
Computer Networks 124 (2017) 46–60

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Throughput optimization of TCP incast congestion control in

large-scale datacenter networks

Lei Xu

a , Ke Xu

a , ∗, Yong Jiang

b , Fengyuan Ren

a , Haiyang Wang

c

a Department of Computer Science & Technology, Tsinghua University, Beijing, China
b Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, China
c Department of Computer Science at the University of Minnesota Duluth, MN, USA

a r t i c l e i n f o

Article history:

Received 25 May 2016

Revised 29 May 2017

Accepted 5 June 2017

Available online 6 June 2017

Keywords:

Datacenter networks

Transport protocol

Switch queue

Incast

Congestion control

a b s t r a c t

The many-to-one traffic pattern in datacenter networks leads to Transmission Control Protocol (TCP) in-

cast congestion and puts unprecedented pressure to cloud service providers. The abnormal TCP behaviors

in incast increase system response time and unavoidably reduce the applicability of cloud-based system

deployments. This paper proposes Receiver-oriented Congestion Control (RCC) to address heavy incast

in large-scale datacenter networks. RCC is motivated by oscillatory queue size of switch when handling

heavy incast and substantial potential of receiver in congestion control when using TCP. RCC makes effec-

tive use of centralized scheduler and Explicit Congestion Notification (ECN) at receiver. The RCC prototype

is realized in network simulator 3 (ns3) which implements TCP exactly. This paper details the RCC design

and evaluates its performance in diverse and heavy workloads. The evaluation results indicate that RCC

has an average decreases of 47.5% in the mean queue size and 51.2% in the 99th-percentile latency in the

heavy incast over TCP.

© 2017 Published by Elsevier B.V.

g

e

(

r

t

e

(

d

fi

p

g

a

a

e

c

d

c

(
1. Introduction

The emergence of cloud computing as an efficient means pro-

viding computation can already be felt with the burgeoning of

cloud-based applications. Such systems as iCloud, Dropbox, Face-

book and Amazon EMR have enjoyed phenomenal growth over the

past few years. For instance, Facebook announced that they had

Hadoop clusters with 100 petabyte (PB) data across more than

50,0 0 0 servers [1] . Other systems as Azure, Dropbox, iCloud are

also attracting an increasing number of users and scaling their sys-

tem deployments on datacenter networks [2,3] . The trend of large-

scale datacenter networks is irresistible.

The datacenter networks in this paper are regarding wired

networks instead of wireless datacenter networks [4] . The ubiq-

uitous many-to-one traffic pattern in datacenter networks poses

challenges for Transmission Control Protocol (TCP). As illustrated

in Fig. 1 , the many-to-one traffic pattern occurs on the parti-

tion/aggregate architecture where many work nodes transmit data

to the aggregator node. This can easily cause the TCP incast Con-
∗ Corresponding author.

E-mail addresses: l-xu12@mails.tsinghua.edu.cn (L. Xu),

xuke@mail.tsinghua.edu.cn (K. Xu), jiangy@sz.tsinghua.edu.cn (Y. Jiang),

renfy@mail.tsinghua.edu.cn (F. Ren), haiyang@d.umn.edu (H. Wang).

c

c

c

o

http://dx.doi.org/10.1016/j.comnet.2017.06.004

1389-1286/© 2017 Published by Elsevier B.V.
estion problem in datacenter networks [5–8] . In incast, data flows

xperience severe packet-drops and long Flow Completion Times

FCTs), bringing users poor Quality of Service (QoS) and enterprise

evenue loss [9–11] . It is necessary to design protocols according

o network environments [12] .

To mitigate this problem, network researchers have proposed

ffective protocol designs, such as Incast congestion Control for TCP

ICTCP) and Data Center TCP (DCTCP) [13,14] . DCTCP is a pioneer of

atacenter transport protocols. Using the Explicit Congestion Noti-

cation (ECN) mechanism, DCTCP suppresses queue buildups and

acket-drops [13] . H. Wu et al. proposed ICTCP, which controls con-

estion windows by monitoring receiver throughput. It is the first

ttempt to control rates of flows at receiver [14] . These protocols

re effective for common incast instead of heavy incast which is

xplained in Section 3.1 .

This paper designs a novel transport protocol in congestion

ontrol for heavy incast to satisfy requirements from large-scale

atacenter networks. Firstly, we investigate heavy incast and its

ause. Second, we propose Receiver-oriented Congestion Control

RCC) based on TCP, a mechanism that allows receiver to dominate

ongestion control. RCC leverages both an open-loop congestion

ontrol, i.e., centralized scheduler, and a closed-loop congestion

ontrol, i.e., ECN, at receiver to respond to congestion. On the

ne hand, in RCC, ECN is deployed at receiver to achieve normal

http://dx.doi.org/10.1016/j.comnet.2017.06.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2017.06.004&domain=pdf
mailto:l-xu12@mails.tsinghua.edu.cn
mailto:xuke@mail.tsinghua.edu.cn
mailto:jiangy@sz.tsinghua.edu.cn
mailto:renfy@mail.tsinghua.edu.cn
mailto:haiyang@d.umn.edu
http://dx.doi.org/10.1016/j.comnet.2017.06.004

L. Xu et al. / Computer Networks 124 (2017) 46–60 47

Fig. 1. Partition/aggregate architecture.

c

c

T

d

c

a

b

p

i

d

f

S

s

R

p

2

y

b

a

m

e

t

p

h

t

c

r

c

r

p

p

S

t

w

i

e

T

p

s

w

c

q

d

d

c

i

[

i

e

s

p

c

m

y

[

p

l

a

r

t

d

r

r

g

t

t

l

n

r

o

3

3

8

a

(

w

a
ongestion control in datacenters [13] . 1 On the other hand, the

entralized scheduler is used to suppress the burstiness of incast.

he previous work of RCC is in [15] and this paper details its

esign and evaluations.

Integrating the open- and closed-loop congestion controls at re-

eiver is challenging for two reasons. First, the congestion control

t receiver has to be compatible with that of TCP. Further, they

elong to different types in terms of congestion mechanisms. This

aper shows that by arranging the above two congestion controls

n a reasonable order, the receiver coordinates different congestion

ecisions effectively.

Our contributions are as follows:

• This paper teases out the factors impacting transport perfor-

mance and identifies the root reasons of incast congestion in

large-scale datacenter networks.

• We design the receiver congestion control and combine open-

and closed-loop congestion controls at receiver. To the best of

our knowledge, this is the first attempt to improve transport

protocols by combining two congestion controls at receiver.

• We provide a prototype of RCC and evaluate its performance in

network simulator 3 (ns3). 2

The rest of this paper is organized as follows. Section 2 of-

ers related work; Section 3 describes the motivations of RCC;

ection 4 details the design of RCC. Section 5 details the analy-

is of RCC factors. Section 6 further evaluates the performance of

CC in terms of heavy incast, etc. Finally, Section 7 concludes the

aper.

. Related work

Congestion control protocols have been developed for many

ears with the evolution of the Internet. Network researchers have

een improving transport protocols to suit different circumstances

ll the time. The majority of protocols spring up based on Trans-

ission Control Protocol (TCP) [16] . The state-of-the-art TCP makes

ffective use of bandwidth by adjusting window sizes according

o the Additive-Increase and Multiplicative-Decrease (AIMD) ap-

roach. The following presents typical TCP-based protocols in brief.
1 Congestion Experienced (CE) bits in IP headers and ECN-Echo (ECE) bits in TCP

eaders have been used to convey congestion information in ECN packets. We use

he term ECN packets to describe the packets that are marked either with the ECE

ode point in TCP headers or with the CE code point in IP headers.
2 The C++ codes of RCC in ns3 are fully accessible at https://github.com/thuxl/

dtcp .

T

t

f

o

i

F
TCP Reno is proposed to improve TCP throughput when en-

ountering a packet loss [17] . Further, TCP NewReno adds an algo-

ithm for partial Acknowledgment (ACK) during the fast recovery

hase for the same aim [18] . TCP Vegas achieves better through-

ut than TCP Reno. It employs several novel techniques, e.g., Spike

uppression and Congestion Detection by throughput [19] . To meet

he challenges from large Bandwidth and Delay Product (BDP) net-

orks, CUBIC is introduced with a window growth function, which

s a cubic function of the elapsed time from the last congestion

vent [20] . Another direction of TCP development is code-based

CP which is beyond the scope of this paper [21,22] . The above

rotocols mainly focuse on Internet backbone networks rather than

pecified ones such as datacenter networks.

A chunk of protocols have been proposed for datacenter net-

orks. DCTCP detects congestion degree by ECN packets and makes

orresponding congestion decisions [13] . DCTCP has suppressed

ueue buildups of switches and mitigated congestion. D

3 has intro-

uced deadline into congestion solutions, and it works well with

eadline flows [23] . Further, D

2 TCP adds flow deadline to DCTCP

ongestion window control [24] . L 2 DCT advances D

2 TCP by deploy-

ng deadline into not only window decreasing but also increment

25] . PDQ is proposed completely for flows with priorities, achiev-

ng an excellent datacenter transmission [26] . Meanwhile, pFabric

mploys priority switch queues and simplified TCP to achieve out-

tanding datacenter transport [27] . PASE synthesizes existing trans-

ort strategies to suit the need of datacenter networks [28] . Re-

ently, TIMELY is designed based on the Round Trip Time (RTT)

echanism [29] .

Receiver-oriented mechanisms have been proposed for several

ears. There are typical implementations for different contexts

14,30,31] . ICTCP utilizes throughput detection at receiver to im-

rove transport efficiency of datacenter networks in [14] . TCP-Real

everages receiver’s ability of decoupling packet loss from window

djustments to avoid unnecessary back-offs [30] . T CP-RTM makes

eceivers ignore unimportant packet loss for multimedia applica-

ions in [31] . Recent work [32] also leverages receiver’s ability on

etecting actual throughput on the attached link. These procotols

eflect the feasibility to deploy congestion control at receiver and

eceiver’s potential of congestion control.

A notable receiver-oriented proposal to cope with incast con-

estion is PAC [33] . Through a proactive ACK control, PAC is able

o cope with heavy incast in datacenter networks. PAC has proved

hat receiver-oriented method is effective in solving incast prob-

ems. The main difference between PAC and RCC is that PAC does

ot touch TCP-related protocols while RCC is completely a TCP-

elated protocol.

The following section describes the motivations and objectives

f RCC.

. Motivations

.1. Queue buildup and packet loss

To analyze heavy incast, this section mimics incast with 50 and

0 senders sending short flows to the same receiver. All the hosts

re connected to an 81-port switch whose queue size is 128 KB

i.e., 80 1500-B packets). The starting time of 80 senders complies

ith exponential distribution with the mean of 15 ms. Hence they

re called as randomized senders. Each sender sends 32 KB flow.

he link delay is 40 μs and the link bandwidth is 1 Gbps. The real

ime size of the output queue in the last-hop switch are plotted

or three protocols, TCP, DCTCP and ICTCP, in Fig. 2 (a) and (b).

In the randomized scenarios in Fig. 2 (a) and (b), the queue

scillations are severe. With the increasing number of senders,

.e., 80 senders, oscillation occurs more frequently and fiercely in

ig. 2 (b). These two figures show that with increasing senders,

https://github.com/thuxl/rdtcp

48 L. Xu et al. / Computer Networks 124 (2017) 46–60

Fig. 2. Motivation of queue size.

i

d

s

p

c

s

t

a

s

s

w

b

o

A

c

I

t

t

t

4

c

t

s

I

s

m

u

R

4

A

w

s

t

q

queue backlogs make queue anomalies and packet-drops more se-

rious.

In datacenter networks, incast is caused by many-to-one traf-

fic patterns and shallow buffered switches. For one thing, barrier-

synchronized communications such as MapReduce [5] and Dryad

[6] are easy to lead to a many-to-one traffic pattern. For another,

in large-scale datacenter networks, the majority of switches are

shallow buffered. In this paper, heavy incast has harsher condi-

tion than common incast. In heavy incast, all the senders send

data simultaneously in a many-to-one traffic pattern with shallow

buffered switches. Sending data simultaneously is a hasher condi-

tion than randomized senders in Fig. 2 (a) and (b). Even the num-

ber of senders is around 100, the incast degree is heavy or reveals

“large-scale” trend.

3.2. The advantages of receiver

In this section, we chose DCTCP to illustrate receiver’s advan-

tages on congestion control. We use α from DCTCP to estimate the

fraction of packets that have ECN marks. α is updated once for ev-

ery window of data, i.e., roughly one Round Trip Time (RTT), as

follows:

α ← (1 − g) × α + g × F , (1)

where F is the fraction of packets that were marked in the last

window of data, and 0 < g < 1 is the weight given to new samples

against the past in the estimation of α.

In the experiment, four long-lived flows are sent by four hosts

to the same receiver by DCTCP. All the four hosts connect to four 1-

Gbps-ports of the same switch where each link has a 40- μ s delay.

The switch queue has capability of 80 1500-B packets. The switch

queue has the ECN funtion with a 40-packet ECN threshold. A

dual-state machine is added to determine whether to set ECN-Echo

bit according to [13] . 3 To make comparison fair between sender

and receiver, DCTCP updates congestion window every 200 μ s in-

stead of one RTT. Also, we add an ECN packet counter at receiver

which calculates congestion degree as well. All the flows start at

the same time.

The α of the first flow is plotted in Fig. 3 (a) and (b) to demon-

strate the differences of α between sender and receiver with de-

layed ACK set to 1 and 3, respectively. The situation of the other

three flows are similar. When the real-time queue size is larger

than 40 packets, it will trigger receiver and sender to calculate α,

separately. However, the value of α between receiver and sender
3 In Fig. 10 of [13] , the state machine at receiver works as follows. If the state

machine has state CE = 0, when an ECN-marked packet arrives at receiver, it will

send ACK ECN = 0 instead of ECN = 1 to sender and change the state to CE = 1.

The state CE = 1 has similar behaviors.

m

i

a

i

s

fl
s non-consistent in the same link situation, especially when the

elayed ACK is set to 3 in Fig. 3 (b).

The reason for a higher receiver α in Fig. 3 (a) is that the dual-

tate machine at receiver will not immediately send back ECN ACK

ackets after receiving CE-marked data packets. Instead, the re-

eiver still sends a non-ECN ACK back to the sender, making the

ender with one ECN packet less calculated than the receiver. Fur-

her, when congestion is relieved, i.e., normal data packets start to

rrive at receiver, one ECN ACK as a delayed ECN packet will be

ent to sender, which generates a smaller value of α at sender de-

pite no congestion on the link. This discrepancy will be enlarged

hen the number of delayed ACK increases, as depicted in Fig. 3 (b)

efore 0.2 s. After that, the value of sender’s α is higher than that

f receiver’s because after congestion is relieved, at most 3 ECN

CKs are still received by sender, leading to an overestimated α.

Beyond that, the receiver can aggregate the information re-

eived over all incoming TCP flows, and control appropriately.

n conclusion, receiver has more accurate congestion information

han sender and has natural advantage of aggregating the informa-

ion for all incoming TCP flows, making it suitable to many-to-one

raffic patterns in large-scale datacenter networks.

. The design of RCC

As shown in Fig. 4 , RCC is implemented at the receiver side. The

entralized scheduler consists of window assignment that allocates

he maximum window size for a flow and buffer queue that ab-

orbs burstiness and counts the total number of flight windows.

n addition, ECN works as that in sender. The receive-window

ize rwnd will be eventually sent off to sender by the advertise-

ent window in ACK packet. And the sender adopts rwnd as its

nique congestion window. The following subsections detail the

CC mechanisms.

.1. The window assignment

In RCC, the window assignment algorithm (shown in

lgorithm 1) is to assign suitable window size for each flow

hen plenty of flows are transmitted simultaneously into the

ame NIC of receiver. Algorithm 1 uses queue _ maxsize to represent

he maximum size of switch queue. The algorithm is to partition

ueue _ maxsize into appropriate window sizes for each flow.

In the algorithm, info is a global array storing all the flow infor-

ation while use _ f low _ pr ior ity reveals whether to use flow prior-

ty. The array info is initialized and updated when receiver receives

 Synchronous (SYN) packet and a Finish (FIN) packet, as shown

n Fig. 4 . use _ f low _ pr ior ity indicates whether the packet has flow

ize information. If the received packets carry the information of

ow size, RCC will use them as flow priority. Or else, RCC sets the

L. Xu et al. / Computer Networks 124 (2017) 46–60 49

Fig. 3. Motivation of receiver potential.

Fig. 4. RCC framework.

Algorithm 1 Assigning Windows for All Flows.

Require: in f o //A global array storing all the f low in f ormation use _

f low _ pr ior ity //A f lag to use f low pr ior ity ;
1: Ascend(in f o, use _ f low _ pr ior ity) ; i = 0 ; sum _ win = 0 ;
2: while i < in f o.length () do

3: in f o[i] .win = in f o[i] .weight ∗ queue _ maxsize ;
4: if in f o[i] .win < 1 then in f o[i] .win = 1 ;
5: else if use _ f low _ pr ior ity and in f o[i] .win > in f o[i] . f lowsize

then

6: in f o[i] .win = in f o[i] . f lowsize ;
7: end if

8: sum _ win + = in f o[i + +] .win ;
9: end while

10: i = in f o.length () − 1 ; N _ noneed _ check = 0 ;
11: while use _ f low _ pr ior ity and sum _ win < queue _ maxsize do

12: if | in f o[i] .win − in f o[i] . f lowsize | < = 1 then

13: if + + N _ noneed _ check > = in f o.length () then break ;
14: end if

15: else in f o[i] .win + + ; sum _ win + + ;
16: end if

17: if − − i == −1 then i = in f o.length () − 1 ; N _ noneed _ check =

0 ;
18: end if

19: end while

p

o

b

I

n

h

fl

i

f

q

3

fl

a

l

w

s

e

t

i

w

b

e

w

A

l

i

n

s

4

a

r

c

W

b

c

s

s

b

i

b

i

4 There are two variables for counting flight windows. One is used to record in-

crement of ACK number every round, the other is the expected maximum sequence

number. The details are ignored for brevity.
5 The number of ACKs is not large because the number of concurrent senders is

not large. Hence the sort algorithm does not consume large time and space. The

main delay in buffer queue is analyzed in Section 5.1 .
riority as zero. In Section 4.2 , we show that when all flow pri-

rities are the same or unavailable (i.e., use _ f low _ pr ior ity = 0), the

uffer queue will degenerate into a First In First Out (FIFO) queue.

n Section 6.3.1 , we evaluate the performance when all flows have

o priority.

In Line 1 of algorithm, Ascend is to sort flows by priority from

igh priority to low priority and calculate the flow weight. Suppose
ow i ’s priority is p i and there are n connections in total, then flow

 ’s weight w i = p i /
∑ n

j p j .

From Line 2 to 9, the while loop assigns congestion windows

or all the incoming flows. For flow i , its window is W i = w i ×
ueue _ maxsize, which is an integer and takes packet as unit (Line

). If W i is smaller than 1, RCC assigns 1 to W i to avoid stopping

ows (Line 4). If W i is larger than flow size, set W i as flow size to

void waste of bandwidth (Line 6). sum _ win is used to utilize the

eft bandwidth in the next while loop (Line 8).

From Line 11 to 19, the while loop tries to utilize the left band-

idth unused by Lines 2 to 9. If the window size is close to flow

ize, this flow has no need to increase window (Line 13). In gen-

ral, flow window is increased by one (Line 15). The loop will con-

inue to check all the flows to utilize the left bandwidth until there

s no bandwidth left or all flows are already assigned sufficient

indows (Line 17).

When the number of connections is too large, it is possi-

le for the sum of congestion windows to exceed queue _ maxsize,

.g., when queue _ maxsize = 40 , each of the 100 flows is assigned

ith one window, leading to 100 windows in total. Accordingly,

lgorithm 1 does not suffice suppressing congestion. We assign at

east one window to each flow to prevent starving TCP flow, which

s important to long flows. RCC needs a complementary mecha-

ism to absorb redundant windows which is shown in the next

ection.

.2. The buffer queue

RCC has a buffer queue to store ACK packets temporarily. It

ssures the sum of flight windows is below queue _ maxsize . Since

eceiver controls congestion window, we add a corresponding

ounter at receiver to record the flight windows of each flow.

hen a new data-packet arrives at receiver, the counter is reduced

y packet size. On the contrary, when a new ACK is sent back, the

ounter will be increased by the increment of ACK-number. 4

The centralized scheduler calculates the sum, f light _ wins, of

ent and unacknowledged windows from all the flows within the

ame NIC. When f light _ wins is larger than queue _ maxs − ize, the

uffer queue will queue up ACK packets instead of sending ACKs

mmediately until f light _ wins is below queue _ maxsize . Besides, the

uffer queue uses quicksort algorithm to sort the ACK packets in

t by flow priority. 5 As described in Section 4.1 , RCC uses flow size

50 L. Xu et al. / Computer Networks 124 (2017) 46–60

S

q

e

r

N

i

c

4

a

R

r

R

i

e

s

q

t

e

e

w

a

q

f

w

t

q

i

o

4

s

u

t

t

r

o

A

R

6 Assume segment is the maximum size of TCP packet and TCP packets are in

general of segment size.
7 Although it is advisable to disable retransmission mechanism at sender, sender

retransmission can be conserved. Even with retransmission occurred at sender, the

congestion window will not decrease due to the receiver’s control over congestion

behaviors.
in packet as flow priority. The ACKs with the highest priorities are

stored in the head of the queue.

The algorithm of buffer queue is presented in Algorithm 2 . Once

Algorithm 2 Sending Back ACKs via Buffer Queue.

Require: f lags //T he packet f lags to be written in T CP packet

head er; f low _ id ent it y //T he ident i f ier of this f low ; f low _

pr ior ity //T he pr ior ity of this f low ;skiptime //T imes that current

ACK is skipped ov er;
1: skiptime = queue.erase (f low _ identity) ;
2: queue.insert (f low _ ident it y, f low _ pr ior it y, f lags, skipt ime) ;
3: while f light _ wins ≤ queue _ maxsize do

4: Send (queue.pop()) ;
5: U pdate (f light _ wins) ;
6: end while

an ACK is sent back, the algorithm will be invoked and handle the

ACK packet as input. Since each flow needs a distinct identifier, the

buffer queue stores the thread pointer of flow.

Line 1 assures that the queue has a unique ACK corresponding

to the current connection and returns skiptime which denotes the

times that an ACK is sipped over (i.e., making no progress in buffer

queues). Line 2 inserts the current-flow ACK into the queue. The

inserting algorithm employs flow priority if necessary. However,

the queue will degenerate into a First In First Out (FIFO) queue

when flow priority is unavailable.

To prevent lower priority flows from being waited in the queue

for a long time, the queue uses skipptime for each ACK. When an

ACK is skipped over by a higher-priority ACK, its skipptime is added

one. When an ACK’s skipptime reaches the maximum, it cannot be

skipped until it is outputed. The maximum skipptime is C × RTO

r /2,

where C is bandwidth in packet per second, RTO

r is Retransmission

TimeOuts for receiver in second and 1/2 is expectation of existence

for higher priority.

Lines 3 and 6 send ACKs once there is idle space on the

switch. The buffer queue plays a vital role in absorbing burtiness.

Algorithm 2 is invoked when an ACK is generated by receiver. Pre-

vious techniques regarding pacing ACK packet such as RTT-related

techniques are orthogonal and complementary to RCC by introduc-

ing them into Algorithm 2 .

The centralized scheduler is targeted to eliminate congestion at

the last-hop switch. In data centers, however, congestion occurs at

other switches such as first-hop switches. To solve this problem,

ECN is deployed at receiver.

4.3. Basic congestion control

As described earlier in Section 4 , receiver communicates with

sender by the receive-window size rwnd of advertisement win-

dow in ACK packet. After controlling sender to send data, we start

deploying the receiver congestion control. First, receiver has to

achieve basic congestion control such as TCP NewReno. Second,

receiver has to estimate Round Trip Time (RTT), which is of sig-

nificance for ECN to calculate congestion degree, αr , and update

window every RTT. Finally, the retransmission mechanism for ACKs

may differ from TCP retransmission. This subsection shows basic

congestion control and the following subsections present other as-

pects.

In RCC, the centralized scheduler targets congestion at last-hop

switches while the ECN with basic congestion control aims at deal-

ing with congestion far from receiver. Thus, the former assigns

window size W i while the latter adjusts window sizes in the range

of 1 and W i .

The basic congestion control of receiver in RCC is similar with

TCP NewReno. It includes three parts that are Fast Recovery, Slow
tart and Congestion Avoidance. RCC uses seq to indicate the se-

uence number of packet just arrived at the receiver, and uses

xpected ack to indicate the sequence number of data that the

eceiver is waiting to receive. The details are similar with TCP

ewReno and skipped due to space limitation.

The basic congestion control has only a few codes to be real-

zed. The only modification at sender is to use rwnd instead of its

ongestion window to send data.

.4. RTT estimator

RCC ECN has to update congestion window every RTT. For TCP,

fter sender sends data packet of seq , the sender will estimate

TT when ACK seq + segment arrives at the sender. 6 For RCC, after

eceiver sends ACK packet expected ack , the receiver will estimate

TT when data packet expected seq arrives at receiver. The follow-

ng shows how to calculate expected seq :

xpected seq = expected ack + rwnd − segment. (2)

Once the receiver buffer queue sends off an expected ack to

ender, it records expected ack and its sending time as T 1 in a

ueue q history . Next, when a new seq arrives at receiver at time T 2,

he receiver iterates q history to find whether there is an ACK whose

xpected seq is equal to new seq . If the receiver finds an ACK whose

xpected seq is equal to new seq and the ACK time is T 1, the receiver

ill estimate RTT by T 2 − T 1 and delete this ACK from q history . The

rrived sequence number that is unequal to any expected seq in

 history will not be estimated. The ACK that has waited in q history

or a time larger than RTO

r will be deleted.

Hence, if there is no data packet arriving in receiver, the q histroy

ill finally be empty and no RTT will be estimated. Meanwhile,

he above RTT measurement does not include the delayed time in

 history .

The RCC receiver starts estimating earlier than the sender, i.e.,

n the process of TCP 3-Way Handshake. Further, it estimates RTT

nly in states of Slow Start and Congestion Avoidance.

.5. Delayed ACK and retransmission

In RCC, the receiver disables the delayed ACK mechanism (i.e.,

ending ACK every packet).

In addition, RCC leverages receiver’s retransmission for ACK and

ses RTO

r to clock ACKs. 7 The retransmission timeout is scheduled

o fire after not receiving any packets or no corresponding ACK in

he buffer queue for a time period of RTO

r . Another difference of

etransmission between the sender and the receiver lies in line 7

f Algorithm 3 . The receiver adds the PSH flag in the TCP header

lgorithm 3 Retransmission at Receiver.

equire: f lag //T he f lag of T CP header.

1: fast recov ery f lag ← 0

2: duplicated Ack ← 0

3: ssthresh ← max { 2 ∗ segment, rwnd/ 2 }
4: rwnd ← segment

5: d elayAckCount ← d elayAckMax − 1

6: RT O

r ← RT O

r ∗ 2

7: SendACK(f lag| P SH)

L. Xu et al. / Computer Networks 124 (2017) 46–60 51

t

i

w

4

t

T

g

e

t

p

α

r

w

d

5

s

5

a

i

w

r

p

l

Q

F

Q

z

Q

Q

o

q

s

Q

i

w

R

q

i

i

5

w

l

i

t

o

W

i

P

o

i

1

P

α

A

α

fl

D

S

A

P

h

W

T

A

Q

S

Q

t

K

K

p

a

(

5

t

fl

l

s

fl

o force the sender to send the packet corresponding to the ACK

mmediately.

Also note that SendACK invokes Algorithm 2 , and its skiptime

ill be added C × RTO

r /4 due to flag PSH.

.6. ECN response

In this subsection, we present ECN in RCC, which leverages ECN

o detect the extent of remote congestion and avoid packet loss. 8

he ECN-enabled switch marks all the packets by setting the Con-

estion Experienced (CE) codepoint [34] when the queue length

xceeds a certain threshold K . The RCC receiver detects the conges-

ion extent by calculating αr , the ratio of marked packets and all

ackets over RTT. Afterwards, it decreases window in proportion to

r as follow:

 wnd = r wnd × (1 − αr / 2) . (3)

The receiver is able to directly get αr and adjust congestion

indow. Hence, it does not need a dual mode state-machine to

etermine whether to set ECN-Echo bits.

. Analysis of RCC

This section further analyses the parameters of centralized

cheduler, ECN mechanism and RCC FCT.

.1. Analysis of centralized scheduler

This section aims to analyze the queue size of last-hop switch

nd the buffer queue size of the RCC receiver. Suppose that ECN

s disabled, and N long flows flood into the same NIC at receiver

hose threshold is queue _ maxsize in unit of packet. The average

ound-trip time without any queue backlog is RTT a . The link ca-

acity is C packet per second. Then the output queue size at the

ast-hop switch is

 1 = queue _ maxsize − RT T a × C. (4)

urther, the average RTT at the stable state is

 1 /C + RT T a . (5)

If N is smaller than queue _ maxsize, the size of buffer queue is

ero. Otherwise, the queue size is

 2 = N − queue _ maxsize. (6)

 2 takes ACK packet as unit. However, since the output behavior

f buffer queue is inspired by the input of received data packet, its

ueue delay is still Q 2 / C . Further, the ideal maximum buffer queue

ize is

 2 _ ideal = RT O

r × C. (7)

When the buffer queue size is greater than Q 2 _ ideal , it will

nduce spurious retransmission at receiver, which is unavoidable

hen N is large. However, this retransmission has little impact on

CC, because the retransmitted ACK is still queued in the buffer

ueue, subjecting to the centralized scheduler. In Fig. 5 (a), the Q 1

s around 40 packets which is in line with Eq. (4) , and we find Q 2

s in line with Eq. (6) .

.2. Analysis of ECN

This section focuses on the amplitude of queue oscillations (A r)

ith ECN. Suppose the centralized scheduler is disabled. N long-

ived flows with same RTT share a single bottleneck link of capac-

ty C. N flows are synchronized, which always occurs in data cen-

ers and in wide area networks. Let P (W _ 1 , W _ 2) be the number
8 We add ECN to TCP/IP models in ns3 of version 3.16.

p

a
f packets sent by the sender when window size increases from

 _ 1 to W _ 2 > W _ 1 . Since this takes W _ 2 − W _ 1 round-trips, dur-

ng which the average window size is (W _ 1 + W _ 2) / 2 ,

 (W _ 1 , W _ 2) = (W _ 2

2 − W _ 1

2) / 2 . (8)

When the switch queue size reaches K , the window size W _ k

f each flow will be

(C × RT T + K) /N. (9)

Next, the receiver reacts to these ECN marks after RTT /2, dur-

ng which its window size increases by 1/2 packet, reaching W _ k +
 / 2 . The fraction of marked packets, αr , is

P (W _ k, W _ k + 1 / 2)

P ((W _ k + 1 / 2)(1 − αr / 2) , W _ k + 1 / 2)
(10)

lugging (8) into (10) , and assuming W _ k >> 1 , we have

2
r (1 − αr / 4) =

W _ k + 1 / 4

(W _ k + 1 / 2) 2
≈ 1

W _ k
.

ssume αr is small, so

r ≈
√

1

W _ k
. (11)

Hence, the oscillation amplitude in window size of a single

ow, D , is given by

 = (W _ k + 1 / 2) − (W _ k + 1 / 2)(1 − αr / 2)

= (W _ k + 1 / 2) αr / 2 . (12)

ince there are N flows in total,

 r = ND = N (W _ k + 1 / 2) αr / 2 . (13)

lugging the value of Equations (9) and (11) and W _ k >> 1 , we

ave

A r = 1 / 2

√

N(C × RT T + K) . (14)

e further offer the period of oscillations (T c) as follow,

 c = D = 1 / 2

√

(C × RT T + K) /N (in RT T s) . (15)

nd the maximum queue size (Q max) is

 max = N(W _ k + 1 / 2) − C × RT T = K + N/ 2 . (16)

ince

 min = Q max − A r

= K + N/ 2 − 1 / 2

√

N(C × RT T + K) , (17)

o find a lower bound on K , we minimize (17) over N and choose

 so that this minimum is larger than zero. Then we get

 > (C × RT T) / 7 . (18)

Eq. (14) reveals that when N is small, the queue oscillation am-

litude of RCC is in O (
√

C × RT T) . In Fig. 5 (a), A r is above 4 packets

nd T c is around 1 RTT, both of which are in line with Equations

14) and (15) .

.3. Analysis of RCC near-optimal FCT in incast

To analyze RCC near-optimal FCT in incast, this section assumes

here is a near-Optimal incast TCP protocol (OITCP) who has all

ow information in advance. For simplicity, this section omits the

ink delay and assumes that all the hosts are under the same

witch forming a many-to-one traffic pattern, where senders send

ows of the same size to one receiver.

The switch queue size is Q in packet and the receiver link ca-

acity is C packet per second. Denote the number of flows by N

nd the flow size by L in byte. And queue _ maxsize and Q o denote

52 L. Xu et al. / Computer Networks 124 (2017) 46–60

Fig. 5. Queue buildup in the last-hop switch.

w

t

6

o

S

l

g

o

o

t

a

l

R

i

q

D

e

w

6

fl

S

the switch queue sizes in packet for RCC and OITCP at the steady

state, respectively.

Meanwhile, OITCP aims to maintain a switch queue size of Q o .

It is able to transmit window of arbitrary size and partition Q o ×
segment averagely among flows.

Similar to large-scale incast, suppose

queue _ maxsize ≤ N ≤ Q o , (19)

such that OITCP flows will get a window size more than one byte

by Q o × segment / N and RCC flows will get a window size of one

segment .

Hence, an OITCP flow will transmit

L/ (Q o × segment/N) = NL/ (Q o × segment) (20)

packets. OITCP experiences a switch queue delay Q o / C and a trans-

mission delay L /(segment × C). Finally, its FCT is

(NL/ (Q o × segment)) × (Q o /C) + L/ (segment × C)

=

NL + L

segment × C
. (21)

On the other hand, an RCC flow will transmit L / segment pack-

ets and experience two queue delays and a transmission delay

L /(segment × C). The two queue sizes Q 1 and Q 2 are presented in

Section 5.1 . Hence the total queue delay is

queue _ maxsize

C
+

N − queue _ maxsize

C
= N/C. (22)

Thus, its FCT is

(L/segment) × (N/C) + L/ (segment × C) =

NL + L

segment × C
, (23)
hich is the same as the near-optimal FCT in Eq. (21) . This proves

hat in an ideal environment, RCC is nearly optimum.

. Evaluation

This section evaluates RCC. Section 6.1 examines RCC in terms

f queue buildup, goodput, packet-drops and FCT in heavy incast.

ection 6.2 investigates the performance of RCC in at-scale simu-

ations. Section 6.3 provides transport performance evaluations re-

arding to flow priority, dynamic traffic, multiple bottleneck topol-

gy, as well as convergence and coexistence with TCP.

In ns3, link delay is 40 μ s and bandwidth is 1 Gbps. The size

f switch output queue is 128 KB (i.e., 80 1500-B packets). All the

ransport mechanisms are with the delayed ACK mechanism dis-

bled, thus the passive effect of dual state machine of DCTCP is

imited. The Retransmission TimeOuts (i.e., RTO

s for sender and

TO

r for receiver) are set to 10 ms, which is in line with that

n [7] . The ECN marking threshold K is set to 40 packet, and

ueue _ maxsize is set to 40 packet. The switch queue adopts the

ropTail mechanism. We use flow size as priority. All the param-

ters remain unchanged in the following subsections unless other-

ise noted.

.1. Heavy incast

In heavy incast, concurrent senders start to transmit 32-KB

ows to one receiver at the same time, which is explained in

ection 3.1 . All the hosts are under the same switch.

L. Xu et al. / Computer Networks 124 (2017) 46–60 53

6

p

a

t

w

s

m

R

s

h

t

fl

d

i

I

t

t

o

g

I

s

i

T

h

t

e

n

t

t

6

f

c

b

t

c

e

b

l

f

t

f

s

d

b

f

c

N

E

R

b

i

6

c

F

o

i

p

i

t

t

B

9

t

F

w

t

fl

b

t

p

a

1

t

8

s

T

F

t

a

m

F

r

a

t

6

t

a

T

c

G

n

r

P

t

o

a

fi

o

9

F

p

(

p

h

o

c

a

f

F

t

3
.1.1. Queue buildup

The mean of queue size in the last-hop switch with four trans-

ort mechanisms is shown in Fig. 5 (a). RCC has the smallest aver-

ge queue size no matter how many flows are concurrent (except

he case of 10 senders where ICTCP takes effect in light-load net-

orks). It has a 47.5%, 50.8% and 43.6% decrease in the mean queue

ize over TCP, DCTCP and ICTCP, respectively.

No matter how many senders there are, RCC maintains a stable

ean queue sizes. In addition, the 95th-percentile queue sizes of

CC hold low and stable. These results come from the centralized

cheduler of RCC. Meanwhile, the buffer queue at the RCC receiver

as limited the flight windows on the path to a smaller size than

hat of a switch queue. Consequently, RCC has the slightest queue

uctuation in all cases.

To observe more details of queue buildups, Fig. 5 (b) and (c)

emonstrate the Cumulative Distribution Function (CDF) and the

nstant size of queue length in the 100-sender scenario of incast.

n Fig. 5 (b), RCC maintains lower queue length in the majority of

ime and never reaches the maximum queue size while other pro-

ocols suffer from unstable queue and overflow.

In Fig. 5 (c), RCC has the minimum and stablest queue size most

f the time. This is attributed to its centralized scheduler which

uarantees that f light _ wins is below the queue _ maxsize of 60 KB.

n Fig. 5 (c), the queue size of RCC is around 40 KB in the steady

tate. This is because the basic RTT is 160 μ s and the bandwidth

s 1 Gbps, producing 20 KB difference between 60 KB and 40 KB.

here are two decreases with RCC because higher priority flows

ave finished and their CLOSE packets are delayed on the path to

he receiver, resulting in lacking enough packets on the path. How-

ver, they have the minimum impact on queue size. At the begin-

ing of transmission, the SYN packets coexist with data packets,

hus leading to a larger queue size in RCC. In Fig. 5 (c), other pro-

ocols experience severe queue oscillations.

.1.2. Goodput and packet-drops

As revealed in Fig. 6 (a), all the mechanisms except RCC suffer

rom goodput collapse in incast. With the number of senders in-

reasing, RCC achieves better goodput among mechanisms, which

enefits from its zero packet-drops illustrated in Fig. 6 (b). Note

hat DCTCP has lower goodput than TCP at 20 senders. This is be-

ause its ECN defers congestion to subsequent rounds instead of

liminating them, resulting in more packet-drops. For ICTCP, its

ehavior is similar to Fig. 10 in [14] when sender number is be-

ow 50. With the number of senders larger than 50, ICTCP suffers

rom goodput collapse. This is because its control interval 2 ∗RTT is

oo long to suit prompt switch queue increasing. Taking 50 senders

or example, at the second RTT, there are 100 packets sent by 50

enders, leading to overflow of switch queue of 80-packet size.

As shown in Fig. 6 (b) with logarithmic y -axis, RCC does not

rop packets in all cases because of its buffer queue absorbing

urstness. DCTCP drops less packets than TCP and ICTCP due to ef-

ective ECN. ICTCP leverages throughput differences to respond to

ongestion, thus dropping less packets than TCP.

Fig. 6 (c) depicts ECN marking times with logarithmic y -axis.

ote that TCP and ICTCP have no ECN mechanisms to cope with

CN packets. In Fig. 6 (c), the numbers of markings are always 0 for

CC while other protocols have hundreds of marking times. This

ecause RCC maintains a stable and low size in switch queue, as

llustrated in Fig. 5 (a).

.1.3. Flow completion time

This subsection presents FCT of RCC in different heavy in-

ast scenarios. Fig. 7 (a) plots the 1st, 50th and 99th percentile

CTs of four mechanisms with varying number of senders, each

f which sends 32 KB flow to the same receiver. As portrayed
n Fig. 7 (a), with the growing number of senders, all the 50th-

ercentile FCTs increase. RCC’s 99th FCTs holds the lowest, which

s vital in partition/aggregator construction where the last flow de-

ermines QoS. RCC has 51.2%, 16.4% and 11.7% mean decrease in

he 99th-percentile FCT over TCP, DCTCP and ICTCP, respectively.

eyond that, RCC has the smallest difference between the 1st and

9th percentile FCTs (except the case of 30 senders), implicating

hat RCC has stable performance.

Fig. 7 (c) plots CDFs of FCTs with 90 senders. RCC has two clear

CT distributions. This character is attributed to its buffer queue

hich queues up ACK packets by flow priority. When 90 flows with

he same flow size (i.e., same priority) arrive at receiver, only 40

ows continue to transmit while other flows have to wait in the

uffer queue temporarily. Therefore, the FCT of RCC is divided into

wo parts. The first part has around 20-ms FCTs while the second

art has around 33-ms FCTs. ICTCP, DCTCP and TCP have three, four

nd five evident FCT distributions, respectively.

In Fig. 7 (b) and (d), the number of senders is fixed to 30. The

st, 50th and 99th percentile FCTs with varying flow sizes are illus-

rated in Fig. 7 (b) while the CDF of FCTs with 30 senders sending

00-KB flows are plotted in Fig. 7 (d).

In Fig. 7 (b), RCC has the minimum 99th-percentile FCTs. Be-

ides, it achieves the second smallest 1st-percentile FCTs. Although

CP achieves the minimum 1st-percentile FCTs, its 99th-percentile

CTs are still large due to severe packet-drops caused by its proac-

ive congestion control. In Fig. 7 (b), both DCTCP and ICTCP have

chieved focused FCT distributions because 30 senders cause a

oderate incast which DCTCP and ICTCP are effective to solve. In

ig. 7 (d), RCC has two clearer FCT distributions due to the same

eason in Fig. 7 (c). Owing to effective congestion control, DCTCP

nd ICTCP achieve comparable FCTs with RCC.

The next subsection further testifies the RCC performance in a

ypical datacenter network.

.2. At-scale simulations

In this subsection, the datacenter network has a typical fat-

ree topology in which a root switch node is adopted to connect

ll the Top of Rack (ToR) switches to form a core network. The

oR servers are connected via 1-Gbps links, and the ToR switches

onnect to the core switch via 1 × number-of-servers-under-a-ToR

bps. The number of servers under a ToR network is 25 and the

umber of ToR networks is 40. Among the 10 0 0 hosts, 5 random

eceivers is chosen as aggregators. Short-flows comply with the

areto distribution with mean 50 KB and shape 1.2. The arrival

imes of flows comply with exponential distributions with means

f 300 μ s, 400 μ s, 500 μ s, 600 μ s and 700 μ s. Meanwhile, there

re 5 long-lived flows from 5 random senders as background traf-

c, each of which is 30 MB and sent to one of the 5 receivers,

ccupying 75 percent of traffic in total in datacenter networks.

The offered load of datacenter network ranges from 0% to

0%. The results are illustrated in Fig. 8 showing short-flow

CT percentiles (Fig. 8 (a)), long-flow throughput (Fig. 8 (b)) and

acket-drop times in ToR switches (Fig. 8 (c)) and the core switch

 Fig. 8 (d)). The y -axis in Fig. 8 (a) is logarithmic in 100-ms unit.

In Fig. 8 (a), RCC achieves the minimum 95th- and 99th-

ercentile FCTs (except for the case of 40 senders with a slightly

igher 99th-percentile FCT). With heavy load (greater than 50%

f the offered load), RCC still keeps low FCTs due to its effective

entralized scheduler. RCC also has small gaps between the 1st

nd 99th percentile, which indicates its stable and predictable per-

ormance. On the other hand, other protocols experience long-tail

CTs in heavy-load networks, because congestion control fails in

he face of heavy traffic.

In Fig. 8 (b), the lowest, median and highest throughput of five

0-MB flows of four mechanisms in varying offered load are plot-

54 L. Xu et al. / Computer Networks 124 (2017) 46–60

Fig. 6. Goodput and the number of packet-drops and markings of packet in the last-hop switch queue in incast.

Fig. 7. FCTs with varying sender numbers and flow sizes.

L. Xu et al. / Computer Networks 124 (2017) 46–60 55

Fig. 8. A typical data center with varying offered load.

t

t

t

h

t

t

s

o

r

l

l

s

d

D

p

i

l

p

t

t

r

i

6

a

t

e

a

p

m

n

t

l

a

f
ed. In the figure, in light-load networks (no greater than 50% of

he offered load), RCC has moderate preference for long flows due

o its prudent scheduler that aims to keep the switch queue short,

ence hurting throughput. Also notable is with heavy load (no less

han 60% of the offered load), the RCC throughput decreases dras-

ically. This is because 60% offered load has already congested the

witch queues, which triggers ECN marking whose marking thresh-

ld is 40 packets. In addition to absorbing burstness, RCC further

educes congestion window after receiving ECN-marked packets,

eading to a sharp decrease on long flow throughput.

Moreover, RCC reveals the minimum difference between the

owest and highest throughput, because 5 long flows have the

ame priorities. ICTCP has large gaps between the highest and mid-

le throughput, implicating its bias against long flows. TCP and

CTCP have higher throughput at the cost of large queue size and

acket-drops.

All the drop issues can be divided into two parts. The first part

s the majority of drops, which occurs in the output queues at the

ast-hop switches of 5 receivers, as shown in Fig. 8 (c). The second
art occurs in the output queues at the root switch connected to

he last-hop switches, as shown in Fig. 8 (d). The two figures illus-

rate the average drops of the 5 output queues corresponding to 5

eceivers.

In Fig. 8 (c), RCC starts to drop packets when the offered load

s of 60%. The average packet-drops of RCC are 1, 8, 27 and 64 in

0%, 70%, 80% and 90% offered load, respectively. The fewest drops

re attributed to its centralized scheduler which aims to eliminate

he last-hop switch congestion. On the contrary, other protocols

xperience severe packet-drops. DCTCP has less drops than TCP

nd ICTCP because its ECN effectively responds to congestion, im-

licating that ECN is more effective than the throughput-detection

echanism of ICTCP in avoiding packet loss. In Fig. 8 (d), RCC does

ot drop packets. The reason is that its centralized scheduler effec-

ively suppresses congestion in the last-hop switches, resulting in

ight congestion at the root switch.

Meanwhile, Fig. 8 (d) reveals two points worth noting. First, TCP

nd DCTCP have the same drops, implicating that ECN has no ef-

ect on congestion that is far away from receiver. This is because

56 L. Xu et al. / Computer Networks 124 (2017) 46–60

Fig. 9. FCTs and throughput with and without flow priority.

o

l

b

r

m

i

b

d

t

r

s

i

i

r

g

l

I

h

a

g

t

t

fl

6

t

i

c

l

s

I

T

t

b

t

s

5

w

(

a

n

c

p

the severe congestion on the last-hop switches covers the conges-

tion information of the root switch queues. Second, ICTCP still has

hundreds of drops at root switch queues, implicating that ICTCP is

blunt to congestion far from receiver.

6.3. Extension evaluations

6.3.1. Without flow priority

This subsection examines the performance of RCC when flows

have no flow priority. The other configurations are kept the same

with that in Section 6.2 . As described in Sections 4.1 and 4.2 , with-

out flow priority, the window assignment partitions queue _ maxsize

averagely and the buffer queue becomes FIFO. In Fig. 9 (a) and (b),

FCTs and throughput of RCC are offered with and without flow pri-

ority, respectively.

Counter-intuitively, in Fig. 9 (a), the 99th-percentile FCTs is

lower without priority. But the 1st-, 5th- and 50th-percentile FCTs

increase. We attribute this to the FIFO queue which does not fa-

vor any flows, leading to a more centralized FCTs. In Fig. 9 (b), RCC

without priority achieves higher throughput than RCC with prior-

ity when the offered load is less than 50%, and it reveals the same

throughput with RCC with priority when the offered load is no less

than 60%. The minute differences (no greater than 10 Mbps) is be-

cause that there are many short flows overwhelming the minority

of long flows at receiver. Generally speaking, RCC still works well

without flow priority.

6.3.2. Robustness to burstiness

This subsection examines RCC for robustness to burstiness

which is common in datacenter networks. To show burstiness, all

the hosts are placed under the same switch, and the relevant con-

figurations are the same as in Section 6 . A long-lived flow of 10 MB

is transported as background traffic starting at 0 s and 60 50-KB

short flows start at 0.01 s. Four mechanisms are leveraged and the

results of throughput, queue size, FCTs, packet-drops and goodput

are illustrated in Fig. 10 .

Fig. 10 (a) shows long-flow throughput of four mechanisms in

burstiness. The RCC throughput responds to burstiness smoothly

and timely. Its centralized scheduler responds to burstiness in TCP

3-Way Handshake of short flows, resulting in quick and reason-

able response. When all the short flows finish transmitting, RCC

re-assign congestion windows to the long flow, making full use of

bandwidth. DCTCP and TCP throughputs fluctuate during bursti-

ness, indicating that they are less sensitive to burstiness. After

0.05 s, both TCP and ICTCP have lower throughput. The former is

because TCP experiences packet loss during burstiness and enters

congestion avoidance. The latter is because ICTCP uses the fixed

Global Slot to allocate bandwidths. However, in the first subslot
f the Global Slot, the windows remain unchanged, leading to idle

inks and lower throughput.

In Fig. 10 (b), TCP, DCTCP and ICTCP have large queue size when

urstiness occurs, leading to packet loss. And their queue oscillate,

esulting in unstable performance. For RCC, it achieves the mini-

um and stable queue size when facing burtiness, implicating that

t absorbs burstiness by buffer queue in time.

Fig. 10 (c) offers the packet-drops and FCTs of short flows in

urstiness. In the figure, TCP has the most packet drops while RCC

oes not drop packets on the switch queue. In addition, RCC has

he lowest 50th- and 99th-percentile FCTs (i.e., 19 ms and 27 ms,

espectively) at the cost of the highest 1st-percentile FCT, which

uits datacenter networks where the 99th-percentile FCT is more

mportant to than the 1st-percentile FCT. RCC sacrifices the minor-

ty of flow FCTs to satisfy most flow FCTs.

To analyze the impact of burstiness on long-flow goodput, we

e-perform the scenario without burstiness and show long-flow

oodputs with (the blue bar on the right) and without (the yel-

ow bar on the left) burstiness for each mechanism in Fig. 10 (d).

CTCP has lower goodput without burstiness. This is because ICTCP

as windows unchanged in the first subslot, leading to an idle link

nd lower goodput. In the figure, all mechanisms have a down-

raded goodput when encountering burstiness. RCC still achieves

he highest goodput (i.e., 737 Mbps) in the face of burstiness due

o its window assignment which re-allocates windows to the long

ow once short flows finish.

.3.3. Multiple bottleneck topology

To investigate the RCC performance in bottleneck topologies,

his subsection emulates a dual bottleneck topology. As depicted

n Fig. 11 (a), 3 groups of senders send data to 2 groups of re-

eivers. Groups S1 and S3 (each with 20 senders) both send long-

ived (1-MB) flows to receiver R1, while each sender in group S2

ends long-lived (1-MB) flow to an assigned receiver in group R2.

n such topology, two bottlenecks emerge. One lies between the

oR-1 switch and the middle switch, while the other is between

he ToR-2 switch and receiver R1. Flows from S1 encounter both

ottlenecks.

Four transport mechanisms are performed on the topology and

he 1st, 50th and 99th percentile throughput of sender groups are

hown in Fig. 11 (b). With TCP, group S2 has the largest 99th and

0th percentile throughput (780 Mbps and 426 Mbps, respectively)

hile with RCC group S2 has the second-largest 99th throughput

494 Mbps). All mechanisms have small throughput in groups S1

nd S3, because the flows from S1 and S3 are throttled by bottle-

eck at the ToR-2 output queue. ICTCP behaves conservatively in

ongestion control, thus having the lowest 99th and 50th through-

ut in S2.

L. Xu et al. / Computer Networks 124 (2017) 46–60 57

Fig. 10. Burstiness with 60 50-KB short flows and a 10-MB long flow.

Fig. 11. Multiple-bottleneck topology for throughput experiment.

t

2

t

l

5

v

F

w

a

I

I

p
Although RCC achieves comparable throughput with other pro-

ocols, it suffers only 20 and zero packet-drop(s) in ToR-1 and ToR-

 respectively in Fig. 11 (c). And RCC achieves the least marking

imes in Fig. 11 (d), suggesting it achieves the higher network uti-

ization among four mechanisms. In spite of the largest 99th and

0th throughput in all groups in Fig. 11 (b), TCP has the most se-

ere packet-drops in Fig. 11 (c) and corresponding marking times in
ig. 11 (d), indicating that TCP wastes network resources, e.g., band-

idth.

ICTCP has the second largest packet-drops in ToR-1 in Fig. 11 (c)

nd the largest marking times in ToR-1 in Fig. 11 (d), justifying

CTCP’s inefficiency on coping with congestion far from receiver.

n conclusion, while RCC does not achieve the highest through-

ut among three sender groups, it has the least packet-drops and

58 L. Xu et al. / Computer Networks 124 (2017) 46–60

Fig. 12. The throughput of five flows and the performance of RCC and TCP+ECN in bottleneck.

c

a

w

k

o

7

c

p

n

f

w

c

d

t

a

r

c

c

t

m

p

l

c

t

t

p

t

a
marking times in both ToR-1 and ToR-2 by virtue of its cooperative

centralized scheduler and the ECN mechanism.

6.3.4. Fairness for flow with priority

To evaluate RCC in terms of fairness, this subsection connects

6 servers under the same switch via 1-Gbps link to form a 5-to-

1 traffic pattern. Each of the 5 servers sends 10 MB flows to the

same receiver step by step with an interval of 20 ms. RCC and

DCTCP are performed separately and the throughput of RCC and

DCTCP is shown in Fig. 12 (a) and (b). In Fig. 12 (a), RCC responds to

the arrival of flows smoothly and proportionally, making full use of

bandwidth. Note that RCC does not assign bandwidth evenly be-

cause it uses flow size as priority. And RCC never causes packet

loss. In Fig. 12 (b), DCTCP has somewhat equal bandwidth for each

flows after arrivals of flows. In Fig. 12 (a), RCC does not starve the

flows with low priority as its buffer queue prevents lower priority

from being waited for a long time.

To sum up, RCC has better fairness on flow priority by its cen-

tralized mechanism at receiver.

6.3.5. Coexistence with TCP

This subsection examines the window evolution of RCC when

coexisting with TCP. To evaluate the RCC ability under such cir-

cumstance, this subsection uses the bottleneck topology shown in

Fig. 12 (c). In the topology, 2 senders in the S1 send 10-MB TCP

flows to the corresponding 2 receivers in R1 while 2 senders in S2

send 10-MB flows to the corresponding receivers in R2 by RCC. The

ToR switches have the ECN mechanism enabled.

In the scenario, the queue sizes in the bottleneck are always

around 70 KB, which means that the ECN mechanism takes effect.

In addition, Fig. 12 (d) plots the evolution of congestion windows of

four flows, two TCP flows and two RCC flows. From the figure, TCP

flows have comparable window size with that of RCC flows, indi-
ating that RCC coexists with TCP and ECN well. The ECN mech-

nism makes RCC have a moderate performance when coexisting

ith other protocols. If the ECN mechanism is disabled, RCC still

eeps one window size, i.e., 1500 bytes in this paper, when facing

ther protocols.

. Conclusion

This paper presents RCC, a congestion control mechanism at re-

eiver, to solve heavy incast in datacenter networks that are ex-

anding continuously. RCC is constructed by two main mecha-

isms, open- and closed-loop congestion control to cope with dif-

erent congestions. First, the centralized scheduler that consists of

indow assignment and buffer queue is leveraged to cope with the

ongestion in the last-hop switch. Second, the ECN mechanism is

eployed to cope with other congestions. The evaluation illustrates

hat RCC suits higher-degree many-to-one communication patterns

nd has effectively suppressed congestion.

This paper derives several interesting observations. First, RCC

eveals the potential of receiver to deal with link congestion. Re-

eiver is able to aggregate the information received over all in-

oming TCP flows and obtain more accurate congestion informa-

ion than sender, as shown in Section 3.2 . Second, lower queue size

ay not hurt FCT, as shown in Section 6.1.3 , while higher through-

ut may sacrifice precious network resources, i.e., inducing packet

oss, as illustrated in Section 6.2 . Third, in datacenter networks,

ongestions occur in different places, e.g., the last-hop switch and

he first-hop switch, making it necessary to design different solu-

ions, as shown in Section 6.3.3 . Fourth, efficient datacenter trans-

ort may not necessitate flow priority, as shown in Section 6.3.1 .

RCC is presented in this paper in ns3 which has exact realiza-

ion of real-world TCP. The centralized scheduler of RCC is simple

nd the main deployment cost is shifting congestion control from

L. Xu et al. / Computer Networks 124 (2017) 46–60 59

s

1

r

i

s

A

m

t

g

d

n

H

P

C

R

[

[

[

[

[

[

[

[

[

[

[

[
ender to receiver. The code line of RCC in ns3 is no more than

, 0 0 0. RCC is the first attempt to improve congestion control by

ealizing congestion control of TCP-related protocols at receiver. It

s challenging to extend RCC from ns3 to real-world, but RCC still

hows possibility to improve TCP protocols.

cknowledgments

We appreciate the help from Chi-Yao Hong and Balajee Va-

anan in terms of technical realization. We also would like to

hank the anonymous reviewers for valuable their time and sug-

estions. This work was supported by the National Natural Foun-

ation of China (61170292 , 61472212), National Science and Tech-

ology Major Project of China (2015ZX030 0-30 04), the National

igh Technology Research and Development Program of China (863

rogram) (2013AA-013302, 2015AA015601), EU Marie Curie Actions

R-OWN (FP7-PEOPLE-2013-IRSES-610524).

eferences

[1] How big is facebooks data? 2.5 billion pieces of content and 500+ terabytes

ingested every day, http://goo.gl/n8xhq.
[2] Microsoft accelerates its data center expansion, http://t.co/eZXrOQqQBu.

[3] Dropbox clears 1 billion file uploads per day, http://cnet.co/YYwgB3.
[4] Y. Cui , H. Wang , X. Cheng , B. Chen , Wireless data center networking, IEEE

Wireless Commun. 18 (December 2011) 46–53 .

[5] J. Dean , S. Ghemawat , Mapreduce: simplified data processing on large clusters,
Commun. ACM 51 (January 2008) 107–113 .

[6] M. Isard , M. Budiu , Y. Yu , A. Birrell , D. Fetterly , Dryad: distributed data-parallel
programs from sequential building blocks, Proc. EuroSys. 41 (June 2007) 59–72 .

[7] V. Vasudevan , A. Phanishayee , H. Shah , E. Krevat , D.G. Andersen , G.R. Ganger ,
G.A. Gibson , B. Mueller , Safe and effective fine-grained tcp retransmissions for

datacenter communication, Proc. ACM SIGCOMM 39 (October 2009) 303–314 .

[8] R. Griffith , Y. Chen , J. Liu , A. Joseph , R. Katz , Understanding tcp incast through-
put collapse in datacenter networks, in: Proc. of ACM WREN, August 2009,

pp. 73–82 .
[9] J. Zhang , F. Ren , C. Lin , Modeling and understanding tcp incast in data center

networks, in: Proceedings of IEEE INFOCOM, April 2011, pp. 1377–1385 .
[10] N. Dukkipati , N. McKeown , Why flow completion time is the right metric for

congestion control, ACM SIGCOMM Comput. Commun. Rev. 36 (January 2006)

59–62 .
[11] J. Brutlag, Speed matters for google web search, http://code.google.com/speed/

files/delayexp.pdf (2009).
[12] A. Sivaraman , K. Winstein , P. Thaker , H. Balakrishnan , An experimental study

of the learnability of congestion control, in: Proceedings of ACM SIGCOMM,
2014, pp. 479–490 .

[13] M. Alizadeh , A. Greenberg , D. Maltz , J. Padhye , P. Patel , B. Prabhakar , S. Sen-

gupta , M. Sridharan , Dctcp: efficient packet transport for the commoditized
data center, in: Proceedings of ACM SIGCOMM, August 2010, pp. 63–74 .
[14] H. Wu , Z. Feng , C. Guo , Y. Zhang , Ictcp: incast congestion control for tcp in data
center networks, IEEE/ACM Trans. Networking (TON) 21 (April 2013) 345–358 .

[15] L. Xu , K. Xu , Y. Jiang , F. Ren , H. Wang , Enhancing tcp incast congestion con-
trol over large-scale datacenter networks, in: Proceedings of IEEE IWQoS, June

2015, pp. 225–230 .
[16] J. Postel , The newreno modification to tcp’s fast recovery algorithm, September,

RFC 793, 1981 .
[17] W. Stevens , Tcp slow start, congestion avoidance, fast retransmit, and fast re-

covery algorithms, RFC 2001, January 1997 .

[18] S. Floyd , T. Henderson , The newreno modification to tcp’s fast recovery algo-
rithm, RFC 2582, April 1999 .

[19] L.S. Brakmo , L.L. Peterson , Tcp vegas: end to end congestion avoidance on a
global internet, IEEE J. Sel. Areas Commun. 13 (October 1995) 1465–1480 .

20] S. Ha , I. Rhee , L. Xu , Cubic: a new tcp-friendly high-speed tcp variant, ACM
SIGOPS Oper. Syst. Rev. 42 (July 2008) 64–74 .

[21] Y. Cui , L. Wang , X. Wang , H. Wang , Y. Wang , Fmtcp: a fountain code-based

multipath transmission control protocol, IEEE/ACM Trans. Networking (TON)
23 (Apr. 2015) 465–478 .

22] Y. Cui , L. Wang , X. Wang , Y. Wang , F. Ren , S. Xia , End-to-end coding for tcp,
IEEE Netw. 30 (March 2016) 68–73 .

23] C. Wilson , H. Ballani , T. Karagiannis , A. Rowstron , Better never than late: meet-
ing deadlines in datacenter networks, in: Proceedings of ACM SIGCOMM, Au-

gust 2011, pp. 50–61 .

24] B. Vamanan , J. Hasan , T.N. Vijaykumar , Deadline-aware datacenter tcp (d 2 tcp),
Proc. ACM SIGCOMM 42 (October 2012) 115–126 .

25] A . Munir , I.A . Qazi , Z.A . Uzmi , A . Mushtaq , S.N. Ismail , M.S. Iqbal , B. Khan ,
Minimizing flow completion times in data centers, in: Proc. of IEEE INFOCOM,

April 2013, pp. 2157–2165 .
26] C.-Y. Hong , M. Caesar , P.B. Godfrey , Finishing flows quickly with preemptive

scheduling, Proc. ACM SIGCOMM 42 (October 2012) 127–138 .

[27] M. Alizadeh , S. Yang , M. Sharif , S. Kattin , N. McKeown , B. Prabhakar , S. Shenker ,
Pfabric: minimal near-optimal datacenter transport, Proc. of ACM SIGCOMM 43

(October 2013) 435–446 .
28] A. Munir , G. Baig , S.M. Irteza , I.A. Qazi , A.X. Liu , F.R. Dogar , Friends, not foes

synthesizing existing transport strategies for data center networks, in: Pro-
ceedings of ACM SIGCOMM, October 2014, pp. 491–502 .

29] R. Mittal , V.T. Lam , N. Dukkipati , E. Blem , H. Wassel , M. Ghobadi , A. Vahdat ,

Y. Wang , D. Wetherall , D. Zats , Timely: rtt-based congestion control for the
datacenter, in: Proceedings of ACM SIGCOMM, October 2015, pp. 537–550 .

30] V. Tsaoussidis , C. Zhang , Tcp-real: receiver-oriented congestion control, Com-
put. Netw. 40 (November 2002) 477–497 .

[31] S. Liang , D. Cheriton , Tcp-rtm: using tcp for real time applications, in: Proceed-
ings of ICNP, November, 2002 .

32] V. Jeyakumar , M. Alizadeh , D.Mazieres , B.Prabhakar , C. Kim , A. Greenberg ,

Eyeq: practical network performance isolation at the edge, in: Proceedings
of USENIX conf. Networked Systems Design and Implementation (NSDI), April

2013, pp. 297–312 .
33] W. Bai , K. Chen , H. Wu , W. Lan , Y. Zhao , Pac: taming tcp incast congestion us-

ing proactive ack control, in: Proceedings of the 2014 IEEE 22nd International
Conference on Network Protocols, October 2014, pp. 385–396 .

34] K. Ramakrishnan , S. Floyd , D. Black , The addition of explicit congestion notifi-
cation (ecn) to ip, RFC 3168, September 2001 .

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/100011264
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0002
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0002
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0002
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0003
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0003
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0003
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0003
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0003
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0003
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0004
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0004
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0004
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0004
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0004
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0004
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0004
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0004
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0004
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0005
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0005
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0005
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0005
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0005
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0005
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0006
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0006
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0006
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0006
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0007
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0007
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0007
http://code.google.com/speed/files/delayexp.pdf
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0008
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0008
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0008
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0008
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0008
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0010
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0010
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0010
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0010
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0010
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0012
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0012
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0013
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0013
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0014
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0014
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0014
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0015
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0015
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0015
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0016
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0016
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0016
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0016
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0018
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0018
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0018
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0018
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0018
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0018
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0018
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0019
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0019
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0019
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0019
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0019
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0020
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0020
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0020
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0020
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0022
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0022
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0022
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0022
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0023
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0023
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0023
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0023
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0023
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0023
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0023
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0023
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0024
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0024
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0024
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0024
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0024
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0024
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0024
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0025
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0025
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0025
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0025
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0025
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0025
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0025
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0025
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0025
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0025
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0025
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0026
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0026
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0026
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0027
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0027
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0027
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0028
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0028
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0028
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0028
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0028
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0028
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0028
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0029
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0029
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0029
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0029
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0029
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0029
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0030
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0030
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0030
http://refhub.elsevier.com/S1389-1286(17)30247-5/sbref0030

60 L. Xu et al. / Computer Networks 124 (2017) 46–60

rom Beijing Institute of Technology, China in 2006. He is working toward his Ph.D. degree

r Science & Technology at Tsinghua University. His research interests include datacenter

er Science & Technology of Tsinghua University, Beijing, China, where he serves as a full
ers and holds 20 patents in the research areas of next-generation Internet, P2P systems,

ization. He is a member of ACM and has guest-edited several special issues in IEEE and

omputer Science & Technology of Tsinghua University, Beijing, China. He is currently a

niversity. He has published more than 30 technical papers on IEEE Transactions on Infor-
ns on Communications, etc. His primary research interests include Internet architecture,

ion Internet.

ter Science & Technology at Tsinghua University, Beijing, China. He received his B.A, M.Sc.

 Northwestern Polytechnic University, Xi’an, China, in 1993, 1996 and 1999, respectively.
from 20 0 0 to 2001 and moved to the Department of Electronic Engineering as a post-

ty. His research interests include network traffic management and control, control in/over

r networks. He (co)-authored more than 80 international journal and conference papers.
 committee member and local arrangement chair for various IEEE and ACM international

ersity, Burnaby, BC, Canada. He is currently an assistant professor in the Department of
, MN, USA. His research interests include cloud computing, big data, socialized content

rks, and distributed computing.
Lei Xu received his bachelor degree in computer science f

supervised by Prof. Ke Xu in the Department of Compute
networking and router security.

Ke Xu received his Ph.D. from the Department of Comput
professor. He has published more than 100 technical pap

Internet of Things (IoT), network virtualization and optim
Springer Journals.

Yong Jiang received his Ph.D. from the Department of C

professor at the Graduate School at Shenzhen, Tsinghua U
mation Theory, Discrete Mathematics and IEICE Transactio

Internet application, mobile Internet and the next-generat

Fengyuan Ren is a professor of the Department of Compu

in Automatic Control and Ph.D. in Computer Science from
He worked at the Department of Electronic Engineering

doctoral researcher in Jan. 2002 both at Tsinghua Universi

computer networks, wireless networks and wireless senso
He is a member of IEEE and serves as a technical program

conferences.

Haiyang Wang received his Ph.D. from Simon Fraser Univ
Computer Science at the University of Minnesota Duluth

sharing, multimedia communications, peer-to-peer netwo

	Throughput optimization of TCP incast congestion control in large-scale datacenter networks
	1 Introduction
	2 Related work
	3 Motivations
	3.1 Queue buildup and packet loss
	3.2 The advantages of receiver

	4 The design of RCC
	4.1 The window assignment
	4.2 The buffer queue
	4.3 Basic congestion control
	4.4 RTT estimator
	4.5 Delayed ACK and retransmission
	4.6 ECN response

	5 Analysis of RCC
	5.1 Analysis of centralized scheduler
	5.2 Analysis of ECN
	5.3 Analysis of RCC near-optimal FCT in incast

	6 Evaluation
	6.1 Heavy incast
	6.1.1 Queue buildup
	6.1.2 Goodput and packet-drops
	6.1.3 Flow completion time

	6.2 At-scale simulations
	6.3 Extension evaluations
	6.3.1 Without flow priority
	6.3.2 Robustness to burstiness
	6.3.3 Multiple bottleneck topology
	6.3.4 Fairness for flow with priority
	6.3.5 Coexistence with TCP

	7 Conclusion
	 Acknowledgments
	 References

