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Abstract—The increasing data requirements of Internet applications have driven a dramatic surge in developing new programming

paradigms and complex scheduling algorithms to handle data-intensive workloads. Due to the expanding volume and the variety of

such flows, their raw data are often processed on Intermediate Processing Nodes (IPNs) before being sent to servers. However, the

intermediate processing constraint is rarely considered in existing flow computing models. This paper aims to minimize the tardiness of

data-intensive applications in the presence of intermediate processing constraint. Motivating cases show that the tardiness is affected

by both IPN locations and flow dispatching strategies. Based on the observation that dispatching flows to IPNs is essentially building a

matching between flows and IPNs, a novel solution is proposed based on matching theory. In the deployment phase, a tardiness-aware

deferred acceptance algorithm is developed to optimize IPN locations. In the operation phase, the Power-of-D paradigm and matching

theory are combined together to dispatch flows efficiently. Evaluation results show that our solution effectively minimizes the total

tardiness of data-intensive applications in heterogeneous systems.

Index Terms—Heterogeneous system, data-intensive application, matching theory, power-of-D

Ç

1 INTRODUCTION

REAL-TIME big data applications in heterogeneous sys-
tems have received considerable attention in recent

years [1], [2]. In these applications, indiscriminately sending
all raw data to the server puts pressure on the system
infrastructure as well as the server. Recent researches pre-
process the raw data, such as size changing, format conver-
sion, and noise handling, on intermediate nodes to alleviate
this problem [3], [4]. Intermediate Processing Nodes (IPNs)
are usually high-performance machines with relative suffi-
cient resources (e.g., CPU, memory). Besides, the practical
needs of hierarchical processing and load balancing in real-

world systems also promote processing data-intensive
workloads on the intermediate nodes [5], [6], [7], which is
called intermediate processing constraint.

As elaborated in Fig. 1, the completion time of a flow1

from soft real-time data-intensive applications is the sum of
handling time and routing delay. Handling time is com-
posed of the queueing delay (i.e., the time a flow waits in
the queue on IPN until it can be processed2) and the process-
ing time for a flow to be processed on an IPN. Routing delay
equals to the propagation time on the path from source to
destination via an IPN. The expected completion time and
deadlines of the flows might be different [8] and it is diffi-
cult to guarantee all deadlines are met in such distributed
environments [9]. To be consistent with the previous
researches [10], [11], [12], we focus on minimizing the total
tardiness of all flows.

In the real-world distributed systems, there may be mul-
tiple generations or brands of hardware so that the IPNs
may have different processing capacity, memory space and
I/O bandwidth. The configurational heterogeneity makes it
non-trivial to minimize the total tardiness in the presence of
the intermediate processing constraint. In such heteroge-
neous systems, the processing time and routing delay of a
flow depends on the routing strategies (i.e., selection of
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1. Different from the 5-tuple traffic flow, the flow here is composed
of two sub-flows, i.e., sub-flow from source to IPN, and sub-flow from
IPN to destination.

2. In this paper, the time a flow waits for forwarding on the network
switches is included in the routing delay instead of the queueing delay.
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IPNs), and the queueing delay depends on the scheduling
strategy of IPNs (i.e., processing sequence of the flows).

However, routing strategies usually focus on routing
delay and do not care about the handling time of flows on
IPNs, while scheduling strategies are just the opposite. The
interaction of routing and scheduling strategies makes it
challenging to simultaneously reduce the above elements.
For instance, as to a flow, being processed at a high-perfor-
mance IPN gains shorter processing time, but the relay path
might be long. On the other hand, selecting the IPN on the
shortest path from source to destination may induce long
queueing delay if the IPN is overloaded. Therefore, under
these circumstances, to minimize the total tardiness, it is
essential to take into account the collaborative strategies of
routing and scheduling (see Section 2).

Much prior work has focused on individual routing[13],
[14], [15], [16], [17], [18], [19], [20], [21] and individual
scheduling [22], [23], [24], [25], [26], [27], [28], [29], [30].
Recent years, more researches pay attention to the interac-
tion between routing and scheduling strategies [31], [32],
[33], [34], [35], [36], [37], [38]. However, the prior solutions
seldom consider the intermediate processing constraint,
which is new and challenging to minimize the total tardi-
ness in heterogeneous systems.

It should be mentioned that the intermediate processing
constraint is becoming popular nowadays, especially with
the emerging smart cities. Three-tier architecture is widely
used by both academia [39], [40] and industrial [41], [42],
[43] smart city solutions, where relay nodes process and
transmit data from the cameras and sensors to the com-
mand center. In such scenarios, the relay nodes act as IPNs,
while the cameras and the command center respectively act
as sources and destination.

In this paper, we try to address the following question:
how to minimize the total tardiness of flows in heterogeneous sys-
tems with the existence of the intermediate processing constraint?
We perform a comprehensive analysis of motivating cases
and have several findings. First, dispatching flows to IPNs
is essential to build a matching between flows and IPNs.
Second, both IPN locations and flow dispatching strategies
affect the total tardiness. Based on these observations, we
apply matching theory and minimize the total tardiness
from two aspects, i.e., IPN locations optimization and flow
dispatching strategy.

In the deployment phase, we propose the Tardiness-aware
Deferred Acceptance algorithm (TDA) to evaluate the ser-
vice capacity of IPN deployment schemes and optimize IPN
locations. In the operation phase, we combine the Power-of-D
[18] paradigm and matching theory, and design the
Tardiness-aware Power-of-D algorithm (TPD) for online
flow dispatching. Evaluations in real-world scenarios show
that both TDA and TPD outperform baseline algorithms
significantly and our solution can effectively minimize the
total tardiness of applications in heterogeneous systems.

The rest of this paper is organized as follows. Based on
the analysis of motivating cases in Section 2, we perform
problem formulation in Section 3. The algorithms TDA and
TPD are proposed in Sections 4 and 5, respectively. Section 6
performs extensive evaluations based on real-world sys-
tems. Section 7 lists the related work and Section 8 con-
cludes the paper.

2 EXAMPLE AND MOTIVATING CASES

In this section, we give an example of intermediate process-
ing constraint, which works as a background of this paper,
followed by the motivating cases.

2.1 Example

Fig. 2 shows a smart city [4]. A typical application in such a
system is that when capturing traffic violations at some
point, distributed cameras transmit videos and snapshots to
the command center. Due to the limited processing capacity
of the camera embedded system [44], image processing
needs to be migrated to one of the IPNs (e.g., network video
recorders, NVR). A dispatcher collects the system status
(e.g., transmission latency, load on IPNs) and chooses the
best IPNs to process and relay the videos and snapshots to
the command center.

2.2 Look at Flow Dispatching from the Matching
Perspective

Matching theory [45] tries to build a stable matching
between two sets of elements. Most researches on this topic
trace their history to the work of Gale and Shapley [46].
According to the number of elements in each stable match-
ing pair, the matching models could be divided into three
categories: one-to-one matching (e.g., stable-marriage [46],
[47]), many-to-one matching (e.g., college admission [45],
[46]) and many-to-many matching (e.g., job matching [48]).

A representative many-to-one matching model is College
Admission Problem (CAP) [46], where a set of students
apply for a set of colleges and each college only accepts a
specific number (quota) of students. Each student has a strict
order of preference over the colleges and each college also
has a strict order of preference over the students. CAP aims
to build a stable matching without unstable pairs3 so that
every student is matched to at most one college and no
college has more assignees than its quota.

We observe that flow dispatching with intermediate
processing constraint is similar to CAP. In flow dispatching,
each flow is relayed to exactly one IPN and one IPN can

Fig. 1. Components of flow completion time.

Fig. 2. An example of intermediate processing constraint.

3. College x and student y form an unstable pair if: x prefers y to one
of its admitted students and y prefers x to assigned college.
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process multiple flows. Flows prefer IPNs with higher proc-
essing capacity and lower transmission latency to minimize
processing time and routing delay, while IPNs prefer flows
with shorter sizes and earlier deadlines to minimize the
expected queueing delay and tardiness. Regarding flows as
students and IPNs as colleges, we can heuristically map
flow dispatching into the CAP as shown in Fig. 3. Particu-
larly, we can think of the stable matching in CAP as a trade-
off between the students’ and the colleges’ preferences, i.e.,
joint optimization of both sides’ wellbeing. Thus, from the
perspective of matching theory, a trade-off between proc-
essing time, routing delay and queueing delay is naturally
achieved by building a matching between IPNs and flows.

2.3 Why Consider Both Flow Routing and
Scheduling?

As illustrated in Fig. 4a, two flows are generated at time 0
(f1 from S1 to D with deadline 4t, and f2 from S2 to D with
deadline 6t) and we dispatch them with intermediate proc-
essing constraint. Resource requirements of f1 and f2 are 3
units and 4 units, respectively. We define the length of a
flow as the processing time needed when it is processed at
an IPN with processing speed 1. The length of f1 and f2 are
3t and 4t, respectively. Transmission latency on link
hS1; K1i and hK1; Di are both 3t, with 1t on the other links.
The resources on IPNs K1 and K2 are 6 units and 5 units,
respectively. The processing speed of K1 and K2 are respec-
tively 2 and 1.

We assume that the flow dispatched to a full-loaded IPN
has to wait for the IPN’s idle state and its processing time is
equal to the flow length divided by the processing
speed of IPN. We define the total tardiness [12] of the appli-
cation as

P
m2M Tm, where M is the set of flows,

Tm ¼ maxf0; Cm � emg is the tardiness of flow m, Cm is the
flow completion time, and em is the deadline.

Consider Scheduling Only. Scheduling aims to achieve the
minimal handling time of flows. Since K1 owns faster proc-
essing speed than K2, only considering scheduling results
in dispatching both f1 and f2 to K1, as shown in Fig. 4b.

Hence, routing delay of f1 and f2 are 6t and 4t, respectively.
Since both flows are completed without queueing delay, the
completion time of f1 and f2 are 6tþ 3t=2 ¼ 7:5t and
4tþ 4t=2 ¼ 6t, respectively. Thus, the total tardiness is
ð7:5t� 4tÞ þ ð6t� 6tÞ ¼ 3:5t.

Consider Routing Only. Tardiness-aware routing [14] aims
to seek an IPN on the shortest path. As shown in Fig. 4c,
only considering routing results in dispatching f1 to K2

with routing delay 2t, and thus its completion time is
1tþ 3t=1þ 1t ¼ 5t. When f1 is processed on K2, f2 has to
wait for 3t. As a result, the queueing delay of f2 is 3t. Note
the routing delay of f2 is 2t, hence its completion time
becomes 2tþ 3tþ 4t=1 ¼ 9t. The total tardiness is
ð5t� 4tÞ þ ð9t� 6tÞ ¼ 4t.

Combination. As illustrated in Fig. 4d, the global optimal
strategy is to consider both routing and scheduling by dis-
patching f1 to K2 with routing delay 2t and completion
time 2tþ 3t=1 ¼ 5t while dispatching f2 to K1 with routing
delay 4t and completion time 4tþ 4t=2 ¼ 6t. The total tardi-
ness is ð5t� 4tÞ þ ð6t� 6tÞ ¼ 1t.

The above example reveals that the total tardiness is
hardly minimized within a single dimension. It shows the
potential to achieve the global optimal results by consider-
ing both routing and scheduling in flow dispatching.

2.4 Why Optimize IPN Locations?

As analyzed above, the joint consideration of routing and
scheduling in flow dispatching is critical for total tardiness
minimization. However, we note that the locations of IPNs
lay a foundation for flow dispatching.

SwappingK1 andK2 in Fig. 4, we get the instance shown
in Fig. 5a. Again, we dispatch f1 and f2 with the presence of
intermediate processing constraint. Fig. 5b shows the result
when we dispatch the flows with the combination strategy.
The optimal choice is dispatching both f1 and f2 to K1. The
routing delay of f1 and f2 are both 2t. The completion time
of f1 is 2tþ 3t=2 ¼ 3:5t. Since f2 has to wait for 1:5t in the
queue, the completion time of f2 is 2tþ 1:5tþ 4t=2 ¼ 5:5t.
The total tardiness is 0.

It shows that, even if we dispatch flows considering both
routing and scheduling, different IPN locations may result
in different tardinesses. It motivates us to minimize the total
tardiness from two aspects, i.e., IPN locations optimization
and flow dispatching strategy.

3 PROBLEM FORMULATION

We formulate the matching problem between flows and
IPNs in this section. Table 1 summarizes the notations in the
formulation.

We express the system in the triad of vertices, edges, and
IPNs, i.e., GðN ; E;KÞ. K denotes the set of K IPNs equipped

Fig. 3. From CAP to flow dispatching.

Fig. 4. Case study for joint consideration.

Fig. 5. Case study for the IPN deployment optimization.
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with computing capacity, andM denotes the set ofM flows
integrated to finish a soft real-time application. For a given
IPN k, we use Qk to denote its amount of resources, and vk
to denote its processing speed. For a given flow m, we use
hm, qm and em to denote its flow length, resource require-
ment and deadline, respectively.

Once generated, each flow m 2 M is relayed from source
to the destination via exactly one IPN k 2 K that satisfies
Qk � qm. The flow joins a priority queue after arriving at an
IPN. We assume that the priority queues are of infinite sizes,
i.e., IPNs can theoretically buffer infinite flows. Multiple
flows could be processed in parallel if the total resource
requirement of the flows is less than the total resource of the
IPN. We focus on flow-level solutions and suppose that
flow processing cannot be interrupted.

We use gm, pm and um to denote the generation time,
processing time and queueing delay of flowm, respectively.
Particularly, pmk denotes the processing time of flow m on
IPN k, which is equal to hm

vk
. We use lmk to denote the routing

delay of flow m when it is dispatched to IPN k. Let vmk be
the transmission latency between the source of flow m and
IPN k, and v0mk be the transmission latency between IPN k
and the destination. Thus, lmk ¼ vmk þ v0mk. We assume that
transmission latency is proportional to path length for
convenience.

According to Fig. 1, we define the completion time Cm of
flowm asCm ¼ um þ pm þ lm, i.e., the sum of queueing delay,
processing time and routing delay of m. Our objective is to
build a matching between all flows and IPNs to minimize the
total tardiness, i.e.,min

P
m2M Tm, where the tardiness of flow

m is Tm ¼ maxf0; Cm � emg. For convenience, we denote Tm

as fCm � emgþ, where fxgþ ¼ x; 0;f x � 0 otherwise.
Based on the above descriptions, we present the problem

as follows:

min
X
m2M

Tm (1)

s.t. Tm ¼ fCm � emgþ 8m 2 M (2)

Cm ¼ um þ pm þ lm 8m 2 M (3)

um ¼ umk�m 8m 2 M (4)

pm ¼ hm

vk�m
8m 2M (5)

lm ¼ vmk�m þ v0mk�m 8m 2 M (6)

tm ¼ gm þ vmk�m þ um 8m 2 M (7)

xtmk�m ¼
1; 0;

t 2 ½tm; tm þ pm� otherwise;

�

8m 2 M
(8)

X
m2M

xt
mk � qm � Qk; 8k 2 K; t 2 ½0;þ1Þ; (9)

where k�m denotes the IPN that flow m is dispatched to, umk

is the queueing delay of flowm on IPN k, xt
mk is the decision

variable that is 1 if and only if flow m is being processed at
IPN k at moment t, and tm denotes the time m starts to be

processed. Formula (8) refers to that each flow is assigned
one and only one IPN during processing, and the process-
ing is uninterruptible. Formula (9) is the capability con-
straint, ensuring that the cumulative resource usage on IPN
k at any given time does not exceed its capacity.

Since there are discrete variables (e.g., M, K and xt
mk)

and continuous variables (e.g., em, qm, hm, gm), this pro-
blem is a non-linear mixed-integer programming problem.
Brucker et al. summarized the complexity for scheduling
problems [49] and the multi-processer scheduling problem
for minimizing the total tardiness is NP-hard. Since our
problem has higher complexity than multi-processer sched-
uling, we focus on the near-optimal value of the total
tardiness.

It is easy to see that the processing time pm and routing
delay lm depends on the routing strategy (i.e., the choice of
IPN), and the queueing delay um depends on the scheduling
strategy of the IPN. In other words, to minimize the total
tardiness, we should consider both routing and scheduling
decisions. Especially, k�m is essentially the matching between
flows and IPNs. In other words, matching theory solves the
problem by determining proper values of k�m.

According to Section 2.3, in addition to the flow dispatch-
ing strategy, the IPN locations affect the tardiness in an
implicit way. Hence, in the following sections, we minimize
the total tardiness from two aspects, i.e., optimize IPN loca-
tions in the deployment phase and optimize the flow dis-
patching strategy in the operation phase.

4 DEPLOYMENT PHASE: IPN LOCATION

OPTIMIZATION

IPN locations lays a foundation for flow dispatching. How-
ever, it is non-trivial to directly compute the optimal IPN
deployment scheme. We note that, due to factors such as
cost, electricity and terrain, the number of feasible deploy-
ment schemes in real-world systems is usually limited.
Even in large-scale scenarios, we can use pruning or divide-

TABLE 1
Notations in Problem Formulation

Notation Description

Cm Completion time of flowm;
em Deadline of flowm;
gm Generation time of flowm;
hm Length of flowm;
K Set of IPNs;
K Number of IPNs in K;
lm Routing delay of flowm;
M Set of flows requiring intermediate processing;
M Number of flows inM;
pm Processing time of flowm;
Qk Total resource of IPN k;
qm Resource requirement of flowm;
Tm Tardiness of flowm;
um Queueing delay of flowm;
vk Processing speed of IPN k;
xt
mk 1 if flowm is processed at IPN k at discrete time t.

tm Time for flowm that starts to be processed;
vmk Transmission latency from source of flowm to IPN k;
v0mk Transmission latency from IPN k to destination;
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and-conquer strategies to easily reduce the number of can-
didate deployment schemes. Thus, in this section, we
attempt to optimize IPN locations in an indirect way: we
evaluate the service capacity of all feasible IPN deployment
schemes and select the optimal one that with the strongest
service capacity. The question is: how to evaluate the service
capacity of a given IPN deployment scheme?

To answer this question, we use stress test to evaluate the
real service capacity of the scheme, since performance deg-
radation usually happens when distributed systems are
under pressure. It is a common practice to stress the distrib-
uted systems with concurrent flows [50], [51]. Hence, we
consider that an application generates concurrent flows
from every source to the destination in this phase. When we
dispatch these flows considering both routing and schedul-
ing, the total tardiness would indicate the service capacity
of the IPN deployment scheme under stress. The smaller
the total tardiness, the better the IPN deployment scheme.

4.1 CAP and The Deferred Acceptance Algorithm

As demonstrated in Section 2.1, we can map flow dispatch-
ing to a matching process, i.e., CAP. Regarding to CAP, the
deferred acceptance algorithm is a classic solution, which is
described as follows.

Iteration 1: Each student applies to the first choice of col-
lege in his preference list. Each student can apply to only
one college that has never rejected him. Suppose college k
has xk applicants now. Each college k puts top ’k (xk > ’k)
students in its preference list into its prospective admission
list Yk and then rejects the other xk � ’k applicants. If
xk � ’k, put the xk applicants into Yk.

Iteration i: All the students eliminated in the last iteration
continue to apply to their ith choice in their preference lists,
and then each college k takes both new applicants and the
ones already in Yk into account. Suppose college k has xk

applicants. Every college k puts top ’k (xk > ’k) students in
its preference list into Yk and rejects the other xk � ’k appli-
cants. If xk � ’k, then put the xk applicants into Yk.

Repeat Iteration i until every student is either in a pro-
spective admission list of a college, or rejected by all the col-
leges in his preference list. It is worth mentioning that the
preference lists of students and colleges are both constant
during each iteration. A student cannot apply to other col-
leges if he is rejected by all the colleges in his preference list.

4.2 Tardiness-Aware Deferred Acceptance
Algorithm

Although the deferred acceptance algorithm performs well
in CAP, there are two minor differences between flow dis-
patching and CAP, which makes the classic deferred accep-
tance algorithm inefficient in our problem. First, both flows
and IPNs own diverse properties, and their preferences are
not as intuitive as colleges’ and students’ preferences. Sec-
ond, each college in CAP can admit a quota of ’ students,
while IPNs can theoretically admit (buffer and process) infi-
nite flows in our problem. Therefore, we face two challenges
to map flow dispatching to CAP: a) how to define the pref-
erence lists reasonably and efficiently, and b) how to set an
appropriate quota for each IPN.

Preference List Generation. Every flow m has a preference
list Am of IPNs (IPNs in Am are also in K). Also, every IPN k

has a preference list Bk of flows (flows in Bk are included in
M). We regard the top of the preference list as the first
choice. Note that tardiness is tightly coupled with both rout-
ing delay and handling time on IPNs. Flows and IPNs try to
minimize the total tardiness by generating proper prefer-
ence lists, however, from different perspectives.

� Am: For flow m and IPN k, we define standardized
variable ul in inverse proportion to routing delay lmk,
and upu in inverse proportion to the flow’s expected
handling time on the IPN, i.e., the sum of processing
time pmk and queueing delay umk. The preference Am

of flow m for IPNs is obtained based on ul þ upu,
which is essentially a trade-off between the routing
delay and the expected handling time.

� Bk: Similarly, we define standardized variable ue
in proportion to flow deadline em, and uh in pro-
portion to the flow length hm. IPN k generates its
preference list Bk depending on ue þ uh, which is
essentially a trade-off between the due dates and
flow length.

The preference lists in CAP are constant during all itera-
tions, which ensures the matching stability of the classic
deferred acceptance algorithm. However, in our problem, the
handling time depends on the processing sequence according
to preference list B. To calculate the expected handling time
for a flow, we just temporarily add it into IPN’s prospective
admission list Y and schedule it with the other flows on the
IPN. Since there exists a dependency between the flow’s
expected handling time and the interaction of all flows in the
queue, we update the preference lists of flows dynamically
during each iteration.

Quota Setting. In our problem, an IPN can theoretically
admit infinite flows (although may induce long tardiness).
Nevertheless, the definition of quota is reasonable since we
seldom process all the flows on the same IPN. It contributes
to load balance by avoiding overloading the popular IPNs.
However, setting a proper quota for each IPN is non-trivial,
because we find that the total tardiness has a dependency
on the quota. Assume there are K ¼ 10 IPNs in the system,
and M ¼ 50 flows are generated. For simplicity, we set
quota of IPN k as ’k ¼ dh � MKe (k ¼ 1; 2; . . . ; 10). Fig. 6 shows
the total tardiness varies with the quota coefficient h. In the
case that IPNs equipped with sufficient resources, i.e., one
IPN can serve several flows at a time (qm 	 Qk), the total
tardiness decreases with the increase of h. However, when
one IPN can only serve one or two flows at a time (qm close
to Qk), the total tardiness increases with h.

To mitigate the challenge of quota dependency, we pro-
pose a technical solution that set an initial quota for each
IPN and gradually increase the preferred IPNs’ quota in
each iteration. We define the preferred IPNs as the IPNs

Fig. 6. Total tardiness versus quota coefficient h.
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having more applicants than its quota ’k. For each IPN k
(k 2 K), we define a variable hk in proportion to its process-
ing speed vk. To ensure ’k 2 ½1;M�, the initial quota of each
IPN is denoted as

’k ¼ hk �
M

K

� �
; ðhk 2 ð0; K�; 8k 2 KÞ: (10)

By overcoming the challenges of preference list genera-
tion and quota setting, we finally propose the Tardiness-
aware Deferred Acceptance algorithm (TDA) detailed in
Algorithm 1.

Algorithm 1. Tardiness-Aware Deferred Acceptance

Input:
GðN ; E;KÞ,M, A, B, ’kðk 2 KÞ;

Output:
Total tardiness of flows;

1: for allm; k thatm 2 M, k 2 K do
2: Define standardized variable uv in proportion to vk;
3: Am ¼ GetPreferenceListAðul; uvÞ;
4: Bk ¼ GetPreferenceListBðue; uhÞ;
5: end for;
6: i 0, Yk  ;ðk 2 KÞ;
7: while ð S k2KYk 6¼ MÞ do
8: for allm, k thatm 2 ðM n [k2KYkÞ, k 2 K do
9: Hmk ¼ GetExpectedHandleTimeðYkÞ;
10: Am ¼ GetPreferenceListAðul; upuðHmkÞÞ;
11: Yk ¼ Yk

S fmjGetTopItemðAmÞ ¼ kg;
12: end for;
13: for all k that k 2 K do
14: Sort Yk according to flow ranking in Bm;
15: if GetElementCountðYkÞ > ’k then
16: Define a temporary setH as the set of the bottom

(GetElementCountðYkÞ � ’k) flow(s) in Yk;
17: Yk ¼ Yk n H;
18: ’k ¼ ’k þ~’;
19: end if;
20: end for;
21: end while;
22: for all k, y that k 2 K, y 2 Yk do
23: Dispatch flow y to IPN k;
24: end for;
25: Each IPN k processes flows on it according to Bk;
26: return Total tardiness TM;

The iterations of TDA are outlined as below.
Iteration i: Every flow m that is not assigned to an IPN

applies to its first choice of IPN in preference list Am, so each
IPN k has xk applicants. According to preference list Bk, every
IPN puts top ’k (xk > ’k) flows into its prospective admis-
sion list Yk before rejecting the other xk � ’k applicants. After
that,~’k (1 �~’k � bMKc) is added to the ’k of the preferred
IPNs. It isworth noting that a larger~’k gives a faster conver-
gence but also a larger range of sub-optimality in the end. If
xk � ’k, put the xk applicants intoYk.

Repeat Iteration i until every flow is in a prospective
admission list of a certain IPN. After that, each IPN pro-
cesses flows assigned to it according to its preference list.

Note that no matter whether an IPN has rejected a flow
ever before, the flow can always apply to the IPN in a new

iteration. Besides, because the preference lists of flows
change dynamically, in each iteration, flows could apply to
the IPNs based on ul þ upu to minimize their expected com-
pletion time, which guarantees that no flow suffers infinite
tardiness. Since the quota of IPNs increases gradually, no
flow will be dropped in TDA, which is different from the
classic deferred acceptance algorithm.

5 OPERATION PHASE: ONLINE FLOW

DISPATCHING

In the operation phase, according to the prior work [52], we
assume the flows are generated dynamically based on a
Poisson process, which is a common practice to model
online activities. Flow dispatching runs in an event-driven
style as shown in Algorithm 2. Flows are dispatched based
on regular updates of the system status. For each IPN k, the
dispatcher regularly collects the transmission latency (i.e.,
vik and vkj) in Step 4 and the current workload of IPNs in
Step 5. If a new flow m is generated, we select an IPN k
(Step 7) and route m to k (Step 8). After that, m is scheduled
and processed on IPN k (Step 9).

Algorithm 2.High Level of Flow Dispatching

Input:
GðN ; E;KÞ;

Output:
Flow dispatching scheme;
1: repeat
2: WaitForEventð&eventÞ;
3: if event ¼¼ collect information then
4: CollectLatencyðÞ;
5: CollectWorkloadðÞ;
6: else if event ¼¼ flow generation then
7: Select an IPN k to process the new flowm;
8: Dispatch flowm to IPN k;
9: IPN k schedules and processes flowm;
10: end if;
11: until no more flows are generated;

In Section 4,we show that the TDA is good at handling con-
current flows in static scenarios. Since sequential flow is a spe-
cial case of concurrent flowswhose degree of concurrency is 1
(i.e., M = 1), TDA can also handle sequence flows. However,
we argue that TDA is insufficient in online scenarios. In a real-
world system, the system status are collected regularly, and
moving a flow from the source to the IPN induces time delay.
The system status collected may be out-of-date, approximate
or even erroneous. It is unrealistic to assume the information
is up to date. Researches show that having jobs go to the
apparently least loaded server may hurt performance signifi-
cantly [53]. Hence, it is not a good idea to make decisions
entirely based on these information. In this section, we com-
bine the Power-of-D in the Supermarket Model [18] with
matching theory for online flowdispatching.

5.1 Supermarket Model and the Power-of-D
Paradigm

The Supermarket Model [18] considers the following sce-
nario: customers arriving as a Poisson stream of rate
n�ð0 < � < 1Þ, where n is the number of homogeneous
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servers. Customers are served in a FIFO manner at the serv-
ers. The Supermarket Model aims to dispatch customers to
the “right” server to minimize the expected sojourn time of
each customer. Online flow dispatching and the Supermar-
ket Model are compared in Fig. 7. We can see that, if we
regard flows as customers and IPNs as servers, flow dis-
patching is similar to the Supermarket Model.

A classic solution to Supermarket Model is the Power-of-
D paradigm [18], [54], where the customer samples d servers
uniformly and chooses the server with the shortest queue
for service. Analysis [18] shows that d ¼ 2 leads to exponen-
tial improvements over d ¼ 1, whereas d ¼ 3 results in only
a constant factor better than d ¼ 2. Hence, Power-of-D is
also referred as Power-of-Two. Randomness in sampling
the candidate servers makes Power-of-D extremely effective
in real-world systems. The randomness sheds light on our
solution, and we propose the Tardiness-aware Power-of-D
for online dispatching.

5.2 Challenges

Although flow dispatching is similar to the Supermarket
Model, there are also differences between them, which pose
challenges for applying Power-of-D in flow dispatching.

Unbalanced Load. The servers in the Supermarket Model
are homogeneous, while the IPNs are heterogeneous. In the
heterogeneous system, Power-of-D performs worse than in
the homogeneous situation [19]. This is because sampling
servers uniformly leads to congestion at slow servers and
increases the sojourn time of customers. Besides, in hetero-
geneous systems, the performance of Power-of-D is sensi-
tive to the value of d, and inappropriate values of d may
result in unbalanced workload among servers [21], which
also results in increment of sojourn time.

Optimality Standard. Power-of-D chooses the server with
shorter queue to serve the arrival customer to reduce the
expected sojourn time (handling time in Fig. 1). However,
shorter queue does not necessarily mean shorter queueing
delay, since few long flows may result in a much longer
processing time than many short ones. Besides, we focus on
not only handling time but also routing delay, which is not
considered by the Supermarket Model.

Schedule Strategy. Power-of-D aims to assign a proper
server to the customer, and customers are then served
according to the FIFO rule. Since no prioritization occurs in
FIFO, Power-of-D is inefficient to meet the deadlines of
flows (consider that a flow has to wait even if it already
misses its deadline, which induces increment of tardiness).

5.3 Challenge Mitigation

To mitigate the challenge of unbalanced load, instead of
sampling IPNs uniformly, we determine the sampling

probability distribution F according to the system status.
Mukhopadhyay et al. [19] showed that in the heterogeneous
Supermarket Model, the mean sojourn time is minimized
when the sampling probability of server k is proportional to
its processing speed, i.e., FðkÞ ¼ vkP

i2k vi
. However, we con-

sider not only handling time but also routing delay. Thus,
we treat the routing delay lmk as a part of the ”real” process-
ing time and define the apparent processing speed v0k of IPN
k as v0k ¼ vk � pmk

ðpmkþlmkÞ. In other words, it seems that the proc-

essing speed of IPNs is slower than vk because of the routing
delay. Note that transmission latency may be constantly
changing in operation, hence v0k is also correspondingly
updated. With the definition of apparent processing speed,
we compute the sampling probability of IPN k by the fol-
lowing equation:

FðkÞ ¼ v0kP
i2k v0i

; (11)

where the sampling probability of IPN k is proportional to
its apparent processing speed v0k. By this way, the IPN with
higher processing speed and shorter transmission latency
tends to serve more flows, avoiding long relay paths and
potential congestions at slow IPNs.

Moreover, we decide the value of d carefully to guarantee
balanced workload distribution. Wieder et al. [20] proved
the tight lower and upper bounds of d to maintain a bal-
anced workload in a heterogeneous Supermarket Model,
where the lower bound is expressed as

dlower ¼ ð1� "Þfða;bÞ; (12)

and the upper bound is expressed as

dupper ¼ ð1þ "Þfða;bÞ: (13)

In the equations, " 2 ½0; 1�, fða;bÞ ¼ ðln ab�1
a�1 Þ=ðln ab�1

ab�bÞ, a and

b are real numbers to make sure the sampling probability of

IPN FðkÞ 2 1
aK ; bK
� �

, where K is the number of IPNs. We set

d as the minimum integer in ½dlower; dupper� in PDT for compu-
tation efficiency.

In terms of optimal standard, among the d candidates, we
choose the IPN k that

argmin
1�k�K

�X
i2Queuek

pik þ pmk þ lmk

�
; (14)

where Queuek stands for the set of flows waiting in the
queue on IPN k. By this way, IPNs with lighter workload,
faster processing speed and shorter transmission latency
are preferred in flow routing, which is consistent with the
flows’ preferences for IPNs in the deployment phase. The
expected completion time tends to be minimum by choos-
ing IPN k.

Regarding to schedule strategy, IPN picks and processes
the flow i that satisfies

argmin
i2Queuek

ðuie þ uihÞ; (15)

where uie and uih are the standardized variable related to the
deadline and length of flow i, respectively. As a result, flows
with smaller sizes and earlier deadlines are given higher
priorities, which are in line with IPNs’ preferences for flows

Fig. 7. Flow dispatching versus Supermarket model.
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in the deployment phase. Particularly, to avoid starvation of
long flows, flows that miss their deadlines are given the
highest priority.

5.4 Tardiness-Aware Power-of-D

Finally, combining the Power-of-D paradigm and match-
ing theory, we propose the Tardiness-aware Power-of-D
algorithm for online dispatching (Algorithm 3).

Algorithm 3. Tardiness-Aware Power-of-D

Input:
GðN ; E;KÞ, new flowm, vk (k 2 K), lmk (k 2 K);

1: for all k that k 2 K do
2: pmk ¼ hm

vk
;

3: v0k ¼ vk � pmk
ðpmkþlmkÞ;

4: end for;
5: for all k that k 2 K do

6: FðkÞ ¼ v0
kP

i2K v0
i

;

7: end for;
8: Calculate d according to Formulae (12) and (13);
9: Sample d candidates with probability distribution F ;
10: Routem to the IPN k satisfying Formula (14);
11: IPN k schedules and processes flow m according to

Formula (15);

For a new flow m, Step 2 calculates the processing time if
m is processed by k. Step 3 updates the apparent processing
speed v0k of each IPN based on pmk. Step 6 computes the sam-
pling probability FðkÞ of IPN k according to v0k. Step 6 calcu-
lates the value of d according to Formulae (12) and (13).
After sampling d candidates with distribution F in Step 9,
Step 10 selects IPN k to process flow m where m tends to be
completed earliest. After that, IPN k inserts m into its prior-
ity queue (Step 11), where the flow with the highest priority
is processed first.

Algorithm 3 is a linear time algorithm, and the time com-
plexity is proportional to the number of IPNs, i.e., Oð Kj jÞ.
The number of IPNs is usually relatively small in real-world
scenarios. Thus, TPD is expected to work efficiently in
operation.

6 PERFORMANCE EVALUATION

In this section, we evaluate the proposed solution in two
real-world scenarios, namely smart campus and wind farm
inspection. The smart campus system is deployed in a uni-
versity, where the transmission latency is relatively low and
stable. Thus, handling time contributes the most part of
flow completion time in the smart campus scenario. The
wind farm inspection system is distributed in several prov-
inces and thus the transmission latency is higher and the jit-
ters are severer. As a result, handling time and routing
delay contribute almost equally to flow completion time in
the wind farm inspection scenario.

In the evaluation, we seek to understand: 1) What are the
performance of our solution to measure the service capacity
of an IPN deployment scheme? 2) With different traffic
patterns, how will be our solution compared to standard
heuristics for online flow dispatching? 3) How much perfor-
mance improvement can our solution bring to the applica-
tions in real-world systems?

Summary of results:

� Service capacity measurement: We use the Tardiness-
aware Deferred Acceptance (TDA) algorithm and
four other algorithms to measure the service capacity
of a given IPN deployment scheme. Evaluation
shows that TDA estimates the service capacity accu-
rately, which helps optimizing the IPN locations in
the deployment phase.

� Online flow dispatching: We use the Tardiness-aware
Power-of-D (TPD) algorithm and three standard
heuristics to dispatch flows with different flow pat-
terns. With both stable and flash crowd flows, TPD
outperforms the others significantly in terms of total
tardiness. It shows that TPD can effectively handle
both stable and unexpected surge of traffic.

� Case study: We validate the effectiveness of the pro-
posed solution with case studies based on real-world
systems. We use TDA to measure the service capac-
ity of candidate IPN deployment schemes and use
TPD to dispatch flows under these schemes. The
results show that our solution effectively improves
the performance of data-intensive applications in
heterogeneous systems.

6.1 Experimental Setup

6.1.1 Smart Campus

The smart campus, which is a part of a large-scale smart city
security system, is deployed in a university that spans over
3,000,000 square meters. The smart campus consists of more
than 600 cameras, 12 surveillance points and a command
center. As shown in Fig. 8a, there are 12 key locations in the
university, such as library, teaching building and museum.
To better monitor the key locations, every surveillance point
is located at one of the key locations. In particular, the loca-
tion numbered 12 is the main building, which is also the
location of the command center. Each surveillance point
deploys a Network Video Recorder (NVR). Cameras send
video clips and snapshots to one of the NVRs, which transc-
odes the videos and then sends them to the command cen-
ter. In the command center, the videos are displayed on
large screens and further analyzed (e.g., fire detection and
tripwire detection).

We consider a tripwire detection application where the
cameras capture moving objects at 30 fps (frames per sec-
ond) and upload video clips to the command center via
NVRs. An analysis based on a large video analytics

Fig. 8. (a) Smart Campus: The campus outline with key locations. (b)
Wind Farm Inspection: Locations of the wind farm (green), the DCs (red)
and the command center (blue).
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dataset [55] shows that video clips between 5 and 15 sec-
onds are sufficient for tripwire detection. Thus, in the exper-
iment, we assume the video clips captured by the cameras
range from 5 to 15 seconds (i.e., 150 frames to 450 frames) in
duration. Due to the incremental upgrade strategy, there
are two generations of NVRs deployed on campus, includ-
ing 8 higher performance NVRs and 4 lower performance
NVRs. The higher performance NVRs can transcode up to
64 video channels at the same time and the average trans-
coding rate for each channel is 1,200 fps. The lower perfor-
mance NVRs can transcode up to 32 video channels at the
same time and the average transcoding rate for each chan-
nel is 600 fps. We perform field measurements of the net-
work transmission latency at multiple locations on the
campus and found that the routing delay between any two
points ranges from 0.005 to 0.015 seconds. Thus, we set the
routing delay lmk 2 ½0:005; 0:03� s and assume the transmis-
sion latency is in proportion to the relay path length.

Based on the above real-world system configuration,
8k 2 K, 8m 2 M, we set Qk ¼ f64; 32g channels, vk ¼
f1200; 600g fps for each channel, hm 2 ½150; 450� frames,
qm ¼ 1 channel, pmk ¼ hm=vk. To guarantee quick responses
to tripwires (e.g., trigger the alarm), the total tardiness of the
flows should beminimized. In the experiment, we empirically
set the deadline of each flow em 2 ½0:2; 0:3� s.

6.1.2 Wind Farm Inspection

The wind farm, which contains more than 30 wind turbines,
is located in Zhejiang Province. The wind turbines are up to
100 meters and are easily damaged by lightening strikes. To
eliminate the need for dangerous manual inspection, a
wind farm inspection system is deployed to provide auto-
matic inspection service [56]. The system consists of 10
Unmanned Aircraft Systems (UASs), 5 media servers and a
command center. The UASs capture the videos of the wind
turbines and upload the video clips to the media servers via
4G cellular networks. At each inspection, the UASs can take
a total of more than 15,000 video clips of the turbines. The
media servers process the video clips, such as splicing and
tagging, and send the processed videos to the command
center. For the sake of robustness, the media servers are
rented from 5 Data Centers (DCs) belonged to different pro-
viders. As shown in Fig. 8b, the DCs are located in the prov-
inces adjacent to Zhejiang, namely Shanghai, Anhui,
Jiangsu, Jiangxi and Fujian. In the command center located
in Guizhou, videos from tens of wind farms in South China
are analyzed and displayed on the screen wall.

We consider a turbine failure detection application where
a machine-learning-based diagnostic model detects turbine
failures via video analysis. Commercial solutions show that
a typical video clip in a wind farm inspection system is about
10 seconds long and has a frame rate of 30 fps [57]. Due to the
financial constraints, there are two types of media servers,
including 2 higher performance servers and 3 lower perfor-
mance ones. The average processing speed of the higher per-
formance media servers is 1000 fps, while that of the lower
performance media servers is 500 fps. We suppose both
types of media servers process up to one video clip at a time.
The transmission latency between the wind farm and the
media servers ranges from 0.1 to 0.5 seconds, and that

between the media servers and the command center ranges
from 0.03 to 0.06 seconds. We also suppose the transmission
latency is in proportion to the relay path length.

Finally, 8k 2 K, 8m 2 M, we set Qk ¼ 1 piece,
vk ¼ f1000; 500g fps, hm 2 ½30; 300� frames, qm ¼ 1 piece,
pmk ¼ hm=vk and deadline of each flow em 2 ½0:8; 1� s.

6.2 Service Capacity Measurement

In the deployment phase, we use TDA and the other four
algorithms to measure the service capacity of a specific IPN
deployment scheme. More specifically, in smart campus, we
consider the scheme where the 4 lower performance NVRs
are deployed at surveillance points 1 to 4 in Fig. 8a and the
8 higher performance NVRs are deployed at the other 8 sur-
veillance points; In the wind farm inspection, we consider the
scheme where the 3 lower performance media servers are
located in the DCs of Shanghai, Jiangsu and Anhui, respec-
tively, and the 2 higher performance media servers are
located in the DCs of Jiangxi and Fujian. To stress the sys-
tems, we consider applications where every source node
generates a flow at the same time (i.e., M ¼ 600 in smart
campus and M ¼ 10 in the wind farm inspection) and the
flows are relayed to the destination node (i.e., command
center in both scenarios) by the IPNs (i.e., NVRs in smart
campus and media servers in wind farm inspection). For both
scenarios, we run the application for 100 rounds.

The algorithms compared are listed below.

� TDA: The Tardiness-aware Deferred Acceptance
algorithm designed in Section 4.2. We set ~’ ¼ 1 to
yield results that are close to the optimal solutions.

� DA: The classic deferred acceptance algorithm
described in Section 4.1, where IPNs prefer flows
with smaller sizes and earlier deadlines, and flows
prefer IPNs with faster processing speed and shorter
transmission latency. We set the quota of IPN
’k ¼ dMKe for simplicity.

� Consider Routing Only (CRO): The routing-only strat-
egy, in which flows are dispatched to the IPN with
the shortest routing delay and then processed by the
FIFO (First In First Out) rule.

� Consider Scheduling Only (CSO): A modified TDA
algorithm that considers flow scheduling only, with-
out taking into account ul during updating prefer-
ence list A.

� Greedy: The flows are dispatched to the IPN with the
smallest lmk þ pmk

Qk
, and then processed according to

the Earliest Due Date (EDD) priority rule [58].
Total Tardiness. Figs. 9a and 10a respectively compares

the total tardiness when applying the above algorithms in

Fig. 9. Smart Campus: Service capacity measurement.
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the 100 rounds of simulations in smart campus and wind farm
inspection. In both scenarios, TDA significantly outperforms
other algorithms in all the cases. We can see that due to inef-
ficient stability and quota dependency, DA performs even
worse than the CRO or Greedy strategy.

Optimality Gap. To quantitatively analyze the algorithm
optimality, for each round of simulation I, we introduce the
optimality gap

GapðIÞ ¼ ZðIÞ � ZLBðIÞ
ZðIÞ ; (16)

where ZðIÞ is the total tardiness, and ZLBðIÞ is the lower
bound of the total tardiness. We apply the Lagrangian
Relaxation Theory to the problem in Appendix A and obtain
the lower bound ZLBðIÞ by a subgradient optimization algo-
rithm detailed in Appendix B. Note that the lower bound is
0 if the application completes without tardiness.

Figs. 9b and 10b shows the Cumulative Distribution
Function (CDF) of the gap on the total tardiness between
the algorithms and the lower bound in smart campus and
wind farm inspection, respectively. In both scenarios, the opti-
mality gap of TDA is less than 0.3 in almost 100 percent of
the cases. TDA outperforms any other algorithms in opti-
mality and estimates the service capacity well.

The above results show that the proposed solution can
accurately estimate the total tardiness of concurrent flows,
which reflects the service capacity of a specific IPN deploy-
ment scheme. System operators can use TDA to measure
the service capacity of candidate IPN deployment schemes
and choose the optimal one, which lays a foundation for the
total tardiness minimization.

6.3 Online Flow Dispatching

We next validate the effectiveness of our solution in the
operation phase. For both scenarios, we consider the same
IPN deployment scheme as given in Section 6.2. To simulate
the dynamics of flow generation, according to the prior

work [19], [52], we consider an application generating
sequential flows according to a Poisson Process with mean
K�, where K is the number of IPNs (i.e., K ¼ 12 in smart
campus andK ¼ 5 in wind farm inspection).

In smart campus, we consider two flow patterns: Stable
and Flash Crowd, [59], [60]. Stable describes the general state
of the traffic, i.e., the flows are generated at a stable and rela-
tively low rate. Flash Crowd describes a surge traffic, i.e., the
arrival rate of the flows increases sharply but lasts for a
short time. For the stable pattern, we set flow number
M ¼ 10000 and arrival rate � ¼ 0:7. For the flash crowd pat-
tern, we set flow number M ¼ 600 and arrival rate � ¼ 5.
With both patterns, we run the application for 100 rounds.

In wind farm inspection, as described in Section 6.1.2, the
UASs totally take more than 15,000 video clips for each
inspection, thus we set flow number M ¼ 15000. Since there
are only 10 UASs in the inspection system, we only consider
the Stable pattern for simplicity and set arrival rate � ¼ 0:1.
We also run the application for 100 rounds in the evaluation.

The algorithms compared are listed below. For PoD,
CRO and RND, we assume flows are processed by the EDD
priority rule on the IPNs.

� TPD: The Tardiness-aware Power-of-D algorithm
proposed in Section 5.4.

� Power-of-D (PoD): The Power-of-Two strategy, where
two IPNs are sampled uniformly and the one with
shorter queue (i.e., fewer flows queued at the IPN) is
selected, is a typical consider scheduling only strat-
egy that focuses on handling time minimization.

� Consider Routing Only (CRO): The online-version
routing-only strategy, where two IPNs are sampled
uniformly and the one with shorter transmission
latency is selected.

� Random (RND): Random strategy serves as a base-
line, where one IPN is randomly chosen.

Handling Time. Figs. 11a and 12a compare the average
handling time with stable and flash crowd flow patterns in
smart campus, respectively. Fig. 13a shows the average han-
dling time in wind farm inspection. In both scenarios, TPD
performs obviously better than the other algorithms, fol-
lowed by PoD, because both TPD and PoD consider han-
dling time optimization. However, as illustrated in Section
5.2, the classic Power-of-D paradigm is insufficient for het-
erogeneous systems.

Routing Delay. Figs. 11b and 12b show the average
routing delay with different flow patterns in smart campus.
TPD and CRO gain better performance because both of
them take transmission latency into account. Particularly, as

Fig. 10.Wind Farm Inspection: Service capacity measurement.

Fig. 11. Smart Campus: A comparison of different algorithms for flow dispatching (Stable).
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shown in Fig. 13b, the advantages of TPD and CRO are
more obvious in wind farm inspection, where the routing
delay is more unstable. Moreover, when determining the
optimal IPN, TPD usually samples more than two candi-
dates due to Formulae (12) and (13). Thus, it has more
opportunities to find an IPN on a shorter path and yield
shorter routing delay than CRO.

Total Tardiness and Optimality Gap. As shown in Figs. 11c,
12c and 13c, TPD outperforms the other algorithms in both
scenarios. This reveals that TPD is good at handling traffic
with different patterns. In particular, we use the optimality
gap defined in Formula (16) to analyze the optimality of the
algorithms. To compute the lower bound ZLBðIÞ in online
scenarios, for each new flow, we traverse all the IPNs and
determine the global optimal IPN and the optimal process-
ing sequence that minimizes the total tardiness of the flows
in the system. As demonstrated in Figs. 11d, 12d and 13d,
TPD outperforms the other strategies in all the cases in
terms of optimality gap. The above results confirm the effec-
tiveness of our solution for online flow dispatching.

6.4 Case Studies

We finally perform case studies to validate the performance
of our solution in the real-world scenarios. In smart campus,
there are C4

12 ¼ 495 possible schemes to deploy the two gen-
erations of NVRs at the 12 surveillance points. In wind farm
inspection, there are C3

5 ¼ 10 possible schemes to rent the
two types of media servers from the 5 DCs. For both scenar-
ios, in the deployment phase, we traverse all these deploy-
ment schemes and measure their service capacities with
TDA; In the operation phase, we use TPD to dispatch flows
of different patterns under these schemes. The effectiveness
of our solution will be confirmed if: the total tardiness is
reduced in the operation phase under the optimal IPN
deployment scheme selected by TDA.

Deployment Phase. For both scenarios, under each IPN
deployment scheme, we stress the system with the same

concurrent flow settings as Section 6.2. Figs. 14a and 15b dis-
plays the total tardiness of the flows under every IPN
deployment scheme in the two scenarios. In smart campus,
the total tardiness reaches the minimum value of 34,938 ms
under the 324th scheme and maximum value of 38,322 ms
under the 495th scheme. It implies that the service capacity
of the 324th IPN deployment scheme is the highest and that
of the 495th is the lowest. Inwind farm inspection, the total tar-
diness is minimized under the 6th scheme and maximized
under the 1st scheme. In other words, the 6th deployment
scheme outperforms the others in terms of service capacity.
The details of the above four schemes are given in Table 2.

Operation Phase. In smart campus, under the 324th and
495th IPN deployment schemes, we use TPD to dispatch
flows with the same settings as given in Section 6.3. Fig. 14b
demonstrates the difference of total tardiness between the
two schemes with different flow patterns. With the stable
pattern, the total tardiness under the 324th scheme is always
shorter than under the 495th scheme, and the maximum dif-
ference is up to 41,010 ms. With the flash crowd pattern, in
97 percent of the cases, the total tardiness under the 324th
scheme is shorter than under the 495th scheme, and the
maximum difference is up to 1,422 ms. Both stable and
surge heavy traffic gain better performance under the 324th
scheme. In wind farm inspection, compared to the 1st scheme,
the total tardiness is reduced by up to 5,000,000 ms under
the 6th scheme.

6.5 Summary

The evaluation above confirms the effectiveness of our solu-
tion. As shown in Section 6.2, TDA can evaluate the service
capacity of IPN deployment schemes accurately in the
deployment phase. Section 6.3 shows that TPD outperforms
the other dispatching algorithms in terms of total tardiness
in the operation phase. In Section 6.4, we show that the per-
formance of applications in both real-world scenarios are
obviously improved. In short, the proposed solution can

Fig. 12. Smart Campus: A comparison of different algorithms for flow dispatching (Flash Crowd).

Fig. 13.Wind Farm Inspection: A comparison of different algorithms for flow dispatching.
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effectively minimize the total tardiness of data-intensive
applications in heterogeneous systems.

7 RELATED WORK

Routing generally focuses on optimizing network resource
utilization while not harming the average completion time.
Traditional routing strategies usually fall into the general
category of Multi-Constrained Path (MCP) allocation prob-
lems and a large amount of heuristics and approximation
algorithms are proposed to select the path based on stati-
cally configured metrics (e.g., hop) and QoS metrics [61]
(e.g., bandwidth [16], delay [13] and jitter [15]). Al-Fares
et al. proposed Hedera [52], which leverages Simulated
Annealing schedulers to distribute flows to balance the traf-
fic load. However, these solutions emphasize on the quality
of transmission, which leads to routing delay reduction but
not handling time. Power-of-D could significantly improve
the expected handling time of the customers in homoge-
neous systems [18]. Researches extended Power-of-D to het-
erogeneous systems by considering sampling probability
distribution [19], the value of d [20], and the definition of
the “best” choice [21]. However, they do not take routing
delay (i.e., the cost for a customer to join a specific queue)
into account. In a word, these solutions seldom consider the
coupling of communication and computation, and thus are
inefficient to meet the intermediate processing constraint.

Scheduling aims to optimize one or more evaluation crite-
ria in job processing, e.g., minimizing the average comple-
tion time [62]. Lampson et al. [22] first considered state
vectors and the properties of process inmulti-processing sys-
tem scheduling. Even et al. [23] pointed out that the multi-
commodity flow problem is NP complete. Dogramaci
et al. [58] proposed two scheduling rules, namely the Earliest
Due Dates first (EDD) and the Shortest Processing Time first
(SPT). Bai et al. [63] presented PIAS, which leverages multi-
ple level feedback queues to minimize flow completion
time. Zhang et al. [64] proposed a novel metric expansion

ratio for flow scheduling without starvation. Recently, there
are researches focusing on coflow scheduling [65], where
a collection of parallel flows are transferred between
two groups of machines. Chowdhury et al. [66] proposed
Minimum-Allocation-for-Desired-Duration and Smallest-
Effective-Bottleneck-First heuristics for intra- and inter-
coflow scheduling, respectively. CODA [67] could automati-
cally collect coflow information and schedule coflows with-
out modifying cluster applications. Zhang et al. [68] proved
that coflow scheduling is equivalent to the concurrent open
shop problem and proposed a decentralized coflow schedul-
ing solution named D-CAS. However, these solutions do not
take into account the collaborative routing strategies and
thus are insufficient in scenarios characterized by the inter-
mediate processing constraint. Specifically, in our solution,
the priority of a flow is decided by both its length and dead-
line, which is essentially the trade-off between EDD and SPT.

Joint optimization of routing and scheduling is attracting
more attention in recent years. Researchers in [32] focused
on the power-down strategies for network devices and pro-
posed the energy-efficient flow scheduling and routing
strategies. Han et al. [35] proposed a RUSH framework
dealing with both the batch-arrival and the sequential-
arrival of flow demands in hybrid data centers. Zhao
et al. [31] proposed RAPIER, which for the first time demon-
strates that routing and scheduling must be jointly consid-
ered to optimize the average Coflow Completion Time. Li
et al. [36] proposed an online multiple coflow routing and
scheduling algorithm with theoretical performance guaran-
tees. Jahanjou et al. [69] presented the first approximation
algorithms for scheduling coflows over general network
topologies to minimize the total weighted completion time.
However, the researches above mainly focus on the band-
width allocation, which leads to the optimization of routing
delay only, while our solution optimizes both routing delay
and handling time of flows. Besides, existing studies seldom
focus on the intermediate processing constraint in heteroge-
neous systems and thus are inapplicable to our problem.

8 CONCLUSION

This paper is devoted to minimizing the total tardiness of
data-intensive applications in heterogeneous systems with
the intermediate processing constraint.

In the paper, we apply matching theory for the joint opti-
mization of routing delay and handling time, which we
found is the key to achieve our goal. Particularly, our solu-
tion minimizes the total tardiness from two aspects. In the

Fig. 14. Smart Campus: (a) Service capacity measurement of candidate
IPN deployment schemes. (b) ðTMÞ495th � ðTMÞ324th in the operation
phase.

Fig. 15. Wind Farm Inspection: (a) Service capacity measurement of
candidate IPN deployment schemes. (b) ðTMÞ1st � ðTMÞ6th in the
operation phase.

TABLE 2
Details of IPN Deployment Schemes

Scenario Scheme
No.

Location of Lower
Performance IPNs

Smart Campus 324th 3, 5, 7, 12
495th 9, 10, 11, 12

Wind Farm Inspection 1st Shanghai, Jiangsu, Anhui
6th Shanghai, Nanchang, Fujian
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deployment phase, we evaluate the service capacity of feasi-
ble IPN deployment schemes with the Tardiness-aware
Deferred Acceptance algorithm, which helps to optimize
IPN locations and lays a foundation for flow dispatching. In
the operation phase, we dispatch flows with the Tardiness-
aware Power-of-D algorithm, which is a combination of
Power-of-D and matching theory. We perform extensive
evaluations based on real-world systems. The results show
that our solution can effectively minimize the total tardiness
of data-intensive applications in heterogeneous systems.
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