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Abstract
In recent years, artificial intelligence (AI) tech-

niques have been increasingly adopted to tackle 
networking problems. Although AI algorithms can 
deliver high-quality solutions, most of them are 
inherently intricate and erratic for human cog-
nition. This lack of interpretability tremendous-
ly hinders the commercial success of AI-based 
solutions in practice. To cope with this challenge, 
networking researchers are starting to explore 
explainable AI (XAI) techniques to make AI mod-
els interpretable, manageable, and trustworthy. 
In this article, we overview the application of AI 
in networking and discuss the necessity for inter-
pretability. Next, we review the current research 
on interpreting AI-based networking solutions and 
systems. At last, we envision future challenges 
and directions. The ultimate goal of this article is 
to present a general guideline for AI and network-
ing practitioners and motivate the continuous 
advancement of AI-based solutions in modern 
communication networks. 

Introduction
The last decade has witnessed an unprecedent-
ed surge of interest in artificial intelligence (AI) 
in industry and academia. Nowadays, AI-based 
solutions have been widely deployed across 
various sectors, including healthcare, business 
intelligence, and industrial manufacturing [1]. 
Meanwhile, with the rapid deployment of mobile 
networks, edge computing, the Internet of Things 
(IoT), and unmanned aerial vehicles (UAVs), mod-
ern networking systems are becoming cumula-
tively diverse, ad hoc, and complex to manage. 
The fast emerging interactive applications and 
network services have assorted performance 
characteristics and depend on fine-grained pas-
sive and active traffic monitoring and real-time 
analytics for quality of experience (QoE) man-
agement. Consequently, network management 
has become an extremely daunting undertaking. 
Traditional network operators heavily lean on 
domain-specific knowledge to build rule-based 
procedures and heuristics, which make it burden-
some to sustain the same level of effectiveness 
upon network expansions or scenario changes. 
As a result, a plethora of research has been devot-
ed to applying AI techniques to solve problems 
in heterogeneous modern networking systems, 
as illustrated by the scenarios in Fig. 1. Most of 
these AI-augmented solutions manage to attain 

superior performance compared to the traditional 
hand-crafted, rule-based heuristic solutions [2–4]. 

However, performance improvement cannot 
directly map to the success of AI for networking. 
The current trend of using AI models, especially 
deep learning (DL) models, is to treat them as 
blackboxes. Their complexity keeps growing to 
include more parameters since complex DL mod-
els can better approximate universal functions, 
which leads to great success in solving famous 
computer vision problems. However, applying AI 
models to solve networking problems has many 
practical obstacles, including:
1. Data discrepancy: Unlike image and text 

data, networking data have inherent pecu-
liarities such as time diversity, space diversity, 
and abundant categorical features. It is thus 
nontrivial to replicate the success of AI in 
networking due to both the lack of labeled 
data and the diversity of the scenarios. 

2. Feasibility: Although existing AI-based solu-
tions mainly operate in the control plane, a 
recent trend pushes the AI frontiers to the 
data plane, which remains challenging given 
the scarce resources therein.

3. Robustness: There are many vulnerabilities in 
current AI systems, which could let attackers 
manipulate the AI solutions and thus impact 
the network and QoE. 

4. Trust: Decisions made by sophisticated AI 
models usually entail a myriad of parame-
ters and nonlinear transformations that are 
too complex for humans to understand and 
to trust. This last point is especially essential 
in networks, where the operators need to 
understand the implications of a decision. 
Promoting the trust for AI-based solutions 
can realize the ultimate goal of responsible 
AI [5]. 
To overcome these issues, researchers work 

on explainable AI (XAI) to interpret the infer-
ence process of AI models. XAI can boost per-
formance with less complex model structures 
and fewer parameters. The robustness against 
adversarial attacks and the trustworthiness of the 
stakeholders can also be improved. However, 
very few works specifically concentrated on XAI 
for networking.

The purpose of this work is to fill this void in 
two steps. First, we review the applications of AI 
techniques in the modern networking domain 
and discuss the current research endeavors 
for interpreting AI in networking. Second, we 
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present the challenges and future perspectives. 
In summary, our goal is to provide a first-hand 
guideline on XAI for practitioners in the net-
working community and catalyze the sustainable 
development of AI in networking. 

AI in Networking: A General Overview
In this section, we give a general overview of the 
motivations of AI-based solutions in networking. 
Then we highlight the urgent need for interpreta-
ble AI-based solutions.

Benefits of AI in Solving Networking Problems
Traditionally, network operators resort to rule-
based and modeling-based algorithms and heu-
ristics to address both in-network problems (e.g., 
packet routing, traffic classification) and end-to-
end issues (e.g., congestion control, QoE predic-
tion) [3]. However, with the growing scale and 
complexity of modern networks and the diverse 
requirements of applications, these approaches 
face severe limitations. 

First, it is arduous for rule-based algorithms to 
comprehensively consider the related factors that 
can explicitly or implicitly impact the performance 
in a vast problem space. For instance, high-speed 
traffic processing stacks (e.g., FD.io VPP, Open 
vSwitch with DPDK) need to not only make the 
most suitable forwarding decisions but also con-
sider miscellaneous low-level system details (e.g., 
buffer occupancy, cache locality, batch sizes) 
to optimally schedule resources and realize the 
intended network services at line rate. Second, 
the static algorithms cannot be improved by incre-
mental learning, which makes them susceptible to 
recurrent execution pitfalls (e.g., load imbalance) 
and adversarial maneuvers such as distributed 
denial of service (DDoS) attacks. Third, the rules 
are primarily constructed based on human experi-
ence in specific scenarios and must be thoroughly 
adjusted upon domain or environment shift, mak-
ing rule-based algorithms challenging to adapt for 
reuse. For example, migrating a rule-based TCP 
congestion control algorithm from wired networks 
to wireless networks requires scrutinizing the addi-
tional impact of signal interference, link failures, 
and other performance impairments [4], which 
demands detailed knowledge of both networks. 

As detailed in [3], AI techniques have been 

widely applied for various in-network and end-
to-end tasks. We review the literature and sum-
marize the commonly employed AI models and 
their use cases in Table 1. Compared to tradition-
al approaches, AI-based solutions possess several 
key advantages:
•	 AI models can discover hidden patterns and 

automatically extract insights from volumi-
nous data of heterogeneous sources, which 
makes them practical for analytics tasks in 
large-scale environments with abounding 
correlated factors (e.g., anomaly detection, 
root cause analysis). 

•	 AI techniques can efficiently capture and 
adapt to the temporal and spatial network 
dynamics. For instance, unlike traditional 
algorithms that identify network congestion 
through predefined static triggers, machine 
learning (ML) algorithms can proactively 
exploit varying information to predict bottle-
neck conditions. 

•	 AI-based solutions can autonomously drive 
networks without human intervention, 
which is crucial to fulfilling the vision of 
zero-touch networks. Although novel net-
work softwarization technologies such as 
software-defined networking (SDN) and net-
work function virtualization (NFV) significant-
ly reduce operational costs, they still rely on 
static, hand-crafted algorithms for network 
service management and resource provision-
ing. AI techniques such as reinforcement 
learning (RL) can be integrated with existing 
frameworks to grant unprecedented flexibili-
ty and intelligence to network automation. 

•	 With the proliferation of transfer learning 
techniques, pre-trained AI models can be 
possibly refactored for networking tasks in 
different settings. 

Commonly Adopted AI Models
AI models have quite different performance char-
acteristics and interpretation overhead. Common-
ly adopted models include naive Bayes (NB), 
decision tree (DT), random forest (RF), support 
vector machine (SVM), and deep neural network 
(DNN) [6]. Based on internal functioning, these 
models can be categorized as transparent AI mod-
els and opaque AI models.

FIGURE 1. An illustrative example of heterogeneous AI-based communication networks and systems, including vehicular network, mobile network, UAV net-
work, enterprise network, home network, D2D communications, and transport network.
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work function virtualization 
(NFV) significantly reduce 
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rely on static, hand-crafted 

algorithms for network 
service management and 

resource provisioning. 
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Transparent AI Models: Transparent models 
are simple by design and can be readily presented 
to humans through simulation, decomposition, 
or algorithmic analysis [5]. AI models such as DT 
and NB are transparent and self-explanatory. For 
instance, DT consists of a hierarchy of nodes to 
split input data and leaves to represent predic-
tions. In the networking domain, DTs are usually 
employed to tackle scenarios that are fault-toler-
ant and time-critical. NB is based on the assump-
tion that the input features are independent of 
each other. %Similar to DT, NB runs fast and has 
interpretable predictions. If the “naive” assump-
tion holds, NB can make precise predictions with 
relatively few training data. Both models offer 
means to understand their decision making pro-
cess.

Opaque AI Models: AI models whose pre-
dictions cannot be communicated easily are 
deemed opaque. RF, SVM, and NN are typical 
opaque models. RF is an ensemble learning meth-
od that combines the predictions of multiple DTs 
to improve accuracy. SVM maps input data in a 
multi-dimensional space and uses hyperplanes to 
separate them into classes. DNNs are inspired 
by the structure of biological neurons in human 
brains. Sophisticated DNNs can contain millions 
or even billions of parameters and are widely 
used for various complex tasks where they are 
proved to have outstanding performance.

Existing research shows that compared to 
transparent AI models, opaque AI models are 
less interpretable but more proficient in captur-
ing nonlinear patterns and solving complex tasks. 
For instance, a linear regression model is intuitive 
to explain as the linear relationship automatical-
ly provides a straightforward mapping between 
feature input and target output. However, linear 
regression oversimplifies the context and often 
fails to deal with complex real-world problems. 
Similarly, the inference of a DT can be simulat-
ed handily by humans. Nonetheless, DTs suffer 
from overfitting and are nontrivial to generalize. 
Researchers usually resort to ensemble methods 
like RF, which results in more accurate prediction 
but is innately too equivocal to interpret. Anoth-
er significant difference between transparent 
and opaque AI models is the resource require-
ment. Transparent models have much simpler 
and fewer operations compared to opaque 
models whose scale can become prohibitively 
large. For instance, a powerful DNN can contain 
billions of parameters that require specialized 
hardware (e.g., GPUs or TPUs) to accommodate 
the enormous computation and memory cost.

Nevertheless, it is impractical to expect network 
devices such as programmable switches, routers, 
or smartNICs to spare adequate resources to 
deploy and serve these high-performance but 
heavyweight models. 

The Need for Explainable AI in Networking
Although some AI-based networking solutions still 
adopt transparent models, they are not the major-
ity in current research. According to a recent sur-
vey [6], most of the existing AI-based networking 
solutions are built on opaque models, which con-
siderably plateau the development of AI-based 
networking solutions. Compared to well-estab-
lished AI application domains such as computer 
vision, networking tasks have disparate time and 
spatial diversities and abundant categorical fea-
tures (e.g., IP addresses, ports, paths). In addition 
these tasks call for the availability of labeled data, 
which is unfortunately hard to obtain. The con-
tinuing moving targets such as new applications, 
protocols, and patterns only make the situation 
more complex. Naively applying these opaque 
AI models without interpretation raises concerns 
about their robustness, reliability, and trustwor-
thiness. Also, networking tasks customarily have 
high reliance on domain-specific knowledge 
and experience, and human experts will always 
be irreplaceable [7]. As networks are destined 
to become more intelligent in the future, it is 
beneficial to consolidate the abilities of human 
experts and AI models to deliver the most perfor-
mant and cost-efficient solutions. However, the 
opaqueness of most AI models completely blocks 
human involvement. XAI techniques can explain 
the inner workings of the AI-based solutions in 
understandable formats to let network/AI experts 
inspect and dissect the current solutions and craft 
high-level augmentations with domain expertise. 
Specifically, XAI techniques can enhance AI-based 
networking solutions in the following four aspects.

Performance: Albeit AI-based solutions can 
make satisfactory predictions and decisions, the 
underlying AI models are not immune to unde-
sirable results or errors. An error can still occur 
in any stage of a model development cycle due 
to mislabeled data, poor feature selection, model 
drift, or deficient design. XAI techniques provide 
means to scrutinize the model and reveal poten-
tial bias and variances. AI experts can subsequent-
ly discern whether a particular network policy 
made by a model is derived from the intended 
portion of input data or control logic and take the 
correct measures to make the model more gen-
eralizable to network and system dynamics, such 

Compared to well-established 
AI application domains such 

as computer vision, network-
ing tasks have disparate 

time and spatial diversities 
and abundant categorical 

features (e.g., IP addresses, 
ports, paths).

TABLE 1. Commonly employed AI models to solve different networking problems.

AI model Complexity Transparency Common use cases

Decision tree (DT) Low High Unsupervised traffic classification, misuse intrusion 
detection

Naive Bayes (NB) Low High Supervised traffic classification

Random frest (RF) High Low QoE prediction, routing

Support vector machine (SVM) High Low Supervised traffic classification, congestion control

Deep neural network (DNN) High Low
Traffic prediction, routing, congestion control, 
resource scheduling, anomaly detection, QoE 
prediction

QIU_LAYOUT.indd   27QIU_LAYOUT.indd   27 2/13/22   10:43 PM2/13/22   10:43 PMAuthorized licensed use limited to: Tsinghua University. Downloaded on March 05,2022 at 07:33:30 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • February 202228

as adjusting the dataset, changing the feature set, 
tuning the hyper-parameters, and redesigning the 
model architecture. In addition, network engi-
neers can capitalize on the generated interpreta-
tions to pinpoint the decisive factors for a given 
AI-based solution and perform tailored optimiza-
tions based on the high-level observations of the 
problem settings. 

Feasibility: Besides performance improvement, 
XAI can assist in model refinement. Consider-
ing the complexity of many existing opaque AI 
models, it is challenging to accommodate them 
using resource-constrained networking devices. 
Researchers are exploring different methods to 
reduce the AI models and fit them into small 
devices, commonly referred to as “Tiny AI.” As 
shown in [8], XAI can be combined with these 
methods to expose the redundant operations 
and features and shrink the incurred computa-
tion cost, processing latency, memory footprint, 
and energy consumption of existing DL-based net-
working systems. More advanced XAI methods 
are expected to progressively make AI models 
versatile and suitable for networking problems in 
the future. 

Robustness: AI models, especially DNNs, are 
well known to be non-robust against adversarial 
attacks. Using AI-based solutions in networking 
will inherit this vulnerability, which will threaten 
the models’ capability and even the security of 
the resulting networking systems. For instance, 
researchers have introduced DNN models in 
intrusion detection systems and achieved better 
detection accuracy than traditional approaches. 
However, attackers can introduce malicious mod-
ifications (e.g., several bits in a network packet) 
to generate adversarial examples (AEs) that can 
mislead the DNN-based detectors. XAI techniques 
can help defenders understand their vulnerabili-
ties from both the DNN model and data aspects. 
Besides the security against the famous adversari-
al attacks, XAI can also assist network administra-
tors to discover the (otherwise hidden) security 
threats and loopholes in an interpretable way.

Trust: Humans are naturally reluctant to trust 
non-justifiable decisions made by AI-based solu-
tions without proper insights into the internal 
inference mechanisms [10]. XAI is a fundamen-
tal requirement for solutions based on opaque 
models [10]. Depending on the target users, even 
solutions based on transparent AI models might 
still need to be explained. For instance, although 
transparent models such as DT and NB are rel-
atively intuitive for ML engineers to understand, 
they might not be accessible for users without 

technical experience. In these cases, XAI tech-
niques provide straightforward and non-ambigu-
ous interpretations to the involved audience with 
or without a proper technical background. This 
benefit is especially crucial for mission-critical 
networks (e.g., banking, satellite, UAV, and trans-
portation system networks), where predictable 
policies and deterministic behaviors are highly val-
ued. Thus, explaining the AI models can expedite 
the validation of functional coherence, constraint 
violations, ethical customs, and legal obligations, 
and make their decisions and recommendations 
more trustworthy, accountable, and dependable 
to human users. 

Current XAI-Based Solutions in Networking
XAI methods can be categorized using different 
criteria. Depending on the interpretation scope, 
XAI methods can be either global or local. Global 
methods strive for comprehensive model interpre-
tation, while local methods provide interpretations 
on specific prediction instances. Based on the reli-
ance on specific AI models, XAI methods can be 
model-agnostic or model-dependent. Model-de-
pendent methods are custom-made for specific 
models, while model-agnostic methods are tech-
nically applicable to any AI model. In this section, 
we classify existing XAI research in networking 
based on interpretation techniques, namely visual-
ization, model simplification, and feature relevance 
analysis, as shown in Fig. 2.

Visualization-Oriented XAI
The most straightforward XAI method is explaining 
through visualization, which entails visual augmen-
tation and (optionally) dimensionality reduction 
techniques to generate simple illustrations of an 
AI model’s internal operations and interactions. 
Beliard et al. [11] proposed a platform to visual-
ize the inference process of a commercial-grade 
network traffic classification engine based on con-
volutional neural networks (CNNs). The platform 
can generate a set of graphs to illustrate the clas-
sification process and highlight the most salient 
features. Human users can thus develop a better 
understanding of CNN’s classification process by 
interacting with the graphs. 

Model-Simplification-Oriented XAI
The model simplification method builds a func-
tionally similar but much simplified model (e.g., 
linear models) to elucidate the inference process. 
For instance, Morichetta et al. [12] targeted the 
unsupervised traffic classification problem and 
trained an SVM-based classifier. Then they inte-

FIGURE 2. A summary of the existing XAI techniques: visualization-oriented, model-simplification-oriented, and feature-analysis-oriented XAI.
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grated the local interpretable model-agnostic 
explanations (LIME) approach to explain the spe-
cific clustering results. LIME constructs an inter-
pretable model coherent with the SVM model 
for a given prediction instance and perturbs the 
input to locate the most influential features. Sim-
ilarly, Sun et al. [13] presented their preliminary 
research on wireless multi-channel power alloca-
tion. The authors leveraged Meijer G-function to 
represent an NN model and to render a low-di-
mensional explainable symbolic representation. 
As Meijer G-function has ample search space, 
there is no guarantee that it is the most represen-
tative function for the NN model. Meng et al. [8] 
proposed two methods to interpret DL-based net-
working systems. They utilized teacher-student 
training to build DTs for local networking systems 
and hyper-graph formulations to generate inter-
pretable policies for global networking systems. 
The proposed methods were applied to interpret 
three real-world DL-based systems (i.e., video 
streaming, flow scheduling, and SDN-based rout-
ing) and presented more accurate interpretation 
results than LIME and LEMNA, another prevalent 
XAI method that approximates a local region of 
the complex decision boundary with an interpre-
table model.

Feature Relevance-Oriented XAI
Feature relevance analysis methods compute a 
feature relevance score to assess each feature’s 
impact on the final decision. For example, Guo et 
al. [14] proposed a DRL method for optimal ser-
vice provisioning in the UAV-based wireless net-
works and conducted local feature analysis using 
a sample configuration to interpret and highlight 
the determinant features leading to specific pre-
dictions. Terra et al. [15] tackled the interpretabil-
ity of an XGBoost model that predicts the latency 
violation in 5G networks. The authors evaluated 
several classical XAI methods and recommend-
ed using SHAP, which rendered the most proper 
interpretation. 

Although these endeavors to interpret 
AI-based solutions have borne some fruit, XAI is 
still in its infancy in the networking field. Accord-
ing to Table 2, existing methods either heavily rely 
on state-of-the-art XAI techniques designed for 
general purposes or have limited interpretation 
scope only applicable to some specific AI models. 

Challenges and Future Perspectives
With the deployment of 5G and the inception of 
6G standardization, there is an urgent need for 
end-to-end network automation. Several initia-
tives were established to strive toward AI-driven 
self-managed networks, such asETSI’s Zero-Touch 

Network and Service Management group. XAI is 
deemed a fundamental building block to bestow 
the next-generation networks with self-manag-
ing, self-healing, and self-optimizing capabilities. 
However, XAI still has many impediments to over-
come to unleash its full potential for automated 
network management. This section addresses 
five fundamental perspectives of XAI, including 
network-specialized interpretation, performance 
improvement, model refinement, robustness, and 
trust fostering.

Specialized XAI for Networking Problems
As shown earlier, most existing works directly 
adopt state-of-the-art XAI methods such as LIME 
and SHAP, which are not natively designed to 
exploit the unique characteristics of modern net-
working systems and data, and can lead to incon-
sistent results. For instance, as shown in [15], due 
to the unique patterns of network data, LIME 
failed to produce consistent interpretations when 
multiple features have similar impacts on one pre-
diction, which can cause undesirable consequenc-
es. It is thus essential to consider the peculiarities 
of the target problem and implement bespoke XAI 
methods compatible with the corresponding net-
work and system settings. To this end, Meng et al. 
[8] pioneered the design of specialized XAI meth-
ods for DL-based networking systems. Despite the 
promising results, their methods cannot explain 
recurrent neural network (RNN)-based systems, 
and the performance of more complex DNNs is 
still unexplored. With the ascending complexity 
of modern networks, more XAI methods designed 
for diversiform combos of AI models and network 
settings are expected to be implemented to pro-
vide interpretations for AI-based network services, 
applications, and systems.

XAI for Performance Improvement
Future XAI methods should generate more 
advanced interpretations to facilitate performance 
improvement. Current XAI methods only extract 
mappings between input features and output pre-
dictions, which are subsequently analyzed and 
extrapolated by human experts to uncover the 
decisive factors. XAI methods should produce 
advanced observations and straightforward sug-
gestions for automatic performance optimization 
at both the model and system levels. Specifically, 
at the model level, XAI methods should explicitly 
indicate the steps to improve the quality of predic-
tions (e.g., fine-tune parameters, augment the col-
lected data, or simplify the model). At the system 
level, XAI methods should pinpoint the most desir-
able execution configurations for the deployed 
AI-based solutions, such as the intended network 

TABLE 2. Related works on XAI in networking.

Research item Problem domain XAI technique Interpretation scope Model-agnostic Target model

Beliard et al. [11] Traffic classification Visualization Local No DNNs

Morichetta et al. [12] Video quality classification Model simplification Local Yes —

Sun et al. [13] Wireless channel allocation Model simplification Local No DNNs 

Meng et al. [8] Interpreting DL-based system Model simplification Local No DNNs

Guo et al. [14] Wireless service provisioning Feature relevance analysis Local No DDDQN

Terra et al. [15] 5G root cause identification Feature relevance analysis Global/local Yes —

QIU_LAYOUT.indd   29QIU_LAYOUT.indd   29 2/13/22   10:43 PM2/13/22   10:43 PMAuthorized licensed use limited to: Tsinghua University. Downloaded on March 05,2022 at 07:33:30 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • February 202230

environment (e.g., data centers vs. ISP networks), 
traffic types, and model serving schemes. In some 
cases, XAI should enable acceptable trade-offs 
between different performance metrics such as 
accuracy, latency, and energy cost. For instance, a 
DNN can be partitioned for collaborative training 
and inference based on real-time network dynam-
ics. Its responsiveness can also be enhanced 
by adding multiple side branches with different 
degrees of accuracy (e.g., early-exit). Thus, future 
XAI methods need to integrate other cutting-edge 
analytic tools to extract insights and associate 
actions with decisions productively.

XAI for Feasibility-Oriented Model Refinement
Traditional network management runs in the con-
trol plane to react to network events within milli-
seconds, which can only make decisions based on 
a few data and fail to capture more fine-grained 
statistics. With the proliferation of AI in network-
ing, it is essential to leverage the abundant traffic 
features in the data plane to build more cognitive 
solutions for network management tasks such as 
traffic classification, congestion control, and QoE 
management. Given the resource constraints of 
network devices and the over-parameterization of 
many AI models, it is necessary to distill the most 
relevant features and reduce the model complexity 
to fit AI-based solutions to production-grade data 
planes. Although XAI can be used for model refine-
ment, little prior research explicitly addresses this 
issue. Future XAI methods should pinpoint the most 
suitable model refinement strategy for different 
network and system settings. For instance, given 
the available capacities of a NetFPGA, a DNN’s 
computation and memory footprints can be shrunk 
using model compression techniques such as prun-
ing, quantization, and knowledge distillation. 

The Robustness of XAI
Another critical challenge for AI-driven network 
management is robustness against malicious 
attacks. Although XAI can enhance the robust-
ness of the AI-based solutions by exposing the 
vulnerabilities therein, XAI methods themselves 
are also susceptible to adversarial attacks. By pur-
posefully manipulating the input data, existing XAI 
methods (e.g., LIME) can be misled to produce 
unreliable or irrelevant explanations. The unique 
characteristics of networking problems further 
introduce a different dimension to this challenge. 
Therefore, to guarantee unbiased interpretations 
for AI-based networking solutions, it is necessary 
to propose reliable benchmarks that can compre-
hensively assess the consistency, correctness, and 
scalability of the XAI methods. Besides, it is equal-
ly important to defend the XAI methods against 
adversarial attacks. The defense can be based on 
mechanisms designed to detect and prevent mali-
cious attacks. Proactive defense schemes, such as 
shield execution and traffic encryption, are also 
viable options. 

XAI for Trust Fostering
Most existing XAI methods are still evaluated in 
simulated or controlled environments, and their 
performance cannot sufficiently reflect real-
world circumstances. This reality gap immensely 
impedes the acceptance of AI-based solutions, 
especially for the envisaged 6G networks where 

many mission-critical services are expected to be 
managed [9]. Unfortunately, existing XAI cannot 
be seamlessly integrated into network systems to 
interpret models on the fly. To further promote 
the trust of AI across the networking communi-
ty, more system-level supports, such as standard 
application programming interfaces and software 
development kits, are needed to fuse XAI meth-
ods into the production network environment 
and facilitate real-time, automatic inspection and 
validation of different AI-based solutions. By con-
tinuously providing high-quality inference with jus-
tified interpretations, the network operators and 
other stakeholders will become more accustomed 
to the AI-based solutions and more inclined to 
trust their decisions.

Conclusion
Despite the unprecedented success of AI tech-
niques, most AI-based solutions are built on 
non-transparent models that are hard to interpret. 
Although XAI techniques keep gaining momen-
tum, little attention has been paid to their appli-
cations in modern networking systems. In this 
article, we give a general overview of XAI in net-
working. We specifically review the current status 
of AI in networking and discuss the motivations 
for XAI. We also review existing XAI research that 
interprets AI-based solutions and discuss future 
challenges. Although XAI in networking is far from 
maturity, this article can serve as primitive guid-
ance for the incremental melioration of AI-based 
networking solutions. 
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