that NormalW ⊆ CheckW .
Now we prove NormalW ⊇ CheckW .

Assume there is an AID αW in CheckW which does not
belong to NormalW . Besides, αW has the first CID S1 and
the last CID E2. So αW consists of two parts. The first part
is from S1 to A2 which belongs to the WAID S1, A1, ..., E1

called as WAID1. The second part is from A2 to E@ which
belongs to the WAID S1, B1, ..., E2 called as WAID2.

Meanwhile, GW has no conflicting AIDs and no loop with-
in any AID. So WAID1 and WAID2 have different AWs.
Then αW has two AWs, which conflicts to Lemma 5.2. The
assumption does not hold, NormalW ⊇ CheckW . In conclu-
sion, NormalW = CheckW . �

Lemma 5.3 requires that normal WAIDs have no conflicting
AIDs. This condition is completed by adjusting CWs of
unshared CIDs, like B, D, E1 and E2 in Fig. 8(a). When
there are no unshared CIDs between conflicting AIDs, the
conflicting AIDs cannot be removed by differentiating AWs.
As shown in Fig. 8(b), the conflicting AIDs ABCFDE and
ACBDFE that share all the CIDs with each other always
have the same AW, i.e., 6. The mal-WAID 6-ABDFDE will
escape verification.

To solve this problem, we leverage unshared directed edges
of conflicting AIDs. The unshared edges are assigned with
Edge Weights (EWs) and the AW is the sum of CWs and
EWs within an AID. The example is shown in Fig. 8(b), and

A

B

C

E

6-ABACAE

1 1

11

6-ACABAE

D

1

(a) A WAID with loops.

D

E

G

6-ADBECG

1
1

11

6-AEBDCG

F
A,B,C

1

(b) A WAID without loops.

Figure 10: Example of removing loops.

the directed edge CF is assigned with EW 1 and the AW of
ABCFDE is 7, eliminating the conflicting AIDs. AW and
EW are calculated by Algorithm 1 in SubSection 5.6.

Thus far, CW and EW are introduced to eliminate con-
flicting AIDs. Another condition in Fig. 7 and 9 is that there
is no any loop within AIDs. This condition will be further
discussed in Section 5.4.2.

5.4.2 The Loops in Normal AIDs. When an action has
more than one loops, mal-actions based on normal AW-CID-
CID of RAT may escape the verification. A typical example
is shown in Fig. 10(a), where a normal WAID 6-ABACAE is
plotted by blueviolet arrows and another CID D represents
the CIDs belonging to other WAIDs. In this case, a mal-
WAID 6-ACABAE will escape verification, because its AW
and all the pairs of adjacent CIDs can be derived from normal
WAID.

To address this problem, we resort to removing the loops
of AIDs. The approach is to treat the repeated CIDs in an
AID as different CIDs. The following describes the details of
the approach. First, when the Attacher attaches the current
CID to AID, it checks all the previous CIDs in the AID if
there are the same CID with the current CID. Once Attacher
finds the same CID, it will add one to current CID. Second,
the current CID is attached to the tail of the AID. Last, the
CW of the current component is added to AW. Thus far, the
loops in an AID are removed. The AID with removing loops
is called RAID.

For instance, in Fig. 10(b), after removing loops for WAID
6-ABACAE, the WAID with Removing loops (WRAID) is
finally 6-ADBECG. The process of finding repeated CIDs in
AIDs will be discussed in Section 5.6. The following lemma
reveals the fact that an RAID corresponds to only one AID.

Definition 5.4.2. For function f(α) = β, α ∈ AID and
β ∈ RAID, both AID and RAID are set of CID sequences.
When α has repeated CIDs, e.g., ..C1..C1..C1.., f will increase
the same repeated CID by an increment which is initialized
with one and added by one when encountering the repeated
CID, e.g., C1. The other CIDs in α remains unchanged,
finally leading to β, e.g., ..C10..C11..C12.. where C1j = C1+j,
0 ≤ j ≤ T and T is repeated times of C1. The repeated CID
and corresponding added CIDs construct set Ci, 0 ≤ i ≤ N ,
C0 = ∅ and N is the number of different CIDs in α, e.g.,
C10, C11 and C12 ∈ C1.

6

AID

Set

RAID

Set

WRAID

Set

1 2

4

3 RAT

CTable

Attacher

Figure 11: The process of initializing RAT.

Lemma 5.4. If Ci ∩Cj = ∅ where i 6= j, then f has an
inverse.

Proof. A function has an inverse if and only if it is bijec-
tive, i.e., injective and surjective. For the injection, different
CIDs, different orders and different number of repeated CIDs
between elements in AID will lead to different elements of
RAID by f , because Ci ∩ Cj = ∅. For the surjection, be-
cause Ci ∩Cj = ∅ for i 6= j, Ci 6= Cj . Hence different RAIDs
correspond to different AIDs. �

After verification, the failed search of AW-CID-CID in
RAT will trigger Disabler. The following subsection presents
the process in Disabler.

5.5 The Disabling Process

Here we show the work progress of Disabler triggered by
the failed verification of RAT. As discussed in Section 3.1, a
packet in a dataplane has two destinies, i.e., either to be sent
out of the dataplane or to be freed. Preventing mal-actions
from happening is to prevent the packet from being sent out
or freed. Based on the analysis above, disabling mechanisms
are three steps.

First, to prevent mal-action from sending packet out of
dataplane, Disabler is installed in SendPacket component.
When the action is verified as normal action, its packet is
sent out, otherwise its packet is freed. Second, KillPacket
component does nothing for mal-action. Third, Disabler is
configured with an alarm for dataplane, which can be audio
or visual alarm, to inform the operators of security issue
once a mal-action is found. Meanwhile Disabler writes all the
mal-action records into a log file for further diagnosis.

5.6 Initializing RAT

To initialize RAT, three jobs is needed, i.e., obtaining the
normal AIDs from router dataplanes, using normal AID set
to initialize RAT, CIDs, CWs and EWs, and updating RAT
if there are new normal WRAIDs.

The first job is as the following. At first, RAT is empty
and CIDs are the accumulated number. In this case, all the
actions will be viewed as mal-AIDs and recorded into log files
by Disabler. The operator assumes responsibility of checking
the AIDs in the log files if they are normal.

The second job is shown in Fig. 11. First, use AIDs to
generate RAIDs, where the repeated CIDs within AID are
accumulated according to method in Subsection 5.4.2. Second,

based on the RAID set, we use an algorithm to assign CWs
and EWs, generating WRAIDs, as shown in Algorithm 1.
The algorithm is a graph-iterating algorithm called Allocate
Weight Algorithm (AWA), which is discussed in the latter
context. Lastly, RAT, CTable and Attacher are configured
by the WRAID before running routers.

AWA aims at calculating CWs for CIDs and necessary
EWs for conflicting AIDs. According to Subsection 5.4.1,
AWA is to iterate all the nodes that have out-degree larger
than one, and differentiate the AWs of conflicting edges that
start from these nodes, as shown in the follow.

Algorithm 1 Allocate Weight Algorithm (AWA)

Require: The directed graph G of normal RAIDs.
1: Initialize all the CWs to 1s and EWs to 0s;
2: ReInitialize CWs and EWs of loops;
3: conflict = get conflict action(G,&act1,&act2);
4: while conflict == true do
5: unshared cid = get unshared cid(act1, act2);
6: if unshared cid then
7: increase weight(unshared cid);
8: else
9: unshared edge

10: = get unshared edge(act1, act2);
11: increase weight(unshared edge);
12: end if
13: conflict
14: = get conflict action(G,&act1,&act2);
15: end while

The AWA is used before deploying Minos. In AWA, get co−
nflict action is designed carefully by optimizing its iterat-
ing methods to avoid dead loop. AWA’s time complexity
is O(n5) for that the get conflict action is O(n3) and the
increase weight is O(n2).

The last job of updating RAT is shown in the forth step
in Fig. 11. Once a new normal WRAID is provided by the
operator, the new WRAID is used to generate new possible
AID by recovering repeated CIDs and removing AWs. The
operator has to check if the new AIDs are normal and update
normal AIDs. The following steps are the same with the
second job in the above.

6 THE IMPLEMENTATION OF MINOS

This section describes the implementations of Minos on Click
and DPDK, separately [22, 23].

6.1 The Click Implementation

As described in Section 3, component refers to packet-related
function. First, we chose in Click all the elements whose
member functions operate directly on pa-ckets. It is easy
to set Attacher in the Push member function of element.
Second, other functions, such as packet-clone function, are
added with the Attacher in the end of them. Attacher is
realized as member function of the Packet Class.

7

Table 1: The effectiveness to 3 mal-actions.

Invoked Times
TCP UDP Mix

Mal Normal Mal Normal Mal Normal

Copying pkt
(5 MB)

To1 4888
To2 4891
Oth 6

Nt1 4888
Nt2 4891
Noth 14

To1 4888
To2 4886
Oth 4

Nt1 4888
Nt2 4886
Noth 12

To1 9777
To2 9778
Oth 4

Nt1 9777
Nt2 9778
Noth 10

Reading pkt
(5 MB)

Oth 6 Noth 6 Oth 3 Noth 5 Oth 6 Noth 6

Dropping pkt
(5 MB, p = 0.5)

Oth 6 Noth 7 Oth 3 Noth 3 Oth 6 Noth 8

Dropping pkt
(60 KB, p = 0.1)

To1 8
To2 7

Nt1 70,Nt2 68
Noth 15

To1 1
Nt1 4,Nt2 4

Noth 31
To1 10
To2 10

Nt1 73, Nt2 77
Noth 18

To1/2:Todevice1/2 action, Nt1/2:Normal Todevice1/2 action, (N)Oth:(Normal) Other action.

CM is added in Router Class, where CTable and RAT
are initialized in its construction function. CM is responsible
to initialize CTable and RAT by configuration files whose
content is generated by AWA. The Kill-packet function is
wrapped by KillPacket as member function of element while
the Send-packet functions in ToDevice Class are viewed as
SendPacket. These two types of components are added with
Checker in the end of them. The source code of Minos on
Click is available online at https://github.com/minos2git/mi-
nos click.git.

6.2 The DPDK Implementation

In DPDK, CM is deployed in rte mbuf files that realizes
many basic packet-related operations for the function li-
brary. The SendPacket is typical sending function, such as
rte eth tx burst in rte ether.h and the KillPacket is a typ-
ical free function such as rte pktmbu-f free in rte mbuf.h.
Some macros that are used to read packet are replaced with
functions as components. The configuration files of RAT and
CTable generated by AWA are included by rte mbuf files. All
the packet-related functions are viewed as components. The
lines of source code of Minos in DPDK are no more than one
thousand.

7 EVALUATION

This section presents evaluations of Minos in terms of effec-
tiveness and performance. The Click with Minos is deployed
on 64-bit Ubuntu 12.04 with Intel Core i7-3770 CPU × 8, 8 G-
B DDR3 and two 100 Mega-bit-per-second (Mbps) RTL8139
ethernet adapters. The DPDK with Minos is deployed on 64-
bit Ubuntu 14.04.3 with Intel Core i7-4790K CPU × 8, 32G
DDR3 and four Intel Corporation I350-T4 Gigabit Network
Connections.

The Click and DPDK router perform basic routing func-
tions. In the experiment of Click, 5 MB and 60 KB data are
transmitted in three scenarios, i.e., TCP, UDP and mix sce-
narios. The DPDK is connected to Spirent TestCenter Packet
Generator configured with TCP protocol and throughput
test [8].

7.1 The Effectiveness of Minos

To investigate the effectiveness of Minos in Click, we added
three mal-invokings in SendPacket component: cloning packet,
reading packet and dropping packet randomly. All the actions
that invoke SendPacket component will be changed into mal-
actions if these three invokings occur. If Minos is not deployed,
the precision and recall to detect them are around 60% [9].
Each mal-action experiment runs for 5 times, each result has
a few differences because the lower layer protocols such as
ARP in two hosts communicate with router, leading to extra
actions being triggered. The distribution is the similar, so we
chose one run to illustrate the effectiveness result in Table 1.

The number in Table 1 represents the captured times of
each action by Minos. In the row of copying packet in Table
1, one host transmits 5-MB data to another host in three
scenarios, TCP, UDP, and mix, separately. A normal action
that invokes SendPacket will trigger a copying-packet mal-
action. Hence in three scenarios, the numbers of mal-actions
triggered by forwarding actions (To1/2) are equal to the
numbers of normal forwarding actions (Nt1/2). The number
of normal other actions (Noth) is larger than that of other
mal-actions (Oth) in each scenario because there are normal
actions that do not invoke SendPacket.

In the row of reading packet in Table 1, reading-packet
mal-actions are conducted by invoking packet d-ata compo-
nent that involves in several loops in normal actions as shown
in Fig. 1. We use this mal-action to examine the effective-
ness of the weight and removing loops mechanisms. Take
TCP scenario for example. The mal-action is “packet make1,
packet data, ar1, todevice1, packet data” where “todevice1,
packet data” is a mal-invoking. Minos increases the CID of
packet data to remove loops and confirms that this action
is mal by its AW, revealing the weight and removing loops
mechanisms are effective.

In the row of dropping packet with dropping probability 0.5,
high to lead to mal-actions occurring once a packet arrives.
Hence all the communications are prevented and the numbers
of mal-actions are the same with the times in reading-packet
row. In the row of dropping packet with dropping probability

8

0 10 20 30 40 50
Time (ms)

A
ct

io
ns

Mal act.
Normal act.

(a) The copying action in TCP.

0 100 200 300 400 500
Time (ms)

A
ct

io
ns

Mal act.
Normal act.

(b) The dropping action with prob-
ability 0.1 in Mix.

Figure 12: The time points of actions.

The occurrence prob. of mal−act.

N
or

m
. #

 o
f m

al
−

ac
t.

ca
pt

ur
ed

 b
y

M
in

os
.

No 0 0.1 0.2 0.3 0.4 0.5
0

0.5

1
Click DPDK

(a) The number of mal-act. captured
by Minos.

The occurrence prob. of mal−act.

N
or

m
. t

hr
pt

. o
f M

in
os

No 0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1
Click DPDK

(b) The throughput of Minos.

Figure 13: The performance of Minos with increasing
mal-actions.

0.1. Minos captures all the dropping-packet mal-actions. TCP
has transmitted 60 KB successfully in TCP and Mix due to
its retransmission while UDP failed in transmission.

Figure 12 plots copying-packet and dropping-packet sce-
narios in run-time dataplanes, where y-axis represents actions
while x -axis represents relative time.

Figure 12(a) plots a piece from 0 to 50 micro second (ms)
where the two mal-actions are triggered by two forwarding ac-
tions. Because the mal-actions are parallel to normal actions,
they do not impact normal actions, leading to the frequent
occurrences of all actions. In Fig. 12(b), the density of actions
is small because the mal-actions occur at the probability of
0.1 and they impact normal actions. In the mix scenario,
TCP transmission completes successfully while UDP failed,
leading to more types of normal actions than that of Fig.
12(a).

7.2 The Performance of Minos

This subsection investigates the performance of Minos for
Click and DPDK. In terms of Click, we use iperf to measure
the throughput [7]. In terms of DPDK, we use Spirent Test-
Center Packet Generator configured with TCP protocol to
measure the throughput [8]. For both Click and DPDK, the
seven experiments are no Minos, Minos without mal-actions
and Minos with mal-actions with probabilities 0.1 to 0.5. We
get the normalized number of mal-actions and normalized
throughput of Minos in Fig. 13.

As shown in Fig. 13(a), the normalized numbers of mal-
actions captured by Minos are roughly proportional to the

occurrence probability of mal-actions. The maximums of mal-
actions in Click and DPDK are 55572 and 38400. This can be
explained by the Minos features for Click and DPDK. Click
has been deployed with Minos more completely leading to
more components and actions than that of DPDK.

In Fig. 13(b), the normalized throughput decreases slight-
ly with increasing numbers of mal-actions. The decreasing
throughput is mainly due to the fact that Minos has to write
mal-AIDs into files, which is I/O operation and slower than
router bandwidth. The Click throughput is impacted less
than DPDK because Click has 100 Mbps bandwidth that is
impacted less than that of 1 Gbps of the DPDK router. The
minimum/maxim-um throughputs of Click and DPDK are
92.0/93.1 Mbps and 860.9/940.2 Mbps, reflecting that Minos
impacts the performance of router a little.

8 CONCLUSION

This paper proposes Minos to secure routers in runtime
environment from the perspective of action. Based on the
observations of actions in router dataplane and the features of
mal-cation, we design Minos to identify all the active actions.
To achieve efficiency, Minos adopts checking parts of action
and a bitmap construction. To improve effectiveness, Minos
leverages weight and removing-loops mechanisms. Minos is
deployed on Click and DPDK, the evaluation reveals that the
mechanisms have taken effect in runtime dataplane, satisfying
the requirements of performance and costs.

The implementations of Minos reveal that it is a readi-
ly deployed security framework. It opens another door for
securing router in the face of increasing backdoors in the
current commercial routers. Minos is scalable by expanding
RAT to large size and its construction makes it feasible to be
deployed in SDN networks, which need our assiduous study
in the future.

ACKNOWLEDGMENTS

This work was supported by the National Natural Foundation
of China (61170292, 61472212), National Science and Technol-
ogy Major Project of China (2015ZX0300-3004), the Nation-
al High Technology Research and Development Program of
China (863 Program) (2013AA-013302, 2015AA015601), EU
Marie Curie Actions CR-OWN (FP7-PEOPLE-2013-IRSES-
610524).

REFERENCES

[1] “Prism Project,” https://nsa.gov1.info/dni/prism.html.
[2] D. A. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjálmtýsson and A.

Greenberg, “Routing Design in Operational Networks: A Look
from the Inside,” in SIGCOMM’04.

[3] D. A. Maltz, J. Zhan, G. Xie, H. Zhang, G. Hjálmtýsson, A.
Greenberg and J. Rexford, “Structure Preserving Anonymization
of Router Configuration Data,” in SIGCOMM’04.

[4] V. Paxson, “End-to-end routing behavior in the Internet,” in
IEEE/ACM Trans. Networking’97, 5(5):601-605.

[5] Y. Zhang and V. Paxson, “Detecting Backdoors,” in Pro. USENIX
Security Symposium’00.

[6] K. Xu, W. Chen, C. Lin, M. Xu, D. Ma and Y. Qu, “Towards Prac-
tical Reconfigurable Router - A Software Component Development

9

Approach,” in IEEE, Network, 2014, 28(5):74-80.
[7] “Iperf,” https://iperf.fr/.
[8] “Spirent packet generator,” http://www.spirent.com/Products/Te-

stCenter.
[9] A. Nandiz, A. Mandalz, S. Atreja, G. B. Dasguptaz and S. Bhat-

tacharya, “Anomaly Detection Using Program Control Flow Graph
Mining from Execution Logs,” in KDD 16, August, 2016.

[10] “Cisco Security Products,” http://www.cisco.com/c/en/us/pro-
ducts/security /product-listing.html.

[11] DEFCON Router Hacking Contest Reveals 15 Major Vulner-
abilities, https://www.eff.org/deeplinks/2014/08/def-con-router-
hacking-contest-success-fun-learning-and-profit-many.

[12] “Malicious Cisco router backdoor found on 79 more devices, 25
in the US,” http://arstechnica.com/security/2015/09/ malicious-
cisco-router-backdoor-found-on-79-more-devices-25-in-the-us/.

[13] “Cisco routers in at least 4 countries infected by highly stealthy
backdoor,” http://arstechnica.com/security/2015/09/ attackers-
install-highly-stealthy-backdoors-in-cisco-routers/.

[14] T. H. Kim, C. Basescu, L. Jia, S. B. Lee, Y. Hu and A. Per-
rig, “Lightweight Source Authentication and Path Validation,” in
SIGCOMM’14.

[15] S. Sparks, S. Embleton and C. C. Zou, “A chipset level network
backdoor: bypassing host-based Firewall & IDS,” in ASIACCS’09.

[16] “Backdoor Found In Arcadyan-based Wi-Fi Routers,” 2012.
http://it.slashdot.org/story/12/04/26/1411229/
backdoor-found-in-arcadyan-based-wifi-routers.

[17] “RuggedCom - Backdoor Accounts in my SCADA network? You
don’t say,” http://seclists.org/fulldisclosure/2012/Apr/277.

[18] A. Costin, J. Zaddach, A. Francillon and D. Balzarotti, “A Large-
Scale Analysis of the Security of Embedded Firmwares,” in Pro.
USENIX Security Symposium’14.

[19] F. Le, G. G. Xie, D. Pei, J. Wang and H. Zhang, “Shedding
Light on the Glue Logic of the Internet Routing Architecture,” in
SIGCOMM’08.

[20] T. Yang, G. Xie, Y. Li, Q. Fu, A. X. Liu, Q. Li, and L. Math-
y, “Guarantee IP Lookup Performance with FIB Explosion,” in
SIGCOMM’14.

[21] G. Appenzeller, I. Keslassy and N. McKeown, “Sizing Router
Buffers,” in SIGCOMM’04.

[22] E. Kohler, R. Morris, B. Chen, J. Jannotti and M. F. Kaashoek,
“The Click Modular Router,” in ACM Trans. Computer System-
s’00, 18(3):263-297.

[23] “DPDK Programmers Guide, Release 2.2.0,” http://dpdk.org/d-
oc/pdf-guides/prog guide-2.2.pdf.

[24] M. Dobrescu and K. Argyraki, “Software Dataplane Verification,”
in NSDI’14.

[25] M. Abadi, M. Budiu, Ú. Erlingsson and J. Ligatti, “Control-Flow
Integrity,” in CCS’05.

[26] J. Criswell, N. Dautenhahn and V. Adve, “KCoFI: Complete
Control-Flow Integrity for Commodity Operating System Kernels,”
in IEEE Symposium on Security and Privacy’14.

[27] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlings-
son, L. Lozano and G. Pike. Erlingsson, “Enforcing Forward-Edge
Control-Flow Integrity in GCC & LLVM,” in Pro. USENIX Secu-
rity Symposium’14.

[28] D. Naylor, M. K. Mukerjee and P. Steenkiste, “Balancing Ac-
countability and Privacy in the Network,” in SIGCOMM’14.

10

	Abstract
	1 Introduction
	2 Related Work
	3 Components & Actions
	3.1 Observations in Router Dataplane
	3.2 Design of CTAG and WAID

	4 Adversary Models
	5 Design of Minos
	5.1 The Construction of Minos
	5.2 Attacher and CTable
	5.3 The Efficiency of Minos
	5.4 The Effectiveness of Minos
	5.5 The Disabling Process
	5.6 Initializing RAT

	6 The Implementation of Minos
	6.1 The Click Implementation
	6.2 The DPDK Implementation

	7 Evaluation
	7.1 The Effectiveness of Minos
	7.2 The Performance of Minos

	8 Conclusion
	Acknowledgments
	References

