
RapidPatch: Firmware Hotpatching for Real-Time Embedded Devices

Yi He, Zhenhua Zou
Tsinghua University and BNRist

Kun Sun
George Mason University

Zhuotao Liu, Ke Xu
Tsinghua University and BNRist

Qian Wang
Wuhan University

Chao Shen
Xi’an Jiaotong University

Zhi Wang
Florida State University

Qi Li
Tsinghua University and BNRist

Abstract
Nowadays real-time embedded devices are becoming one
main target of cyber attacks. A huge number of embedded
devices equipped with outdated firmware are subject to var-
ious vulnerabilities, but they cannot be timely patched due
to two main reasons. First, it is difficult for vendors who
have various types of fragmented devices to generate patches
for each type of device. Second, it is challenging to deploy
patches on many embedded devices without restarting or halt-
ing real-time tasks, hindering the patch installation on devices
(e.g., industrial control devices) that have high availability
requirements. In this paper, we present RapidPatch, a new
hotpatching framework to facilitate patch propagation by in-
stalling generic patches without disrupting other tasks run-
ning on heterogeneous embedded devices. RapidPatch allows
RTOS developers to directly release common patches for all
downstream devices so that device maintainers can easily
generate device-specific patches for different firmware. We
utilize eBPF virtual machines to execute patches on resource-
constrained embedded devices and develop three hotpatching
strategies to support hotpatching for all major microcontroller
(MCU) architectures. In particular, we propose two types of
eBPF patches for different types of vulnerabilities and develop
an eBPF patch verifier to ensure patch safety. We evaluate
RapidPatch with major CVEs on four major RTOSes running
on different embedded devices. We find that over 90% vulner-
abilities can be hotpatched via RapidPatch. Our system can
work on devices with 64 KB or more memory and 64 MHz
MCU frequency. The average patch delay is less than 8 µs
and the overall latency overhead is less than 0.6%.

1 Introduction

Real-time operating systems (RTOSes) used in
microcontroller-based embedded devices do not put
enough emphasis on security, considering that those devices
are typically isolated and disconnected from the world and
thus can hardly be accessed remotely. However, with the

increasing market growth of Internet of Things (IoT), the con-
nected embedded devices running RTOS (e.g., FreeRTOS [5],
Zephyr [26]) have been widely used in many areas, such
as medical devices, industry devices, critical infrastructure
systems, and Smart Homes. Meanwhile, cyber-attacks have
emerged and proliferated on these embedded devices. Quite
a few recently discovered vulnerabilities, such as those
reported in RIPPLE20 [21] and AMNESIA33 [6], have
affected hundreds of millions of devices [10]. Thus, it is
critical to timely fix the vulnerabilities on embedded devices
to minimize the exploiting window.

Current IoT vendors need to support heterogeneous de-
vices with different specifications and architectures that are
manufactured on various product lines. Yet, it is challeng-
ing to safely merge the upstream security patches to fix the
vulnerabilities on these devices, even though they may share
the same RTOS/libraries. First, it is time consuming to apply
source code patches since the devices maintainers need to
recompile and test the post-merging firmware. Second, ex-
isting firmware deployment solutions often introduce a long
service downtime, which is unacceptable to the embedded
devices used in time-critical industry (e.g., power grid) or
medical cares (e.g., cardiovascular implantable devices [31]).
Most existing firmware updating works in IoT [19, 39, 51]
use traditional OTA method to update entire or part of the
firmware, inevitably disrupting the services running on the
embedded devices for an unpredictable period of time.

Recently, hotpatching methods have been successfully de-
veloped on Linux and Android devices [33, 34, 57] to min-
imize the service downtime and reduce the system reboot
times. However, none of these are comfortably applicable
on embedded devices due to the hardware discrepancy. For
instance, KARMA [34] and VULMET [57] require to modify
the code in memory to add trampolines. However, since em-
bedded devices execute code on flash-based ROM, the entire
flash sector needs to be erased before updating, triggering
high patching latency. Also, the trampolines-based hotpatch-
ing approaches may require halting or rebooting the system.

HERA [35] is the first hotpatching system designed for

real-time embedded devices. It can successfully hotpatch the
firmware without modifying the ROM. It relies on the ARM
Cortex-M3/M4 processors’ unique flash patching hardware
feature [4, 59] to trigger the trampolined patch code loaded in
the RAM. Unfortunately, this hardware feature is no longer
supported in new generation ARM successors such as Cortex-
M7 [24]. To support a wide range of microcontroller units
(MCUs) with various architectures such as Xtensa, AVR, and
RISC-V, we need a general hotpatch triggering method. Also,
HERA requires the device maintainers to merge the source
code patch of vulnerabilities and generate binary patch via
binary diff tool, which has been proved to be the main adop-
tion obstacle of hotpatching technique in Android [33, 34].
Moreover, when the device maintainers have multiple types
of device products, HERA’s patch generating approach incurs
repetitive efforts and cannot timely patch various devices. In
general, current RTOSes lack a generic hotpatching mecha-
nism (like the KSplice [30] in the Linux ecosystem) that can
use a single patch to fix the same vulnerability in various em-
bedded devices with different specifications and architectures.

In this paper, we present RapidPatch, the first hotpatch-
ing framework for the device maintainers to quickly develop
patches for all their heterogeneous embedded devices and
deploy these patches instantly without disrupting device op-
erations. The core innovation of RapidPatch is to provide
a common patch runtime executable on heterogeneous de-
vices with different MCUs by leveraging the eBPF [2] vir-
tual machine such that a single eBPF patch can fix the same
vulnerability for all devices with the same RTOS/library ver-
sion. Towards this end, RapidPatch is powered with multiple
tightly coupled components: (i) a patch generation module
that employs a toolchain to generate device-specific patches
given the eBPF patches and configurations (obtained from
the original C source code patches); (ii) a patch verification
module that uses static analysis to check whether the patches
include malicious behaviors (e.g., manipulating kernel data);
and (iii) multiple patch deployment strategies tailored for var-
ious MCUs to install these patches by redirecting execution
control flow to the patch dispatcher without modifying the
ROMs/firmware.
Contributions. The major contribution of this paper is the
design and implementation of RapidPatch, the first hotpatch-
ing system supporting heterogeneous real-time embedded
devices. Compared with the existing firmware updating ap-
proaches [19,35,39,51], RapidPatch does not require merging
source code patches to generate binary patches. Instead, it em-
ploys an eBPF [2] virtual machine based common patch run-
time to execute bytecode patches so that the patches can run
externally without changing the firmware on various architec-
tures. Thus, a common patch can fix the same vulnerability on
different devices. Further, RapidPatch provides new hotpatch-
ing strategies for heterogeneous devices and thus supports
MCUs that cannot use HERA [35], which mostly leverages
a deprecated processor feature. Finally, to minimize the cost

of manual patch validation, we develop a patch verifier and
extend the eBPF patch runtime to support safe patches [50]
that can be deployed without extra tests on individual devices.
We prototype RapidPatch [1] with 6468 lines of C and 1733
lines of Python and use reported vulnerabilities of popular
RTOS/Library to evaluate the prototype on different devices.
The experiment results demonstrate the applicability, general-
ity, and performance of RapidPatch. Particularly, the average
patching delay introduced by RapidPatch (JIT mode) is less
than 8 µs, which has negligible impacts on real-time tasks,
and the average incurred overhead is less than 0.6%.

2 Background

2.1 Embedded Devices
Typical embedded devices [20] are monolithic systems based
on low-power MCUs that are provided by various IC man-
ufacturers and use different CPU architectures [11] such as
ARM Cortex-M series, MIPS, Atmel AVR, and Xtensa. Em-
bedded devices may contain a single MCU that integrates
all the functions, e.g., nRF52 series [18]. Alternatively, they
may use multiple MCUs (e.g., STM32 MCU and ESP32)
interacting with each other via GPIO interfaces.

Compared with hardware, vendors typically have fewer
choices on system software and have to use either mature
open source embedded OSes or commercial close-sourced
embedded OS, e.g., Samsung’s TizenRT that is customized
from NuttX [7]. Amazon’s FreeRTOS and Linux Foundation’s
Zephyr are two popular embedded OSes that have supported
hundreds of MCUs [11] since 2020. As a result, firmware
with the same code base has been used in a large number
of embedded devices. Since embedded devices are often de-
ployed in sectors such as industry control systems and medical
treatment, it is critical for these real-time devices to respond
and finish tasks in strict time [37]. To facilitate the applica-
tions, RTOSes contain a number of system libraries to support
extensive modules such as networking and TLS.

2.2 Embedded Device Hotpatching
Existing hotpatching solutions on Linux/Android cannot work
on embedded devices due to hardware discrepancy (see Sec-
tion 3.2). Fortunately, many MCUs provide build-in hardware
features that can be used for hotpatching.
Flash Patching. ARM Cortex-m3/m4 processors provide the
Flash Patch and Breakpoint Unit (FPB) [4] for patching the
code in ROM at runtime. When the FPB mode is enabled,
the hardware breakpoints can be used to mark instructions
and redirect the instructions at the hardware breakpoints to
the mapped instructions, which are defined in a remap table.
Then, a branch instruction such as bl trampoline_func in the
remap table can intercept the buggy function and jump to run
the new function [35].

Libraries

RTOS

eBFP Patch Adaptively Install
the Patch

+

RTOS
Developer's Task

Device Maintainer's Task

.

.

.

Different Firmwares
Various
Devices

Write a Common
eBPF Patch

Sync
Changes

Generate
Binary
Patch

RapidPatch
Workflow

Existing Patch
Workflow

...
...

C Source
Code Patch

Figure 1: Existing patch workflow vs. RapidPatch workflow.

KProbe. The ARM and RISC-V MCUs support customer
handlers defined at arbitrary addresses for debugging events,
which can be used to implement the KProbe mechanism [12]
in Linux. On ARM Cortex-M3 and beyond, we can define
customer exception handlers for debugging events in the De-
bug Monitor mode [58] and then port the KProbe features
to different embedded devices. Afterwards, KProbe can be
leveraged to implement hotpatching solutions by redirecting
the control flow of the buggy code to a trampoline function.

2.3 Extended Berkeley Packet Filter (eBPF)
The extended Berkeley Packet Filter (eBPF) is used as a Linux
in-kernel virtual machine that can execute untrusted eBPF
code received from user space. The original Linux eBPF sup-
ports various types of eBPF programs that are attached to pre-
defined places to provide capabilities such as TCP/IP packet
filter, tracing, and sandbox policy configuration. The eBPF
code is powerful since it can be written in C and then compiled
into eBPF bytecode with the bpf LLVM backend. To prevent
malicious code, before running the eBPF code, the kernel uses
a static verifier to vet the program and ensure that the program
does not have memory accessing errors or unbounded loops.
To enable cross-platform patches, we choose to implement
a bytecode-based patching approach. Since the eBPF VM is
more lightweight than other embedded VM-based languages
including Lua, Javascript, and Python, we choose to port it to
the resource constrained devices. Thus, we can benefit from
eBPF’s powerful features, such as supporting C grammar and
memory manipulation via pointers, having a simple yet highly
efficient instruction set, and being easily verifiable in terms
of execution security. Furthermore, we customize the eBPF
verifier and runtime to support safe patches.

3 Problem Statement

3.1 Delayed RTOS Update
For embedded device vendors who customize their firmware
based on official RTOS versions (e.g., Samsung TizenRT

2018-2
2018-5

2018-8
2018-11

CVE-2017-14032

CVE-2018-0487

CVE-2018-0488

CVE-2017-18187

CVE-2018-1000520

CVE-2018-9988

CVE-2018-9989

CVE-2018-0497

CVE-2018-0498

CVE-2019-16910

CVE-2019-18222

CVE-2019-10941

CVE-2019-10932

CVE-2019-16150

2019-8
2019-11

2020-2
2020-5

2020-8
2020-11

Zephyr
FreeRTOS
TizenRT

0.0 0.2 0.4 0.6 0.8 1.0
RTOS Patch Delay for Mbed TLS [month]

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: The MbedTLS’s patch delay in different RTOSes.

and Xiaomi Vela are based on Apache NuttX RTOS [7]),
they need to integrate a number of third-party libraries (e.g.,
MbedTLS [15], the de facto standard of embedded TLS li-
brary) to extend device functionalities. We illustrate the patch
propagation process on embedded systems in Figure 1 to ex-
plain why upstream security patches may not be propagated
to the end users in time. First, it takes time for the down-
stream vendors (e.g., Samsung) to update their firmware by
merging the new commits from the upstream repositories
(e.g., Apache NuttX) and verify the correctness of the new
firmware. Second, the end users usually lack the motivation
and expertise to upgrade their own firmware [56]. Therefore,
similar to the Android systems [62], this open model often
introduces a significant patching delay on embedded devices.
Quantitatively, we report the security patch delay using mul-
tiple CVEs on the MBedTLS Library [15]. Figure 2 shows
that it usually takes two active RTOSes, namely, Zephyr and
FreeRTOS, 3 to 6 months to update their systems, and the less
active TizenRT even takes more than one year on average to
patch vulnerabilities.

3.2 Patching Challenges

We identify two major challenges to patch embedded devices
in time. The first one is to generate patches correctly and
timely for various embedded devices. For specific hardware
devices, the vendors need to first merge the changes of source
code and then build new firmware using each device’s com-
pilation configuration. After that, it is critical to verify the
effectiveness of the patch, as well as the normal functionality
of the post-patching device. Thus, patch generation is a metic-
ulous process that is time consuming and requires specialized
expertise (e.g., familiar with multiple firmware codebase).

The second challenge is to deploy patches without dis-
rupting device operations. Existing hotpatching solutions on
Android and Windows/Linux systems (e.g., relocating linked
libraries [47], runtime function instrumentation [53, 60], and
seamless update with A/B scheme [3, 43]) cannot be directly
applied in RTOS for the following reasons. To support relocat-
ing linked libraries in RTOS, Simon et al. [47] separate user
tasks of FreeRTOS to multiple Executable and Linkable For-
mat (ELF) file. However, it can only update user level tasks but
not the RTOS kernel. The runtime function instrumentation
approach needs to modify instructions on-the-fly; however,
since embedded devices use ROM or Nor-Flash memory to
store the firmware code, it is time consuming to rewrite the
flash memory and thus is impossible to update the firmware
without halting the system. The A/B scheme, widely adopted
by Linux [43], Android, and Espressif ESP32 IoT systems [9],
maintain two instances and migrates from the old system A to
the new system B. Thus, it naturally requires two storage slots,
whereas most embedded devices do not have enough memory
storage for two systems. Also, it still needs to reboot the sys-
tem after updating the kernel. HERA [35] uses the Flash Patch
and Breakpoint Unit (FPB) [59] on Cortex-M3/M4 MCUs
to dynamically patch embedded devices; however, it cannot
work on other types of MCUs that do not have the Flash Patch
feature. Moreover, it requires fixing bugs in the source code
to compile a new firmware, and the device maintainers need
to manually generate and verify binary patches for different
types of embedded devices before deploying these patches,
which is labor-intensive.

3.3 A Motivating Example

We propose a generic patching framework to address above
challenges. The core idea is to provide a common hotpatching
runtime for heterogeneous embedded devices to execute patch
code written in eBPF bytecode (referred to as eBPF patch
hereafter) running in eBPF virtual machine. Since the eBPF
patches can be written and deployed separately, they do not
require any modification in the firmware.

We use the CVE-2020-10063 from Zephyr as an example
to showcase our high-level design. The vulnerable functions
and the corresponding eBPF patch code are shown in Figure 3.
An adversary can send a CoAP packet with illegal options
to trigger the integer overflow vulnerability (the line in red
background) in function parse_option, leading to endless
loop. The original patch adds extra checks to prevent the
overflow (the green lines). In our eBPF patch solution, before
executing the vulnerable function, it redirects the control flow
to the eBPF VM, passes the function’s arguments to the eBPF
VM via stack, and then runs the eBPF code to check these
arguments. When detecting malicious inputs, the eBPF VM
directly returns the EINVAL error code to the function caller.
Otherwise, it restores the origin control flow.

int coap_packet_parse(coap_packet *cpkt,
 u8_t *data, int max_len, /*...*/) {
 // ...
 while (1) {
 // attackers can make ret always > 0
 ret = parse_option(/*...*/);
 if (ret < 0) {
 return ret;
 } else if (ret == 0) {
 break;}
 }
}
static int parse_option(/*...*/) {
 // ... read len from data
 r = decode_delta(/**/, &len, /**/);
 // ...
 *pos += len;
+ if (__builtin_add_overflow(*pos, len
+ /*...*/)) {
+ return -EINVAL;}
 // pos overflow here and r always > 0
 r = max_len - *pos;
 return r;
}

u64 filter(stack_frame *frame) {
 u32 data = frame->r0;
 u32 off = frame->r1;
 u32 len = *(u16 *) (data + off);
 u32 max_len = frame->r3;
 u32 op = OP_PASS;
 u32 ret_code = 0;
 if (len > max_len ||
 len + max_len >= 0xffff) {
 // intercept
 op = OP_DROP;
 ret_code = -EINVAL;
 }
 return set_return(op, ret_code);
}

 eBPF filter for the vulnerable
function (parse_option)

Figure 3: The eBPF filter patch for CVE-2020-10063.

3.4 Threat Model and Assumptions

We assume that the attackers can only attack the embedded de-
vices remotely and cannot access the devices physically. Since
the firmware of embedded devices is typically customized by
the device vendors and does not support third-party user apps,
attackers cannot inject malicious tasks (e.g., via user apps)
to execute third-party code. We assume that the device main-
tainers can obtain patches from trusted sources. Similar to
HERA [35], we assume the patches are signed and encrypted
during transfer so that the maintainers can safely verify their
integrity and authenticity. Since only authorized users (such
as the device maintainers) are able to apply RapidPatch to
perform hotpatching, attackers can only exploit the patch sys-
tem via installing malicious patches after compromising the
authorized users’ credentials.

Since the patches from the RTOS developers may be buggy
due to design flaws and implementation bugs, we propose to
use filter patches that aim to prevent dangerous instructions
from harming the systems, e.g., system crashes or memory
corruption. However, similar to the existing approaches [33,
34, 50], RapidPatch itself cannot ensure the patches should
work properly, which, in general, is decided by the patch
developers.

4 System Design

RapidPatch contains a toolchain for the patch developing
phase to generate and verify the patches and a hotpatch run-
time for the patch execution phase that can be embedded into
existing RTOS or bare-metal firmware to run patches on het-
erogeneous embedded devices. We introduce the design of
these modules by following the workflow of RapidPatch.

CVE
Report

RTOS
Repository

C Source
Code Patch

eBPF Source
Code Patch

eBPF Patch
Configuration

Patch
Generator

Patch Development
(RTOS Developer)

eBPF
Bytecode Patch

Patch Deployment
Configuration

Patch
Verifier Filter Patch

Code
Replace Patch

Patch Installer

eBPF Patch
Executor

Patch Generation & Verification
(Device Maintainer)

Patch Execution
(Embedded Devices)

Test

Firmware
Symbol File

Patch Deployment
(Device Maintainer)

RapidPatch Runtime

Trigger & Load

Figure 4: Overview of RapidPatch.

4.1 Overview of RapidPatch

The overall workflow of RapidPatch is shown in Figure 4.
When a vulnerability is discovered, the RTOS developers first
develop an original patch written in C to fix the vulnerability
in the source code. Next, based on the C source code patch,
the RTOS developers write an eBPF source code patch and a
configuration file describing how to apply the eBPF patch.

Upon being notified with newly available eBPF source
code patches, the device maintainers first check if the vul-
nerable RTOS is used by their devices and download the
corresponding patches if necessary. Since the device main-
tainers may have different models of embedded devices, our
toolchain provides a tool named patch generator to help them
automatically generate corresponding patches for different
devices. The patch generator compiles the eBPF source code
into eBPF bytecode and analyzes the firmware symbol files
to decide the correct patch installation address and obtain the
global addresses (e.g., global variables, functions, or basic
block addresses) that are required by the eBPF code. The
patch generator has two outputs: the eBPF bytecode patch
and the patch deployment configuration file for installing the
patch on a specific firmware.

Based on the bug fixing strategy, we support two types of
eBPF patch: the filter patch that resolves the vulnerability
by filtering out malicious inputs and the code replace patch
that replaces the vulnerable code with secure patched code.
Given the eBPF bytecode patches, the device maintainers
can use a tool named patch verifier to verify the safety of
the patch by identifying harmful behaviors such as illegal
access of kernel memory or excessive loop iterations. Since
the filter patch only performs certain security checks without
introducing new execution paths, it is considered as a form of
safe patch [50]. The code replace patch, however, may require
further test to verify its effectiveness and security.

Finally, the device maintainers install the patches to the
target device via network or other external interfaces such as
USB. The patch data transfer is executed in an independent
thread and the patch is installed to the patch dispatcher using
read-copy-update (RCU) operations. When the vulnerable
code is executed, the patch will be triggered and executed by
RapidPatch’s hotpatching runtime. All the installation steps
do not disrupt the interrupt requests (IRQ) and can be executed
with negligible overhead.

In the following, we describe the design details of Rapid-
Patch, including patch development, patch generation & veri-
fication, patch deployment, and patch execution.

4.2 Patch Development

Based on the original C source code patch obtained from a
trusted source, it is straightforward for RTOS developers to
write the eBPF source code patches. The eBPF filter patch can
fix a large portion of vulnerabilities by validating the inputs.
For the vulnerabilities that cannot be fixed by checking the
inputs, code replace patch can be developed to replace the
vulnerable code.
Filter Patch. It works by filtering out malicious or illegal
inputs at the entrance of the vulnerable code segment. We
use CVE-2020-17443 in AMNESIA33 [6] as an example
to illustrate its development. The original patch in C source
code is shown in Figure 5(a), where the green lines are the
newly added boundary checking code. The root cause of the
vulnerability is that PicoTCP library [23] does not check the
payload length when processing ICMPv6 echo requests, so
function memcpy may suffer from underflow attacks when it
is provided an invalid packet with a small packet length (i.e.,
less than 8).

To fix this vulnerability, a filter patch can be triggered at
the entrance of function pico_icmp6_send_echoreply to
filter out illegal packet length values, as shown in Figure 5(b).
The function arguments are pushed to the stack by the Rapid-
Patch runtime, so the eBPF code can obtain the packet length
argument via pointer operations and then validate the length.
The eBPF VM returns different op codes based on the vali-
dation results, including OP_PASS (i.e., restore and continue
to execute the function), OP_REDIRECT (i.e., return to a basic
block of the vulnerable function), and OP_DROP (i.e., skip the
vulnerable function). Finally, the RapidPatch runtime handles
the results and redirects the control flow by modifying the
return address (see Section 4.4).
Code Replace Patch. For the logical bugs that can only be
fixed via other operations, e.g., calling new functions, chang-
ing variable values, changing data types, or redesigning the
entire functions [57], we fix them by replacing the vulnerable
functions with the eBPF patch code. A foreign function inter-
face (FFI) is enabled to call and execute native C functions

1 int pico_icmp6_send_echoreply(struct pico_frame *echo) {
2 // ... omit
3 + if (echo->transport_len < PICO_ICMP6HDR_ECHO_REQUEST_SIZE) {
4 + return -1; // invalid packet
5 + }
6 /*bug: When the echo->transport_len is less than the
7 PICO_ICMP6HDR_ECHO_REQUEST_SIZE, the memcpy len will
8 arithmetic underflow here */
9 memcpy(reply->payload, echo->payload, (uint32_t)
 (echo->transport_len - PICO_ICMP6HDR_ECHO_REQUEST_SIZE));
10 // ... omit
11 }

#include "ebpf_helper.h"
const int PICO_ICMP6HDR_ECHO_REQUEST_SIZE = 8;

uint64_t filter(stack_frame *frame) {
 uint8_t *echo = (uint8_t *)(frame->r0);
 uint16_t *transport_len_ptr = (uint16_t *)(echo + 38);
 uint16_t transport_len = (uint16_t)(*transport_len_ptr);

 if (transport_len >= PICO_ICMP6HDR_ECHO_REQUEST_SIZE) {
 return set_return(OP_PASS, 0);
 }
 return set_return(OP_DROP, -1);
}

(a). The C Souce Code Patch

(b). The eBPF Filter Patch

Figure 5: Filter patch for CVE-2020-17443

in the eBPF code via eBPF helper functions. The memory
and current stack frame can also be accessed inside the eBPF
VM. The RapidPatch runtime loads and executes the code
replace patch at the location of the vulnerable code and redi-
rects the control flow to the exit point (e.g., the function’s
return address) of the vulnerable code.

As an example, Figure 6(a) shows the C source code patch
for CVE-2020-10023, where the buffer overflow vulnerability
can be raised by wrongly passing shift (instead of j) in the
third argument of function memmove in the shell subsystem.

To fix this bug, Figure 6(b) shows the code replace patch
that revises the original function shell_spaces_trim. The
calling of C function memmove is handled by the C_CALL eBPF
FFI API. Similar to the filter patch, code replace patch uses
OP_DROP or OP_REDIRECT as the return code to indicate if the
patch loader should directly return to caller of the vulnera-
ble function or return to the error handle procedure. We can
further extend the sanity test on the vulnerable function by ac-
quiring more status of function calls. For instance, when patch-
ing the Key Negotiation of Bluetooth (KNOB) vulnerability
(CVE-2019-9506) [28] by banning the Bluetooth connections
with insufficient encryption key lengths, we can obtain the key
length via the Bluetooth’s native Host-Controller Interface
(HCI) API. Since both memory writing operations (out of the
eBPF stack) and the native C function calls are allowed in
code replace patch, it may introduce new bugs that should be
well identified by the patch verifier (see Section 4.3).
Patch Configuration. Both filter patch code and code replace
patch code are generated together with a configuration file
that specifies critical information about patch compilation and
patch deployment. We use YAML to write patch configuration
files. An example configuration is shown in Figure 14 in
Appendix. The first part provides the interception point of

1 void shell_spaces_trim(char *str){
2 // ...
3 for (u16_t j = i + 1; j < len; j++) {
 // ...
- 4 memmove(&str[i + 1],
- 5 &str[j], len - shift + 1);
+ 6 memmove(&str[i + 1],
+ 7 &str[j], len - j + 1);
 // ...
 }
 // ...
}

void ebpf_spaces_trim(stack_frame
*frame) {
 // ...
 for (u16 j = i + 1; j < len;
 j++) {
 // ...
 C_CALL(FUNC_memmove,
 &str[i + 1], &str[j],
 len - j + 1);
 // ...
 }
// ...
}

（b). The eBPF Code Replace Patch(a). The C Source Code Patch

Figure 6: Code replace patch for CVE-2020-10023

vulnerable RTOS, either the entrance of a vulnerable function
or the entrance of a basic block, to trigger the patch code. The
second and third parts define the trigger type and the run type
of patch code in RapidPatch runtime, respectively. The last
part gives a map of the native C functions and required global
variables.

4.3 Patch Generation & Verification
Now we describe the patch compilation and patch verifica-
tion process, which produces device-specific eBPF bytecode
patches deployable on real devices.
Patch Generator. It takes three inputs to generate patches:
the eBPF patch code, the path configuration file, and the
symbol table of the target vulnerable firmware. At the be-
ginning of compiling process, all macros in the eBPF patch
code referring to function names and global variables are
replaced with concrete firmware addresses. This is done by
traversing symbols declared in variable_map of patch con-
figuration file and searching the symbol table of the target
firmware. Then, we use the Clang bpf tool to generate device-
specific eBPF bytecode patches for the target firmware. Fi-
nally, we obtain the patch installation address by parsing the
install_point tag defined in patch configuration file and
searching the symbol table to find out the corresponding sym-
bol’s address. These steps allow us to generate device-specific
eBPF patches.
Patch Verifier. The compiled eBPF bytecode patches are
checked by the patch verifier to verify whether the patch is a
filter patch that can be safely deployed. Certain patch code
behaviors, such as unbounded loops, modifying the memory
out of eBPF stack, and calling C functions, are considered
as unsafe. patch verifier can automatically identify these be-
haviors by analyzing the eBPF instructions of eBPF bytecode
patch. It can also report the code replace patches that may
change the code logic and therefore require additional manual
testing while the filter patches can waive such tests.

Note that Linux’s original eBPF verifier cannot be directly
applied here, since it performs very strict checks on memory
accessing scope and loops. Even the filter patch may have
to break these rules. For instance, reading arbitrary memory
space to access global variables or local variables in vulnera-

Setup Parameters

Call Vulnerable
Function

Handle Return
Code

Instruction A

The Caller of the
Vulnerable Function

Instruction B

Instruction B

return code

Execute eBPF
Code

Save Context

Restore Context

Redirect

Dispatch Patch

Execute Patch

Return Result

Patch Executor

Patch Loader

DROP3

2

1

PASS

REDIRECT

Vulnerable Function

...

Patch Installer
Patch 0

Patch List

Patch 1

Patch 2

Patch 3

Update

JIT Compile

Load

Patch
Trigger

Patch
Transfer

Patch

Figure 7: RapidPatch runtime system.

ble function stack is necessary in eBPF patch code in order
to make proper decisions (such as dropping an incoming re-
quest). Further, applying unbounded loops has been a useful
technique in developing eBPF patches. For example, when
writing an eBPF patch for CVE-2020-10062 of Zephyr, we
use an unbounded loop to obtain the length of input MQTT
packet. Different from the Linux eBPF verifier that performs
verification in runtime, we choose to verify the eBPF patch
code offline, considering that the computation power of em-
bedded devices are limited. Additionally, the results of patch
verifier checks can alert the patch developer. If the patch is
identified as safe, it can be deployed on the device directly
without further tests (which is guarded by our software-based
fault isolation (SFI) approaches, see Section 4.4). However,
when the patch is reported as unsafe, the device maintainers
have to perform further manual tests.

4.4 Patch Deployment and Execution

The device maintainers can deploy the patches on the embed-
ded devices using the same encrypted transfer tunnels as the
traditional OTA updates. Then the patches are installed on the
vulnerable devices and executed by the RapidPatch runtime
as shown in Figure 7.
Patch Installer. It first performs JIT compilation and then
saves the eBPF patch bytecode, JIT native code, and the patch
deployment configuration to a patch list. The installer adopts
a lock-free updating approach, which performs an atomic
switch to a new patch list that contains new patches, similar
to Linux RCU (Read-Copy Update) that ensures patch list is
continuously accessible by other threads such as patch loader.
Patch Trigger. We propose three methods to trigger patches:
(i) the fixed patch trigger inserted manually by programmers
or automatically by the compile-time instrumentation, (ii) the
MCU’s build-in patch features (e.g., FPB Flash Patch), and
(iii) KProbe implemented via hardware debug primitives. As

Patch Point Support Device #Patch

Fixed
Patch Points

Function
Begin All 32+

FPB Basic Block Only Cortex-M3/M4 6

KProbe Basic Block Cortex-M3∼M55(all), RISC-V 8

Table 1: Comparison of different patch triggering methods.

shown in Table 1, these three patch triggering methods have
different usage scopes. The KProbe and FPB can be inserted
or removed at arbitrary addresses during system runtime, but
the fixed patch triggers are added when programming or com-
piling firmware and can only be placed at fixed positions of a
function, e.g., the function entrance. However, the FPB and
KProbe are triggered by the hardware breakpoints and there-
fore the number of active patches is limited by the hardware
breakpoint number (e.g., 6 to 8 in ARM), while the number
of fixed patch trigger is limited by storage space of devices.

Similar to the eBPF XDP [8] hooks, fixed patch triggers are
placed in critical paths of ingress packets and can be applied
to validate inputs. We observe that most of the vulnerabilities
in FreeRTOS and Ripple 20 [21] are located in the payload
processing functions of different layers in the network stack.
To mitigate such vulnerabilities in the network stack, we can
intercept original flawed packet processing flow by adding
fixed patch triggers at the entrance of packet ingress functions
and run eBPF patch code to validate the payload. Note that
KProbe can only work on devices with hardware support
such as ARM, RISC-V; FPB is only supported by the Cortex-
M3/M4 [24]; and the fixed patch points are supported by all
devices. We further discuss it in Section 6.2.
Patch Loader. When a patch is triggered, the patch loader
first saves the context of current function and dispatches the
patch based on the patch index (e.g., lr value) to locate the
appropriate patch from the patch list. For instance, the context
switch on ARMv7-M is shown in Figure 8 where the registers
are saved in stack and passed to the eBPF VM. Thus the eBPF
patch code can access the function arguments from the stack
during execution. Finally, after the patch finishes and exits,
patch loader handles the results and redirects the control flow
based on the return code of the eBPF VM by modifying the
lr (return address) register.
Patch Execution and Runtime Protection. The eBPF patch
code is executed in a new eBPF VM instance using either
interpreter mode or JIT mode. Similar to KARMA [34], we
support sharing state among different eBPF VMs to enable
stateful patches that can share values among different patches
via an eBPF map. We use software-based fault isolation (SFI)
to ensure the security of patch execution. We implement the
SFI in both the eBPF interpreter and the eBPF JIT compiler by
adding extra checks to risk-sensitive instructions, including
the storage instructions and the jump instructions. We also
bound the number of the loop iterations in filter patch by

PUSH {r0-r3, r12, lr}
TST lr, #4
ITE EQ
MRSEQ r0, MSP
MRSNE r0, PSP
BL _patch_dispatch

void _patch_dispatch(
 stack_context *ctx);

POP {r0-r3, r12, lr}
BX lr

Save context and switch to the
patch dispatch function

Restore context

Modify LR

Figure 8: Context switch for patch dispatching

uint64_t str_hash(char *arr) {
 int i = 0;
 uint64_t sum = 0;
 while (arr[i]) {
 sum += arr[i];
 i++;
 /* Checking iterations
 if (cycles > 0x20)
 break; */
 }
 return sum;
}

mov r0, 0x0
ldxb r2, [r1]
jeq r2, 0x0, +8

lsh r2, 0x38
arsh r2, 0x38
add r0, r2
ldxb r2, [r1]
add r1, 0x1
jne r2, 0x0, -6

exit

mov r0, 0x0
add r1, 0x1

add r9, 0x1
jsgt r9, 0x20, +1
Instrumentation for
Checking iterations

eBPF Code eBPF Instructions

Figure 9: An example of limiting the loop iterations.

adding extra checks to the jump instructions. The jumps with
negative offset are backward jumps and indicate that there are
loops. By using a single variable to count all the backward
jumps including both inner loops and outer loops, we can
obtain the iterations of all loops. As shown in Figure 9, in
JIT mode, we add extra instructions via instrumenting JIT
compilation to record the iteration cycles and check if it is
larger than the threshold (i.e., 0x20, 32) before jumping to
negative offsets. In this way, we can limit total number of loop
iterations and bound the total execution time of filter patches.

Note that, all the steps, from patch installation to patch
triggering and execution, do not disrupt the interrupt requests
(IRQ) and can run without halting other tasks. Thus, Rapid-
Patch realizes hotpatching with limited latency, satisfying the
real-time requirements on embedded devices.

5 System Implementation

We prototype the RapidPatch toolchain to generate and verify
patches, and develop RapidPatch runtime as a module in pop-
ular RTOSes including Zephyr [26], Amazon’s FreeRTOS [5],
LiteOS [14], and NuttX [7] to install and execute patches. To
demonstrate the generality of RapidPatch, we port RapidPatch
runtime to devices with different specifications and architec-
tures, as listed in Table 4. To reproduce CVEs in real devices,
we also port specific modules associated with the vulnerable

code, such as USB and Ethernet modules. The total devel-
opmental effort includes 6468 lines of C code to implement
the RapidPatch runtime (including the inline assembly code),
1733 lines of Python to implement the RapidPatch toolchain,
as well as roughly 1900 lines of C and python to implement
several test applications and evaluation tools.
RapidPatch toolchain. The RapidPatch toolchain includes
patch generator that processes and compiles the eBPF patch
with the Clang bpf tool and patch verifier that utilizes static
analysis to verify the safety of the patches. Specifically, before
compilation, the patch generator scans the eBPF source code,
which may use macros to represent variables or functions,
and the patch configuration file, which defines the macros
and describes the detailed variable/function names or state-
ment lines in the corresponding C code. After that, the patch
generator locates the variable register or addresses, function
addresses, or basic block addresses by analyzing the symbol
files (generated by objdump) and replaces the macros in the
eBPF source code with their actual addresses or registers. Fi-
nally, the patch generator finds the patch installation address
by locating the corresponding function name or the basic
block entrance based on the symbol files.

Before installing the patch, the patch verifier needs to check
if the patch is safe to deploy by analyzing the instructions
used by that patch. Specifically, we only allow filter patches
to write limited addresses inside the eBPF stack. Further,
to constrain loops in filter patches, we can set a threshold
for the number of iterations based on the MCUs’ frequency
and the latency requirements of devices (for instance, setting
a larger threshold for the low priority tasks that are delay-
tolerant). If the patch contains risk-sensitive behaviors such
as memory writing and function call, patch verifier alerts the
device maintainers that it is not a safe patch ready for instant
deployment.
RapidPatch runtime. The runtime contains the hotpatching
module and the eBPF module. We port the Linux eBPF VM
and make it executable independently on various platforms
using only a small part of libc that is also supported by the
Newlib [17] on embedded devices. We also implement sev-
eral types of eBPF maps for different scenarios. Note that,
different from the original Linux eBPF map, we do not need
to copy map data from user space to kernel space as most
embedded systems do not have MMU and the data can be
directly shared. In addition, we implement assemble, disas-
semble and compile tools for eBPF code using Python and
Clang, which allow users to test the eBPF programs to ensure
the correctness of the code.

We implement dynamic patch triggers leveraging FPB and
KProbe, which use the hardware breakpoint features in ARM
Cortex-m series. Similar to InstaGuard [33], we use hard-
ware breakpoints to trigger the debug monitor exception to
load patches. The debug event will be triggered when the
instruction of the program counter (PC) hits the hardware
breakpoint and enters the debug monitor exception handler.

All CVE High Risk CVE

#CVE #Fix #Filter #CVE #Fix #Filter

Zephyr 29 24 17 18 16 13
FreeRTOS 13 13 11 6 6 4
Libraries 20 19 17 18 17 15

Total 62 56 35 42 37 32
Precent 100% 90.3% 56.5% 100% 88.1% 76.2%

Table 2: Patching various CVEs using RapidPatch.

Since PC will not move to the next instruction in the debug
mode, we need to either modify the instruction address in the
PC register or disable the hardware breakpoint temporarily to
continue the execution of the program. In addition, we should
enable the breakpoints again after exiting the debug monitor
handler to make sure our patch system can still be triggered at
this patch point in the following function calls. To solve this
issue, we return and skip the breakpoint by modifying the PC
for OP_DROP and OP_REDIRECT. For OP_PASS, the program
needs to be continued in the buggy function from the break-
point instruction. Thus, we temporarily reset the hardware
breakpoints to exit the FPB debug mode.

Our eBPF module supports both interpreter and JIT mode.
The original Linux eBPF JIT compiler is designed for instruc-
tion sets such as ARM-32, and does not support Cortex-m’s
ARM Thumb instruction set. We implement the JIT compiler
for Cortex-m3+ MCUs that use the ARM Thumb-2 instruc-
tion set. As the Thumb-2 instruction set supports only 16-bit
and 32-bit instructions, we map two 32-bit registers to one
64-bit eBPF register and translate most eBPF instructions into
at least two Thumb-2 instructions. Meanwhile, using more
16-bit Thumb-2 instructions reduce storage consumption. We
implement SFI in both eBPF interpreter and JIT compilers.
In the interpreter mode, we can count and limit the total num-
ber of instructions and loop iterations. In the JIT mode, we
stop compilation if the filter patch contains memory-writing
instructions and add extra instructions to check and limit the
loop iterations.

6 Performance Evaluation

We first demonstrate the generality and flexibility of Rapid-
Patch and the adaptability of hotpatching using five devices.
After that, we perform system evaluations to measure the
delay of hotpatching and the overhead it incurs.

6.1 Applicability of RapidPatch

We collect CVEs of major embedded systems and develop
RapidPatch patches for them to measure how many vulnera-
bilities can be fixed by RapidPatch.
CVE Dataset. We build a CVE dataset (shown in Table 7) by
collecting all public CVEs with detailed vulnerability descrip-

tions and corresponding vulnerable code from the open-access
CVE database [16]. We cannot find any public CVEs for
NuttX [7] and LiteOS [14], and some CVEs are excluded due
to the lack of source code, such as the Treck TCP/IP stack vul-
nerabilities in RIPPLE20 [21] and several CVEs in FreeRTOS
and MbedTLS. As listed in Table 7, we analyze the vulnerable
code of 62 CVEs of RTOSes including FreeRTOS [5], Zephyr
OS [26], and Libraries (such as MbedTLS [15], WolfSSL [25],
and the AMNESIA33 [6] vulnerabilities).

We confirm if the vulnerabilities in our CVE dataset can
be fixed by RapidPatch. The statistics indicate that more than
90% of CVEs can be fixed by either filter patch or code replace
patch. Specifically, 42 CVEs are marked as High (risk score
7.0-9.0) or Critical (risk score 9.0-10.0) based on the severity
ranking by NVD [16]. Among all these 42 high or critical risk
CVEs, 37 (around 88%) can be fixed, and 32 (76%) can be
fixed by filter patches. The results show that filter patches are
effective in preventing the majority of vulnerabilities, such as
out-of-range access or lack of sanity checks, which could lead
to serious problems such as remote code execution (RCE).

There are several special cases that are not suitable for hot-
patching. 6 out of 62 CVEs cannot be handled by RapidPatch
due to one of the following two reasons. First, some patches
modify the macros or struct definitions, impacting the entire
firmware. For instance, fixing CVE-2017-14202 in Zephy-
rOS needs to increase the memory size for the shell history
items by modifying the corresponding macro. Second, the
original C patch is trying to fix too many vulnerable func-
tions at the same time. A typical case is CVE-2020-10064 in
Zephyr OS, which modifies a dozen of IEEE 802.15.4 frame
processing functions. Hotpatching this many vulnerabilities
simultaneously could exhaust the hardware resources.

6.2 Adaptability of RapidPatch

RapidPatch runtime is a portable C library that only re-
lies on a few POSIX APIs (such as malloc/free) and can
be easily ported to different RTOSes. We have successfully
ported RapidPatch runtime to Amazon FreeRTOS, Zephyr OS,
NuttX, and LiteOS (five most commonly used RTOSes [11])
with an average code modification of 47 lines (including the
modification in Makefile and CMake). RapidPatch runtime is
used as a new component for these RTOSes and developers
can use the existing menuconfig tool to enable or disable this
feature.

We choose three types of most used connective devices
to evaluate the portability of RapidPatch runtime: (i) the
NRF52840 development board with built-in wireless support
in the MCU, (ii) STM32L475, STM32F429 and GD32VF103
which only support wired connection via SPI interfaces, and
(iii) ESP-WROOM32, a dedicated WIFI/bluetooth MCU. The
detailed specification of these devices is shown in Table 4.
Currently we only implement JIT mode in ARMv7-m used
by the Cortex-M3/M4 MCU. The RapidPatch runtime needs

CVE-ID OS/Lib Vulnerability
type Bug description Patch

Type
Patch
lines

c1 2020-10063 ZephyrOS Integer Overflow The uint16_t overflow in CoAP function _parse_option Filter 12
c2 2020-10021 ZephyrOS Out-of-Bounds Write Usb massive storage over range write Filter 14
c3 2020-10023 ZephyrOS Logical Bug Incorrect logic for string strip in shell Replace 52
c4 2020-10024 ZephyrOS Instruction Misuse Misuse the signed comparison for the unsigned Filter 11
c5 2020-10028 ZephyrOS Lack Sanity Checking The GPIO handlers do not verify the arguments Filter 15
c6 2020-10062 ZephyrOS Logical Bug Packet length decoding error in MQTT Replace 38

c7 2018-16524 FreeRTOS Division by Zero The RxWindowLength may divide zero (MSS = 0) Filter 59
c8 2018-16528 FreeRTOS State Confusion Recv before the mbedTLS success to initialize Filter + Map 6 + 12
c9 2018-16603 FreeRTOS Out-of-Bounds Read xProcessReceivedTCPPacket read over range Filter 14

c10 2017-2784 mbedTLS Invalid Free Free the pointer in mbedtls_mpi before initializing Filter 5
c11 2020-17443 AMNESIA33 Lack Packet Checks ICMPv6 echo request header length has no limit Filter 13
c12 2020-17445 AMNESIA33 Lack Option Checks IPv6 header’s dest options lengths not checked Filter 25

Table 3: The eBPF patch for different CVE types.

Device MCU Arch Frequency Flash SRAM

NRF52840 Cortex-M4 64MHz 1MB 256KB
STM32L475 Cortex-M4 80MHz 512KB 128KB
STM32F429 Cortex-M4 180MHz 2MB 256KB
ESP-WROOM32 Xtensa 240MHz 448KB 520KB
GD32VF103 RISC-V32 108MHz 128KB 32KB

Table 4: The specifications of evaluated embedded devices.

about 13KB flash memory and 5KB RAM. Considering the
RTOS and user applications typically need roughly 45KB
flash memory, RapidPatch can work on devices with only
64KB or more flash memory.
Hotpatching Strategies on Different Devices. We use CVE-
2018-16603 from FreeRTOS to test RapidPatch on the five
devices. In ARM Cortex-M4 devices, both dynamic patch
points (i.e., FPB and KProbe) and fixed patch points can be
used to trigger the patch. Note that KProbe is not supported
by Xtensa MCUs [13]. It can work on RISC-V MCUs [22]
but we have not implemented it yet. Finally, we use fixed
patch points to trigger the patch. The vulnerable function is
patched successfully on these devices with a delay of 12.9 µs
∼ 28.1 µs in interpreter mode. We compare the delays of all
the three hotpatching strategies on Cortex-M4 in Section 6.3.

The Espressif devices with Xtensa architecture (e.g.,
ESP32) are widely used as addons for other MCUs with-
out wireless functions. We use it to evaluate the practicality
of fixed patch points and measure the delay and storage over-
head with different numbers of fixed patch points. We develop
a source code instrument tool to add a macro that saves the
context and calls the patch dispatcher at the entrance of func-
tions. Note that the tool can only hook the functions which
are non-inline, or return a value type (e.g., int, pointers) or
void, or use assembly code. In FreeRTOS on the ESP32 devel-
opment board, we add fixed patch points to 1442 out of 4372
functions and the size of firmware increases by 31KB, result-
ing in a storage overhead of 3.8%. For Zephyr OS, we add

fixed patch points to 1051 out of all the 1861 functions and
need extra 14KB flash storage, resulting in a storage overhead
of 7.0%. Nevertheless, if only the network stacks are instru-
mented, the incurred storage overhead is negligible. Since
the functions with fixed patch points need to execute extra
instructions to call the patch dispatching functions, we use a
bitmap to quickly check if there are active patches at these
functions. We evaluate the performance impact in Section 6.4
and the applications slow down 2.15 ∼ 9.14% when all the
subsystem functions are instrumented. Note this hotpatching
approach can also be used in MIPS, AVR MCUs.

6.3 Patching Delay
We first follow the RapidPatch runtime’s design in Figure 7 to
perform a micro-benchmark of each patch execution phase on
both Zephyr OS and bare-metal firmware using the NRF52840
device. Then we evaluate the delay of the entire patching
process on various devices.
Patch Loading Delay. Since the patch loading process only
contains fixed instructions for triggering the patch and sav-
ing/restoring the context, which is consistent among different
patches for the same patching strategies, we can measure the
standalone loading delay by excluding the patch dispatching
and executing phases from the whole patching process. We
ran each patch triggering strategy for 10 times to count the
average CPU cycles on the NRF52840 device. The OP_PASS
operation needs to reset the hardware breakpoint status (see
Section 5) to avoid repeatedly executing the breakpoint in-
struction. As a result, when using FPB and KProbe that are
triggered by hardware breakpoints, the patch loading time
changes in different redirection operations. The results are
shown in Table 5. All these strategies can finish within 400
CPU cycles (about 7 µs on NRF52840). The fixed patch points
have less instructions than the KProbe/FPB and only needs 66
cycles. As a comparison, the UART printf function needs
about 180000 CPU cycles.
Patch Dispatching Delay. The patch dispatching approach

0 8 16 24 32 40 48 56 64
(a) Dispatch delay of various patch numbers

0

1

2

3
Di

sp
at

ch
 D

el
ay

 (μ
s)

NRF52840 STM32L475 STM32F429
(b) Total patch delay in various devices

5

10

15

To
ta

l P
at

ch
 D

el
ay

 (μ
s)

Timeline
(c) PWM Servo Motor control

Motor
Task

Patched
Task

Installer
Task

Figure 10: The patching delays on different devices.

Fixed Patch
Point FPB Debug

Monitor

OP Cycles Time Cycles Time Cycles Time

No Patch 66 1.03 0 0 0 0
Pass (Continue) 66 1.03 395 6.17 252 3.94
Drop / Redirect 66 1.03 120 1.87 135 2.1

Table 5: The CPU cycles and time required by various patch
triggering methods for a single vulnerability in NRF52840.

selects the appropriate patch from all the active patches. We
measure the time consumption of the patch dispatching func-
tion with different numbers of active patches. Due to memory
constraints, most devices can only install a limited number of
patches, and therefore we set 64 as the maximum active patch
number. As is shown in Figure 10 (a), the dispatching time
increases with the patch number and need about 2.0 µs for 64
patch points.
eBPF Code Execution Delay. The patch execution time can
be evaluated independently by directly running the patch code.
Since the delay of patch execution depends on the detailed
eBPF code (e.g., instruction number, time complexity) and
the inputs, we set different arguments to run the patches for
different CVEs types, as shown in Table 3. The filter patch’s
delay is negligible as it only needs to check the inputs and
the loop count is limited by SFI. Nevertheless, the replace
patch can use all kinds of logic and its delay depends on
the detailed implementation. We run the eBPF patches for
the CVEs in Table 3 and measure the time consumption in
both eBPF interpreter mode and JIT mode on the NRF52840
device. As shown in Table 6, when running in interpreter
mode, the patch delay is 8 ∼ 30 µs and this duration can be
smaller than 2 µs in JIT mode. However, calling C function in
eBPF code is time consuming (about 300 extra cycles in JIT
mode). As an example, the patch code for CVE-2020-10023
calls function memmove for tens of times and needs 14.7 µs
while the original C function only needs 5.6 µs.
Comparison with HERA. We reimplement HERA’s patch-
ing approach in our STM32L475 device using Cortex-M4’s
FPB flash patching feature and measure its patching delay.
We use FreeRTOS’s CVE-2018-16601 as an example. On

CVE # of eBPF
Instructions

eBPF
Interpreter eBPF-Jit Memory

(Bytes)

c1 8 27.3 µs 1.7 µs 56
c2 16 8.5 µs 1.6 µs 48
c3 100 133.3 µs 14.7 µs 260
c4 12 9.5 µs 2.0 µs 68
c5 14 23.5 µs 1.5 µs 48
c6 55 51.2 µs 4.4 µs 232
c7 46 26.8 µs 1.8 µs 188
c8 10+10 14.9 µs +16.2 µs 2.8 µs +2.7 µs 56+68
c9 10 28.1 µs 1.8 µs 52
c10 7 10.1 µs 1.4 µs 48
c11 7 9.5 µs 1.6 µs 48
c12 36 22.2 µs 3.9 µs 156

Table 6: The execution times of eBPF patches on NRF52840.

STM32L475, when dispatching 1 to 5 patches in the dis-
patcher, HERA needs 0.3 ∼ 0.85 µs, and RapidPatch needs
3.2 ∼ 4.3 µs since it needs to return to the original func-
tion for OP_PASS. For patch execution, HERA needs 0.25 µs
to execute the extra patching instructions while RapidPatch
needs 1.5 µs to execute the patch in JIT mode. Overall, Rapid-
Patch has slightly higher, yet comparable, patching overhead
compared with HERA.

Total Patching Delay. We use the CVEs in Table 3 to mea-
sure the total patching delays by applying KProbe patch
triggers on various devices with Zephyr OS and bare-metal
firmware. As shown in Figure 10(b), the average patching
delay is less than 7.5 µs, and MCUs with higher frequencies
have smaller delays. Since the patch loading delays depend
on the trigger strategies and have a fixed delay of less than 6
µs, the entire patching delay is mainly decided by the detailed
patching code. For the filter patches, we can limit the total
loop iterations via SFI, and therefore can achieve bounded de-
lays of 8 µs. We find that the patching delays are not affected
by whether the devices are installed with RTOSes. Instead,
the task schedules of the OS have more impacts.
Patching Real-Time Tasks. To further measure how other
tasks may affect the patching process, we execute the hot-
patching task under the Servo Motor controlling scene. As
shown in Figure 10(c), the Servo Motor is controlled by the
pulse-width modulator (PWM) timer exception in a fixed cy-

cle of 10ms. The motor task has a hard real-time constraint to
control the motor every 10ms and thus has the highest priority.
In our evaluation, the task to be patched (i.e., the patched
task) runs with a medium priority. We set the patch installer
task with the lowest patching priority, so it does not interrupt
any other tasks. The patch installer task is shown in À and it
is interrupted by the motor task. As the patch installer task
completes successfully, the patch is triggered immediately
when the vulnerable function is invoked. The patch installa-
tion and execution are finished within 10 ∼ 20 ms since it is
split into multiple CPU time slices. RapidPatch allows other
task to intercept the patch execution at any time. The patch
triggering processes can also be interrupted. In particular, the
FPB and fixed patch points obviously do not block the tasks
with high priority [35]. Since KProbe is implemented by the
debug monitor [58], we can set a low exception priority via
the nested vector interrupt control (NVIC). Thus, RapidPatch
will not disrupt device operations with real-time constraints.

6.4 System Overhead of Patching

We evaluate the patching system’s overhead under different
patching strategies. Although the delay of a single eBPF patch
execution is around 6 µs in the JIT mode and 20 µs in the
interrupter mode, the total delay can be accumulated, which
is decided by how frequently the patched function is executed.
We patch the critical paths in the network stack triggered by
the ingress packets and measure the end-to-end latency of the
network applications.
Dynamic Patch Triggers. We first use dynamic patch trig-
gers to evaluate the overheads in different scenarios. We
choose three CVEs from different subsystems of Zephyr
OS, including CoAP library (CVE-2020-10063), MQTT li-
brary (CVE-2020-10062) and the USB massive storage li-
brary (CVE-2020-10021). We use three corresponding demo
apps running on the NRF52840 device, each containing the
vulnerable function of the specific CVE in its critical exe-
cution path. For each app, we install a filter patch triggered
by KProbe on the buggy function and send thousands of re-
quests to measure the end-to-end interaction delay incurred
by RapidPatch. The CoAP demo app works as a server, using
a single thread to connect to a remote client, and we measure
the request-response duration for every request. The MQTT
demo app functions as a subscriber and connects to a broker
to keep sending PUBACK messages after receiving PUB-
LISH packets. We record the delay between every PUBLISH-
PUBACK pair. In the USB massive storage app, the board
connects to the machine via a USB cable, and responds to
a few read/write commands sent from the machine in every
iteration. We measure the duration of every iteration. We use
the original system as baselines and compare its performance
with eBPF interpreter-patched and eBPF JIT-patched modes.

As shown in Figure 11, the patching delay under all three
application scenarios is negligible, no matter using an eBPF

interpreter mode or an eBPF JIT mode. The latency distribu-
tions of both eBPF JIT patches and eBPF interpreter-patches
are quite close to the original system, while the eBPF JIT
mode imposes slightly lower latency than the interpreter mode.
In particular, the delay incurred by the eBPF interpreter mode
for all three demo apps ranges 0.06% ∼ 1.5%, and the delay
incurred by the eBPF JIT mode ranges 0.01% ∼ 0.6%. Such
extra delays are acceptable because even for the most delay-
sensitive demo app, i.e., CoAP app, all the request-response
latencies are milliseconds, which is much higher than the sin-
gle patch execution delay (on the order of microseconds as
discussed in Section 6.3). Overall, the above results demon-
strate that a single patch with dynamic patch trigger introduces
negligible impacts on embedded devices.
Fixed Patch Points. Since the fixed patch points can affect
all the functions instrumented in RTOSes, an increasing num-
ber of functions equipped with fixed patch points may cause
a higher delay to the system. As shown in Figure 12, we add
different scales of fixed patch points in FreeRTOS and Zephyr
OS, i.e., only the network stacks, all the subsystems, and the
whole system. We install a patch to a vulnerable function
of the network stack and send 10K requests to measure the
average latency of CoAP Apps. On the NRF52840 device
with Zephyr OS, we instrument 342 functions of the network
stack (18.4% of all functions in the firmware) and the in-
curred latency overhead is about 1.84%. When instrumenting
401 functions of all subsystems (21.5%), the incurred latency
overhead is about 2.15%. When instrumenting 1051 functions
of the whole system (56.5%), the incurred latency overhead
is about 18.8%. On the ESP32 device1 running FreeRTOS,
when 195 functions of the network stack (4.5%) are instru-
mented, the incurred latency overhead is about 0.42%. When
499 functions of all subsystems (11.4%) are instrumented,
the incurred latency overhead is about 9.14%. When 1441
functions of the whole system (33%) are instrumented, the
incurred latency overhead is about 12.1%. The latencies are
increasing with the number of patch points even though there
are no active patches installed at these places. The patch trig-
gering and execution delays of each active patch are similar
to the cases using dynamic patch points.
Discussion. Since the patch downloading, JIT compiling,
and installing processes can run as background tasks, the ma-
jor performance impacts of our patching system are caused
by patch triggering and patch execution. When there are no
patches installed, the dynamic triggers are vetted by the hard-
ware and incur negligible overhead while the fixed patch
points incur more significant delays as they are inserted into
the functions and called repeatedly. As shown in Figure 12,
our fixed patch points’ instrumentation approach has a similar
overhead as the stack canary [36] which only needs to load
the global canary value twice from the SRAM to make a com-
parison. In our experiments, on different RTOSes, if we only

1We set the MCU frequence to 80 MHz.

3000 3500 4000 4500
Histogram of CoAP GET Request Latency [µs]

0

500

1000

1500

Nu
m

be
r o

f R
eq

ue
st

Mean 3076.84470
Median 3039.00000
P99.5 4497.08500
Without Patch

6 8 10 12 14 16
Histogram of USB Mass Storage I/O Latency [ms]

0

500

1000

1500

Nu
m

be
r o

f I
/O Mean 7.31816

Median 7.20552
P99.5 13.47332
Without Patch

0.495 0.500 0.505 0.510 0.515 0.520
Histogram of MQTT PUBACK Latency [s]

0

20

40

60

Nu
m

be
r o

f P
UB

LI
SH Mean 0.50598

Median 0.50594
P99.5 0.51159
Without Patch

3000 3500 4000 4500
Histogram of CoAP GET Request Latency [µs]

0

500

1000

1500

Nu
m

be
r o

f R
eq

ue
st

Mean 3121.60310
Median 3090.00000
P99.5 4673.39000
Interpreter Patch

6 8 10 12 14 16
Histogram of USB Mass Storage I/O Latency [ms]

0

500

1000

1500

Nu
m

be
r o

f I
/O Mean 7.38754

Median 7.21123
P99.5 15.64221
Interpreter Patch

0.495 0.500 0.505 0.510 0.515 0.520
Histogram of MQTT PUBACK Latency [s]

0

20

40

60

Nu
m

be
r o

f P
UB

LI
SH Mean 0.50633

Median 0.50620
P99.5 0.51180
Interpreter Patch

3000 3500 4000 4500
Histogram of CoAP GET Request Latency [µs]

0

500

1000

1500

Nu
m

be
r o

f R
eq

ue
st

Mean 3094.34990
Median 3056.00000
P99.5 4721.02500
JIT Patch

6 8 10 12 14 16
Histogram of USB Mass Storage I/O Latency [ms]

0

500

1000

1500
Nu

m
be

r o
f I

/O Mean 7.31893
Median 7.20768
P99.5 13.59083
JIT Patch

0.495 0.500 0.505 0.510 0.515 0.520
Histogram of MQTT PUBACK Latency [s]

0

20

40

60

Nu
m

be
r o

f P
UB

LI
SH Mean 0.50628

Median 0.50617
P99.5 0.51187
JIT Patch

Figure 11: The incurred delays by RapidPatch on NRF52840DK with Zephyr OS.

None Net
18.4%

Subsys
21.5%

Whole
56.5%

Stack
Canary
100%

0

1

2

3

4

5

6

M
ea

n
Co

AP
 G

ET
 R

ep
 L

at
en

cy
 [m

s]

+1.84%+2.15%
+18.8%

+37.7%

Zephyr OS on NRF52840, Ethernet

None Net
4.5%

Subsys
11.4%

Whole
33.0%

0

5

10

15

+0.42%
+9.14% +12.1%

FreeRTOS on ESP32, WiFi

Figure 12: Overhead with various scales of fixed patch points.

place fixed patch points within the most risky code blocks
(i.e., the network stacks), the overhead is less than 2%. When
placing fixed patch points all around the systems, especially
in the RTOS’s core functions, the total overhead is up to 20%.
The results on different devices and various RTOSes indicate
that placing multiple active patches have little impact on the
system’s performance, because the execution of a single patch
only incurs less than 20 µs delay (as shown in Section 6.3).
In fact, the total installed patch number is mostly dominated
by the memory size, rather than performance degradation.

7 Related Work

IoT Firmware Update. Normally, over-the-air (OTA) up-
dating [19] is utilized to add new features in IoT sys-
tems or fix software bugs (and vulnerabilities) by fully or
incrementally modifying the on-chip firmware. Existing
works [29, 32, 39, 51] proposed reprogramming methods to

reduce the transmitted data during updating. Several frame-
works [27, 49] have been proposed to secure OTA updating,
including the firmware generation, propagation, verification,
and installation phases. However, OTA updating operations
require reprogramming the NOR-Flash memory, which means
erasing and rewriting partial code blocks of the system. As
we have discussed, writing the execution code on flash def-
initely will halt the corresponding task threads. Although
dynamic linking and relocating the RTOSes tasks/libraries
can eliminate the system halt [47], it cannot be applied to
existing RTOSes, most of which use static linked tasks. In-
stead of directly modifying the running code on flash, our
approach leverages hardware debug features to dynamically
load patches or only modify the quiescent code to avoid inter-
fering with the system execution during system update.

Hardware Based Hotpatching. Different from the tradi-
tional hotpatching techniques, hardware based hotpatching
triggered by hardware debug units can avoid injecting new in-
structions to vulnerable programs or the corresponding mem-
ory space [33, 35]. For instance, Instaguard [33] leverages
hardware to enable a rule-driven hotpatching mechanism for
Android mobile devices, which can significantly reduce the
delay of system patching. Nevertheless, it cannot be applied
on IoT devices that run RTOS applications because of the
following reasons. First, most of RTOSes only run with one
process with various threads in charge of separate task loops,
and thus we cannot simply terminate the affected process by
using their mechanism. Second, according to our studies on
RTOS related CVEs, many CVEs are raised by logic errors
in RTOSes, which cannot be fixed by applying rule-based
filtering in Instaguard. RapidPatch well addresses this issue

by enabling dynamic code replacement with eBPF. Although
HERA [35] can fix such bugs by leveraging the FPB to redi-
rect the vulnerable code to the new binary code, it can only be
applied in ARM Cortex-M3/M4 devices. RapidPatch enables
a generic approach for different platforms by utilizing both
fixed and dynamic patch triggers in various platforms. Particu-
larly, RapidPatch allows dynamic update when the vulnerable
function has states shared with other functions, e.g., to fix
CVE-2018-16528 (i.e, the vulnerabilities in TLS connectivity
modules), which has not been addressed via stateful patches.
Patch Analysis. Patch analysis for vulnerability discovery
has been studied in the literature [61]. Fore example, Zhang
et. al. propose FIBER [52, 61], a tool to analyze an Android
kernel and check if the source code of the kernel have merged
with a patch. Pewny et. al. [52] can verify if a bug exists
in software by semantic comparison based binary analysis.
Their method can also identify bugs across different archi-
tectures and find the heartbleed vulnerability in three types
of instruction sets (i.e., x86, ARM, and MIPS). These works
orthogonal to RapidPatch. We can leverage these tools to
identify versions of vulnerable RTOS systems.
System Enhancement with eBPF. In Linux, eBFF are usu-
ally used to implement new network functionalities, e.g., per-
formance analysis, network acceleration, and intrusion detec-
tion [44–46]. In particular, eBPF has been recently used to
develop different defense systems with low processing over-
head [38, 40–42, 48, 54, 55]. To best of our knowledge, Rapid-
Patch is the first OS-independent RTOS library that leverage
eBPF to enable safe hotpatching for various vulnerable RTOS
applications with different instruction set architectures.

8 Discussion

Existing hotpatching solutions in Linux/Android are not appli-
cable on embedded devices due to their resource limitations
and requirements on real-time patching. Similar to HERA,
RapidPatch can hotpatch the RTOS without modifying the
flash (which could impose hundreds of milliseconds delays
since the flash sectors need to be first erased before rewrit-
ing), and therefore avoid violating the real-time constraints.
Moreover, to address the limitations of HERA, RapidPatch
provides new patching strategies to support more devices and
use bytecode patches to automatically adapt to heterogeneous
devices. Yet, RapidPatch still has some common limitations
of hotpatching. First, RapidPatch is applied to fix small bugs
rather than perform large feature updates and it may fail in cer-
tain cases (discussed in Section 6.1). Second, even though the
filter patches do not require extra tests, the eBPF verifier can
only ensure that the fault patches do not damage the system,
without providing guarantees that the patches are bug-free.
Third, the device maintainers still need to manually obtain the
patches from the providers (e.g., the RTOS/Library develop-
ers) and deploy the patches via RapidPatch. The RapidPatch is
suitable for the vendors to quickly deploy temporary patches

to prevent the exploitation of vulnerabilities. To better pro-
tect the devices, they need to regularly renew the versions of
RTOSes/Libraries for the firmware.

9 Conclusion

In this paper, we propose RapidPatch, a novel hotpatching
framework aiming at accelerating the patch development and
deployment for real-time embedded devices. RapidPatch al-
lows different vendors to share the same source code patch
among all the heterogeneous devices for the same vulnera-
bility and the generated patches can be instantly installed by
all downstream devices. We prototype RapidPatch that can
be deployed on different types of embedded devices. In par-
ticular, by porting the eBPF VM JIT mode to these devices,
RapidPatch enables hotpatching the devices with a negligible
delay. We evaluate RapidPatch on major CVEs on diferent
RTOSes with various devices to demonstrate the applicability,
genericity, and performance of RapidPatch.

Acknowledgments

We would like to thank our shepherd Ahmad Reza Sadeghi
and the anonymous reviewers for their comments. This
work is supported in part by the National Key R&D
Program of China under Grant 2018YFB1800304, NSFC
under Grant 62132011, 61825204, U20B2049, 61822207,
61822309, and 61773310, Beijing Outstanding Young Sci-
entist Program under Grant BJJWZYJH01201910003011,
Shaanxi Province Key Industry Innovation Program under
Grant 2021ZDLGY01-02, and BNRist under Grant BNR2020
RC01013. Kun Sun’s work is supported in part by the U.S.
Department of the Army grant W56KGU-20-C-0008 and the
National Science Foundation under Grant CNS-1822094. Qi
Li is the corresponding author of this paper.

References

[1] The RapidPatch source code. https://github.com/I
oTAccessControl/RapidPatch.

[2] A thorough introduction to eBPF. https://lwn.net/
Articles/740157/, (Last Accessed, May 3, 2021).

[3] A/B (Seamless) System Updates. https://source.a
ndroid.com/devices/tech/ota/ab, (Last Accessed,
May 3, 2021).

[4] About the flash patch and breakpoint unit in arm
cortex-m3/m4. https://developer.arm.com/do
cumentation/ddi0337/h/debug/about-the-fl
ash-patch-and-breakpoint-unit--fpb-, (Last
Accessed, May 3, 2021).

https://github.com/IoTAccessControl/RapidPatch
https://github.com/IoTAccessControl/RapidPatch
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://source.android.com/devices/tech/ota/ab
https://source.android.com/devices/tech/ota/ab
https://developer.arm.com/documentation/ddi0337/h/debug/about-the-flash-patch-and-breakpoint-unit--fpb-
https://developer.arm.com/documentation/ddi0337/h/debug/about-the-flash-patch-and-breakpoint-unit--fpb-
https://developer.arm.com/documentation/ddi0337/h/debug/about-the-flash-patch-and-breakpoint-unit--fpb-

[5] Amazon FreeRTOS. https://aws.amazon.com/fre
ertos/, (Last Accessed, May 3, 2021).

[6] AMNESIA:33 – Foresout Research Labs Finds 33 New
Vulnerabilities in Open Source TCP/IP Stacks. "https:
//www.forescout.com/company/blog/amnesia33-
forescout-research-labs-finds-33-new-vuln
erabilities-in-open-source-tcp-ip-stacks/",
(Last Accessed, May 3, 2021).

[7] Apache NuttX. https://nuttx.apache.org/, (Last
Accessed, May 3, 2021).

[8] eBPF XDP. https://blogs.igalia.com/dpino
/2019/01/07/a-brief-introduction-to-xdp-an
d-ebpf/, (Last Accessed, May 3, 2021).

[9] Espressif’s A/B Systems based over the air update
(OTA). https://docs.espressif.com/projects/
esp-idf/en/latest/esp32/api-reference/syst
em/ota.html, (Last Accessed, May 3, 2021).

[10] Hacking the Printer. https://www.hackread.com
/28000-exposed-printers-hacked-over-lack-
printer-security/, (Last Accessed, May 3, 2021).

[11] IoT Developer Survey 2019 Results and 2020 IoT De-
veloper Survey Key Findings. https://iot.eclips
e.org/community/resources/iot-surveys/, (Last
Accessed, May 3, 2021).

[12] Kernel Probes (Kprobes). https://www.kernel.org
/doc/Documentation/kprobes.txt, (Last Accessed,
May 3, 2021).

[13] KProbe is not supported by Xtensa yet.
https://www.kernel.org/doc/html/latest/x
tensa/features.html, (Last Accessed, May 3,
2021).

[14] LiteOS. https://www.huawei.com/minisite/lite
os/en/, (Last Accessed, May 3, 2021).

[15] Mbed TLS. https://github.com/ARMmbed/mbedt
ls, (Last Accessed, May 3, 2021).

[16] National vulnerability database. https://nvd.nist.g
ov/, (Last Accessed, May 3, 2021).

[17] Newlib: Libc for embedded systems. https://source
ware.org/newlib/, (Last Accessed, May 3, 2021).

[18] nRF52 Series. https://www.nordicsemi.com/-/m
edia/Software-and-other-downloads/Produc
t-Briefs/nRF52-Series-SoC-PB-50.pdf, (Last
Accessed, May 3, 2021).

[19] Over-the-Air (OTA) Updates in Embedded Microcon-
troller Applications. https://www.analog.com/en/
analog-dialogue/articles/over-the-air-ota-
updates-in-embedded-microcontroller-applic
ations.html, (Last Accessed, May 3, 2021).

[20] RFC for IoT Device Classes: Terminology for
Constrained-Node Networks. https://tools.ietf
.org/html/rfc7228#page-8, (Last Accessed, May 3,
2021).

[21] Ripple20: 19 Zero-Day Vulnerabilities Amplified by the
Supply Chain. https://www.jsof-tech.com/ripp
le20/, (Last Accessed, May 3, 2021).

[22] RISC-V KProbe Feature. https://www.kernel.o
rg/doc/html/latest/riscv/features.html, (Last
Accessed, May 3, 2021).

[23] The PicoTCP Library. http://picotcp.altran.be/,
(Last Accessed, May 3, 2021).

[24] There is no flash patch feature in the cortex-m7 pro-
cessor. https://www.keil.com/appnotes/files/
apnt_270.pdf, (Last Accessed, May 3, 2021).

[25] wolfSSL Embedded SSL/TLS Library. https://gi
thub.com/wolfSSL/wolfssl, (Last Accessed, May 3,
2021).

[26] Zephyr OS. https://www.zephyrproject.org/,
(Last Accessed, May 3, 2021).

[27] Mahmoud Ammar and Bruno Crispo. Verify&revive:
Secure detection and recovery of compromised low-end
embedded devices. In ACM ACSAC, 2020.

[28] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B.
Rasmussen. The KNOB is broken: Exploiting low en-
tropy in the encryption key negotiation of bluetooth
br/edr. In 28th USENIX Security, 2019.

[29] Konstantinos Arakadakis, P. Charalampidis, Anto-
nis Makrogiannakis, and Alexandros Fragkiadakis.
Firmware over-the-air programming techniques for IoT
networks - a survey. ArXiv, abs/2009.02260, 2020.

[30] Jeff Arnold and M Frans Kaashoek. Ksplice: Automatic
rebootless kernel updates. In Proceedings of the 4th
ACM European conference on Computer systems, pages
187–198, 2009.

[31] Adrian Baranchuk, Marwan M. Refaat, Kristen K. Pat-
ton, Mina K. Chung, Kousik Krishnan, Valentina Ku-
tyifa, Gaurav Upadhyay, John D. Fisher, and Dha-
nunjaya R. Lakkireddy. Cybersecurity for car-
diac implantable electronic devices: What should you
know? Journal of the American College of Cardiology,
71(11):1284 – 1288, 2018.

https://aws.amazon.com/freertos/
https://aws.amazon.com/freertos/
"https://www.forescout.com/company/blog/amnesia33-forescout-research-labs-finds-33-new-vulnerabilities-in-open-source-tcp-ip-stacks/"
"https://www.forescout.com/company/blog/amnesia33-forescout-research-labs-finds-33-new-vulnerabilities-in-open-source-tcp-ip-stacks/"
"https://www.forescout.com/company/blog/amnesia33-forescout-research-labs-finds-33-new-vulnerabilities-in-open-source-tcp-ip-stacks/"
"https://www.forescout.com/company/blog/amnesia33-forescout-research-labs-finds-33-new-vulnerabilities-in-open-source-tcp-ip-stacks/"
https://nuttx.apache.org/
https://blogs.igalia.com/dpino/2019/01/07/a-brief-introduction-to-xdp-and-ebpf/
https://blogs.igalia.com/dpino/2019/01/07/a-brief-introduction-to-xdp-and-ebpf/
https://blogs.igalia.com/dpino/2019/01/07/a-brief-introduction-to-xdp-and-ebpf/
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/ota.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/ota.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/ota.html
https://www.hackread.com/28000-exposed-printers-hacked-over-lack-printer-security/
https://www.hackread.com/28000-exposed-printers-hacked-over-lack-printer-security/
https://www.hackread.com/28000-exposed-printers-hacked-over-lack-printer-security/
https://iot.eclipse.org/community/resources/iot-surveys/
https://iot.eclipse.org/community/resources/iot-surveys/
https://www.kernel.org/doc/Documentation/kprobes.txt
https://www.kernel.org/doc/Documentation/kprobes.txt
https://www.kernel.org/doc/html/latest/xtensa/features.html
https://www.kernel.org/doc/html/latest/xtensa/features.html
https://www.huawei.com/minisite/liteos/en/
https://www.huawei.com/minisite/liteos/en/
https://github.com/ARMmbed/mbedtls
https://github.com/ARMmbed/mbedtls
https://nvd.nist.gov/
https://nvd.nist.gov/
https://sourceware.org/newlib/
https://sourceware.org/newlib/
https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF52-Series-SoC-PB-50.pdf
https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF52-Series-SoC-PB-50.pdf
https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF52-Series-SoC-PB-50.pdf
https://www.analog.com/en/analog-dialogue/articles/over-the-air-ota-updates-in-embedded-microcontroller-applications.html
https://www.analog.com/en/analog-dialogue/articles/over-the-air-ota-updates-in-embedded-microcontroller-applications.html
https://www.analog.com/en/analog-dialogue/articles/over-the-air-ota-updates-in-embedded-microcontroller-applications.html
https://www.analog.com/en/analog-dialogue/articles/over-the-air-ota-updates-in-embedded-microcontroller-applications.html
https://tools.ietf.org/html/rfc7228#page-8
https://tools.ietf.org/html/rfc7228#page-8
https://www.jsof-tech.com/ripple20/
https://www.jsof-tech.com/ripple20/
https://www.kernel.org/doc/html/latest/riscv/features.html
https://www.kernel.org/doc/html/latest/riscv/features.html
http://picotcp.altran.be/
https://www.keil.com/appnotes/files/apnt_270.pdf
https://www.keil.com/appnotes/files/apnt_270.pdf
https://github.com/wolfSSL/wolfssl
https://github.com/wolfSSL/wolfssl
https://www.zephyrproject.org/

[32] J. Bauwens, P. Ruckebusch, S. Giannoulis, I. Moerman,
and E. D. Poorter. Over-the-air software updates in the
internet of things: An overview of key principles. IEEE
Communications Magazine, 58(2):35–41, 2020.

[33] Yaohui Chen, Yuping Li, Long Lu, Yueh-Hsun Lin,
Hayawardh Vijayakumar, Zhi Wang, and Xinming Ou.
Instaguard: Instantly deployable hot-patches for vulner-
able system programs on android. In NDSS’18, 2018.

[34] Yue Chen, Yulong Zhang, Zhi Wang, Liangzhao Xia,
Chenfu Bao, and Tao Wei. Adaptive android kernel live
patching. In 26th USENIX Security, 2017.

[35] Lucas Davi Christian Niesler, Sebastian Surminski.
Hera: Hotpatching of embedded real-time applications.
In NDSS, 2021.

[36] Thurston H.Y. Dang, Petros Maniatis, and David Wag-
ner. The performance cost of shadow stacks and stack
canaries. In 10th ASIA CCS, 2015.

[37] B. Dasarathy. Timing constraints of real-time systems:
Constructs for expressing them, methods of validating
them. IEEE Transactions on Software Engineering,
11(01):80–86, jan 1985.

[38] Nicholas DeMarinis, Kent Williams-King, Di Jin, Ro-
drigo Fonseca, and Vasileios P. Kemerlis. Sysfilter: Au-
tomated System Call Filtering for Commodity Software.
In RAID, 2020.

[39] W. Dong, B. Mo, C. Huang, Y. Liu, and C. Chen. R3: Op-
timizing relocatable code for efficient reprogramming
in networked embedded systems. In 2013 Proceedings
IEEE INFOCOM, pages 315–319, 2013.

[40] William Findlay, David Barrera, and Anil Somayaji. Bpf-
contain: Fixing the soft underbelly of container security.
arXiv preprint arXiv:2102.06972, 2021.

[41] William Findlay, Anil Somayaji, and David Barrera. bpf-
box: Simple precise process confinement with ebpf. In
Proceedings of the 2020 ACM SIGSAC Conference on
Cloud Computing Security Workshop, pages 91–103,
2020.

[42] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra,
and Michalis Polychronakis. Temporal system call spe-
cialization for attack surface reduction. In 29th USENIX
Security, 2020.

[43] C. Giuffrida, C. Iorgulescu, G. Tamburrelli, and A. S.
Tanenbaum. Automating live update for generic server
programs. IEEE Transactions on Software Engineering,
43(3):207–225, 2017.

[44] Sasha Goldshtein. The next linux superpower: ebpf
primer. Dublin, July 2016. USENIX Association.

[45] Brendan Gregg. Performance superpowers with en-
hanced BPF. Santa Clara, CA, July 2017. USENIX
Association.

[46] Brendan Gregg. BPF performance tools. Portland, OR,
October 2019. USENIX Association.

[47] Simon Holmbacka, Wictor Lund, Sébastien Lafond, and
Johan Lilius. Lightweight framework for runtime up-
dating of c-based software in embedded systems. In
5th Workshop on Hot Topics in Software Upgrades
(HotSWUp 13), San Jose, CA, June 2013. USENIX As-
sociation.

[48] Taesoo Kim and Nickolai Zeldovich. Practical and ef-
fective sandboxing for non-root users. In USENIX ATC
13), 2013.

[49] Antonio Langiu, Carlo Alberto Boano, Markus Schuß,
and Kay Römer. Upkit: An open-source, portable, and
lightweight update framework for constrained iot de-
vices. In 39th ICDCS, 2019.

[50] A. Machiry, N. Redini, E. Camellini, C. Kruegel, and
G. Vigna. Spider: Enabling fast patch propagation in
related software repositories. In IEEE S&P, 2020.

[51] Rajesh Krishna Panta, Saurabh Bagchi, and Samuel P.
Midkiff. Zephyr: Efficient incremental reprogramming
of sensor nodes using function call indirections and dif-
ference computation. In USENIX ATC, 2009.

[52] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and
T. Holz. Cross-architecture bug search in binary ex-
ecutables. In IEEE S&P, pages 709–724, 2015.

[53] Florian Rommel, Christian Dietrich, Daniel Friesel, Mar-
cel Köppen, Christoph Borchert, Michael Müller, Olaf
Spinczyk, and Daniel Lohmann. From global to local
quiescence: Wait-free code patching of multi-threaded
processes. In 14th USENIX OSDI, 2020.

[54] Chengyu Song, Chao Zhang, Tielei Wang, Wenke Lee,
and David Melski. Exploiting and protecting dynamic
code generation. In NDSS, 2015.

[55] D. J. Tian, G. Hernandez, J. I. Choi, V. Frost, P. C. John-
son, and K. R. B. Butler. Lbm: A security framework
for peripherals within the linux kernel. In IEEE S&P,
2019.

[56] Qiushi Wu, Yang He, Stephen McCamant, and Kangjie
Lu. Precisely characterizing security impact in a flood of
patches via symbolic rule comparison. In NDSS, 2020.

[57] Zhengzi Xu, Yulong Zhang, Longri Zheng, Liangzhao
Xia, Chenfu Bao, Zhi Wang, and Yang Liu. Auto-
matic hot patch generation for android kernels. In 29th
USENIX Security, 2020.

[58] Joseph Yiu. Chapter 14.3: Debug modes. In The Defini-
tive Guide to ARM Cortex-M3 and Cortex-M4 Proces-
sors, Third Edition, pages 456–462. Newnes, USA, 3rd
edition, 2013.

[59] Joseph Yiu. Chapter 23.10: Flash patch feature. In
The Definitive Guide to ARM Cortex-M3 and Cortex-
M4 Processors, Third Edition, pages 761–765. Newnes,
USA, 3rd edition, 2013.

[60] C. Zhang, W. Ahn, Y. Zhang, and B. R. Childers. Live
code update for iot devices in energy harvesting environ-
ments. In 2016 5th Non-Volatile Memory Systems and
Applications Symposium (NVMSA), pages 1–6, 2016.

[61] Hang Zhang and Zhiyun Qian. Precise and accurate
patch presence test for binaries. In 27th USENIX Secu-
rity, 2018.

[62] Zheng Zhang, Hang Zhang, Zhiyun Qian, and Billy Lau.
An investigation of the android kernel patch ecosystem.
In 30th USENIX Security, 2021.

A CVE Case Study

Our in-depth CVE case study reveals common patterns of
vulnerabilities and proves the effectiveness and necessity of
our patch design. The most common (34/62) vulnerabilities
in embedded network stacks are the lack of boundary or san-
ity checks when processing ingress packets, which can be
efficiently fixed via filter patches. Taking CVEs of FreeR-
TOS as examples, CVE-2018-16602 (DHCP), CVE-2018-
16603 (TCP), CVE-2018-16600 (ARP) and CVE-2018-16527
(ICMP) have the same root cause that the IP packet han-
dler function prvProcessIPPacket fails to check whether
a packet uses a valid protocol or has a valid packet length.
We use a single filter patch at the entrance of function
prvProcessIPPacket to validate the ingress IP packets by
adding extra checks to ensure that the packets have valid
headers and lengths that are coherent with their protocols.
As such, we fix a bundle of vulnerabilities simultaneously.
Actually, considering that the packets using various upper-
layer protocols usually share the same lower-layer protocol
and dispatching entrance, we can fix vulnerabilities with filter
patches more efficiently.

Logical bugs in RTOSes reveal the necessity of code re-
place patch. These bugs may cause system failures even under
legitimate inputs. For instance, CVE-2020-10023 arises due
to wrongly passing shift (instead of j) when invoking memmove
in function shell_spaces_trim. To fix it, we need to rewrite
the passed parameters. While for CVE-2017-14201, the mis-
use of stack variable in function dns_result_cb leads to a
Use after Free vulnerability. As such, we must modify the
parameter construction, passing and interpretation logic of
function dns_result_cb via code replace patches.

static bool infoTransfer(void) {
 // ...
 addr = n * BLOCK_SIZE;
+ if (addr >= memory_size) {
+ LOG_ERR("LBA out of range");
+ csw.Status = CSW_FAILED;
+ sendCSW();
+ return false;
+ }
 // ...
 if (!cbw.DataLength) {
 csw.Status = CSW_FAILED;
 sendCSW();
 return false;
 }
 // ...
}

addr = n * BLOCK_SIZE;
 800c93e: ldr r1, [pc, #120]
 800c940: rev r3, r3
 800c942: lsls r0, r3, #9
 800c944: str r0, [r1, #0]

csw.Status = CSW_FAILED;
 800c970: ldr r3, [pc, #76]
 800c972: movs r2, #1
 800c974: strb r2, [r3, #12]
sendCSW();
 800c976: bl 800c8bc
return false;
 800c97a: movs r0, #0

Basic block for hardware breakpoint

Basic block for return

Figure 13: The patch entrance and exit basic blocks for CVE-
2020-10021

patch_type: filter_patch

trigger_point:
 function_position: infoTransfer
 statement_position: addr = n * BLOCK_SIZE;

trigger_type: KPROBE

run_type: JIT

iteration_threshold: default

priortiy: default

variable_map:
 - MARCO_MEM_SIZE:
 address_type: global_variable
 match_name: memory_size

Figure 14: Patch configuration for CVE-2020-10021

B Baisc Block-Level Patch

As is shown in Figure 13, the root cause of Zephyr’s CVE-
2020-10021 is that the address written by USB Mass Storage
may exceed the memory size. Mitigating it requires adding
extra checks to the write range. Right after the statement addr
= n * BLOCK_SIZE; is executed, we can easily validate the
address to be written stored in variable addr using register r0.
The original source code patch is shown in green lines which
handles the error by calling sendCSW() to notify the memory-
write error. Instead of writing a code replace patch from the
beginning, we redirect the control flow to reuse another exist-
ing error handling basic block. With the help of basic block
level patch, RapidPatch has a very lightweight way of fixing
the bugs by just blocking or replacing the vulnerable basic
blocks. The patch configuration file for CVE-2020-10021 is
shown in Figure 14.

C CVE Dataset

Table 7 shows the CVEs studied in this paper. Around 90.3%
CVEs (i.e., 56/62) can be fixed by hotpatching, while only six
CVEs cannot be fixed, which are marked as − in the Patch
Type column.

CVE-ID OS/Lib Patch Description / Reason Why Cannot Fix Patch Type
2018-16528 FreeRTOS Record mbedtls_ssl_handshake status with eBPF map to prevent using unready mbedTLS context Filter Patch + Map
2018-16522 FreeRTOS Basic block replacement to initialize protocol with memset name buffer after malloc Code Replace Patch
2018-16526 FreeRTOS Rewrite function prvProcessIPPacket to update pxIPHeader->ucVersionHeaderLength Code Replace Patch
2018-16525 FreeRTOS Add UDP payload length field validation for prvProcessIPPacket function Filter Patch
2018-16599 FreeRTOS Add UDP payload length field validation for prvProcessIPPacket function Filter Patch
2018-16601 FreeRTOS Add IP header length field validation for prvProcessIPPacket function Filter Patch
2018-16523 FreeRTOS Check if uxNewMSS equals zero before use Filter Patch
2018-16524 FreeRTOS Add validation for pucLast against received packet buffer bound in function prvCheckOptions Filter Patch
2018-16603 FreeRTOS Check if the received frame is larger than the minimum packet size Filter Patch
2018-16602 FreeRTOS Add length checks for the DHCP option fields walking loop Filter Patch
2018-16600 FreeRTOS Check received frame size in function prvProcessEthernetPacket for ARP case Filter Patch
2018-16527 FreeRTOS Check received frame size in function prvProcessIPPacket for ICMP case Filter Patch
2018-16598 FreeRTOS Match outgoing DNS query with received answer using eBPF map Filter Patch + Map
2017-14199 ZephyrOS Add out-of-bound check for function dns_resolve_cb Filter Patch
2017-14201 ZephyrOS Modify the way to pass and interpret void *user_data for function dns_result_cb Code Replace Patch
2017-14202 ZephyrOS Macro and struct definitions modification are involved −
2019-9506 ZephyrOS Add filter point to ban low encryption key length Filter Patch

2020-10019 ZephyrOS Limit upload length to the size of the request buffer Filter Patch
2020-10021 ZephyrOS Check if LBA is within the range of memory_size Filter Patch
2020-10022 ZephyrOS Too many vulnerable functions are involved −
2020-10023 ZephyrOS Rewrite the logic for counting the length in function shell_spaces_trim Code Replace Patch
2020-10024 ZephyrOS Obtain C flag in APSR after the cmp instruction to help enforce unsigned comparison Filter Patch
2020-10027 ZephyrOS Obtain C flag in APSR after the cmp instruction to help enforce unsigned comparison Filter Patch
2020-10028 ZephyrOS Perform validation for arguments of the GPIO handlers Filter Patch
2020-10058 ZephyrOS Perform validation for arguments of the kscan syscalls Filter Patch
2020-10059 ZephyrOS Enable DTLS peer checking for the UpdateHub module Code Replace Patch
2020-10060 ZephyrOS Add array length check to avoid reference uninitialized stack memory Filter Patch
2020-10061 ZephyrOS Basic block-level prevent referencing uninitialized stack memory in function updatehub_probe Filter Patch
2020-10062 ZephyrOS Rewrite packet_length_decode function to correct the looping logic Code Replace Patch
2020-10063 ZephyrOS Check for integer overflow during CoAP option parsing Filter Patch
2020-10064 ZephyrOS Patch code is too complex and involves many changes −
2020-10066 ZephyrOS Add argument nullpointer checks for function hci_cmd_done in Bluetooth HCI core Filter Patch
2020-10067 ZephyrOS Add integer overflow checks for is_in_region function Filter Patch
2020-10068 ZephyrOS Drop response with no local initiated request and duplicate requests Filter Patch
2020-10069 ZephyrOS Add arguments validation for function ull_slave_setup Filter Patch
2020-10070 ZephyrOS Add arithmetic overflow and buffer bound checks for function mqtt_read_message_chunk Filter Patch
2020-10071 ZephyrOS Further check the length field on publish messages Filter Patch
2020-10072 ZephyrOS Patch code is too complex and involves many changes −
2020-13598 ZephyrOS Macro definition modification are involved −
2020-13600 ZephyrOS Rewrite function eswifi_reset and __parse_scan_res logic to add buffer overflow check Code Replace Patch
2020-13601 ZephyrOS Add out-of-bounds read check in the middle of function dns_read Filter Patch
2020-13602 ZephyrOS Basic block-level intercept redundant branch for malformed packet in function do_write_op_tlv Filter Patch
2020-17441 PicoTCP Validate IPv6 payload length field against actual size for function pico_ipv6_process_in Filter Patch
2020-17442 PicoTCP Validate hop-by-hop IPv6 extension header length field for function pico_ipv6_process_hopbyhop Filter Patch
2020-17443 PicoTCP Restrict that echo->transport_len is no less than 8 in pico_icmp6_send_echoreply Filter Patch
2020-17444 PicoTCP Check possible overflow of header extension length field for pico_ipv6_check_headers_sequence Filter Patch
2020-17445 PicoTCP Validate optlen using a loop prior to function pico_ipv6_process_destopt Filter Patch
2020-24337 PicoTCP Validate TCP packet option length field before invoking option handler Filter Patch
2020-24338 PicoTCP Add bound check on iterator for the while loop in function pico_dns_decompress_name Filter Patch
2020-24339 PicoTCP Add out-of-bounds check for iterator of pico_dns_packet in function pico_dns_decompress_name Filter Patch
2020-17437 uIP Add validation for Urgent data offset(uip_urglen) in TCP data Filter Patch
2020-24334 uIP Add checks for nameptr when processing DNS answers to prevent possible out-of-bound read Filter Patch
2021-3336 wolfSSL Exit function DoTls13CertificateVerify on signature without corresponding certificate Filter Patch

2020-24585 wolfSSL Add check to reject DTLS application data messages in epoch 0 as out of order Filter Patch
2020-12457 wolfSSL Record with eBPF map to prevent multiple ChangeCipherSpecs in a row Filter Patch + Map
2019-18840 wolfSSL Need to add too many sanity checks −
2019-16748 wolfSSL Add sanity check on length before read for function CheckCertSignature_ex Filter Patch
2020-24335 Contiki-NG Rewrite function decode_name to limit pointer bound during domain name parse Code Replace Patch
2020-24336 Contiki-NG Validate DNS answer‘s length field before using it for memcpy in function ip64_dns64_4to6 Filter Patch
2020-13987 Contiki Add out-of-bounds check for upper_layer_len in function upper_layer_chksum Filter Patch
2020-17439 Contiki Match DNS reply with outgoing DNS query using eBPF map for function newdata Filter Patch + Map
2020-25111 Nut/Net Rewrite function ScanName to validate domain name length and label length Code Replace Patch

Table 7: CVEs studied in this paper.

	Introduction
	Background
	Embedded Devices
	Embedded Device Hotpatching
	Extended Berkeley Packet Filter (eBPF)

	Problem Statement
	Delayed RTOS Update
	Patching Challenges
	A Motivating Example
	Threat Model and Assumptions

	System Design
	Overview of RapidPatch
	Patch Development
	Patch Generation & Verification
	Patch Deployment and Execution

	System Implementation
	Performance Evaluation
	Applicability of RapidPatch
	Adaptability of RapidPatch
	Patching Delay
	System Overhead of Patching

	Related Work
	Discussion
	Conclusion
	CVE Case Study
	Baisc Block-Level Patch
	CVE Dataset

