
1932-4537 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2014.2360772, IEEE Transactions on Network and Science Management

1

Pushing Server Bandwidth Consumption
to the Limit: Modeling and Analysis of

Peer-assisted VoD
Ke Xu, Senior Member, IEEE, Haiyang Wang, Member, IEEE,

Jiangchuan Liu, Senior Member, IEEE, Song Lin, Student Member, IEEE, and Lei Xu, Student Member, IEEE

Abstract—Recent years have witnessed Video-on-Demand (VoD)
as an efficient means for providing reliable streaming service for
the Internet users. It is known that such peer-assisted VoD sys-
tems, as NetFlix and PPlive, generally incur a lower deployment
cost in terms of server bandwidth consumption. However, some
fundamental issues still need to be further clarified especially
for VoD service providers. In particular, how far can we push
peer-assisted VoD forward, and at the scale of VoD systems, the
maximum reduction of server bandwidth consumption that can
be achieved with peer-assisted approaches.

In this paper, we provide an extensive model analysis to
understand the minimum server bandwidth consumption for
peer-assisted VoD systems. We first propose a basic model that
can optimally schedule user demands at given snapshots. Our
model analysis reveals the optimal performance bound and shows
that the existing peer-assisted protocols are still far from being
optimal. How to push the server bandwidth consumption to the
limit remains a big challenge in the VoD system design. To
approach the optimal bandwidth consumption in real deploy-
ment, we further extend our model to a realistic case to capture
the peer dynamic across continuous time-slots. The simulation
result indicates that the optimal load scheduling problem is still
achievable through a dynamic programming algorithm. Its design
principle further motivates a fast priority-based algorithm which
achieves near-optimal performance. These proposed algorithms
can significantly reduce the bandwidth consumption of dedicated
VoD servers.

Index Terms—Video-on-demand (VOD), peer-assisted systems,
scheduling.

I. INTRODUCTION

In the past decade, peer-assisted Video-on-Demand (VoD)
has become one of the most popular applications over the
Internet. We have witnessed the successful deployments of
such commercial systems as NetFlix1 and PPlive2. Although
these peer-assisted systems generally incur a lower deploy-
ment cost, the video publishers still need to deploy a great

Ke Xu is with the Department of Compute Science, Tsinghua University
and Tsinghua National Laboratory for Information Science and Technology,
Beijing, China.E-mail: xuke@tsinghua.edu.cn

Haiyang Wang is with the Department of Computer Science at the Univer-
sity of Minnesota Duluth, MN, US. E-mail: haiyang@d.umn.edu

Jiangchuan Liu is with the School of Computing Science, Simon Fraser
University, British Columbia, Canada. E-mail: jcliu@cs.sfu.ca

Song Lin is with EatStreet Inc., Madison, WI, US, this work has been
done when he was doctor candidate in Tsinghua University. E-mail: lin-
song1984@gmail.com

Lei Xu is with the Department of Computing Science, Tsinghua University,
Beijing, China. E-mail: l-xu12@mails.tsinghua.edu.cn

1https://www.netflix.com/
2https://www.pptv.com/

number of dedicated servers to ensure their service reliability.
For example, Netflix has deployed more than 77, 000 video
servers globally [1], and it is still planning to obtain more
service capacity from the cloud platforms [2]. It is easy to
see that the elevating user demands significantly increase the
server bandwidth consumption even in the peer-assisted VoDs.
Nowadays, the rising popularity of cloud-based applications
also attracted studies to dynamically scale the service capaci-
ties [3]. Yet, leasing cloud resources will still introduce extra
costs to the service providers. It is thus important to see how
far can we push peer-assisted VoD forward. In particular, what
is the lower bound of server bandwidth consumption under the
existing peer-assisted VoD scenario.

In this paper, we provide an extensive model analysis to
understand the minimum server bandwidth consumption in
peer-assisted VoD systems. We first propose a basic model that
can optimally schedule user demands at given snapshots. In
particular, for a given amount of user demands, this model will
schedule the load with minimum server bandwidth consump-
tion. We transform the problem into a flow network and em-
ploy a modified maximum flow algorithm to obtain the optimal
bandwidth consumption. To approach such an optimal bound
in real deployment, we further extend our model to a more
realistic case to capture the peer dynamic across continuous
time-slots. We show that the optimal load scheduling problem
is still solvable through a dynamic programming algorithm.
The design of this approach further motivates a fast priority-
based algorithm which achieves near-optimal performance.
The simulation results indicate that the proposed algorithms
can significantly reduce the bandwidth consumption of the
dedicated VoD servers under different system configurations.

The rest of this paper is organized as follows: In Section II,
we present the related work. Based on the basic model in
Section 3, we investigate the optimal bandwidth consumption
at given snapshots in Section 4 and try to approach such an
optimal performance in Section 5 across continuous time-slots.
Section 6 extensively evaluates the proposed algorithms and
finally Section 7 concludes the paper.

II. RELATED WORK

It is known that Huang et al. [4] for the first time dis-
cussed the design and potential benefits of peer-assisted VoD
systems. After that, there have been numerous studies on the
implementation, analysis, or optimization of the peer-assisted
VoD applications [5], [6], [7].



1932-4537 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2014.2360772, IEEE Transactions on Network and Science Management

2

For VoD measurement and system design, Cheng et al. [6]
presented a comprehensive study on the effectiveness and user
experience of P2P-VoD systems. Based on the measuremen-
t, a large-scale P2P-VoD system is then presented in [5],
which extends PPLive, one of the most successful peer-to-
peer (P2P) live streaming systems. Another working system
is GridCast [7], which is deployed on China Education and
Research Network (CERNET). Feng et al. [8], provided an
in-depth analytical understanding of fundamental properties
of P2P streaming systems, with a particular spotlight on
the benefits of network coding. There are also many studies
focusing on the system optimization of VoD systems. For
example, some consider the optimization of peer selection
strategies [9], [10], [11] and others aim to optimize the server
bandwidth consumption [12], [13], [14]. For example, Wu et
al. [15] addressed some fundamental issues such as the optimal
replication ratio in VoD systems. Ciullo et al. [16] provided an
analytical methodology to design efficient peer-assisted VoD
systems and optimal resource allocation strategies under server
capacity constraints.

Zhou et al. [17] proposed a stochastic model that can be
used to compare different download strategies. Liu et al. [12]
analyzed how to distribute resources for the streaming systems
to improve server capacity, video quality, and the depth of dis-
tribution trees that deliver the content. Niu et al. [3] developed
a predictive resource auto-scaling system that dynamically
books the minimum bandwidth resources from multiple data
centers for the VoD provider to match its short-term demand
projections. Tan et al. [18] investigated the problem of content
placement in P2P systems, with the objective of maximizing
the utilization of peer’s uplink bandwidth resources. Suh et
al. [19] investigated the design of a push-to-peer video-on-
demand system in cable networks. Parvez et al. [20] developed
a theoretical model to analyze the performance of BitTorrent-
like protocols for on-demand stored media streaming. Liu et
al. [21] constructed a fine-grained stochastic supply-demand
model to investigate peer caching and prefetching as a global
optimization problem. This study not only provides insights
in understanding the fundamental demand characteristics, but
also offers guidelines toward optimal prefetching and caching
strategies in peer-assisted on-demand streaming systems.

In terms of server bandwidth costs, it is known that peer-
assisted VoD, with the proper prefetching policy, can dra-
matically reduce server bandwidth costs [6]. In particular,
Huang et al. [4] showed that peer-assistance can dramatically
reduce server bandwidth costs, particularly if peers prefetch
content when there is spare upload capacity in the system.
Ciullo et al. [22] proposed a stochastic fluid framework that
allows to characterize the additional bandwidth requested from
the servers to satisfy all users watching a given video. For
example, Pawel et al. [23] showed that for YouTube-like
systems, the proposed optimizations would result in saving of
as much as 70% of the server bandwidth [23]. Yu et al. [24]
modeled the data scheduling problem in P2P systems and
proposed an optimal scheduling scheme. Their approach is
designed to maximize the playback continuity of all the users.
Although this study also considered the server stress issues as
one of their objectives, the lower bound of server bandwidth

consumption remains largely unclear, not to mention the more
complex case under the continuous time scenario. Different
from studies such as [25] and [24], we for the first time esti-
mate the optimal bound of server bandwidth in a continuous
time analysis.

III. PROBLEM OUTLINE AND DEFINITION

Manage VoD 
servers and 
peers

Provide service 
reliability and 
QoS

Obtain VoD
data from 
servers and 
other peers 

Downloading
from peers

D
o
w

n
lo

a
d
in

g
 f
ro

m
 s

e
rv

e
rs

M
a
n
a
g
in

g
s
e
rv

e
rs

 a
n
d
 p

e
e
rs

Fig. 1: Basic framework of peer-assisted VoD
It is known that the design of peer-assisted VoD can

incur a lower deployment cost. However, some fundamental
issues remain largely unclear for the VoD service providers.
For example, the maximum reduction of server bandwidth
consumption3 that can be achieved with the peer-assisted
approaches.

Figure 1 presents the basic framework of peer-assisted VoD
systems, where the solid lines refer to the data flow and the
dotted lines show the control flow. It is easy to see that the
peers can obtain VoD data from both servers and other peers.
In other words, if we can make the best use of the available
resource from the peers, the bandwidth consumption of the
VoD servers can be naturally minimized. Addressing such a
problem is by no means trivial especially considering the peer
dynamics in the VoD systems. Therefore, we will model the
problem step by step. Our objective is to minimize the server
bandwidth consumption.

To facilitate our discussion, we list the key notations in
Table I. There are m chunks in a given VoD system (distribut-
ing a given video content). The set of m chunks is denoted
as C = {c1, c2, . . . , cm}, and the playback rate of chunk ci
is Rate(ci). There are also n peers, P = {p1, p2, . . . , pn},
in the system. The maximum upload capacity of peer pj is
Upband(pj). We use T to denote the time-slot and use R(t) to
denote the chunk requirements at time t. In particular, R(t1) is
a m∗n binary matrix. Each element in R(t1) denotes whether
a given chunk is required by a given peer (1: yes, 0: no). We
also use O(t, c) to refer the set of peers that own the chuck c
at time t. Moreover, with any L ⊆ C, we define

u(t, L) =
∑

p∈
∪

c∈L

O(t,c)

Upband(p)

3We assume that the bottleneck is at the edge of the networks. The disk
I/O bandwidth is also not considered in our study.



1932-4537 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2014.2360772, IEEE Transactions on Network and Science Management

3

TABLE I: List of Notations

C Set of chunks

Rate Playback rate of a chunk

T Set of time-slots

R Chunk demand of peers

O Set of peers that have certain chunks

Prefetch Prefetching set

ϕ Initial configuration of the prefetching set

u Total upload capacity of peers

d Total download capacity of peers

P Set of peers in the system

k Total number of cached chunks per peer

η Total number of peers with download demands

d(t, L) =
∑

r∈R(t)∧Chuck(r)∈L

Rate(Chuck(r))

where u refers to the total upload capacity of peers5 and d
refers to the total demands. u(t, ϕ) = d(t, ϕ) = 0.

Figure 2 shows an example with 3 peers and 3 chunks at
time t where C = {c1, c2, c3}, P = {p1, p2, p3}, O(t, c3) =
{p2, p3}, u(t, {c3}) = Upband(p2) + Upband(p3).

nc1 p1 nc2 nc3 p2 nc3 p3

Fig. 2: An example for the notations
It is worth noting that we consider the problem at the

chunk level in this model. Peers only upload chunks that have
been completely downloaded [5]. They will also prefetch the
contents when there is enough upload capacity in the system.
We adopt the widely-used multiple video approach model. In
this case, a peer could redistribute videos which either are
being watched, or were watched previously. It is important to
point out that many deployed P2P streaming systems are using
the multiple video approach [26].

We assume that the servers have all the video chunks. The
playback time for a chunk is set to be constant, which is the
length of a time slice. We also assume that the server and the
peers are able to upload to as many peers as needed, with-
out constraints on the number of simultaneous connections.
Moreover, the transmission bottleneck is at the edge of the
networks [12].

IV. MINIMIZING SERVER BANDWIDTH CONSUMPTION:
OPTIMAL BOUND AT GIVEN SNAPSHOTS

In this section, we will investigate the minimum server
bandwidth consumption at given snapshots. This can help us
to understand the maximum reduction of server bandwidth
consumption with the peer-assisted approaches. Note that
bandwidth capacities, cache states of peers and servers, and
requirements of peers are known in this ideal case.

5u(t, c) indicates the total upload capacity of chunk c at time t.

A. Utilizing Service Capacity from Peers

Fig. 3: Network flow
To make the best use of available resources on the peers,

we convert the problem into a maximum flow problem in a
flow network. As shown in Figure 3, the nodes bandwidth
constraints are transferred into edge capacities. Without loss
of generality, we also add a virtual source and a virtual sink
in the flow network G(V,E) where

V = {src, dst} ∪ {pi|1 ≤ i ≤ n} ∪ {cj |1 ≤ j ≤ m}

All the edges and their capacities are listed below:

cap(src → pi) = Upband(pi)

cap(pi → cj) = ∞, if pi ∈ O(t, cj)

(Note: if pi ̸∈ O(t, cj), there is no such edge.)

cap(cj → dst) = d(t, {cj})

In this graph, when peer p has chunk c at the time-slot t,
the edges between p and c will be configured to have infinite
capacity. Otherwise, there will be no edge between p and c.
This is because peer’s upload and download capacities are
already modeled by the source/desintation-related edges. Note
that our objective is to find the maximum network flow for
src → dst. In particular, the corresponding graph for the
example in Figure 2 is shown in Figure 3.

Note that the maximum bandwidth capacity that peers can
provide equals to the maximum network flow for src → dst,
which can be denoted as MaxFlow(src → dst). Since there is
a one-to-one relationship between a peer transfer scheduling
and a network flow in this graph, the flow amount from pi to cj
is the bandwidth that peer pi uploads to cj while the capacities
of src → pi limit the upload bandwidth. The capacities of
cj → dst limit the download requirements. The maximum
bandwidth that peers could provide equals to MaxFlow(src →
dst). Therefore, the minimum server bandwidth requirement
is:

§min(t) = d(t, C)−MaxFlow(src → dst) (1)

The best algorithms to solve the maximum flow problem
include relabel-to-front [27] with a time complexity of O(V 3)
and the binary blocking flow algorithm [28] with a time
complexity of O(min(V 2/3, E1/2)E log(V 2/E) logU). Note



1932-4537 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2014.2360772, IEEE Transactions on Network and Science Management

4

that the capacities of edges are integers in [0, U ]. Therefore
the problem can be solved with the worst running time of
O((m + n)3). Based on Equation 1, we can also get that
the minimum server bandwidth consumption is the sum of
download requirements minus the maximum bandwidth that
peers could provide. The related proof is as follows:

Theorem 1. Denoting the minimum bandwidth that server
should provide as Smin(t), we have

Smin(t) = max
L⊆C

(d(t, L)− u(t, L))

Proof: According to the max-flow min-cut theorem, the
maximum network flow for s → t equals to the min-cut of
the graph. For a cut (Ŝ, T̂ ), if there is p ∈ Ŝ and m ∈ T̂ such
that p ∈ O(m), the capacity of the cut is infinite. So, it cannot
be the min-cut. Considering all the other cuts, we let

L = T̂ ∩ C

R = P\Ŝ

R⋆ =
∪
c∈L

O(t, c)

where L is a subset of C. We can see that there is no infinite
path in the cut. We therefore have

R⋆ ∩ Ŝ = ϕ

R⋆ ⊆ R

Therefore, the edges across Ŝ and T̂ have the capacity sum∑
ci∈C\L

d(t, ci) +
∑
p∈R

u(t, p) = d(t, C\L) +
∑
p∈R

u(t, p)

For a fixed L, it has the minimum value

d(t, C\L) + u(t, L)

which can be achieved when

R = R⋆

i.e.,
T̂ = {dst} ∪ L ∪ R⋆

If we traverse over all the subsets L of C, we have the
capacity of the min-cut as follows:

min
L⊆C

(d(t, C\L) + u(t, L))

The minimum server bandwidth is the sum of download
requirements minus the maximum bandwidth that peers could
provide

d(t, C)−min
L⊆C

(d(t, C\L)+u(t, L)) = max
L⊆C

(d(t, L)−u(t, L))

So the theorem holds.
In Figure 4, we present an example for cut correspond-

ing to the example in Figure 2 where Ŝ = {src, p3, c3},
T̂ = {p1, c1, p2, c2, dst}, L = {c1, c2}, R = {p1, p2},
R⋆ = {p1, p2}. This is an example with 3 peers and 3 chunks
at time t.

Note that Theorem 1 can be used to better understand how
the parameters affect the system performance. However, it

Fig. 4: An example for cut

is hard to obtain the maximum amount of bandwidth that
the peers can get from all the other peers.6 To address this
problem, we give an approximation as follows:

Theorem 2. When the download requirements are uniformly
distributed among all the chunks, the maximum of the band-
width that all peers can obtain (from all other peers) can be
approximated as:

Peermax(t) ≈ min(µrnpr, nµu(1− e−
knpr
m ))

where µu is the expectation of peer upload capacity and
µr is the expectation of download requirements. It is worth
noting that we assumed a uniformly distributed peer demands
among all the chunks. This is to better analysis the maximum
bandwidth that all peers can obtain in an idea case. In the
case of some real-world systems, their skewed user demands
will decrease the total available bandwidth, and Theorem 2
can still serve as a useful upper-bound for optimization.

Proof: According to the definition of n and pr, the
number of peers which has download requirements is

|R(t)| ≈ npr

According to Theorem 1,

Peermax(t) = min
L⊆R(t)

(d(t, R(t)\L) + u(t, L))

where |L| = h denotes the number of shaded chunks. We
can therefore obtain cc(h,m) as follows. It indicates the
expectation of taking h repeatable items (from m items).

cc(h,m) =

min(m,h)∑
j=1

(
jCj

m

j∑
i=1

(−1)j−iCi
j(

i

m
)h

)
(2)

We find that

cc(h,m) ≈ m−me−
h

m−0.5 ≈ m(1− e−
h
m )

Further, for a given L, the probability that a peer contains
at least one of the chunks in L is

1− (1− cc(h,m)

m
)k ≈ 1− e−

kh
m

u(t, L) is the product of µu and the number of peers that
contain at least one chunk in L, i.e.,

u(t, L) = nµu(1− e−
kh
m )

6This is because when we consider all peers and the possible combinations
between peers and chunks, whether a combination can generate the graph
with the maximum amount of bandwidth cannot be validated unless we try
all the combinations.



1932-4537 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2014.2360772, IEEE Transactions on Network and Science Management

5

0 50 100 150 200 250
0

10

20

30

40

50

60

n

P
ee

r  m
ax

 / 
n

 

 

Exp
Estimated

Fig. 5: Peermax

n for different n

0 500 1000 1500 2000
0

10

20

30

40

50

60

m

P
ee

r  m
ax

 / 
n

 

 

Exp
Estimated

Fig. 6: Peermax

n for different m

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

p
r

Pe
er

 m
ax

 / 
n

 

 

Exp
Estimated

Fig. 7: Peermax

n for different pr

0 5 10 15 20
0

10

20

30

40

50

60

70

80

k

P
ee

r  m
ax

 / 
n

 

 

Exp
Estimated

Fig. 8: Peermax

n for different k

0 50 100 150 200
0

10

20

30

40

50

60

µ
u

P
ee

r  m
ax

 / 
n

 

 

Exp
Estimated

Fig. 9: Peermax

n for different µu

200 400 600 800 1000
0

5

10

15

20

25

30

µ
r

P
ee

r  m
ax

 / 
n

 

 

Exp
Estimated

Fig. 10: Peermax

n for different µr

d(t, R(t)\L) = µr(|R(t)| − h)

For a fixed h, d(t, R(t)\L) and u(t, L) are similar among
L with |L| = h, thus

Peermax(t) ≈ min
0≤h≤|R(t)|

(µr(|R(t)| − h) + nµu(1− e−
kh
m ))

The minimal value of the function value for integers in
an interval can be approximated by the minimal value of the
function value for all the real numbers in the interval, thus

Peermax(t) ≈ min
0≤x≤npr

(µr(npr − x) + nµu(1− e−
kx
m ))

Peermax(t) ≈ min(µrnpr, nµu(1− e−
knpr
m ))

the theorem is proved.
Figures 5 to 10 give a comparison between our approxima-

tions and the accurate results obtained by the network flow
approach. We apply the most typical values in a small VoD
system [4] in this simulation:

m = 500, n = 100, pr = 0.4, k = 4, µu = 100, µr = 600.

We run 1000 test cases for each parameter, and show their
average as the result of the network flow method. It can be
seen that the approximate results are very close to the accurate
results. Moreover, the average download bandwidth that a peer
can get (from other peers) is increasing in accordance with
larger n, pr, k and µu.

B. Analysis of Server Bandwidth Consumption

Based on the model analysis, we have clarified the max-
imum upload capacity of peers. In this subsection, we will
further explore the optimal server bandwidth consumption and
compare it with some widely-used peer-selection strategies:
the random peer selection and the greedy peer selection. Note
that the random algorithm is the key feature in PPLive’s

TABLE II: The Random Algorithm

The Random Algorithm
while there are chunks not yet satisfied

Randomly select a chunk c⋆ that not yet satisfied
if there are peers that can satisfy c⋆

Randomly select a peer p⋆ to upload c⋆ as many as possible
else

Let the server satisfy the remaining request of c⋆
end if

end while

TABLE III: The Greedy Algorithm

The Greedy Algorithm
z(ci) =

∑
pj∈O(ci)

u(pj)

while there are chunks not yet satisfied
for every chunk ci

if there are peers that can satisfy ci
Send requests to all the peers that can upload ci

else
Let the server satisfy the remaining request of ci

end if
end for
for every upload peer p(j)

From all the requests to p(j), select c⋆
with the minimal z(c)

p(j) uploads c⋆ as many as possible
end for

end while

neighbor selection [26]. The details of the random algorithm
and the greedy algorithm are shown in Table II and Table III
respectively. In these algorithms, the peers upload chunks “as
many as possible” means that peer’s upload rates will be
identical to their maximum upload capacities.

To obtain the optimal server bandwidth consumption, we
need to obtain several parameters such as m, n, d̂, u and O,
where d̂i is the total upload bandwidth required for a chunk
ci. In this paper, we make assumptions on the distributions of
d̂, u and O as follows. We assume nη out of n peers need to
download some chunks. Since

d̂i = Rate(ci) · v(ci) (3)



1932-4537 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2014.2360772, IEEE Transactions on Network and Science Management

6

20 40 60 80 100 120 140 160 180 200
0

2000

4000

6000

8000

10000

12000

14000

Chunk count

Se
rv

er
 b

an
dw

id
th

 / 
kb

ps

 

 

Optimal

Random

Greedy

Fig. 11: Server bandwidth for different chunk counts

where Rate(ci) is the playback rate of ci, and v(ci) is the
number of peers watching ci. We assume that Rate(ci) follows
a normal distribution with mean µr and standard deviation σr

i.i.d., and v(ci) follows a Zipf [29] distribution with parameter
α and holds

m∑
i=1

v(ci) = nη (4)

If η < 1, let µ′
r = µrη, σ′

r = σrη, η′ = 1, we have r′ = rη,
v′ = v/η and d̂′ = d̂. As the same test case can be generated,
we assume η = 1 in the following analysis.

Assume that all u(pj) follow a normal distribution with
mean µu and standard deviation σu, i.i.d. It is known that
the total replications of a chunk ci in the system should be
approximately proportional to the download request d̂i. We can
see that if some less popular chunks have more replications
than the proportional value, the system will perform better. To
explore such a problem, we assume that the total replication
number of a chunk ci in the system is proportional to d̂qi where
q indicates the replication policy. Meanwhile, q = 1 indicates
the proportional replication policy is applied in the system.
Therefore, we can get the probability that pj is an element of
set O(ci) as follow:

min(
d̂qi∑m
i=1 d̂

q
i

· k, 1) (5)

where k is the average number of chunks in the cache of a
single peer.

Based on these definitions, we use Table IV as the input
of our simulation. For every group of parameters, we run 500
test cases of (m,n, d̂, u,O). For each test case, we obtain the
optimal server bandwidth consumption and compare it with
the random and greedy algorithms.

TABLE IV: Parameters Used in Simulation

Parameter Value
m 100
n 200
α 1
µr 400 kbps
σr 50 kbps
µu 400 kbps
σu 100 kbps
k 3
q 0.9

Figure 11 shows the server bandwidth consumption with
different number of chunks. We can see that the performance

20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

x 10
4

Chunk count

Se
rv

er
 b

an
dw

id
th

 / 
kb

ps

 

 

Optimal

Random

Greedy

Fig. 12: Server bandwidth for different m and k

of random and greedy algorithms are far from being optimal.
In particular, these two algorithms will use almost twice of
the optimal server bandwidth consumption. Moreover, a large
number of chunks will decrease the probability that a peer
owns a specified chunk; this will also increase the server
bandwidth consumption.

As shown in Figure 12 (k = m/20), we have confirmed
that if k increases proportionally to m, the optimal server
bandwidth would remain the same for relatively large m and k.
Note that this figure shows the greedy and random algorithms
both have performance issues under certain configurations. For
example, the gap between random and optimal will increase
with smaller k/m ratios. This means only a small fraction of
chunks can be cached. We can hardly obtain good performance
unless we can cache all chunks (k = m).

Figure 13 presents the server bandwidth consumption with
different number of peers. We can again find a large gap
between the optimal benchmark and the random/greedy al-
gorithms. It is worth noting that if we carefully optimize the
relationship between peers, the total number of peers does not
significantly increase the optimal server bandwidth in peer-
assisted VoD systems.

Figure 14 shows the server bandwidth consumption with
a different Zipf parameter α. A small α indicates that the
requests to different chunks are the same, while large α
indicates that requests mainly concentrate on several chunks.
We can see that the performance gap will become extremely
large with smaller α. Note that the existing measurement
studies already showed that the video popularity matches the
Zipf distribution [30].

Figure 15 presents the server bandwidth consumption with
the average playback rates µr. We can see that for the
random/greedy algorithms, the server bandwidth consumption
increases significantly when the playback rates become larger
than 300 kbps. The optimal benchmark, on the other hand, in-
creases when the playback rates become larger than 400 kbps.

Figure 16 further presents the server bandwidth consump-
tion with skewed distributed playback rates where the ran-
dom/greedy algorithms use almost twice of the optimal server
bandwidth consumption.

Figure 17 shows the server bandwidth consumption with
different k, the average of cached chunks per peer. We observe
that the greedy algorithm and the random algorithm cannot
make full use of the upload capacity of peers.

We can also find that if each peer has 6 out of 100 chunks,



1932-4537 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2014.2360772, IEEE Transactions on Network and Science Management

7

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Peer count

Se
rv

er
 b

an
dw

id
th

 / 
kb

ps

 

 

Random

Greedy

Optimal

Fig. 13: Server bandwidth for different
peer counts

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2000

4000

6000

8000

10000

12000

14000

Zipf parameter

S
e

rv
e

r 
b

a
n

d
w

id
th

 /
 k

b
p

s

 

 

Random

Greedy

Optimal

Fig. 14: Server bandwidth for different
Zipf parameters

200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Expectation of playback rate / kbps

Se
rv

er
 b

an
dw

id
th

 / 
kb

ps

 

 

Random

Greedy

Optimal

Fig. 15: Server bandwidth for different
expectations of playback rates

20 40 60 80 100 120 140
0

2000

4000

6000

8000

10000

12000

14000

Stardard deviation of playback rate / kbps

Se
rv

er
 b

an
dw

id
th

 / 
kb

ps

 

 

Random

Greedy

Optimal

Fig. 16: Server bandwidth for different
standard deviations of playback rates

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Expectation of cached chunks per peer

Se
rve

r b
an

dw
idt

h /
 kb

ps

 

 

Random

Greedy

Optimal

Fig. 17: Server bandwidth for different k

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Replication policy parameter

Se
rv

er
 b

an
dw

id
th

 / 
kb

ps

 

 

Random

Greedy

Optimal

Fig. 18: Server bandwidth for different q

the server bandwidth can be kept at a modest level even with
the simplest peer selection algorithm.

In Figure 18, we further discussed the server bandwidth
consumption across different q. We can see that the minimal
server bandwidth consumption is achieved when q is around
0.5.

We discuss static environment above, in the following
sections we relax this condition.

V. OBTAINING OPTIMAL BANDWIDTH CONSUMPTION
ACROSS CONTINUOUS TIME-SLOT

In the previous section, we have discussed the optimal
bound of VoD server bandwidth consumption. It is easy
to see that the existing peer-assisted protocols are still far
from being optimal. Therefore, whether the optimal band-
width consumption can be achieved in real-world deployment
remains largely unknown across continuous time-slots. To
calculate the minimum server bandwidth in the continuous
time-slot scenario, an intuitive approach is to make sure that
the bandwidth requirements can be met (no less than Smin)
over infinite time-slots. This indicates that we can perform
a binary search on real numbers to find the result with a
predetermined inaccuracy. In this section, we will first discuss
the lower bound as well as the upper bound of Smin. After
that, we will carry out a search across infinite time-slots to
find the optimal result.

A. Binary Search Framework

As shown in Table V, the key to accomplish this binary
search is to design an algorithm to solve a feasibility problem:
whether all the requirements can be met when the server has
a bandwidth of w in every time-slot. If w is enough, Smin is

no greater than w; we can therefore set the new upper bound
to be w. Otherwise, Smin is greater than w, and we can set
the new lower bound to be w.

TABLE V: Binary Search

Binary Search Framework
initialize upper and lower
while upper− lower ≥ PredeterminedInaccuracy ∗ 2 do
mid = (upper + lower)/2

if checkContTime(mid)
upper = mid

else
lower = mid

end while
return upper+lower

2
± upper−lower

2

The initial lower bound and upper bound do not affect the
performance of our algorithm remarkably. The initial lower
bound can be set as zero or the bandwidth required in the
first time-slot. Since there is no prefetch before this time-
slot, the bandwidth required can be calculated by the snapshot
algorithm. The initial upper bound is the bandwidth required
in any scheduling. For example, we can use the no-prefetch
scheduling provided in the previous section (Section IV).
We can also use the priority-based scheduling provided in
Subsection V-D.

B. Feasibility Problem

The main process to this feasibility problem is provided in
Table VI. In order to avoid reduplication calculation, dynamic
programming is used. We consider the problem reversely, from
the last time-slot to the first time-slot. We denote the power
set of R as 2R. In every time-slot, we need to know by
prefetching which subsets of R in the previous time slots,
the requirements would be satisfied. These subsets will form



1932-4537 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2014.2360772, IEEE Transactions on Network and Science Management

8

a subset of 2R, referred as “prefetching set” and denoted
by Prefetch(t). With the initial value Prefetch(T ) = {ϕ},
we can calculate Prefetch(t) using Prefetch(t + 1), t =
T − 1, T − 2, . . . , 1. If by prefetching R1 ∈ R, we can
achieve some R2 ∈ Prefetch(t + 1), then R1 can be put in
Prefetch(t). Finally, since we cannot prefetch before the first
time-slot, we only need to check whether ϕ ∈ Prefetch(0)
using Prefetch(1).

TABLE VI: Solution of Continuous Time Feasibility Problem

checkContTime function
function checkContTime(w)
Prefetch(T ) = {ϕ}
foreach t in (T − 1), (T − 2), . . . , 1 do

Prefetch(t) = calcNextPrefetch(w, Prefetch(t+1), t)
if Prefetch(t) is empty

return false
return checkOneSet(ϕ, w, Prefetch(1), 0);

Here we provide two approaches to optimize this frame-
work. Firstly, note that, for any R3 ⊂ R4 ⊂ R, if we can
prefetch R4 before t using a prefetching set R5 ∈ Prefetch(t−
1), then we can also prefetch R3 using R5 before t. Removing
R4 from Prefetch(t) will not affect Prefetch(t − 1) or the
result. So by gradually removing supersets of other sets in
Prefetch(t), we can finally get a Prefetch(t) where no set is
a superset of another set, while not changing the result of the
problem. This is very helpful in reducing calculation costs.
As a special example, the best case is the time-slot can be
satisfied without prefetching, since the empty set is a subset
of any other prefetching sets. We do not need to check other
sets, and Prefetch(t) = {ϕ}.

Secondly, to calculate Prefetch(t) using Prefetch(t + 1),
denote

Related(t) = R(t) ∪ Prefetch(t+ 1)

When Related(t) ̸= ϕ, a trivial prefetching is to prefetch
every chunk in Related(t). If after the first optimization, we
still have Related(t) ∈ Prefetch(t), we cannot make any
progress in the current time-slot and the problem result will
be negative. Thus we do not put this trivial prefetching into
Prefetch(t) when Related(t) ̸= ϕ. Under this constraint,
if during the process, Prefetch(t) = ϕ, which means it is
impossible to satisfy the requirements after time t unless we
prefetch everything, we can judge that the problem result is
negative and do not need to check any previous time-slots.
When Related(t) = ϕ, we have Prefetch(t) = {ϕ} and still
need to continue the calculation for previous time-slots.

These optimizations have modified the definition of
“prefetching set”. Prefetch(t) is “minimal”, which means
no set in Prefetch(t) is a superset of another set. When
Related(t) ̸= ϕ, Related(t) ̸∈ Prefetch(t). The first op-
timization remarkably reduces the size of “prefetching set”
when server bandwidth is abundant, while the second opti-
mization avoids unnecessary check when server bandwidth is
not enough. Therefore in most cases the feasibility problem
can be addressed very quickly. In Subsection V-C, we present
further optimization to calculate the prefetching set under such
modified definition.

C. Prefetching Set Calculation

To calculate Prefetch(t) using Prefetch(t + 1), we have
Prefetch(t) ⊆ 2Related(t). The naive solution is to check
whether an element in 2Related(t) can be put in Prefetch(t),
i.e., whether it can match any element in Prefetch(t + 1).
To check whether R1 ∈ Prefetch(t), we can traverse over
Prefetch(t + 1). Using the snapshot result, if we figure out
that we can achieve some R2 ∈ Prefetch(t+1) by prefetching
R1 ∈ Related(t), then R1 ∈ Prefetch(t). If we cannot
achieve any R2, then R1 ̸∈ Prefetch(t).

We can remarkably reduce the calculation cost in practice
in two ways.

The first optimization is the order to traverse over possible
subsets of Related(t), utilizing that Prefetch(t) is “minimal”.
First, we check whether ϕ ∈ Prefetch(t). If so, it is done.
Otherwise, we check every single element set in Related(t),
and add those with positive results to Prefetch(t). We denote
the union of single element set with negative results as
NotSolved. The left is to traverse over 2NotSolved, ordered
by the number of elements, and also add those with positive
results to Prefetch(t). Before actually check a subset, we first
check whether it is a superset of found Prefetch(t). The order
of traversal guarantees that it will not be a superset of any not-
yet-checked sets.

The second optimization is, before checking the match
between R1 ∈ Related(t) and R2 ∈ Prefetch(t + 1), when
R1 ̸⊆ R2 ∪R(t), which means if some prefetching is neither
helpful in meeting the requirements in the current time-slot,
nor helpful in prefetching contents for the time-slots later, we
do not need to check this R2. Since if the result is positive, it
will be positive with a smaller prefetching set in Prefetch(t).
This is not trivial after we have fixed R1, and from the
simulation we figure out that this optimization is also helpful
in calculation efficiency.

These algorithms and optimizations are shown in Table VII.

TABLE VII: The Prefetching Set Calculation

calcNextPrefetch function
function calcNextPrefetch(w, Prefetch(t+1), t)
Traverse over R1 ∈ Related(t) in the optimized order

Traverse over R2 ∈ Prefetch(t+ 1)
if R1 ̸⊆ R2 ∪R(t)

do not need to check this R2, continue
if R1 matches R2

R1 ∈ Prefetch(t)
do not need to check the remaining R2s, break

D. Priority-based Scheduling

Based on the optimal solution derived in the single snapshot
problem, we have shown that the optimal load scheduling
problem is also solvable through a dynamic programming
algorithm across continuous time. However, this algorith-
m cannot well satisfy the latency requirements in the real
deployment. In particular, the dynamic-programming-based
scheduling may cost more time than the chunk delivery of the
VoD systems. To achieve higher efficiency in the real-world
systems, we propose the following priority-based algorithm to
further scheduling the chunk transmissions.



1932-4537 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2014.2360772, IEEE Transactions on Network and Science Management

9

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Calculation time(s)

Cu
m

ula
tiv

e d
ist

rib
ut

ion
 fu

nc
tio n

 

 

optimal value

priority−based schedule

Fig. 19: CDF of the calculation time

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Number of peers (*1000)

C
a
lc

u
la

ti
o
n
 t

im
e
 (

S
e
c
)

Fig. 20: Overheads of priority-based al-
gorithm

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Extra bandwidth of the priority−based schedule(%)

Cu
m

ul
at

ive
 d

ist
rib

ut
io

n 
fu

nc
tio

n

Fig. 21: Extra bandwidth of the priority-
based scheduling (CDF)

It is known that the scheduling in each time-slot t should
at least satisfy R(t) in our model. The key problem is which
requirements in the future time-slots we are going to satisfy. In
the priority-based scheduling, we give each future requirement
a priority. By strictly following the priority-based order, we
try to satisfy as many requirements as possible. Since we can
check whether a given set of requirements can be satisfied by
the snapshot algorithm, we only need to do a binary search to
find out how many requirements can be actually satisfied.

To set a proper priority, we notice that there are two benefits
to satisfy the earlier requirement: firstly, it reduces the risk in
the time-slots when we cannot satisfy all the requirements;
secondly, after the time-slot the transfer is done, the cache
status is broadcasted and has a longer time to serve more
potential requirements in the future with a P2P transfer. Thus
we order the future requirements according to their time-slots.
For the requirements in the same time-slot, we will put them
in a fixed order.

To calculate the bandwidth of the priority-based scheduling,
binary search is again used with another feasibility problem:
whether all the requirements can be met when the server
has a bandwidth of w in every time-slot with this specified
scheduling. This feasibility problem can be naively solved by
simulation.

VI. EVALUATION OF CONTINUOUS-TIME-SLOT
APPROACHES

In this section, we will evaluate the performance of our
continuous-time-slot approaches. We will clarify the server
bandwidth consumption under different schedulings. Their
time complexities will also be investigated by comparing the
worst-case running time.

A. Performance of Priority-based Scheduling

This subsection compares the optimal server bandwidth and
the server bandwidth under the priority-based scheduling. It
also compares the time to calculate these two results.

Since the simulation has involved efficiency issue, the
computation environments are provided: the simulation is done
on a laptop with 2.27GHz × 2 Intel CPU, 2.0 GB memory and
Microsoft Win7 OS; the program language for the simulator
is Microsoft C#.

In this simulation, we assume there are m movies, each with
mc chunks. If a peer is not requesting anything in a time-slot,
it has a pr probability to start a series of requests. The requests

are targeted on all movies with equal possibility, with a length
uniformly distributed among 1, 2, . . . ,mc.

For 500 test cases with mc = 6, m/mc = 6, n = 6
and T = 5, the average time to find the optimal server
bandwidth within a 10−5 relatively inaccuracy is 0.437 s. The
maximum calculation time is 49.4 s. The cumulative distribu-
tion functions (CDFs) of the time to find the optimal server
bandwidth and priority-based scheduling results are shown in
Figure 19. We can see that the priority-based scheduling can
be calculated very fast. Figure 20 further investigates the case
when there are more peers in the system. We can see that the
time consumption is proportional to the number of peers.

On the other hand, on average, the priority-based scheduling
is only 6.64% higher than the optimal value, while the worst
case is 68% higher. In 23.2% of the cases, the priority-
based scheduling actually achieves the optimal value. The
extra bandwidth of the priority-based scheduling is shown in
Figure 21. We can see that the extra bandwidth remains quite
low in most cases.

B. Performance Comparison among Different Scheduling Ap-
proaches

In this subsection, we compare the server bandwidth under
priority-based scheduling, the server bandwidth under no-
prefetching scheduling, and the server bandwidth if we do not
use P2P.

The results are given in Figures 22 to 27. Except for the
parameter specified in each of the results, we use the typical
values of a small VoD system for the parameters in the
following:

m = 30, n = 20, T = 10, pr = 0.5, µu = 200,

σu = 50, µr = 400, σr = 50.

For each group of parameters, we randomly generate 10,000
test cases. The server bandwidth of the three schedules are
calculated for each test case, and the average results of 10,000
test cases are shown. We assume there is no replication in the
initial state, and there is no cache replacement in the T time-
slots. This assumption avoids the effects from the randomness
in these factors.

Figure 22 gives the result for different chunk count m. If
we only use servers, the bandwidth required is the sum of
requirements, and thus not related to m. When m grows and
the other variables remain unchanged, the probability of peer



1932-4537 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2014.2360772, IEEE Transactions on Network and Science Management

10

0 10 20 30 40 50
4000

4500

5000

5500

m

B
an

d
w

id
th

 

 

Priority-based

No Prefetch

All Server

Fig. 22: Server BW for different m

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

n

B
an

d
w

id
th

 

 

Priority-based

No Prefetch

All Server

Fig. 23: Server BW for different n

0 2 4 6 8 10
3500

4000

4500

5000

5500

T

B
an

d
w

id
th

 

 

Priority-based

No Prefetch

All Server

Fig. 24: Server BW for different T

0 0.2 0.4 0.6 0.8 1
1000

2000

3000

4000

5000

6000

7000

8000

9000

p
r

B
an

d
w

id
th

 

 

Priority-based

No Prefetch

All Server

Fig. 25: Server BW for different pr

0 100 200 300 400
4000

4500

5000

5500

µ
u

B
an

d
w

id
th

 

 

Priority-based

No Prefetch

All Server

Fig. 26: Server BW for different µu

0 20 40 60 80 100
4200

4400

4600

4800

5000

5200

5400

5600

σ
u

B
an

d
w

id
th

 

 

Priority-based

No Prefetch

All Server

Fig. 27: Server BW for different σu

sharing will gradually decrease. So the bandwidth required
will increase in the cases that P2P is used. But we can see
that bandwidth growth with prefecting is slower than those
without prefetching.

Figure 23 gives the result for different peer count n. The
bandwidth in three cases are linear with n. By verifying the
result, we notice that the growth speed of server bandwidth
against n in priority-based scheduling and no-prefetch schedul-
ing is similar, while the growth speed without using P2P is a
bit faster.

Figure 24 gives the result for different time slot count T .
As the peer has no initial cache, the results for one time slot
should be the same. In these problems, the server bandwidth
without P2P is the maximum of T i.i.d. variables, so it grows
very fast with the increase of T . For the other two cases, when
t is larger, there will be more replications among peers; the
server bandwidth required in that time-slot may decrease. So
in general, when T is larger, the server bandwidth in these
two cases will remain at some value, or even decrease as T
grows.

Figure 25 gives the result for different pr. As pr grows, the
number of download requirements in the system is increasing,
and the bandwidth for all the three cases is all increasing.
It is worth noting that when the number of requirements
grows to the situation that all the peer bandwidths are almost
utilized, no-prefetching server bandwidth is close to the server
bandwidth with prefetching.

Figure 26 gives the result for different µu. As µu grows,
the bandwidth provided by peers will increase, so the server
bandwidth for the cases with P2P are gradually decreasing. But
even if peer bandwidth is relatively abundant, they may not
be fully utilized in the no-prefetching case, where the server
bandwidth required by all the peers is larger than the result
for priority-based schedule.

Figure 27 gives the result for different σu. The results are

little affected by σu from the perspective of the current pa-
rameters. For the above test cases, the server bandwidth under
no-prefetching schedule has saved 15.3% server bandwidth,
and the server bandwidth under priority-based schedule has
saved 19.7% server bandwidth. But generally the test cases
here are those that the requirements cannot be satisfied only
by using peers. If the requirements are reduced, there will
be cases in which P2P has saved the server bandwidth. Note
that comparing to the snapshot model, we applied different
parameters in the evaluation of continues time model. This
is to show that our proposed method can achieve reasonable
performance under different system configurations.

C. Performance in Planet-lab Deployments

To understand the performance of the priority-based sched-
ule algorithm in real-world deployments, we further extend
our evaluation to a Planet-lab [31] environment. In particular,
we implement a VoD prototype system on Planet-lab with one
server and 400 peers. These peers are initiated to generate
segment request lists from random starting points. This list
consists of video segments with the size of 4 Megabytes. After
that, the peers will seek available bandwidth from other peers.
If the demands cannot be fully satisfied by other peers, it will
start to fetch the remaining segments from our VoD server.
In this experiment, the basic configuration is identical to our
previous simulation.7

Figure 28 shows the available server bandwidth when there
are only 200 peers in the system. In this case, the maximum
bandwidth on the VoD server is limited to 32 Mbps. As we can
see from the figure, the available server bandwidth increases
from 5 Mbps to 32 Mbps after 10 minutes. Figure 29 further
investigates the the available server bandwidth when there are

7Our system prototype can also be found at: https://github.com/thuxl/vod-
planetlab.git



1932-4537 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2014.2360772, IEEE Transactions on Network and Science Management

11

0 200 400 600
0

1

2

3

x 10
4

Time (s)

Ba
nd

w
id

th

 

 

200 peers

Fig. 28: Available server bandwidth with 200 peers

0 200 400 600 800
0

2

4

6

x 10
4

Time (s)

B
an

dw
id

th

 

 

400 peers

Fig. 29: Available server bandwidth with 400 peers

400 peers in the system. In this case, the maximum bandwidth
is configured to 64 Mbps. It is easy to see that the available
server bandwidth increase from 10 Mbps to 64 Mbps after
12 minutes. These real-world deployments indicate that the
proposed priority-based schedule algorithm can successfully
minimize the server bandwidth consumption with reasonable
convergence time.

VII. FURTHER DISCUSSIONS

Our study has provided that, with careful optimization, the
users can be further organized in a better way to achieve
even lower bandwidth consumption on dedicated VoD servers.
There are still many open issues for further exploration, and
we list three that we are particularly interested in and consider
to deploy into our model.

User Experience: This study provides a model-based anal-
ysis to clarify the server-side bandwidth consumption. To
optimize the overall system performance, user experience,
such as latency and video quality, also need to be further
considered. This also includes user’s local configurations (e.g.,
the value of k). Additionally, the changing requirements of
users should be taken into consideration.

One of our ongoing measurements is to learn the user-
side preferences via trace-analysis. We will apply real-world
traces and dynamic network environment to better facilitate
our future models analysis.

Social Relationship and Video Propagation Among VoD
Users: The modern Social Networking Services (SNS) have
drastically changed the information distribution landscape and
people’s daily life. With the development in broadband ac-
cesses, short videos as well as VoD videos have become one
of the most important types of objects for social networking
service users. However, how to obtain the social relationship
and video propagation remains a big challenge among VoD
users.

We are currently working on the epidemic models to ac-
commodate the diversity of the VoD propagation. We believe
that it will provide useful hints to design a more efficient VoD
framework with better organization among peers.

Hybrid VoD with P2P and Cloud Deployment: Cloud
computing has recently attracted a substantial amount of
attentions from both industry and academia. This brings great
opportunities for the VoD systems because the server capac-
ities can now be dynamically provisioned based on user de-
mands. Meanwhile, it also raises many design challenges. For

example, how to design a generic framework that facilitates a
cost-effective VOD migration to the cloud; and how to adjust
cloud servers in a fine granularity to accommodate temporal
and spatial dynamics of user demands.

Our ongoing work includes exploring the optimal solutions
to deal with cloud servers with diverse capacities and lease
prices, as well as the potential latencies in initiating and
terminating leases in real world cloud platforms, etc.

VIII. CONCLUSION

In this paper, we explored the minimum server bandwidth
consumption in a peer-assisted VoD system. We first proposed
a basic model to optimally schedule the user demands at given
snapshots. To approach the optimal bandwidth consumption
in real deployment, we further extended our model to a more
realistic case to capture the peer dynamics across continu-
ous time slots. We showed that the optimal load scheduling
problem is still solvable through a dynamic programming al-
gorithm and further designed a faster priority-based algorithm
to achieve a near-optimal performance. Our simulation results
indicate that the proposed algorithms can significantly reduce
the bandwidth consumption on the dedicated VoD servers.
Note that the proposed priority-based algorithm is designed to
optimize the general peer-assisted VoD system. Our next step
is to implement the priority-based algorithm in such real-world
frameworks as CoolStreaming [32] and further compare its
efficiency with the prefetching protocols in these VoD systems.

ACKNOWLEDGMENT

This work has been supported in part by NSFC Project
(61170292, 61472212), National Science and Technology
Major Project (2012ZX03005001), 973 Project of China
(2012CB315803), 863 Project of China (2013AA013302) and
EU MARIE CURIE ACTIONS EVANS (PIRSES-GA-2013-
610524).

REFERENCES

[1] Netflix will ruin the internet! [Online]. Available: http://tech.fortune.
cnn.com/2010/11/04/netflix-will-ruin-the-internet/

[2] Netflix gets its head in the cloudsand it’s a great
thing. [Online]. Available: http://www.activevideo.com/blog/2010/12/
02/netflix-gets-its-head-in-the-clouds-and-its-a-great-thing/

[3] D. Niu, H. Xu, B. Li, and S. Zhao, “Quality-assured cloud bandwidth
auto-scaling for video-on-demand applications,” in Proceedings of IEEE
INFOCOM, 2012.

[4] C. Huang, J. Li, and K. Ross, “Can internet video-on-demand be
profitable?” in Proceedings of ACM SIGCOMM, 2007.



1932-4537 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TNSM.2014.2360772, IEEE Transactions on Network and Science Management

12

[5] Y. Huang, T. Z. Fu, D.-M. Chiu, J. C. Lui, and C. Huang, “Challenges,
design and analysis of a large-scale p2p-vod system,” in Proceedings of
ACM SIGCOMM, 2008.

[6] C. Huang, J. Li, and K. W. Ross, “Peer-assisted vod: Making inter-
net video distribution cheap,” in Proceedings of the 6th International
Workshop on Peer-to-Peer Systems, 2007.

[7] B. Chen, L. Stein, H. Jin, and Z. Zhang, “Towards cinematic internet
video-on-demand,” in Proceedings of EuroSys, 2008.

[8] C. Feng and B. Li, “On large-scale peer-to-peer streaming systems with
network coding,” in Proceedings of ACM Multimedia, 2008.

[9] Y. Zhou, D. Chiu, and J. Lui, “A simple model for analyzing p2p
streaming protocols,” in Proceedings of IEEE ICNP, 2007.

[10] C. Wu and B. Li, “Optimal peer selection for minimum-delay peer-to-
peer streaming with rateless codes,” in ACM P2PMMS, 2005.

[11] Z. Ma, K. Xu, J. Liu, and H. Wang, “Measurement, modeling and
enhancement of bittorrent-based vod system,” in Computer Networks,
Elsevier, Special Issue on Measurement-based, Optimization of P2P
Networking and Applications,, vol. 56, no. 3, 2012, pp. 1103–1117.

[12] S. Liu, R. Zhang-Shen, W. Jiang, J. Rexford, and M. Chiang, “Perfor-
mance bounds for peer-assisted live streaming,” in Proceedings of ACM
SIGMETRICS, 2007.

[13] Y. Tu, H. Zhong, M. Hefeeda, and S. Prabhakar, “An analytical study
of peer-to-peer media streaming systems,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 1, no. 4, pp. 354–376, 2005.

[14] H. Hlavacs and S. Buchinger, “Hierarchical video patching with optimal
server bandwidth,” ACM Trans. Multimedia Comput. Commun. Appl.,
vol. 4, no. 1, pp. 1–23, 2008.

[15] W. Wu and J. Lui, “Exploring the optimal replication strategy in p2p-
vod systems: Characterization and evaluation,” in IEEE Transactions on
Parallel and Distributed Systems, vol. 23, no. 8, 2012, pp. 1492–150.

[16] D. Ciullo, V. Martina, M. Garetto, E. Leonardi, and G. L. Torrisi,
“Performance analysis of non-stationary peer-assisted vod systems,” in
Proceedings of IEEE INFOCOM, 2012.

[17] Y. Zhou, D. Chiu, and J. Lui, “A simple model for chunk-scheduling
strategies in p2p streaming,” in IEEE/ACM Transactions on Networking,
vol. 19, no. 1, 2011, pp. 42–54.

[18] B. Tan and L. Massouli, “Optimal content placement for peer-to-peer
video-on-demand systems,” in IEEE/ACM Transactions on Networking,
vol. 21, no. 2, 2013, pp. 566–579.

[19] K. Suh, C. Diot, J. Kurose, L. Massoulie, C. Neumann, D. Towsley,
and M. Varvello, “Peer-assisted on-demand streaming: Characterizing
demands and optimizing supplies,” in IEEE J. Selected Areas in Comm.,
vol. 25, no. 9, 2007, pp. 1706–1716.

[20] N. Parvez, C. Williamson, A. Mahanti, and N. Carlsson, “Analysis
of bittorrent-like protocols for on-demand stored media streaming,” in
Proceedings of ACM SIGMETRICS, 2008.

[21] F. Liu, B. Li, B. Li, and H. Jin, “Peer-assisted on-demand streaming:
Characterizing demands and optimizing supplies,” in IEEE Transactions
on Computers, vol. 62, no. 2, 2013, pp. 351 – 361.

[22] D. Ciullo, V. Martina, M. Garetto, E. Leonardi, and G.L.Torrisi, “S-
tochastic analysis of self-sustainability in peer-assisted vod systems,” in
Proceedings of IEEE INFOCOM, 2012.

[23] P. Garbacki, D. Epema, and J. Pouwelse, “Offloading servers with
collaborative video on demand,” in Proceedings of the 7th International
Workshop on Peer-to-Peer Systems, 2008.

[24] Q. Yu, B. Ye, S. Lu, and D. Chen, “Optimal data scheduling for p2p
video-on-demand streaming systems,” in IET Communications, vol. 12,
no. 6, 2012, pp. 1625–1631.

[25] M. Zhang, Y. Xiong, Q. Zhang, and S. Yang, “On the optimal scheduling
for media streaming in data-driven overlay networks,” in Proceedings
of IEEE GLOBECOM, 2006.

[26] K. Xu, H. Li, J. Liu, W. Zhu, and W. Wang, “PPVA: A universal and
transparent peer-to-peer accelerator for interactive online video sharing,”
in Proceedings of the 18th International Workshop on Quality of Service,
2010.

[27] A. Goldberg and R. Tarjan, “A new approach to the maximum flow
problem,” in Proceedings of the 18th annual ACM Symposium on Theory
of Computing, 1986.

[28] A. Goldberg and S. Rao, “Beyond the flow decomposition barrier,” J.
ACM, vol. 45, no. 5, pp. 783–797, Sep. 1998.

[29] Z. George, Human Behavior and the Principle of Least Effort. Boston,
MA, USA: Addison-Wesley, 1949.

[30] W. Zheng, “Understanding user behavior in large-scale video-on-demand
systems,” in In Proc. of ACM EuroSys, 2006.

[31] Planet-Lab. [Online]. Available: https://www.planet-lab.org/

[32] CoolStreaming. [Online]. Available: http://www.coolstreaming.us/

Ke Xu (M’02-SM’09) received his Ph.D. from the
Department of Computer Science and Technology of
Tsinghua University, Beijing, China, where he serves
as full professor. He has published more than 100
technical papers and holds 20 patents in the research
areas of next generation Internet, P2P systems, In-
ternet of Things (IoT), network virtualization and
optimization. He is a member of ACM and has guest
edited several special issues in IEEE and Springer
Journals. Currently, he is holding a visiting professor
position at the University of Essex.

Haiyang Wang is an assistant professor in the
Department of Computer Science at the University
of Minnesota Duluth, MN, US. His research interests
include cloud computing, peer-to-peer networking,
social networking, big data and multimedia commu-
nications.

Jiangchuan Liu is currently an associate professor
at the School of Computing Science, Simon Fraser
University, British Columbia, Canada, and was an
assistant professor in the Department of Computer
Science and Engineering at The Chinese University
of Hong Kong from 2003 to 2004. His research
interests include multimedia systems and networks,
wireless ad hoc and sensor networks, and peer-to-
peer and overlay networks. He is a senior member
of IEEE, member of Sigma Xi, an associate editor
of IEEE Transactions on Multimedia, editor of IEEE

Communications Surveys and Tutorials, and area editor of Computer Com-
munications. He is also the TPC Vice Chair for Information Systems of IEEE
INFOCOM’2011.

Song Lin received his B.S degree and Ph.D. degree
from Tsinghua University, Beijing, China, in 2007
and 2012, respectively. His main interests include
next generation Internet and P2P network.

Lei Xu received his B.S degree in computer science
from Beijing Institute of Technology, China in 2006.
He is working toward his master’s degree in the
Department of Computer Science & Technology at
Tsinghua University, supervised by Prof. Yong Jiang.
His research interests include datacenter networking
and software-defined networking.


