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1 INTRODUCTION

Travel behavior analysis serves as the foundation and becomes a long-standing topic in smart mobility and urban
applications, including transportation, urban planning, epidemic controlling, and so forth [7, 18, 21, 25]. In the
past decade, with the wide availability of GPS trajectory data, a lot of achievements have been made on revealing
the spatiotemporal patterns of travel behaviors [1, 5]. However, relatively few efforts were devoted to uncovering
people’s intention of travel behaviors, i.e., trip purposes. Different from trajectories explicitly telling when and
where people move, trip purposes are the semantic information answering why people travel in the city. Predicting
such knowledge could significantly benefit several parties in the city. Specifically, for travellers, the prediction
could enable personalized in-car advertising/recommendation, meanwhile, the advertising could increase taxi
companies’ extra income. Besides, for urban planners, knowing the city-wide distribution of trip purposes could
help the public transportation planning (e.g., set up a new bus route for travels with the “Working” purpose).
Thus, in recent years, trip purpose has been recognized as an important aspect in travel behavior analysis [7, 38].

Although trip purpose is not embedded in the GPS trajectory data, it can be revealed by the activity semantics
from trip contexts. Practically, trip purpose refers to the activity that a passenger takes after being dropped
off, so that it cannot be directly sensed by the vehicle. While human activities in the city usually show strong
regularity at time and space [23]. For example, the passenger would probably take the most popular activity near
the drop-off location during a specific time period, such as the “Dining” activity in a dining area at noon. In this
sense, those activity semantics from trip contexts could be used to identify the passenger’s trip purpose. With the
proliferation of information and communication technologies (ICTs) in daily life, human behaviors including
travel and activities are able to leave behind substantial urban data at the cyber space. For example, people’s
travel information can be recorded by ride-on-demand (RoD) services like Uber, and activities can be shared by
users at location-based social networks (LBSNs). Hence, such urban data sources grant us valuable opportunities
to perceive the passenger’s trip contexts, and further understand the travel-related activity semantics for trip
purpose prediction.

However, existing trip purpose prediction methods are mainly restricted in practice due to the delimited data
sources. Specifically, most of studies rely on sensitive data sources like household or travel surveys to characterize
the passenger’s preference on activities [13, 41]. We argue that although such an approach is effective in achieving
accurate results, these methods could be hardly applied at a large scale in real-life scenarios. On one hand, most
applications just cannot get those data sources in real situations [11]. On the other hand, using individual’s
sensitive information might cause a serious privacy issue. In this study, the sensitive information generally refers
to any private data from the passenger, such as personal profile (e.g., identity, home address, etc.) and smartphone
data. Recently, the use of these data sources is suggested to be cautious in smart city applications [43].

In this paper, for real-life applications, we aim to provide a more ubiquitous and applicable trip purpose
prediction approach with passenger’s insensitive information. Specifically, the target application scenarios are
door-to-door ride services like taxi trips. Note that the trip in such a scenario is isolated, i.e., there is no any
other passenger’s historical trip information and no connections between different trips. Moreover, the system is
meant to be deployed in vehicles and also has no digital connection with passengers, so that it would not record or
use any individual data. With these in mind, we propose a novel trip purpose prediction approach by merely
employing the vehicle’s GPS trajectory from this trip, which can be viewed as using wheels on the ride (“wheels”
is a metaphor for the trajectory).

As mentioned before, GPS trajectory only reveals when and where a vehicle (with the passenger) is moving,
but without semantic meaning regarding human activities. To narrow the gap, we further employ the public POI
check-in data from LBSNs which is contributed by anonymous users in the city (also being passenger-insensitive).
As is well known, point-of-interest (POI) is the basic unit of human activity, and check-in records are generated
when users visit it. In particular, POI context derived from the POI check-in data is able to reveal both the static
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and dynamic characteristics of human activities in an area. In terms of the static characteristics, it conveys
activities’ types (e.g., “Dining”) and geographic distribution. In terms of the dynamic characteristics, it reveals
the time-varying popularity of activities in POIs. Hence, combining the GPS trajectory with public POI check-in
data is a promising way to understand the travel-related activity semantics for trip purpose prediction.

Nevertheless, it is still non-trivial to effectively extract the trip’s activity semantics. Firstly, the raw POI
check-in numbers may not reveal the actual condition of human activities, since different activities usually have
uneven sampling rates in LBSNs. What’s more, passenger’ activity at the destination location has complicated
relationships with many factors. To be more specific, based on the trajectory and POI check-in data, the challenges
for trip purpose prediction include: 1) Find the discriminative POI features related to the passenger’s trip. 2)
Model the correlation between neighboring POIs, since some kinds of human activities are usually associated
with each other at time and space (e.g., “Recreation” and “Shopping”). 3) Consider the dependency of activity
semantics from the origin location, since passenger’s activities before and after the trip have a sort of inherent
relationship. For example, after the “Working” activity, the passenger is probably going for “Homing” rather than
“Working” again. 4) Consider the dependency of spatiotemporal context (including time and travel cost), since
human activities demonstrate strong spatial and temporal regularity [23]. For example, the passenger may not
take a long trip for the “Dining” activity at 3 PM.

To resolve the aforementioned challenges, we propose a dual-attention graph embedding model. Specifically, we
first augment the semantic meaning of three trip contexts. In terms of the POI contexts at origin and destination
locations (OD POI contexts for short), we extract three discriminative features for each POI category from the
check-in data, namely period popularity, distance and uniqueness. In terms of the spatiotemporal context, we
extract day type, hour time, travel time and travel distance from the GPS trajectory. We then convert the OD POI
contexts into the graph structure. Based on that, graph attention networks (GATs) are employed to capture the
activity semantics of each POI category by modelling its correlations with neighboring POIs. Next, soft-attention
is used to extract the comprehensive activity semantics from three kinds of trip contexts, by modelling their
dependency on the trip purpose. Finally, the extracted activity semantics is used to predict the probabilities of
candidate trip purposes.

In short, the main contributions of this paper can be summarized as follows:

e We present a novel dual-attention graph embedding model for predicting the trip purpose in the scenarios
of door-to-door ride services (e.g., taxi trips). The model extracts the activity semantics from passenger’s
insensitive information and trained with large-scale urban datasets, which is more ubiquitous and applicable
for real-life applications.

o Based on the augmented trip contexts, category-aware GATs are employed to capture the neighboring
activity semantics of each POI category, by modelling the correlation between neighboring POIs; Soft-
attention is used to extract the comprehensive activity semantics of passenger’s trip by modelling the
dependency of different trip contexts on the trip purpose.

e Among studies on the trip purpose prediction, our model is the first neural network that performs the
localized POI semantics extraction in a graph structure and carefully models the inherent correlations of
features in the latent space. Moreover, the modified GAT is category-aware in extracting neighboring POI
semantics.

e We conduct extensive experiments including a comparison study, an ablation study and a case study to
evaluate the effectiveness of our model. Results show that our model outperforms baseline algorithms. It
can achieve 65.56% and 79.76% accuracies on the 9-class and 4-class trip purposes respectively. The results
also demonstrate the effectiveness of each component in our model.

The remainder of this paper is organized as follows. Section 2 presents the related work, and Section 3
introduces a few definitions and problem statement of this paper. Section 4 elaborates details on the trip context
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augmentation and dual-attention graph embedding network. Section 5 presents results on a group of experiments
together with a case study. Section 6 concludes the paper and discusses future directions.

2 RELATED WORK

In recent years, trip purpose prediction has attracted continuous attention in the urban computing society.
Existing studies mainly concentrate on investigating it from two perspectives, namely feature engineering and
prediction algorithms, detailed as follows.

2.1 Feature Engineering for Trip Purpose Prediction

Since human activities are influenced by various factors in reality, feature engineering becomes a crucial procedure
in predicting trip purpose. Generally, researchers usually employ more than two kinds of data sources, so as to
depict passenger’s activity semantics from multiple perspectives. The commonly adopted data sources include
sensing devices, LBSN, travel surveys, and location-based services [30].

Geography characteristics are the most frequently employed features, such as polygon-based information, POIs
configuration and street map [3, 10, 11, 41]. This kind of information is commonly used to depict the static
activity-related characteristics of passenger’s drop-off location. For example, polygon-based information and
POIs are often used to determine the land-use type of trip end for trip purpose prediction [3, 10, 41]. In particular,
the distance between trip end and nearby POIs (activity units) is identified as an important clue [7, 15, 29].

Trip and activity characteristics are also effective in identifying trip purposes [10, 11, 28, 41], since human
activities often show strong regularity at time and space. Specifically, trip characteristics can be derived from
sensing devices like GPS, including the time, travel mode and travel cost [13, 41]. The study in [34] achieves 81%
prediction accuracy by using a few trip features (i.e., speed, acceleration, weekday and period of the day). However,
its dataset is only composed of 19 respondents’ daily travel logs, while our trip dataset was generated by more
than 200, 000 arbitrary passengers in Beijing, which is with much better data diversity. The activity characteristics
of each individual (e.g., duration and activity history) are often obtained from travel surveys [10, 11, 26, 33]. Note
that the activity duration is demonstrated to be the most effective feature in the trip purpose prediction [11].
Besides, the activity characteristics of trip ends are usually derived from the POI check-in data in LBSNS, e.g.,
Foursquare, Twitter, Google Places [7, 10, 12, 28]. However, many studies focus on the static POI context like
land-use/functionality [10, 12], which cannot capture the dynamic characteristics of human activities. To narrow
this gap, we further consider the period popularity to reveal the dynamic POI context.

Demographics characteristics (individual and household) are widely used in existing studies [10, 11, 15, 22, 41].
Such information is mainly collected by surveys (e.g., age, gender, employment, monthly income and family
structure). Generally, demographics characteristics are used to reveal the respondents’ preference on activities or
their travel patterns, so as to narrow down the candidate trip purposes.

By reviewing existing studies, we find that considering features from different perspectives is effective in the
trip purpose prediction. However, some features are either sensitive for passengers or cannot be obtained in
real-life scenarios (e.g., the activity duration and family structure). As a result, models may cause privacy issues
and lack pervasiveness.

2.2 Algorithms for Trip Purpose Prediction

In existing studies, algorithms for trip purpose prediction can be broadly categorized into three groups, namely
rule-based, probability-based and machine learning algorithms.

Deterministic rules are the earliest algorithms adopted in the trip purpose prediction [3, 33, 39]. Such algorithms
match the revealed information (e.g., geography and trip characteristics) with a series of predefined heuristic
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rules to identify trip purposes [17]. For example, the study in [3] presents a straightforward approach, which
directly employs the activity type of the nearest POI as trip purpose.

Probability-based algorithms compute the probabilities of candidate trip purposes by using statistical models
(e.g., Bayes’ rules, topic model) with the revealed information [7, 14, 16, 31, 38]. For example, the study in [7]
takes both the fine-grained spatial and temporal patterns of human behaviors into consideration, and adopts the
Bayes’ rules to model the probabilities of POIs being visited by the passenger. Compared with heuristic rules,
probability-based algorithms are less dependent on the domain knowledge of researchers and are thus more
transferable [30].

In recent years, machine learning algorithms are emerging in the prediction of trip purpose [8, 11, 15, 27, 28, 31].
On the basis of large datasets and intensive computation, they have been demonstrated to outperform the rule-
based and probability-based algorithms [11, 28]. Since 2014, Random Forest (RF) [4] is widely adopted in the
trip purpose prediction [11, 15, 29]. It consists of multiple decision trees, each of which predicts a trip purpose
based on the given features, and the final result is determined by a voting mechanism. Besides, owing to the
effectiveness in nonlinear regression, neural networks also show impressive performance in identifying trip
purpose with complex input features [10, 28, 41]. For example, a three-layer Artificial Neural Network (ANN) with
particle swarm optimization achieves 96.53% accuracy on the prediction of 6 candidates [41]. However, most of
these models are based on the travel survey data. In addition to the privacy issue, it also might suffer from two
limitations: 1) The training data is composed of daily travel logs from limited respondents, i.e., low data diversity;
2) Features might be inaccurately reported in the prompted recall surveys, i.e., unstable data quality.

There are also a few machine learning models that don’t require the survey data. To name a few, topic model
(i.e., LDA) is used to infer trip purposes with the cellular network and POI data [44], where trips and users
are regarded as words and documents respectively. Since LDA is based on the “bag-of-word” exchangeability
assumption, it might have the limitation of semantic loss during the computation. In [34], RF model identified
by auto machine learning is used with the smartphone traces. However, the traces were collected from 19
respondents, so that the model’s generalizability might be limited. In an unsupervised manner, autoencoder and a
clustering algorithm are used to extract and cluster latent trip features from the GPS and POI data [8]. Then trip
purposes are interpreted based on the semantics of cluster centers. Since this approach doesn’t utilize ground
truth, the correctness of clustering and interpretation is not guaranteed.

3 PRELIMINARY
3.1 Definitions

Definition 1 (Trajectory Data). Trajectory data is collected from vehicles in the scenarios of door-to-door
ride services. Each trajectory consists of a sequence of GPS points on roads, and each GPS point contains the
geographic position and time information about the vehicle, denoted by I; = (Ing;, lat;, t;).

Definition 2 (Trip’s OD Pair). The trip in this study is represented by its origin-destination pair. An OD pair is
a pair of GPS points (I,, l;) from a trajectory at the origin (i.e., pick-up location) and destination (i.e., drop-off
location).

Definition 3 (Point of Interest). A POI refers to a place that is the very basic unit of taking human activities for
people. POIs are usually represented by their positions and POI category information.

Definition 4 (POI Category). A POI category is the semantic label for a set of POIs, indicating the type of
potential human activities at these POIs.

Table 1 shows the 9 primary POI categories provided by a Chinese LBSN called Jiepang [24]. Similar to other
world-wide popular LBSNs such as Foursquare and Gowalla, people can also use Jiepang to track and share
life moments with friends. In this table, each category is typically related to one kind of human activity. For
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Table 1. Nine primary POI categories and their corresponding trip purposes.

Human Activities/

k Primary POI Categories POI Icons Trip Purposes
1 Recreation and Culture Facilities ) Recreation

2 Outdoors and Sightseeing Places = Outdoors

3 Shop and Service Facilities -y Shopping

4 Restaurant Dining

5 School and Educational Facilities Education

6 Transportation Facilities £ Transportation

7 Apartment and Residence B Homing

8 Hospital and Clinic O Health

9 Office and Business Buildings i Working

example, the Restaurant corresponds to the “Dining” activity, while the Apartment and Residence corresponds to
the “Homing” activity. Note that these human activities are served as the candidate trip purposes that we intend
to predict in this study. (We introduce how to obtain the 9 primary POI categories in Appx. B.)

Definition 5 (Check-in Data). The Check-in data CI is generated when users checked-in at POIs using LBSN
platforms. A check-in record commonly contains the information about the user’s identity, the check-in time and
the corresponding POI venue.

Generally, the number of check-ins during a time window could reveal the period popularity of a POI. Moreover,
the check-in data is also able to demonstrate the geographic distribution and time-dependent heatmaps of different
POIs in a city.

3.2 Problem Statement

The problem of predicting the passenger’s trip purpose can be viewed as identifying the most likely activity that
the passenger takes after being dropped off. Specifically, the problem is formulated as:

Given:

(1) Trip’s OD pair (l,, l4): A pair of GPS points collected by the vehicle, with regard to the pick-up and drop-off

locations respectively.

(2) A set of POIs and their corresponding historical check-in records CI in the designated city.

(3) A set of candidate activities A in Tab. 1 (i.e., trip purposes).

Predict p (y = a|l,, lg,CI),a € A: The probability of a candidate activity @ being the actual activity y that the
passenger would take, on the condition of (I, Iz, CI).

Return the activity with the largest probability as the predicted purpose for this trip.

4 METHODOLOGY
4.1 Overview

The framework of our prediction model is illustrated in Fig. 1, which consists of three stages, namely trip context
augmentation, dual-attention graph embedding, and classification.

o Trip Context Augmentation: When and where the passenger taking a trip are two foremost significant clues
for trip purpose prediction, but the raw trajectory data still lacks semantics regarding passenger’s potential
activity. In this stage, trajectory data and POI check-in data are aggregated and used to augment the
semantic meaning of trip contexts, including spatiotemporal (ST) context, and OD POI contexts.
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Fig. 1. Framework of our trip purpose prediction model.

o Dual-Attention Graph Embedding: The augmented trip contexts obtained in the first stage is expected
to convey the primary activity semantics from different partial perspectives. Thus, in this stage, a dual-
attention graph embedding is established to extract the comprehensive activity semantics of passenger’s
trip in the high-level feature space. Specifically, the augmented OD POI contexts are first converted into
the graph structure, namely G,, G4. On top of that, two branches of GATs are employed to capture the
neighboring activity semantics of each POI category in G, and Gy, respectively. Note that the ST context is
used as the complementary information. Then, the soft-attention mechanism is employed to aggregate three
kinds of trip contexts (i.e., G, G;l and ST context), so as to extract the comprehensive activity semantics at
the trip level. In this soft-attention, the activity semantics of G/ and spatiotemporal context are served as
the query, and the activity semantics of each POI category in G/, is served as both the key and value. Such
a manner is capable of modelling the different contributions of POI categories in G/, for passenger’s trip
purpose on the condition of specific origin activity semantics and spatiotemporal context.

o Classification: In this stage, a full-connected layer is first employed to fuse the extracted activity semantics
of the passenger’s trip. Then softmax function is adopted as the classifier to output the probabilities of
different candidate trip purposes. Besides, this stage also computes the loss of entire neural network for the
back propagation process during the training phase.

We also mark all important symbols, equations in Fig. 1 for the easy check. To gain a better understanding of
this trip purpose prediction procedure, we recommend readers to keep referring to this figure throughout this
section.

4.2 Trip Context Augmentation

4.2.1 Spatiotemporal Context Augmentation. Human activities naturally present strong temporal regularity,
such as working, homing. In this sense, the temporal context of passenger’s trip is of paramount importance for
understanding why people travel. Hence, for each trip, three kinds of temporal contexts are extracted from the
GPS trajectory, including the type of day (i.e., workday or non-workday) and the hour time when this trip started
and ended, and the travel time. In particular, the hour time value t is converted to the radian of a unit circle in
the coordinates centered on (0, 0), i.e., [0,24) = [0, 27r). Then the hour time is represented by the coordinate of a
point in the unit circle based on the radian 6, as shown in Eq. 1. Such a representation could maintain the time
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similarity between 00 : 00 and 23 : 00.
t
H(t) = (cos6,sinf),0 = 27 (ﬂ) (1)

In addition, the spherical distance between the origin and destination is computed and used as the spatiotem-
poral cost of this trip, together with the travel time. The underlying rationale is that people often travel with
long time and distance for unusual activities like business. At last, the spatiotemporal context Cs; of a trip (i.e.,
tr) is represented as Eq. 2.

Cst (tr) = [TYP (tr),H (t,), H(tq) , tqa — to,la — L] (2)

where TYP (tr) and H (t) obtain the corresponding day type and hour time. ¢ty — t, and [; — [, refer to the travel
time and distance, respectively.

4.2.2  OD POI Contexts Augmentation. The POI check-in data at origin and destination locations, conveys the
real condition of 9 categories of human activities at reasonably fine temporal and spatial levels. Generally,
such POI context indicates the land-use/functionality of a location, which has been recognized to be useful for
understanding trip purpose [7, 16]. For instance, a passenger entering the residential area may imply a trip for
the “Homing” purpose with high confidence. Thus, it is important to depict the static POI context at O/D location.
However, as cities undergo rapid sprawl, the functionality of a city region is usually complex and mixed [42]. In
real cases, different human activities would dominate the same region during different time periods, that is, the
region functionality evolves with the time of a day. As a result, it is also crucial to consider the time-evolving
functionality of O/D locations, i.e., dynamic POI context. Furthermore, for the problem of trip purpose prediction,
POI context should be able to reveal which type of POI (activity) is more attractive to the passenger.

In light of the above perspectives, we selected the POI check-in data nearby the O/D location within a radius of
r meters. According to the studies of land-use buffer for human trips [6], we set r to 250 meters after a few tests. In
terms of the dynamic POI context, we employ the period popularity of POIs to depict the dynamic functionality of
O/D location, which also reveals the attractiveness of different POIs explicitly. Specifically, based on the check-in
data CI, we compute the total times that the k-th POI category had been checked during the given time period T
in history, i.e. |CI |]{ Then, the period popularity of the k-th POI category is formulated as Eq. 3.

cIlg
ZkEK |CI|]Z

where K denotes the number of all POI categories (i.e., K = 9). In order to imply the finished activity of the
passenger, for the origin location, we set T € [t, — 2, t,] to 2h before the hour time of trip starting, since human
activities commonly last less than 2 hours [8]. For the destination location, we set T € [ty4, t; + 2] to 2h after the
passenger gets off the vehicle.

In terms of the static POI context, we extract the distance and uniqueness of each POI category to characterize
the POI distribution around trip’s O/D location. As we all know, passengers always choose pick-up/drop-off
points as close as possible to their departing/heading locations, so that those closer POIs should be assigned with
more weights. Thus, for the k-th POI category, we compute the ratio of the minimum distance between POIs and
the drop-off point /;, as shown in Eq. 4.

PP(k) = —log, [1 - ®3)

min(distance(POIsk, 13))
r

Dis(k) = —log,

(4)

Note that a POI category may be wrongly ranked more popular than the other just due to the fact that the
number of the corresponding POIs is bigger than others. To alleviate this problem, we further employ the
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(a) (b)

Fig. 2. Illustration of how to convert the POI context into the graph structure: a) The POI context near a pick-up/drop-off
location (red landmark). The radius of the circle is 250 meters. b) The corresponding graph structure. 9 nodes represent 9 POI
categories, and those nodes drawn with dotted lines refer to nonexistent POI categories within the marked circle.

uniqueness feature of the k-th POI category, as shown in Eq. 5.
|POIs¥| )
Zkex |POIs¥|

In summary, for a origin/destination location, at most 9 categories of human activities are revealed based on
the POI check-in data. Each of them is augmented with three discriminative features, namely, period popularity,
distance and uniqueness.

Unig(k) = - log, ( 5)

4.3 Dual-Attention Graph Embedding for Trip’s Activity Semantics Extraction

Here, we elaborate on the details of the dual-attention graph embedding that can extract the latent activity
semantics underlying trip contexts. Generally, it consists of three stages, namely graph construction, POI semantics
extraction and trip semantics extraction, detailed as follows.

4.3.1  Graph Construction. After the augmentation, each POI category is individually represented by its own
features. As mentioned before, some human activities are usually associated with each other (e.g., “Recreation”
and “Shopping”). Hence, it is also important to model the inherent correlations between different POI categories for
activity semantics extraction.

Inspired by the idea that employs the graph representation learning to model the transition patterns of different
driving states for driving behaviours understanding in [9], we convert the OD POI contexts into two graphs. As
illustrated in Fig. 2 (a), there are 7 different categories of POIs within a 250-meter radius near the pick-up/drop-off
point. This POI context is represented by the graph in Fig. 2 (b). The undirected completed graph is defined as
G = (V,E), where V is a set of nodes representing 9 POI categories (2 nodes drawn with dotted lines refer to
the nonexistent POI categories within the marked circle) and E is a set of edges representing their potential
correlations. In addition, each node contains its own augmented features h € R (i.e., period popularity, distance
and uniqueness), and F = 3 denotes the dimension of node features. As a result, the OD POI contexts can be
represented by G, and Gy, respectively.

4.3.2  GAT for POI Semantics Extraction. Based on the constructed graphs, we are able to extract and aggregate
the twofold activity semantics of OD POI contexts, namely the augmented features and the neighboring semantics.
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Graph Neural Networks (GNNs) are commonly adopted to extract high-level features from graph-structured
data sources, such as social media. In this study, the OD POI contexts are converted into the graph structure, i.e.,
G, and Gy4. Nevertheless, G is an arbitrarily structured graph in the real world. Some nodes in G may not exist,
since a location cannot always have all 9 categories of POIs nearby, as illustrated in Fig. 2. To solve the dilemma,
we adopt the GAT which has great performance in inductive tasks [36]. GAT is able to model the non-identical
correlations of neighboring nodes to the central node, and accordingly extract the high-level node representation.
Specifically, it adopts the attention mechanism to learn attention coefficients between the central node u and its
neighboring nodes N,,. Generally, the coefficient «,,,, measures the correlation between u and a neighbor v € N,
which can be computed based on the softmax function as presented in Eq. 6.

_exp (g (att” [Why||[Why]))
* Znew, exp (g (att” [Why[Why))

where W € RF*F is a shared weight matrix which linearly transforms the input node features h into higher-
dimension features. Besides, || and .7 represent the concatenation and transposition operations. The attention
mechanism is a single-layer feedforward neural network, parametrized by a weight vector att € R*", applying
the activation function ¢(.), i.e., LeakyReLU.

We can find that GAT is capable of extracting the neighboring semantics of each POI category by modelling
their mutual correlation with an attention mechanism. However, as shown in Eq. 6, for a central node u, its
attention coefficients with different neighbors in N,, are computed with the same parameters, i.e., the coefficients
are simply determined by their numerical values. It means that if different neighbors have the same value, their
coefficients to u would also be the same. However, in the real world, different kinds of human activities usually
have different inherent correlations. For example, for the “Dining” activity, its correlation with “Recreation” is
stronger than “Health”, since “Dining” and “Recreation” are more likely to be associated in people’s daily life.
Hence, the attention computations for neighboring nodes need to further consider their inherent differences.
To that end, we modify the attention mechanism in the existing GAT to be category-aware, so as to deal with
the POI context G. In addition, the correlation between different activities also demonstrates a time-dependent
characteristic, so that the computation of attention coefficients should further account the time features T (i.e.,
day type and hour time feature). Consequently, the Eq. 6 is rewritten as Eq. 7.

(6)

QAuov

_ exp (g (attuvTWhu + att1TWhv + attzTT))
* Snen, exp (g (attun Why + atty TWh, +att,'T))

™)

auv

where att,, € R is a unique weight matrix of the center node u towards a specific neighbor v, so that the
modified GAT could learn category-aware correlations between u and different neighbors. Since there are K
different POI categories and each of them has K — 1 neighbors, there are K * (K — 1) unique matrices in total.
Different from that, att; € R¥ and att, € RITYPI*IH] are shared attention weight matrices for different neighbors
and time features. Then, attention coefficients are used to combine the neighbors’ features in a weighted sum
manner, and the result is served as the neighboring semantics of u. In addition, we also adopt the multi-head
mechanism to increase GAT’s expressive capability meanwhile stabilize the learning process. Specifically, a total
of M independent attention mechanisms are used to extract neighboring features from different perspectives.
Then those extracted neighboring features are concatenated and transformed into the final neighboring feature

I_{u, as shown in Eq. 8.

fzuzw’(

M
i O'( Z alTvahv)) (8)

veENy,
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where a] and W™ are the attention coefficient and linear transformation weight matrix of the m-th attention
mechanism. ¢ is a nonlinear function. W € RF*MF is a weight matrix which transforms the concatenated
features into F’ dimension. In this study, the graph attention networks contains two stacked multi-head GATs.
Each of them is following the computation in Eq. 7 and Eq. 8.

By performing the GATS, each POI category in G, and G4 could obtain its neighboring activity semantics. In
particular, according to the computation in Eq. 7, the neighboring semantics of a POI category can be viewed
as being derived from its own perspective. In this respect, for each POI category, we aggregate its augmented
features and neighboring semantics (i.e., h,, = [hu||}_1)u], h! € RF*F"). Finally, we obtain the POI context with
twofold activity semantics at the origin and destination respectively (i.e., G, and G/).

4.3.3  Soft-Attention for Trip Semantics Extraction. In this stage, three kinds of activity semantics (from OD POI
contexts and spatiotemporal context) are aggregated to derive the comprehensive semantics of passenger’s trip.
However, the aggregation is not straightforward. On one hand, among three trip contexts, the D POI context is
more important in the trip purpose prediction, since destination is where a passenger takes the final activity. On
the other hand, POIs are basic units of human activities, thus POI categories are with different contributions to
the passenger’s activity (i.e., trip purpose).

Soft-attention can be described as mapping a query and a set of key-value pairs to an output, where query
and keys are from different domains [35]. The output is the weighted sum of values, where the weight (i.e.,
contribution) for each value is computed by using a compatibility function on the query and a specific key. In this
study, passenger’s activity at the destination location can be viewed as the response to a special query (i.e., a trip
with specific origin and time). Hence, soft-attention is adopted to extract the comprehensive activity semantics
from three kinds of trip contexts meanwhile modelling their dependency on the trip purpose. The query is the
combination of origin activity semantics G/, and trip’s spatiotemporal cost Cs;. The keys are equal to values,
which consist of the activity semantics of POI categories in the destination, i.e., h;, € G/,. Specifically, we first
employ a Flatten operation to convert G, into a 1-dimension vector, and concatenate it with Cs;. Then, we use a
full connected layer (parameterized by W/ ! € RFoseX(KIRu[+ICer D) and bfel) to fuse the features to serve as the
query of soft-attention, as shown in Eq. 9.

host = tanh (W/<! [Flatten(Gy)lICs:| + b)) 9)

A feed-forward network with a single hidden layer is employed as the compatibility function. Then, the coefficient
a, of a POI category u € G/, (i.e., key) can be obtained according to Eq. 10.

. exp (tanh (atthhost +atty " hy, + b))
- Disev €Xp (tanh (atthhost +attyTh{ + b))

(10)

u

where att, € RF ost and att; € RI"u! are learnable parameters for query and key, respectively. b is the bias, and
tanh is a nonlinear activation function. h’ refers to the node’s features in G/;. We also employ the multi-head
attention to compute coefficients from multiple perspectives. At last, the coeflicients are used to aggregate the
activity semantics of different POI categories in G/}, which is viewed as the comprehensive activity semantics .77’

of passenger’s trip. The computation is shown in Eq. 11.

W
arh 11
" fre o

ueV

%:WII(

where M’ denotes the number of attention heads, and @ denotes the learned coefficient in the m’-th attention.
W € RIFuXM'Ihul s 4 learnable parameter matrix that transforms the concatenated features into |k, dimensions.
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4.4 Classification

The prediction of trip purpose is viewed as a classification task among several candidate trip purposes A. In this
study, a fully connected layer with softmax function is adopted as the classifier to output the probabilities of
candidates. Specifically, on top of the extracted activity semantics .57, the fully connected layer with |A| neurons
is first used to output the raw results z, as shown in Eq. 12.

z=W/x + p/e (12)

where W/¢2 and b/ are learnable parameters of the fully connected layer. Then, the probability  of the i-th
candidate activity d; being the purpose of a trip ¢r, can be obtained by performing the softmax function, as shown
in Eq. 13. At last, the prediction result g is the candidate activity with the highest probability.

Ierl)&’ (zi.2)) € 2
2

Py =altr) =
exp (ZJ) (13)

7 = argmax p (y = a;|tr)
i

The loss function of this network is based on the cross-entropy, which computes the distance between the
predicted probability distribution and the actual probability distribution. The overall cost function is shown in
Eq.14.

Zf:}lz )log( ) (14)

where N denotes the number of samples. y) and %) corresponds to the actual probability and predicted
probability of the j-th candidate activity, respectively.

5 EVALUATION
5.1 Experimental Setup

5.1.1 Data Preparation. Our experiments are conducted based on two real-world datasets. In this study, the
typical application scenario is taxi trip. However, people usually won’t reveal their purpose information in
taxis, so that there is no sufficient labeled taxi trips for our supervised learning method. Fortunately, Shenzhou
UCar is also a door-to-door ride service and similar to taxis on many aspects [20], while it further possesses the
information of passengers’ trip purposes in the generated orders. Hence, the large-scale UCar data is used as the
labeled dataset to evaluate our prediction model. Note that in all experiments, models’ predictions only utilize
the vehicle’s GPS data (i.e., without any other information from UCar), so that the evaluation observations are
able to be generalized to other door-to-door ride services like taxi trips.

Beijing UCar Trajectory Data. This data contains 780, 494 vehicle trips collected by Shenzhou UCar in the
city of Beijing, China, December 2015. Each record was generated when an anonymous and arbitrary passenger
completed a trip with the RoD service. It contains the GPS information of pick-up&drop-off points on roads,
and the description of a POI where this passenger actually heads for (e.g., Beijing Restaurant or Beijing Tiantan
Hospital). Such a description intuitively reveals the activity type for this trip which is served as the passenger’s
trip purpose in this dataset (e.g., “Dining” or “Health”). The detailed mapping operations can be found in Appx. A.

Jiepang POI Check-in Data. This data was generated by over 11, 080 users with Jiepang APP in Beijing from
August 2011 to September 2012. It contains 511, 133 POI check-ins, and each record contains an anonymous user
ID, a check-in timestamp and the corresponding POI information (i.e., longitude&latitude, category and name of
the POI).
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There is a time misalignment issue between these two datasets. We argue that this issue reflects an objective
challenge of urban computing: it is usually difficult or even impossible to find perfect data sources with the exact
time consistency in practice. In this study, the POI check-in data is adopted to reveal the human activity semantics
at different areas, while it is observed that the POIs and human activities in Beijing are relatively stable: 1) Most
functional regions in Beijing are slightly changed per year [42]; 2) The overall spatial patterns of the “Restaurant”
distribution are basically unchanged in two years [40]. Thus, using datasets with a 3-4-year separation in Beijing is
relatively effective for our study. Moreover, our model focuses on the high-level ratios of different POI categories,
which is relatively durable to the time misalignment issue [37].

Finally, we select 366, 783 purpose-labelled trajectories in a square area around the Five-Ring of Beijing city,
and divide them into the training, validation and test datasets at a ratio of 6 : 1 : 1.

5.1.2  Baseline Algorithms and Evaluation Metrics. Comparison experiments are conducted to evaluate the
performance of our model, and several methods in existing studies are employed as baseline algorithms. Note
that in this paper, the evaluation of these methods is based on the same data sources as ours (i.e., trajectory and
POI check-in data).

o Nearest: A rule-based algorithm used in [3]. It simply sets the POI that is closest to the drop-off location
as the ultimate destination of the passenger. Thus, the human activity related to that POI is served as the
predicted trip purpose.

o Bayes’s Rule: A probability-based algorithm used in [16]. It considers a set of spatial and temporal rules to
calculate the visiting probabilities of POIs near the drop-off point. Finally, the human activity related to the
most likely POI is served as the predicted trip purpose.

o Artificial Neural Network (ANN): A machine learning algorithm used in [41]. It is an artificial neural network
with several hidden layers. The inputs are trip characteristics, including the day type and the land-use of
trip’s end which is derived from the nearby POI categories (binary coding for each category). The outputs
are a set of probabilities for candidate trip purposes.

e Random Forest (RF): A machine learning algorithm used in [11]. The input variables include the nearby
place characteristics (i.e., the percentages of different POI categories) and time characteristics (including
day type and time period of a day). The outputs are also a set of probabilities for candidates.

Furthermore, we conduct an ablation study to evaluate the effectiveness of four important components in our
model.

e Ours-GAT's: Ablate the GATs component in the model to evaluate the effectiveness of considering the
neighboring semantics of POI categories in OD POI contexts.

o Ours-G,: Ablate the POI context at the origin location to evaluate the effectiveness of considering the
activity semantics before the passenger starts this trip.

o Ours-Cg;: Ablate the spatiotemporal context when computing the attention coefficients in GATs and soft-
attention, to evaluate its effectiveness in modelling the correlation between different POI categories.

o Ours-S_Att: Ablate the soft-attention component to evaluate its effectiveness in extracting the comprehensive
trip activity semantics from three kinds of trip contexts.

To compare the performance of different algorithms, we adopt four commonly used metrics in the following
groups of experiments, including accuracy, and macro-averaged precision, recall, Fy-score. Specifically, accuracy is
a ratio of correctly predicted samples to the total samples. Besides, for the prediction results of i-th class, the
precision and recall can be computed according to its false positive (FP) rate and true positive (TP) rate as shown
in Eq. 15. Fy-score is the harmonic mean of precision and recall, and it is a more generic metric to the evaluation
on an uneven class distribution. For our multi-class classification task, we further employ the macro precision,
macro recall and macro F;-score (i.e., the arithmetic mean of class-wise precision/recall/F;-score as shown in
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Fig. 3. Performance of our trip purpose prediction model when varying two parameters.

Eq. 16), thereby all classes can be treated equally to evaluate the overall performance of models.

o TP; TP; 2 = Precision; * Recall;
Precision; = ————, Recall, = —————, Fj-score; = — (15)
TP; + FP; TP; + FN; Precision; + Recall;
N .. N N
. Precision; " Recall; ¥ Fq-score;
M_Precision = #, M _Recall = %, M _Fi-score = % (16)

5.1.3  Evaluation Environment and Parameter Settings. All the experiments are programmed using Python 3.7
with TensorFlow-2.0, and running on a PC with 4 NVIDIA GeForce RTX 2080 Ti GPU and 192 GB RAM.

For models in the following experiments, their hyperparameters are selected by comparing the performance of
different groups of settings on the validation dataset with an early stopping method. For both of our model and
ANN, we employ the Adam to optimize the loss function with a learning rate I, = 0.0001. The batch size and L2
regularizer parameter are set to 64 and 0.0001, respectively. Additionally, for our model, the dimension of feature
transformation F’ in GATs is set to 50, and the number of heads for GATs and soft-attention (M, M’) is set to 10
and 20, respectively. The dimension of fused origin POI context and spatiotemporal context F;, is set to 50. The
ANN model consists of two hidden layers, in which the number of layer’s neurons is set to 200. For the RF model,
the number of decision trees is set to 1000, and the voting mechanism chooses the most popular prediction from
all the decision trees.

5.2 Parameter Sensitivity Study

In this section, we investigate the impacts of two important parameters on our model’s performance, namely the
size of dataset and radius of POI context.

Most of existing studies have less than 100, 000 samples in their datasets, while our dataset is much bigger
which has over 300, 000 samples. Here, we investigate whether a large-scale dataset is significant for our model’s
performance. Fig. 3 (a) shows the performance of our model when training on the increasing dataset. We can find
that the performance improves a lot with the growth of dataset. Specifically, with regard to all the metrics, the
model’s performance achieves around 10% improvement when the dataset grows from 72, 000 to 366, 783. Thus,
training our model on a large-scale dataset is beneficial for the performance.

The radius of POI context is used to select POI check-in data nearby the O/D location. We investigate how the
radius affects our model by increasing this value from 200 meters to 350 meters. As shown in Fig. 3 (b), we can
find the model achieves the best performance at a radius of 250 meters. In addition, when this value grows from
200 meters to 250 meters, the model’s performance changes fast. It is because the passenger’s activity place may
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Fig. 4. Prediction results of ANN and RF models with the time and POI features in [41] and [11], and with our augmented
temporal and POI features.

not be included in the small range of POI context. When the radius keeps growing, the impact would gradually
decrease, since the POI context would include more noise information.

5.3 Effectiveness of Trip Context Augmentation

Trip context augmentation is used to augment the primary semantic meaning of passenger’s trip. Specifically,
{day type, hour time, travel time and travel distance} are employed to represent the trip’s spatiotemporal context,
and {period popularity, distance, uniqueness} are employed to represent the OD POI contexts. Those augmented
trip contexts are served as the input features of our deep model. As mentioned before, baseline algorithms RF [11]
and ANN [41] also adopt the temporal and POI context for trip purpose prediction, but with different feature
engineering. Readers can refer to [11, 41] for more details. Thus, to highlight the effectiveness of our trip context
augmentation, we further compare the performance of these two baseline algorithms (i.e., ANN, RF) with their
original features and with our augmented features (i.e., ANN+Our_F, RF+Our_F), respectively.

Figure 4 shows that both algorithms can improve their performance by using our augmented time and POI
features. Especially the prediction accuracy, macro recall and macro F;-score of ANN model have increased
more than 20%. Such results demonstrate that our feature engineering (i.e., trip context augmentation) is more
discriminative and effective in predicting trip purpose. Besides, the improvement of RF model’s performance is
relatively insignificant. It might be because this model’s original features in [11] contain the percentage of POI
categories information, which is quite similar to the uniqueness essentially. Hence, we can also conclude that
ANN is more sensitive to the richness of input features, and RF model is competitive with ANN in predicting trip
purpose.

5.4 Effectiveness of Dual-Attention Graph Embedding Model

To evaluate the effectiveness of our dual-attention graph embedding model, we compare its performance with
four different kinds of baseline algorithms, namely Nearest, Bayes’ rule, ANN and RF. Besides, in addition to the
9-class trip purposes in Tab. 1, we further evaluate the model’s performance on fewer candidates. In reality, there
is usually no need to predict all kinds of trip purposes for applications, and the neural network could show better
performance when dealing with fewer candidates. In this paper, we take the in-car advertising for instance, and it
is recognized that a few ad categories work well, namely entertainment and sports, shopping, food and restaurants.
Thus we set the number of candidates to 4 (i.e., “Recreation, Shopping, Dining, Others”). Note that this number is
not fixed, and developers can specify candidates according to their applications.

Table 2 presents the prediction results of different algorithms with the GPS trajectory and public POI check-ins.
We can find that:
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Table 2. Prediction results of different kinds of trip purpose prediction algorithms.

Comparison Accuracy (%) M_Precision (%) M_Recall (%) M_F;-score (%)
Algorithms 9-class { 4-class 9-class { 4-class 9-class { 4-class 9-class { 4-class
Nearest 26.08 39.05 32.75 34.6 26.56 37.88 24.76 30.32
Bayes’ rule 35.04 50.73 38.50 39.31 34.62 44.78 33.03 38.73
ANN 39.3 69.59 40.41 67.58 26.77 28.28 26.83 26.65

RF 60.26 77.57 57.41 65.34 55.27 60.05 56.2 62.31
Ours 65.63 79.76 61.74 70.1 62.59 60.97 61.86 64.41

Table 3. Confusion matrix analysis for our prediction model.

Trip Purposes

Predicted Results Recall F;
Recreation Outdoors Shopping Dining Education Transportation Homing Health Working (%) (%)

Recreation 810 51 171 138 57 126 150 45 138 48.04 51.25
Outdoors 15 483 45 45 0 66 126 27 81 5439  47.63
Shopping 81 60 4413 255 30 408 486 51 591 69.24  66.83
Dining 132 99 462 2901 54 441 531 102 498 55.57  59.8
Education 21 39 105 75 846 84 309 78 153 4947 52.08
Transportation 180 168 486 399 186 5487 870 171 1083 60.76  65.77
Homing 90 123 486 333 210 405 5097 171 588 67.93 64.13
Health 18 21 36 30 21 63 102 1971 69 84.56 77.48
Working 126 96 630 306 135 576 723 141 7521 73.35  71.71
Precision (%) 54.99 42.37 64.59 64.73 54.97 71.67 60.72 71.49 70.15

e Our model outperforms baseline algorithms. Our model shows a considerable improvement in predict-
ing trip purpose. Especially on the 9-class trip purposes, it achieves a lead over 5% regarding the accuracy,
macro recall and macro F;-score.

e Machine learning algorithms are better. Not surprisingly, machine learning algorithms (i.e., Ours, RF,
ANN) outperform the probability-based and rule-based algorithms (i.e., Bayes’ rule, Nearest). It is because
human activities are complicated and associated with many factors, while machine learning algorithms are
more capable of dealing with such tasks in a data-driven manner.

e The proposed dual-attention neural network is effective. Both the ANN and our model are neural
networks, but the ANN model performs much worse. It is because ANN simply aggregates all inputs in the
latent space, while our model with two attention mechanisms, carefully models the inherent correlations
of features in the latent space. Such results further demonstrate the significance of using “dual-attention”
to extract activity semantics from trip contexts.

e Our prediction model is applicable. Our model could achieve 64.57% prediction accuracy on the 9-class
trip purposes and 79.76% accuracy on the 4-class purposes. Such results show that our prediction model is
generally applicable for real-life applications.

Table 3 presents the confusion matrix of our model on the test dataset. Each row shows the predicted results of

a se

t of trips (belong to the same trip purpose). Each column shows the actual distribution of trips’ labels which

are predicted to be a given trip purpose. We can observe that the F;-scores of “Health” and “Working” purposes

are

over 70%, while the “Recreation” and “Outdoors” are about 50%. It might be because the POI configurations

near the “Health” and “Working” activities are usually simpler than “Recreation” and “Outdoors”. Otherwise,
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Fig. 5. Performance degradation of our trip purpose prediction model with different ablation settings.

some human activities are usually associated with each other at time and space, so that the model can not
distinguish them very well. As we can see in the table, the “Recreation” purposes are more likely to be predicted
as “Shopping”, since their corresponding POIs often appear together in streets. Similarly, many “Transportation”
purposes are wrongly predicted as the “Working” purposes. We also observe the F; score of “Homing” is around
65%, which is not as good as our expectation. It might be because our model employs the check-in data from a
social network to reveal human activities in the city, but relatively few users would leave a check-in record for
the “Homing” activity. Consequently, the POI context for “Homing” purposes may be biased in some cases.

5.5 Ablation Study

The dual-attention graph embedding model is carefully designed to extract the activity semantics underlying the
passenger’s trip for trip purpose prediction. Here, we conduct an ablation study to evaluate the effectiveness of
different components and features, namely the graph attention networks, soft-attention, POI context at the origin
location and trip’s spatiotemporal context.

The results are shown in Fig. 5. We can find that:

e Graph attention networks play the most important role. When ablating the GATs (i.e., Ours-GATs),
the model’s performance degrades dramatically (e.g., the macro F;-score is reduced by 10% on both the
9-class and 4-class prediction). In this study, GATs are employed to capture the twofold activity semantics
of each POI category by modelling their neighboring correlations. Such results also demonstrate the
effectiveness of converting POI context into the graph structure, and the significance of modelling the
correlation between POI categories for the trip purpose prediction.

o Considering the origin POI context is necessary. The performance of Ours-G/ degrades on both two
groups of prediction tasks. However, the degradation in Fig. 5 (b) is not as much as that in Fig. 5 (a), especially
on the prediction recall. It indicates that the origin POI context is not very discriminative for 4-class trip
purposes (i.e., “Recreation, Shopping, Dining, Others”). Such results might be because people’s origin
locations for those human activities are relatively random compared with other activities. For example,
people usually head for “Working” from residential areas, but for “Dining”, the origin could be their home,
working place or any recreation facilities.

o Spatiotemporal context helps improve the prediction recall. As for the prediction results of Ours-
Cs;, the prediction macro recall is the most degraded among four metrics. Such results indicate more trip
purposes can be correctly predicted by using the spatiotemporal context especially on the 4-class trip
purposes (the macro recall is reduced over 8%). The spatiotemporal context includes the time information
and travel cost. Thus, those time-dependent human activities would be easier to be correctly predicted,
such as “Homing”, “Working” and “Dining”. On the contrary, activities like “Recreation” are usually with
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Fig. 6. A use case of our trip purpose prediction model in the real-life scenario.

unfixed time period, and the spatiotemporal context might lead to the false prediction (i.e., the reversed
precision).

o Soft-attention is effective in aggregating trip contexts for activity semantics extraction. In our
model, the soft-attention is employed to aggregate three kinds of trip contexts to derive trip’s comprehensive
activity semantics. While in Ours-S_Att, different trip contexts are directly fused by full connected layers. As
we can see, the overall performance of Ours-S_Att also degrades on both the 9-class and 4-class prediction,
especially the macro recall shows a gap of 5%. It is because the soft-attention further models the dependency
of different trip contexts on the passenger’s trip purpose, and that is important for the prediction.

5.6 Case Study

Figure 6 illustrates a use case of our trip purpose prediction model in the real-life scenario. The taxi is equipped
with an advertising system including a GPS device and our prediction model. It picked up a passenger on non-
workday and traveled 4.9 kilometers in 14 minutes. During this trip, the in-car system treats the passenger as a
black box, and only senses the taxi’s moving trajectory on roads. When the taxi stops at the drop-off point at 3 PM,
the trip purpose prediction model is triggered immediately. According to the time, travel cost and POI contexts,
the prediction model outputs 4 probabilities of candidate trip purposes within 0.31 seconds. As shown in the
figure, the “Shopping” purpose is with the largest probability. It indicates the passenger is most likely going to
perform the shopping activity. Accordingly, the in-car advertising system presents this passenger some discount
information (i.e., coupons for the nearby shopping mall) before he/she gets off the taxi. The whole response time
is less than 0.5 seconds. It should be noted that the presented running times are tested on the desktop computer.
This case study demonstrates the model’s feasibility in practice, also shows that our system protects the
passenger’s privacy from two aspects: 1) It has no connection with the passenger in the digital space, and does
not require cooperative efforts; 2) It does not record or use any passenger’s personal information, especially the
identity, thus it cannot link the predicted trip purpose to a specific individual (i.e., no privacy exposure issue).

6 CONCLUSIONS AND FUTURE WORK

This paper presents a new deep model for the passenger’s trip purpose prediction, aiming at offering a more
ubiquitous and applicable approach in the scenarios of door-to-door ride services. To that end, the proposed
model only utilizes the passenger’s insensitive information for prediction. Specifically, the vehicle’s GPS trajectory
on roads and public POI check-in data are first aggregated to augment the semantics meaning of trip contexts (i.e.,
spatiotemporal context and OD POI contexts). Based on that, a dual-attention graph embedding network (i.e.,
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graph attention networks and soft-attention) is established to extract the comprehensive activity semantics of
passenger’s trip for the trip purpose prediction. The model is trained on a large-scale labeled travel dataset in a
supervised way. At last, extensive experiments demonstrate the model’s great performance, and the case study
shows its feasibility in the real deployment environment.

Generally, our trip purpose prediction is based on modelling the high-level human activity semantics, while the
nature of human activities is similar between different cities [19]. Thus our approach is able to be generalized to
other cities. Additionally, since the utilized data sources are relatively pervasive in door-to-door ride services, we
believe this approach is also applicable among similar ride services like taxis and UCars. Nevertheless, our deep
model is trained in a supervised manner, while many cities or application scenarios only have limited labeled data
in reality. Thus the generalization may not be straightforward. For these situations, new models can be obtained
by performing the fine-tuning operation with a pre-trained model, or employing semi-supervised learning and
active learning techniques [32].

In the future, we plan to broaden and deepen this work in several directions. Firstly, since our prediction model
requires many computations while the vehicle’s compute capability is usually limited, we plan to design a new
platform to deploy our model in real taxi fleets. Secondly, the uneven sampling rate issue in the LBSNs check-in
data could have a negative effect on our POI semantics augmentation (i.e., popularity), thus we plan to explore
potential solutions to alleviate its impact. Finally, we intend to examine the extension possibility of our trip
purpose prediction algorithm in door-to-door services to public transportations such as bus and metro [2], and
evaluate the performance.
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A DATA LABELLING FOR UCAR TRIPS

As a ride-on-demand service, UCar further records the POI descriptions of passengers’ actual destinations (e.g.,
Beijing Restaurant) in orders. Such descriptions intuitively reveal the passengers’ trip purposes. Here, we elaborate
on how to automatically label UCar trips with the corresponding trip purposes.

The process of data labelling consists of two mapping operations: 1) Mapping from the destination description
text to the primary POI category; 2) Mapping from the primary POI category to the true trip purpose. The details
are as follows:

(1) The first mapping is automatically accomplished by using a pre-trained NLP model (i.e., ERNIE from
PaddlePaddle, which achieved SOTA results in more than 40 typical NLP tasks. https://pypi.org/project/
paddle-ernie/). Specifically, this NLP model is fine-tuned with 510, 000 text samples from the Jiepang dataset,
since this dataset contains both the POI descriptions in Beijing and the corresponding POI categories. On
top of that, this NLP model is used to predict the POI categories of destination descriptions in the UCar
dataset. To evaluate this NLP model’s performance in the UCar dataset, we manually label the destination
descriptions of 1000 randomly selected trips, then compare these labels with the model’s results. After 3
testing rounds, the average prediction accuracy of this NLP model achieves around 99.3%.

(2) The second mapping is much easier. It can be simply fulfilled by using the illustrative mapping in Tab. 1
(i.e., POI categories and the corresponding trip purposes).

B POl CATEGORY MAPPING IN JIEPANG DATASET

The POI categories in Jiepang dataset are hierarchical, namely primary POI categories and subcategories. Generally,

» o«

there are 8 primary categories in this dataset, namely {“Recreation and Culture Facilities”, “Outdoors and

» » <«

Sightseeing Places”, “Shop and Service Facilities”, “Catering”, “School and Educational Facilities
Facilities”, “Professional Building and Residence”, “Others”}.

For the trip purpose prediction task, we follow some distinguished related works [7, 16], to adopt the primary
POI categories to indicate different kinds of human activities. At the same time, we find the “Hospital” and
“Residence” are considered as important primary POI categories [7, 16, 44]. However, in Jiepang dataset, both the
“Hospital” and “Residence” are the subcategories of “Professional Building and Residence”. Additionally, we note
that in Jiepang, the “Others” check-ins are usually generated when users check-in some private POIs, which are
relatively uninformative, and such check-ins are very sparse in the dataset (around 1.4%).

With these in mind, in order to keep consistent with existing works, we map the original 8 primary POI
categories to 9 categories. The detailed mapping operations are listed in the following.

»

, Transportation

(1) For check-ins with the primary category of “Professional Building and Residence”, we divide them
into three groups by examining their subcategories. The obtained three new categories are “Apartment and
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Residence”, “Hospital and Clinic”, and “Office and Business Buildings”. Note that for each check-in, the tags
of primary POI category and subcategory are directly presented in the data entry.

(2) For the “Others” check-ins, we directly exclude these uninformative records in this study.

(3) For check-ins with the rest 6 primary categories, we directly adopt their original category information.
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