
Enhancing TCP Incast Congestion Control
Over Large-scale Datacenter Networks

Lei Xu
1

, Ke Xu
1

, Yong Jiang
2

, Fengyuan Ren
3

, Haiyang Wang
4

l-xu12@mails.tsinghua.edu.cn, xuke@mail.tsinghua.edu.cn, jiangy@sz.tsinghua.edu.cn,
renfy@mail.tsinghua.edu.cn, haiyang@d.umn.edu

1

Tsinghua National Laboratory
for Information

Science and Technology,
Tsinghua University,
Beijing 100084, China

2

Graduate School at
Shenzhen,

Tsinghua University,
Shenzhen, Guangdong

518055, China

3

Department of Computer
Science & Technology,
Tsinghua University,
Beijing 100084, China

4

Department of Computer
Science, University of

Minnesota Duluth,
MN, USA.

Abstract—Many-to-one traffic pattern in datacenter
networks introduces the problem of Incast congestion
for Transmission Control Protocol (TCP) and puts un-
precedented pressure to the cloud service providers. To
address heavy Incast, we present an Receiver-oriented
Datacenter TCP (RDTCP). The proposal is motivated
by oscillatory queue size when handling heavy Incast
traffic and substantial potential of receiver in congestion
control. Finally, RDTCP adopts both open- and closed-loop
congestion controls. We provide a systematic discussion on
its design issues and implement a prototype to examine its
performance. The evaluation results indicate that RDTCP
has an average decrease of 47.5% in the mean queue size,
51.2% in the 99th-percentile latency in the increasingly
heavy Incast over TCP, and 43.6% and 11.7% over Incast
congestion Control for TCP (ICTCP).

I. INTRODUCTION

In datacenter networks, it is known that the many-
to-one traffic pattern will also introduce severe TCP
Incast Congestion problem in the high-bandwidth, low-
latency cloud datacenter networks [8], [9]. In parti-
tion/aggregate architecture, a user request is farmed
out among lots of worker nodes, which send back the
results almost simultaneously to the aggregators that are
responsible for combining data and giving back final
results to the user.

When sending data simultaneously to the same re-
ceiver, the output queue at the last-hop switch would
overflow, causing Incast [10], [11]. In Incast, some flows
experience severe packet-drops and Flow Completion
Time (FCT) [12]. Worse, Incast creates long-latency
flows which miss strict deadline and bring users poor-
quality services and enterprises revenue loss [6], [7].

Our aim is to consider numerous concurrent flows
under the many-to-one traffic pattern and diverse work-
loads and satisfy challenges from the upcoming un-
precedented large-scale datacenter networks.

In this paper, we take an initial step towards un-
derstanding the performance of the existing datacenter-

related TCP designs over large-scale datacenter net-
works. Our experiments indicate that typical TCP pro-
tocols fail to work when facing heavier Incast in scaling
up data centers. Additionally, we observe receiver’s
advantages in congestion control.

To address higher in-degree Incast, we present
Receiver-oriented Datacenter TCP (RDTCP), a protocol
that allows the receiver to dominate congestion control.
In addition to receiver-dominant control on congestion
window, RDTCP leverages an open-loop congestion
control, i.e., centralized scheduler, and a closed-loop
congestion control, i.e., ECN, together to respond to
congestion.1

In this paper, we present RDTCP and implement it in
ns3 based on TCP-NewReno [1]. Our contributions are
as follows: First, we identify the pitfalls of TCP-related
Incast congestion control in large-scale datacenter net-
works and tease out the factors that cause transport
deficiency and performance collapse. Second, we pro-
pose a hybrid framework which seamlessly integrates
the centralized scheduler and ECN at receiver, which is
proved efficient to address large-scale Incast.2

The rest of paper is organized as follows. Section
II offers related work; Section III describes the moti-
vations regarding RDTCP; Section IV focuses on the
centralized scheduler and ECN of RDTCP. Section V
further evaluates the performance of RDTCP in terms
of heavy Incast, etc. Finally, Section VI concludes the
paper.

1Congestion Experienced (CE) bits in IP headers and ECN-Echo
(ECE) bits in TCP headers have been used to convey congestion
information in ECN packets. We use the term ECN packets as the
packets that are marked either with the ECE code point in TCP headers
or with the CE code point in IP headers.

2Our codes of RDTCP in ns3 are accessible by commanding “svn
checkout http://2013rdtcp.googlecode.com/svn/trunk/ 2013rdtcp-
read-only”.

Ï
«

»
«

»

·¦
»

 ø
ï
ð

 Õ
Þ

÷

(a) Queue size with 50 senders.

Ï
«

»
«

»

·¦
»

 ø
ï
ð

 Õ
Þ

÷

(b) Queue size with 80 senders.

Fig. 1. Time-series of queue size in the last-hop switch under Incast.

II. RELATED WORK

Congestion control protocols have been developed
for many years with the evolution of the Internet. We
present typical related protocols in brief. Recently, a
chunk of protocols have been provided for datacenter
networks. DCTCP is end-to-end protocols based on
TCP. It detects congestion degree by ECN packets and
makes corresponding congestion behaviors [2]. It effec-
tively suppresses queue buildups in switches and miti-
gated congestion. Receiver-oriented mechanisms have
been proposed for several years [3]. In [3], ICTCP
utilizes throughput detection at receiver to improve
transport efficiency in data centers. ICTCP is similar
to our work but it responds to congestion slowly, as
shown in Section V.

III. MOTIVATION

We mimic Incast with 50 and 80 senders which send
short flows simultaneously to the same receiver under
the same switch at 0.01 s. We set the link delay to 40
µs, link bandwidth to 1 Gbps and switch queue size to
128 KB (i.e., 80 1500-B packets), which conform to
real-life data centers. The queue size of three protocols
in the last-hop switch are plotted in Fig. 1.

As depicted in Fig. 1(a), in the first round with TCP
and DCTCP, 50 packets traverse switch successfully.
In the second round, 100 packets with TCP (due to
additive-increase) and 90 packets with DCTCP (due to
10 ECN responses and 40 additive-increases) respec-
tively overwhelm the switch queue, leading to packet
loss. ICTCP has packet loss in the first round because
its initial window is of 2 packets. In subsequent rounds,
all the queue sizes suffer from fluctuation. In Fig. 1(b),
it is apparent that all the protocols experience fiercer
queue oscillation. Even with ICTCP, it has dramatic
queue fluctuation at around 0.02 s. The swings of queue
size lead to a variable network performance, which, in
turn, hampers large-scale deployment of datacenter, not
to mention loss in revenue.

The scaling up trend in Fig. 1 enables us to get an
in-depth understanding of heavy Incast at the last-hop
switch with the increasing number of senders. Because
of queue backlog, it is obvious that the queue anomalies
and packet-drops become more serious when Incast
becomes “large-scale”.

The reason for these protocol deficiencies does not
lie in themselves, which have been elaborately verified
and even applied into real-life datacenter networks.

Fig. 2. RDTCP framework.

Instead, the key reason lies in the fact that the user
demands for web services are constantly growing and
the clouds and data centers are continually evolved.
With the scaling up data centers, the traditional and
typical protocols seem to reach their limits. The problem
of how to meet the specific characteristics and expand
datacenter transport has become a pressing research
issue.

IV. RDTCP MECHANISMS

As portrayed in Fig. 2, RDTCP comprises two
main mechanisms: centralized scheduler and ECN. The
former aims at eliminating the congestion at last-hop
switch while the latter targets on the congestion that
occurs elsewhere or are induced by other transport
protocols. In this section, we detail the centralized
scheduler in Subsections IV-A, IV-B and IV-C. Next
we present the relevant components of ECN in the
following Subsections IV-D, IV-E, IV-F and IV-G.

A. Preparations for RDTCP

RDTCP is implemented at TCP receiver side. Its
receive window size rwnd will be eventually sent off
to sender through the advertisement window in TCP
header. And the RDTCP sender adopts only rwnd as its
unique congestion window to send data. Consequently,
the receiver becomes the controller of sender congestion
window.

It is advisable that RDTCP utilizes flow priority
(e.g., flow size) to allocate congestion window, like [4],
[5]. If flow priority is unnecessary, RDTCP still works
well by setting all flow priorities to the same value.

In advance, RDTCP has been set a switch queue
threshold, queue maxsize. What RDTCP achieves is
to make the runtime queue size in the last-hop switch
no greater than queue maxsize, which uses packet as
unit. However, if switch queue threshold is unknown,
RDTCP will set queue maxsize by flight wins
when receiver gets first ECN data packet.

As long as the window assignment function has
allocated a window size to a flow, the window size
given by ECN cannot exceed this value. On the other
hand, ECN mechanism counts the flight windows of
the flow, which is finally submitted to the buffer queue,
as presented in Subsection IV-C. In general, centralized
scheduler is globally accessible to all the flows while
ECN resides in each connection. In the process of
designing RDTCP, the annoying business is to keep

consistent congestion behaviors as sender. Fortunately,
receiver has consistent sequence number with sender
which alleviates the problem.

B. Window Assignment for Each Connection

In RDTCP, when plenty of flows crowd into receiver,
i.e., many flows simultaneously transmit into one NIC
on the destination host, the window assignment function
will partition queue maxsize into appropriate window
sizes for each flow, by flow priority if necessary.

Algorithm 1 Update Windows for All Flows
Input: info //All the flow information has been stored

in a global array named as info;
use flow priority //The flag to use flow

priority;
1: Ascend(info, use flow priority); //the highest
priority is at the tail of array.

2: i = 0; sum win = 0;
3: while i < info.length() do
4: info[i].win = info[i].weight ∗
queue maxsize;

5: if info[i].win < 1 then
6: info[i].win = 1;
7: else if use flow priority and
info[i].win > info[i].f lowsize then

8: info[i].win = info[i].f lowsize;
9: end if

10: sum win + = info[i++].win;
11: end while
12: i = info.length()− 1;N noneed check = 0;
13: while use flow priority and

sum win < queue maxsize do
14: if | info[i].win−info[i].f lowsize |<= 1 then
15: if + + N noneed check >=

info.length() then
16: break;
17: end if
18: else
19: info[i].win++; sum win++;
20: end if
21: if −− i == −1 then
22: i = info.length()−1;N noneed check =

0;
23: end if
24: end while

Implementing the mechanism has three subtleties.
1) The algorithm needs a globally accessible array
which stores information of all the active flows from
the NIC. To lower storage overhead, the array element
only preserves window size and flow priority. It is
feasible to deploy the array into device driver layer.
2) Flow priority (e.g., flow size) may be unavailable.
Accordingly, the algorithm needs to be robust without
flow priority. 3) Due to the fixed flow priority, the
function is invoked only when an SYN or CLOSE
packet arrives at receiver, as plotted in Fig. 2.

The assignment is in Algorithm 1 which is invoked
once SYN packet arrives at receiver. After connection
established, the buffer queue mechanism of Subsection
IV-C is used to prevent congestion. RDTCP adopts flow
priority to partition queue maxsize3. Suppose flow
i’s priority is pi and there are n connections in total,
then flow i’s weight wi = pi/

∑n
j pj . Furthermore, its

congestion window is Wi = wi× queue maxsize (Wi

is an integer and takes packet as unit.4), as illustrated
in Line 4 of Algorithm 1. When Wi is smaller than 1,
RDTCP assigns 1 to Wi to avoid stopping flows (Line
6 of Algorithm 1). It is evident that RDTCP is trying
to make the sum of all connection congestion windows
below queue maxsize.

In Algorithm 1, two noticeable issues need to be
solved. First, the sum of all the connection windows
may be smaller than queue maxsize, resulting in link
under-utilization (e.g., with queue maxsize = 40, 21
flows of the same flow priority ultimately get 21 win-
dows in total, leading to 19 windows idle in the switch
queue). This is solved in Lines 13-23 of Algorithm 1.
Second, the window size is unnecessarily larger than the
flow size (e.g., with queue maxsize = 40. There are
two flows whose sizes are 30 MB and 2 KB, resulting in
1 window and 39 windows, respectively). This is solved
in Line 8 of Algorithm 1.

On the whole, the algorithm aims to assign ap-
propriate window sizes for each connection at receiv-
er. However, when the number of connections is too
large, it is completely possible for the sum of conges-
tion windows to exceed queue maxsize (e.g., when
queue maxsize = 40, each of the 100 flows has been
assigned with one window, leading to 100 windows in
total). Accordingly, Algorithm 1 does not suffice sup-
pressing congestion. RDTCP needs a complementary
mechanism to absorb redundant windows.

Algorithm 1 does not involve too much overhead
because it is invoked once each flow. The buffer queue
acts as a buffer to absorb redundant packets, so it does
not involve computational overhead, as is presented in
the following section.

C. The Buffer Queue to Absorb Burtiness

The buffer queue of RDTCP is a queue to store
ACK packets of extra connections temporarily. It as-
sures total bytes of flight windows on paths are below
queue maxsize. Since receiver controls congestion
window, we add a corresponding counter at receiver to
record the flight windows of each flow. When a new
data-packet of one flow arrives at receiver, the flow’s
counter is reduced by the bytes of data-packet. On the
contrary, when a new ACK of the flow is sent back,

3If flow priority is not available, Algorithm 1 will set all the
priorities as a same value.

4Wi and queue maxsize in Algorithm 1 implicate maximum size
of connection, hence their packets mean maximum packets. This dose
not impact flight wins which uses byte as unit in buffer queue
mechanism in Subsection IV-C

the counter will be increased by the increment of ACK-
number.5 If ACK is lost, receiver retransmits ACK and
does not counter the bytes, as shown in Subsection IV-F.

The centralized scheduler calculates flight wins,
the sum of counters of all the connections with-
in the same NIC. When flight wins is larger than
queue maxsize, the buffer queue will queue up ACK
packets instead of sending ACKs until flight wins is
below queue maxsize. flight wins is accessible by
all the connections within the same NIC at receiver.
Besides, the buffer queue orders the ACK packets by
flow priority. The ACKs with the highest flow priorities
are stored near the head of the queue. The priority
inversion problem has no chance to happen because the
receiver can wait until the queue of last hop switch has
enough space to transmit packet and the buffer queue
at receiver sends back the highest priority ACK.

Once an ACK is sent back, the queue will be
invoked and handle the ACK as input. Since each flow
needs a distinct identity to distinguish, the buffer queue
stores the thread pointer of flow as flow identity. The
procession includes three steps. Firstly, the queue has
a unique ACK corresponding to current connection and
returns skiptime which denotes the times that an ACK
is skipped over (i.e., making no progress in buffer
queue).

Second, the mechanism of inserting a current-flow
ACK into the queue employs flow priority. However, the
queue will degrade into First In First Out (FIFO) queue
when flow priority is unavailable. To prevent lower
priority flows from being waited in the queue for a long
time, the queue uses skipptime for each ACK. When
an ACK is skipped over by a higher-priority ACK, its
skipptime is added one. When an ACK’s skipptime
reaches the maximum, it cannot be skipped until it is
outputed.

Third, once there is idle space in the switch queue,
the buffer queue sends ACKs. The buffer queue plays
a vital role in absorbing burtiness from datacenter
networks. This mechanism is proved efficient in the face
of heavy many-to-one traffic pattern in Section V.

D. Receiver’s Basic Congestion Control

The crux of receiver ECN lies in three aspects. First,
we imitate TCP NewReno to achieve basic congestion
control at receiver. The behaviors of congestion control
remain unchanged because we try to make work simple.
Second, it is imperative to design an algorithm for
receiver to estimate Round Trip Time (RTT), which
is of significance to ECN because it has to calculate
congestion degree, αr, and update window every RTT.
Finally, retransmission mechanism for ACKs may differ
from TCP retransmission. In the following, we present
details of surmounting these difficulties.

5There are two variables for counting flight windows. One is used
for recording increment of ACK number every round, the other is the
maximum sequence number expected to arrive. We ignore the details
for brevity.

To begin with, the centralized scheduler and ECN
cannot contradict with each other. Centralized scheduler
targets congestion at last-hop switches while ECN aims
at congestion far from receiver. Thus, the former assigns
window size Wi while the latter adjusts window size in
the range of 1 and Wi.

In addition, receiver’s congestion control behaviors
resemble TCP NewReno. It includes three parts that are
Fast Recovery (Lines 4 to 24), Slow Start (Lines 28 to
30) and Congestion Avoidance (Line 31). seq indicates
the sequence number of packet just arrived at receiver,
and expected ack indicates the sequence number of data
that receiver is waiting to receive.

Last, the duplicated ACK Count is the counter of
the seq which is larger than expected ack. RxAvail de-
notes the size of received data whose sequence numbers
are equal to expected ack. RxSize indicates the size of
all the data received. It is possible that RxSize is larger
than RxAvail because the packet of expected ack is
lost and the following packets are successfully received.

E. RTT Estimator at Receiver

TCP employs Jacobson estimator of RTT and the ex-
ponential back-off mechanism at sender while receiver
does not. RDTCP ECN has to update congestion win-
dow every RTT. For TCP, after sending packet of seq,
the sender will estimate RTT when ACK seq+segment
arrives at the sender.6 For RDTCP, we use rwnd of
receiver congestion window and current expected ack
to obtain expected seq, which is the expected sequence
number after RTT. The equation is shown as follow:

expected seq = expected ack+rwnd−segment. (1)

Once receiver sends off expected ack to sender,
it records the sending time as T1. Next, when
expected seq that satisfies Equation 1 arrives at the
receiver at time T2, the receiver will estimate RTT
by T2 − T1. The sequence number that is unequal to
expected seq will not be estimated. RDTCP receiver
starts estimating earlier than sender, i.e., in the process
of TCP 3-Way Handshake. Further, it estimates RTT
only in states of Slow Start and Congestion Avoidance.

F. Delayed ACK and Retransmission

The difference of congestion degree between sender
and receiver increases when the delayed ACK time
becomes large. In order to make comparison fair, we
disable the delayed ACK mechanism at receiver (i.e.,
sending ACKs every packet).

Importantly, RDTCP leverages receiver’s retransmis-
sion for ACK and uses RTOr

min to clock ACKs.7

6We term segment as the maximum size of TCP packet and
assume TCP packets are in general of segment size.

7Though it is advisable to disable retransmission mechanism at
sender, sender retransmission can be conserved. Even with retrans-
mission occurred at sender, the congestion window will not decrease
due to receiver’s control over congestion behavior.

RTOr
min is set similarly to that of sender. The retrans-

mission timeout is scheduled to fire RTOr
min after not

receiving any packets and no corresponding ACK in
the buffer queue. Another difference of retransmission
between sender and receiver lies in the sending proces-
sion. Receiver adds PSH flag in TCP header to force
sender to send the packet corresponding to the ACK
immediately.

G. ECN Response

In this subsection we present ECN in RDTCP. Like
DCTCP [2], RDTCP leverages ECN to detect the extent
of remote congestion (e.g., the first-hop switch) and
avoid packet loss.8 The ECN-enabled switch marks
all the packets by setting the Congestion Experienced
(CE) codepoint [13] when the queue length exceeds a
certain threshold K. The RDTCP receiver detects the
congestion extent of link by calculating αr, the ratio of
marked packets and all packets over RTT. Afterwards,
it decreases window in proportion to αr as follow:

rwnd = rwnd× (1− αr/2). (2)

Unlike DCTCP, RDTCP receiver does not need the dual
mode state-machine to determine whether to set ECN-
Echo bit. Because no matter whether the delayed ACK
mechanism is enabled, the receiver is able to directly
get αr and adjust congestion window.

V. EVALUATION

We examine RDTCP in terms of queue buildup,
goodput, packet-drops and FCT in Incast. We set link
delay to 40 µs and bandwidth to 1 Gbps. The size
of switch output queue is 128 KB (i.e., 80 1500-B
packets), which is akin to commodity switch in real-
world data centers. All the protocols are without the
delayed ACK mechanism, thus the passive effect of
dual state machine of DCTCP will be limited and the
comparisons of results are fair.9 The Retransmission
TimeOuts (i.e., RTOs

min for sender and RTOr
min for

receiver) are set to 10 ms, which are in line with the
parameters in [10]. ECN marking threshold K is set
to 40, and queue maxsize is set to 40 as well. The
switch queue adopts DropTail mechanism. We use flow
size as priority. All the parameters remain unchanged
in the following subsections unless otherwise noted.

In Incast, many concurrent senders start to transmit
32-KB flows to one receiver at 0.01 s. All the hosts
are under the same switch whose configurations are de-
scribed above. In this section, we need to make sure that
RDTCP is immune to effect from this large-scale trend.
Hence, in the examination of Incast, we expand the
number of concurrent senders from 10 to 100, intending
to exhibit the growing inclination. While the number
can be further enlarged, we omit the presentation due to
space constraints. In any case, the following evaluations
does reflect the advantages of RDTCP prominently.

Fig. 3. Queue buildup in the last-hop switch.

Ù
±

±
¼

°
«

¬
øï

ð
ð

 Ó
¾

°

÷

Fig. 4. Goodput and the number of packet-drops and markings of
packet in the last-hop switch queue in Incast.

1) Queue Buildup: First and foremost, we focus
on the queue size of the switch in the above Incast
phenomenon with four protocols. As expected in Fig.
3, RDTCP has the smallest average queue size no
matter how many flows are concurrent (except the case
of 10 senders where ICTCP takes effect in light-load
networks). It has a 47.5%, 50.8% and 43.6% mean
decrease in the mean queue size over TCP, DCTCP and
ICTCP, respectively.

The emphasis is the consistent mean queue size
of RDTCP, no matter how many senders there are. In
addition, the 95th-percentile queue sizes of RDTCP hold
low and stable. All these advantages of RDTCP are
the results of centralized scheduler. The buffer queue
at RDTCP receiver has restrained total flight windows
on the path, keeping the switch queue size at low
level. Consequently, RDTCP has the slightest queue
fluctuation in all cases.

In contrast, the other protocols are less sensitive to
switch queue size, experiencing severe packet loss, as
shown in Fig. 3. Because their 95th-percentile queue
sizes reach 120 KB which is the maximum switch queue
size. All the protocols have similar 5th-percentile queue
sizes because at the beginning of transmission the queue
sizes are small.

2) Goodput: It is revealed in Fig. 4 that all the proto-
cols except RDTCP suffer from goodput collapse when
confronting Incast [11]. With the number of senders
increasing, RDTCP achieves almost the best goodput
among protocols, which benefits from its zero packet-
drops. TCP and DCTCP suffer from significant goodput

8We add ECN to TCP/IP model in ns3 of version 3.16.
9The sensitiveness to congestion of receiver is not affected when

delayed ACK mechanism is disabled.

(a) The 1st, 50th, 99th percentile FCT
in Incast.

(b) The 1st, 50th, 99th percentile FCT
with varying flow sizes and 30
senders.

Fig. 5. FCTs with varying sender numbers and flow sizes.

decrease, despite afterwards increasing gradually. Note
that DCTCP has lower goodput than TCP at 20 senders.
This is because its ECN defers congestion to subsequent
rounds instead of eliminating them, resulting in more
packet-drops.

In Fig. 4, ICTCP behaves consistently with [3] when
the number of senders is below 50. However, with
further increasing number of sender, ICTCP suffers
from goodput collapse. This is because it is oblivious
to switch queue size, leading to a sluggish response.
As a result, TCP, DCTCP and ICTCP experience seri-
ous packet loss, causing timeout at sender. This phe-
nomenon is also termed Block Head TimeOut (BHTO)
[12]. However, RDTCP has no such problem because it
keeps the the bytes of flight windows on paths below
queue maxsize, i.e., 40.

3) Flow Completion Time: In Fig. 5(a), the 1st,
50th and 99th percentile FCTs of four protocols in
Incast are presented. As portrayed in the figure, with the
growing number of senders, all the 50th-percentile FCTs
increase. It is obvious that RDTCP’s 99th FCTs holds
the lowest, which is vital in partition/aggregator con-
struction where the last flow determines service quality.
RDTCP has 51.2%, 16.4% and 11.7% mean decrease in
the 99th-percentile FCT over TCP, DCTCP and ICTCP,
respectively. Beyond that, RDTCP has the minimum
differences between the 1st and 99th percentile FCTs
(except the case of 30 senders), implicating that RDTCP
has stable and predictable performance.

Likewise, we construct a set of scenarios where
30 concurrent senders send flows of the same size to
one receiver with varying flow sizes while the other
configurations remain the same with the Incast scenario.
The 1st, 50th and 99th percentile FCTs of four protocols
are illustrated in Fig. 5(b).

In Fig. 5(b), RDTCP has the minimum 99th-
percentile FCTs. Besides, it achieves the second small-
est 1st-percentile FCTs while long flow is sensitive
to throughput, i.e., the 1st-percentile FCT. While TCP
achieves the minimum 1st-percentile FCTs, its 99th-
percentile FCTs are still large due to drastic packet-
drops, which is attributed to its proactive congestion
control.

VI. CONCLUSION

The primary contribution of this paper is to present
the pitfalls of TCP incast congestion control in large-

scale datacenter networks. Viewed in this light, RDTCP,
which implements congestion control at receiver, satis-
fies the requirements of expanding data centers. RDTCP
is constructed by two main mechanisms, open- and
closed-loop congestion control to cope with different
congestion. We orchestrate the mechanisms to respond
to congestion reasonably. Further, we pay attention to
the serious Incast problem and illustrate that RDTCP is
suitable to higher-degree many-to-one communication.
In evaluations, RDTCP outperforms other protocols in
terms of queue buildup, goodput, FCT, etc.

ACKNOWLEDGMENT

This work has been supported in part by
NSFC Project (61170292, 61472212), 973 Project
of China (2012CB315803), 863 Project of China
(2013AA013302, 2015AA010203), EU MARIE CURIE
ACTIONS EVANS (PIRSES-GA-2013-610524) and
multidisciplinary fund of Tsinghua National Laboratory
for Information Science and Technology.

REFERENCES

[1] Ns3. http://www.nsnam.org/.
[2] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B.

Prabhakar, S. Sengupta, and M. Sridharan, “DCTCP: Efficient
Packet Transport for the Commoditized Data Center,” Proc. ACM
SIGCOMM’10, pp. 63-74, Aug. 2010.

[3] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast Con-
gestion Control for TCP in Data Center Networks,” IEEE/ACM
Trans. Networking (TON), vol. 21, no. 2, pp. 345-358, Apr. 2013.

[4] B. Vamanan, J. Hasan, and T. N. Vijaykumar, “Deadline-Aware
Datacenter TCP (D2TCP),” Proc. ACM SIGCOMM’12, vol. 42,
no. 4, pp. 115-126, Oct. 2012.

[5] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M.
S. Iqbal, and B. Khan, “Minimizing Flow Completion Times in
Data Centers,” Proc. IEEE INFOCOM’13, pp. 2157-2165, Apr.
2013.

[6] N. Dukkipati and N. McKeown, “Why Flow Completion Time
is the Right Metric for Congestion Control,” ACM SIGCOMM
Computer Communication Review, vol. 36, no. 1, pp. 59-62, Jan,
2006.

[7] J. Brutlag, “Speed Matters for Google Web Search,” http://
code.google.com/speed/files/delayexp.pdf, 2009.

[8] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Pro-
cessing on Large Clusters,” Communications of the ACM, vol.
51, no. 1, pp. 107-113, Jan 2008.

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell and D. Fetterly, “Dryad:
Distributed Data-Parallel Programs from Sequential Building
Blocks,” Proc. EuroSys’07, vol. 41, no. 3, pp. 59-72, June 2007.

[10] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. Ander-
sen, G. Ganger, G. Gibson, and B. Mueller, “Safe and Effective
Fine-grained TCP Retransmissions for Datacenter Communica-
tion,” Proc. ACM SIGCOMM’09, vol. 39, no. 4, pp. 303-314,
Oct. 2009.

[11] R. Griffith, Y. Chen, J. Liu, A. Joseph, and R. Katz, “Under-
standing TCP Incast Throughput Collapse in Datacenter Net-
works,” Proc. ACM WREN, pp. 73-82, Aug. 2009.

[12] J. Zhang, F. Ren and C. Lin, “Modeling and Understanding
TCP Incast in Data Center Networks,” Proc. IEEE INFO-
COM’11, pp. 1377-1385, Apr, 2011.

[13] K. K. Ramakrishnan and S. Floyd, “The Addition of Explicit
Congestion Notification (ECN) to IP,” RFC 3168, Sep. 2001.

