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Abstract—The emergence of cloud computing as an efficient
means of providing computing as a form of utility can already
be felt with the burgeoning of cloud service companies. Notable
examples including Amazon EC2, Rackspace, Google App and
Microsoft Azure have already attracted an increasing number of
users over the Internet. However, due to the dynamic behaviors
of some users, the traditional cloud pricing models cannot well
support such popular applications as Mobile Cloud Computing
(MCC). To mitigate this problem, we take our first steps towards
the design of an efficient double-sided combinatorial auction
model in the context of mobile cloud computing. In particular, we
carefully develop the framework of online combinatorial double
auctions and apply a Winner Determination Problem (WDP)
model for the proposed auction mechanism. The experiment
results indicate that the allocation efficiency of our proposed
online auction mechanism is comparable to the social optimal
solution.

I. INTRODUCTION

Cloud computing is emerging as a promising paradigm that
enables on-demand and elastic access to computing infras-
tructures. Despite the burgeoning of Internet cloud services,
the existing cloud markets are still in the premature stages
with respect to their pricing structures. Amazon EC2, for
example, advertises $0.03 − 0.12 per hour for each of its
Virtual Machine (VM) instances, depending on their types.
Such a posted-offer pricing model is commonly used when
the commodity to be priced has a well-known value that is
common knowledge to both sellers and buyers, and a buyer
is simply a price-taker that chooses whether or not to pay the
price, complete the transaction, and acquire the commodity.
Such a fixed pricing scheme, while perhaps acceptable to a
small group of enterprise and individual users, essentially shut
the door upon the vast majority of potential cloud users.

To mitigate such a problem, the auction-based instances
are widely suggested in the cloud market. Such Spot Instances
allow the customers to bid on unused resources (e.g., EC2
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VMs) and run those instances as long as their bids exceed
the current spot price, bringing more freedom to users. Re-
searchers therefore proposed different auction mechanisms to
implement resource allocation and pricing in cloud markets [1]
[2] [3] [4]. However, these single-sided single-minded auction
models cannot well support such popular cloud applications
as Mobile Cloud Computing (MCC). In particular, Sharrukh
Zaman added detailed reasons in [5] that auctions have clear
advantages over others when the auctioned items are com-
plementary. A survey from Juniper Research [6] states that
the consumer and enterprise market for cloud-based mobile
applications is expected to mount to $9.5 billion by 2014. It is
thus important to develop a smarter auction model to support
such an elevating demand.

To better support the MCC applications and users, we
carefully design the framework of online combinatorial double
auctions and apply a WDP model for the proposed auction
mechanism. We further develop a decomposition algorithm to
solve WDP, which can effectively determine winners as well
as prices of each auction in affordable time. Moreover, we
also investigate a bidding language to facilitate mobile users
to express valuations concisely, and nearly reach the social
optimal solution. Our experiment results show that the alloca-
tion efficiency of our proposed online auction mechanism is
comparable to the social optimal solution and computationally
feasible.

The rest of this paper is organized as follows: Section 2 re-
views some related work, and Section 3 proposes a framework
of the MCC combinatorial double auction. Section 4 describes
the bidding language, while the model and algorithm of WDP
are presented in Section 5. Then the simulation results are
given in Section 6, and Section 7 concludes the paper.

II. RELATED WORK

As MCC is the combination of wireless access services
and cloud services, it is feasible to apply auctions in MCC
markets. In this section, we will present related work on auc-
tions (especially combinatorial and double auctions), and then
review the use of auctions to implement resource allocation
and pricing in cloud and MCC markets.
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A. Combinatorial and Double Auctions

Auctions are effective economic ways for setting the price
of commodities based on supply and demand in real-world
markets. The auction model supports one-to-many (for in-
stance, single-sided auction) or many-to-many (e.g., double
auction) negotiations between sellers and buyers, and reduces
negotiations to a single value (i.e., price). Moreover, in an
auction, players may be allowed to bid for one commodity or
sets of items at one time.

Now many e-commerce platforms adopting Combinatorial
Auctions (CAs) only support one-to-many negotiations, i.e.,
single-sided auctions. One auctioneer initials an auction be-
fore many buyers bid, and vice versa. Weijie Shi gave an
online framework for resource provisioning in [7], and by
a series of one-round optimizations, the authors applied a
randomized auction then approximated the one-round social
welfare optimization. Although single-sided auctions are well-
suited for markets with a limited number of buyers or sellers,
these mechanisms are non-effective when the markets consist
of numerous of buyers and sellers. To maximize the profits,
a potential buyer or seller may bid repeatedly in various
auctions, and to relieve this computational burden and promote
transactions, many recent researches have been devoted to the
double auctions [8].

Double auctions are many-to-many negotiations, which
enable multiple buyers and sellers to bid simultaneously in one
auction. Indeed, the major exchanges today, like NASDAQ,
New York Stock Exchange (NYSE) and the major foreign
exchange (FX), apply variants of double auctions [9].

B. Auctions in cloud and MCC Markets

The use of auctions in computing dates back to 1968 when
Sutherland [10] proposed allocating processing time in a single
computer via auctions. Then with the development of grid
computing, many market-based resource allocation strategies
were brought out, some of which applied auction mechanisms
to grid scheduling [11] [12].

Currently researchers are investigating the economic as-
pects of cloud computing from different points of view.
Buyya et al. [1] proposed an infrastructure of federated clouds
for auction-based resource allocation across multiple clouds.
Prasad et al. [13] and Zaman et al. [5] used combinatorial
auctions to implement computing resources and virtual ma-
chine allocation. Furthermore, Lee et al. [2] brought out a
real-time group auction system for cloud application allocation.
Zhang et al. [3] put forward a framework for online auctions in
cloud computing. In our former work [4], a continuous double
auction mechanism was proposed for cloud markets, and a
bidding strategy was designed for cloud users and CSPs to
maximize their profits.

For MCC resource and application allocation, there is little
work introducing auction mechanisms to MCC markets. Niyato
et al. [14] developed an auction mechanism with premium
and discount factors for resource allocation in MCC systems.
The major difference between our work and the current work
is that we are considering a combinatorial double auction
mechanism for MCC markets, which enables mobile users and
MCC providers to submit bids and asks simultaneously and
supports users to bid sets of commodities at one time.
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Fig. 1. MCC enabling mobile users accessing cloud services through wireless
networking

III. THE FRAMEWORK OF MCC COMBINATORIAL

DOUBLE AUCTION

We consider a platform for MCC markets where multiple
mobile users and MCC providers respectively buy and sell
commodities in a combinatorial double auction manner.

A. Design Requirements

As shown in Fig.1, the mobile users access services pro-
vided by remote clouds via wireless networks, like 2G, 3G
or WiFi. Mobile communication base stations or WiFi access
points provide radio resources (i.e., bandwidth), while remote
cloud provide applications, computing and storage resources.

A feasible auction model for MCC should meet the fol-
lowing requirements: Firstly, the MCC services are the com-
binations of wireless services and cloud computing resources.
If mobile users want to use cloud services, they also need to
buy wireless access services. In a feasible MCC market, com-
modities cover wireless access services as well as applications,
computing and storage resources. Secondly, energy efficiency
is of particular importance for mobile devices. Moreover, both
transmission and computation consume energy. Thirdly, differ-
ent from traditional CSPs, MCC providers usually offer various
applications besides computing utilities and storage resources,
such as image processing, natural language translating, and
multimedia search [15]. Finally, in current cloud markets cloud
users often rent resources to support websites, or run scientific
computing [16] [17]. On the other hand, the simple auction
rules are more acceptable to mobile users.

B. Framework Overview

The online auction platform collects the bids and asks
from mobile users and MCC providers respectively, and it
computes who and how to win the auctions. The overview of
the framework is shown in Fig.2, and the detailed information
is in [18].

It is an electronic bidding platform, and the auction on it
can be divided into 3 states: the registration stage, the bidding
stage and the winner determination stage. In the registration
stage, the information of all resources, the related parameters
of mobile users, and MCC providers are presented on the
bulletin board, and every player is certified. Then in the
bidding stage, users can submit bids and providers can submit
asks. Eventually, the winners and prices are computed by the
determination module according to the combinatorial double
auction mechanism.

Furthermore, mobile users can download a bidding ap-
plication, which executes on mobile devices to translate us-
er’s specific demands into requests described in the bidding
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Fig. 2. A Framework of the MCC Combinatorial Double Auction Platform

language, by which user’s heterogeneous demands can be
restricted to regulated and consistent forms while the details
of the requirements can still be revealed. Each request is then
submitted to the platform. MCC providers also can submit
asks of commodities they want to sell. After an auction
closes, the platform computes winners and prices based on
the auction mechanism, and then announces the results to
users and providers who establish the connection and start
to run/host applications once the charging and payment are
complete.

The bidding rules of the platform are given in the next sub-
section. Section 4 describes the bidding language for mobile
users, and Section 5 presents how to determine winners in the
MCC combinatorial double auction.

C. The Market Rules

In our MCC auction framework, the platform acts as a
central auctioneer. To facilitate bidders and improve trading
efficiency, some market-rules are defined as follows.

Rule 1: The platform prescribes the Bidding Period, tbp,
can be one day, several hours, etc. During the Bidding Period,
mobile users and MCC providers are allowed to submit bids
and asks, by the end of which the auction closes and the market
clears.

Rule 2: A bid of user i can be for bundles of items, de-
noted as Bi = LMU(〈S, vS

i 〉). S is a subset of the available
commodities in the auction. vSi is a valuation (willingness to
pay) of user i for S.

Rule 3: An ask of provider j can be for
multiple units of items, denoted as Aj =
(〈r1, c

r1

j , qr1

j 〉, . . . , 〈rk, c
rk

j , crk

j 〉, . . . , 〈rm, crm

j , qrm

j 〉).

crkj is the offered price per unit for commodity rk of provider
j, and qrkj is the quantity of commodity rk.

Rule 4: To prevent unreasonably low bids and speed up
the trading process, the Minimum Bid allowed in the market,
Bmin, is defined.

Rule 5: In the same way, to prevent unreasonably high
asks and speed up the trading process, the Maximum Ask
allowed in the market, Amax, is defined.

The above rules are published on the MCC auction platfor-
m. As long as users and providers take part in auctions, they

must submit bids and asks according to the rules. A scenario
of the combinatorial double auction on the platform is given
in [18].

IV. THE BIDDING LANGUAGE FOR MOBILE USERS

Bidding language is a language for expressing valuation
functions, and a good one which allows bidders to concise-
ly express natural valuation functions. In our MCC auction
framework, the bidding language is implemented in the mobile
client side to translate user’s specific demands into requests.
In this section, we first analyze different types of mobile user
valuations, and then we put forward a novel bidding language
LMU to represent heterogenous user demands concisely and
consistently. At last, we discuss the novel contributions of
LMU in MCC combinatorial double auctions.

A. Heterogenous Mobile User Valuations

In general, let R be the set of all the types of goods for
sale in a CA, a buyer could have a different valuation for every
subset S of R. Because R has 2|R|−1 different subsets, there
are 2|R| − 1 possible bids to specify in the CA.

Furthermore, how valuable one item is to a buyer may
depend on whether he/she possesses another item. On one
hand, some of these items are substitutable (e.g., users can use
storage from different places) that they have similar functions
to the users. On the other hand, some items are complementary
that users will need them as a bundle (e.g., users need both
wireless connection and storage for online photo posting).

The complementary and substitutable items in an MCC
market can be defined as follows.

Definition 1: A mobile user i has a valuation for a com-

modity r, denoted as v
{r}
i . For user i, items a and b are

substitutable if v
{a,b}
i < v

{a}
i + v

{b}
i , and items a and b

are complementary if v
{a,b}
i ≥ v

{a}
i + v

{b}
i . Especially,

when items a and b are independent, are also be viewed as

complementary because v
{a,b}
i = v

{a}
i + v

{b}
i .

The different valuations for various items lie on user’s util-
ities. A user is satisfactory with the allocated resources, which
is referred to as the utility. Because of the complementarity and
substitutability, a mobile user’s total utilities do not always
equal to the sum of his/her utility of each commodity. An
efficient auction mechanism should maximize buyer’s utilities
and seller’s payoffs, so does our MCC mechanism. Thus we
formulate the user utility functions as follow:

Ui(S) = vSi −
∑

r∈S

P r
i (1)

where Ui(S) is the utility of user i on the commodity set S,
vSi is the valuation of S, and P r

i is the transaction price on
which user i gets the item r. The utility function can reveal the
complementarity and substitutability because user’s valuations
can express them, i.e.,

Ui({a, b}) =







Ui({a}) + Ui({b}) + hi

for a, b is complementary

Ui({a}) + Ui({b})− li
for a, b is substitutable

(2)
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In (2), hi ≥ 0 and li ≥ 0 can be viewed as the premium and
discount in one auction respectively. From the standpoint of
the buyer, if he/she can buy two complementary items a and
b in one auction successfully, he/she is willing to pay more.
However, two substitutable items are bought at one time only
when he/she can get a discount.

To express such heterogenous user demands in CAs, many
bidding languages were brought up, which are meant to
provide the syntax for encoding bid’s information in a succinct
and simple manner. Similar to any language, there is a trade-off
between expressiveness and simplicity. In the next subsection,
we review these bidding languages and put forward our novel
language to express heterogeneous demands of mobile users
in MCC markets.

B. Semantics of Bidding Languages
Bidding languages basically try to efficiently model differ-

ent bidding patterns. The most common method is the single-
minded bidding language, or called atomic bidding language.
It can only describe user demands as follow: a user i chooses
S, a subset of available items R, for valuation vSi [19].

Obviously, the single-minded bids are not expressive e-
nough to distinguish complementarity and substitutability, so
the OR, XOR, and other bidding language are put forward. In
OR, bundle-value pairs are ORed together, and any number
of these pairs may be accepted in an auction. For example,
({a}, 3)OR({b, c}, 4) implies a value of 3 for {a} and a
value of 7 for {a, b, c}. OR is good for expressing comple-
mentarity, but bad for expressing substitutability. XOR can
express any valuation function, which simply XOR together
all bundle-value pairs. It means that only one of the bundle-
value pairs can be accepted in an auction. For example,
({a}, 3)XOR({b, c}, 4) implies a value of 3 for {a} and a val-
ue of 4 for {a, b, c}. While XOR is more expressive than OR,
there are valuations that can be specified more succinctly by
OR. However, they sometimes are not very concise, therefore
some solutions try to combine OR and XOR to get benefits of
the both. The result introduces new languages: OR-of-XORs,
XOR-of-ORs, and the logical language [20].

Often each language is good in expressing some patterns
and weak or unable in expressing some other patterns. While
certain languages can be compared based on their expressivity,
it is not always possible to accurately compare two bidding
languages. However, the complicated bidding languages are
obviously more efficient to express various combinatorial bids
than the simple languages (atomics, OR and XOR), while the
former are more expensive on computing costs of WDP than
the latter.

If our online MCC auction platform adopts a complicated
bidding language, although it allows mobile users to submit
many kinds of combinatorial bids, the performance of the
platform will still be good. Because in MCC markets, mobile
users are non-professional traders, they often cannot design
multiple combinations of various bids. Furthermore, if the
auction platforms are efficient enough to implement many
transactions immediately at the end of bidding period with
acceptable costs, the auctions can be held frequently and
the users do not need to bid many goods in one auction.
Therefore, our novel bidding language LMU restricts the
kinds of combinations that bidders may bid on, which not
only transmits this bidding function in a succinct way to the
platform but also reduces computational complexity.

The semantics of an LMU bid can be expressed in Backus-
Naur Form (BNF) as follows:

BID ::= (Comb Bid)|(Comb Bid)≤n

Comb Bid ::= Atom Bid|Atom Bid→Atom Bid

Atom Bid ::= 〈S, vS〉

Therefore, an LMU bid can be one of four forms:

1) An atomic bid, (〈S, vS〉), means a user bids a set of
commodities S (S ⊆ R) with the valuation vS (vS ∈
N , and vS/|S| ≥ bmin). It is same as a single-minded
language, which can express complementarity.

2) A combinatorial bid, i.e., two atomic bids joined
by a binary operator →, is denoted as (〈S1, v

S1〉 →
〈S2, v

S2〉), where S1 ⊂ R, S2 ⊂ R, and S1

⋂
S2 =

φ. When a mobile user wants to bid substitutable
goods, he/she can express in the form. The equivalent
representation of this form in our LMU and XOR
language are:

(〈S1, v
S1〉 → 〈S2, v

S2〉) ⇐⇒

(〈S1, v
S1〉XOR〈S2 ∪ S1, v

S2〉) (3)

The user may be allocated S1 or S2 ∪ S1, but the
two cannot appear simultaneously.

3) An atomic bid with quantity range, (〈S, vS〉)≤n,
means a user wants to buy the atomic bid up to n
units (n ∈ N , and n > 1).

4) A combinatorial bid with quantity range,
(〈S1, v

S1〉 → 〈S2, v
S2〉)≤n, means a user wants to

buy the combinatorial bid up to n units (n ∈ N , and
n > 1).

The first two forms are suitable for mobile users who
just buy one unit of each type commodity, and the latter two
allow users to buy n copies of the same bid. Let Bid is one
atomic or combinatorial bid in LMU , multi-units of Bid can
be represented by OR as follows:

Bid≤n ⇐⇒ (Bid OR Bid OR . . .OR Bid)
︸ ︷︷ ︸

n

(4)

The user can get one group of goods described in Bid, or 2
groups, at most n groups.

V. THE WINNER DETERMINATION PROBLEM

The problem of identifying which set of bids to accept has
usually been dubbed the WDP, or the combinatorial allocation
problem (CAP), which is a computational problem of how to
efficiently determine the item allocation once the bids and asks
have been submitted to the auction platform. The efficiency of
an auction mechanism depends on the WDP model and its
algorithm.

While the general WDP model of a single-sided combi-
natorial auction has been proved to be NP-hard [21], our
solution is a many-to-many auction mechanism. Obviously,
the objective of such double auctions should be maximizing
the total surpluses of all traders, including buyers and sellers.
Therefore, the WDP of our auction mechanism is formulated
as an optimization problem to maximize the social welfare,
i.e., the total payoffs/utilities of the users and providers.

In our combinatorial double auction, there are set R of
commodities, set I of mobile users, and set J of MCC
providers. Given set B = {B1, . . . , Bi, . . . , B|I|} of bids
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submitted by all users, and set A = {A1, . . . , Aj , . . . , A|J|}
of asks offered by all providers, find an allocation of goods
to users, which maximizes the social welfare. To formulate
a feasible WDP model for our MCC combinatorial double
auction, the bids and asks need to be preprocessed.

A. Preprocessing of Bids and Asks
LMU enables every user to submit one of four types

bids (an atomic bid, an atomic bid with quantity range, a
combinatorial bids and a combinatorial bid with quantity
range). To simplify WDP, the dummy goods and sub-users
are introduced to transform various bids into one format: the
one-unit atomic bid. The bid transformation can be conducted
according to the following theorems:

Theorem 1: Any atomic bid with quantity range submitted
by a user, Bi = (〈S, vS〉)≤n, can be transformed to n atomic
bids (〈S, vS〉). Suppose they are submitted by n sub-users. The
solution to the origin WDP can be obtained by the solution to
the new WDP.

Theorem 2: Any combinatorial bid, Bi = (〈S1, v
S1〉 →

〈S2, v
S2〉), can be transformed to 2 atomic bids by introducing

a dummy good (dummyi) and 2 sub-users (su1
i , su

2
i ). Suppose

su1
i submits (〈S1 ∪ dummyi, v

S1〉) and su2
i submits (〈S1 ∪

S2 ∪ dummyi, v
S2〉). The solution to the origin WDP can be

obtained by the solution to the new WDP.
Theorem 3: Any combinatorial bid with quantity range,

Bi = (〈S1, v
S1〉 → 〈S2, v

S2〉)≤n, can be transformed to 2×n
atomic bids. The solution to the origin WDP can be obtained
by the solution to the new WDP.

In the same way, sub-providers are also introduced to
simplify the asks offered by the MCC providers. The transfor-
mation of asks can be conducted according to the following
theorem:

Theorem 4: Any ask offering more than one type of goods,
(〈r1, c

r1
j , qr1j 〉, 〈r2, c

r2
j , qr2j 〉, . . . , 〈rm, crmj , qrmj 〉), can be trans-

formed to m simple asks (〈rm, crmj , qrmj 〉). Suppose they are
submitted by m sub-providers. The solution to the origin WDP
can be obtained by the solution to the new WDP.

The preprocessing is shown in Algorithm 1.

B. The WDP Model
As the original bids and asks are processed in our MCC

combinatorial double auction, the WDP model can be formu-
lated as follows:

max(
∑

i∈Î

xiUi(Si) +
∑

j∈Ĵ

yjWj(rj))

s.t.
∑

i∈Î,r∈B̂i(1)

xi =
∑

j∈Ĵ,r=Âj(1)

yj ∀r ∈ R̂

yj ∈ {0, 1, . . . , qj} ∀j ∈ Ĵ

xi ∈ {0, 1} ∀i ∈ Î (5)

where xi denotes whether the buyer i trades in the allo-
cation, and yj denotes the transaction quantity of the seller j.

The variables (xi, yj), i ∈ Î , j ∈ Ĵ specify the auction result.
By mapping sub-users and sub-providers to origin mobile users
and MCC providers respectively, the MCC resource allocation
is acquired.

The object of (6) is to maximize the total utilities of the
mobile users and MCC providers, i.e., social welfare, denoted
as Z(x,y). An auction mechanism is efficient if the allocation

Algorithm 1 Preprocessing of bids and asks

Input:
1) The set R; the set I; the set J ;
2) The set B = {B1, . . . , Bi, . . . , B|I|} of bids, the set
A = {A1, . . . , Aj , . . . , A|J|} of asks

Output:

The set B̂ of atomic bids, the set Â of simple asks, the
set R̂ of goods and dummy goods, the set Î of users and
sub-users, the set Ĵ of providers, dummy provider and
sub-providers,.

1: Initialization of Î ,Ĵ ,B̂,Â = ∅, R̂ = R
2: for all Bi ∈ B do
3: if Bi is not an atomic bid then
4: Transform Bi to a groups of atomic bids Sb

B̂ = B̂ ∪ Sb, Î = Î ∪ {subusers}
5: for all dummyi do

6: Ĵ = Ĵ ∪ {dpi}, Â = Â ∪ {(〈dummyi, 0, 1〉)}
R̂ = R̂ ∪ {dummyi}

7: end for
8: else
9: B̂ = B̂ ∪Bi, Î = Î ∪ {useri}

10: end if
11: end for
12: for all Aj ∈ A do
13: if |Aj | ≥ 1 then
14: Transform Aj to a groups of simple asks Sa

Â = Â ∪ Sa, Ĵ = Ĵ ∪ {subproviders}
15: else
16: Â = Â ∪Aj , Ĵ = Ĵ ∪ {providerj}
17: end if
18: end for

maximizes social welfare. Ui(S) is the utility function of the
buyer i, which has been defined in (1). Wj(r) is the surplus
function of the seller j, and is formulated as follow:

Wj(r) = P r
j − crj (6)

where P r
j is the transaction price on which the seller j sells

the item r, and crj is the offered price submitted by the seller
j. The seller j can obtain the surplus Wj(r) by selling one
unit of commodity r.

Therefore, the object of (6) can be presented as:

Z(x,y) =
∑

i∈Î

xi(vi −
∑

r∈Si

P r
i ) +

∑

j∈Ĵ

yj(Pj − cj) (7)

Because
∑

i∈Î

xi

∑

r∈Si

P r
i =

∑

j∈Ĵ

yjPj (8)

we have

Z(x,y) =
∑

i∈Î

xivi −
∑

j∈Ĵ

yjcj (9)

Therefore, our WDP problem can be solved by the following
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integer program:

(IP ) zIP =max(
∑

i∈Î

vixi −
∑

j∈Ĵ

cjyj)

s.t.
∑

i∈Î

brixi −
∑

j∈Ĵ

arjyj = 0 ∀r ∈ R̂

yj ∈ {0, 1, . . . , qj} ∀j ∈ Ĵ

xi ∈ {0, 1} ∀i ∈ Î (10)

In the next subsection, we design the decomposition algo-
rithm to relax the problem P to a linear formulation, and bring
up a pricing mechanism to decide transaction prices.

C. The Decomposition Algorithm And Pricing Mechanism
The optimization problem IP is also NP-hard because it

is a special case of the general WDP problem defined in (5),
which has been proved to be NP-hard [21].

Two approaches are used to find the optimal solution to
the general WDP of the single-sided combinatorial auctions,
shown in (5). The first one is the exact method, which replaces
the given problem by one with a larger feasible region that is
more easily solved. The upper bound on the optimal solution
value is obtained by solving a relaxation of the optimization
problem [21]. The second approach is to conduct one of
the standard Artificial Intelligence (AI) searches over all the
possible allocations, given the bids submitted [22]. Several
algorithms with satisfactory performance for problem sizes and
structures occurred in practice have been developed. However,
because of the wide applicability of combinatorial auctions,
one cannot hope for a general-purpose algorithm that can
efficiently solve every instance of this problem.

To design a computationally efficient algorithm for our
combinatorial double auction problem, we first decompose IP .
Our decomposition algorithm reformulates the problem to a
linear programming problem, which can then be solved in
polynomial time with a subgradient algorithm. Then we rely
on the solution to the linear dual problem and use its optimal
value.

We adopt the Lagrangean relaxation to relax the first
constraint of our original problem IP by moving it into
the objective function with a penalty term. Then we get the
Lagrangean relaxation problem LR:

(LR) zLR(λ) =maxL(x,y;λ)

s.t. 0 ≤ yj ≤ qj ∀j ∈ Ĵ

0 ≤ xi ≤ 1 ∀i ∈ Î (11)

L(x,y;λ) is the Lagrangean function and be defined as:

L(x,y;λ)=
∑

i∈Î

vixi −
∑

j∈Ĵ

cjyj

+
∑

r∈R̂

λr(
∑

j∈Ĵ

arjyj −
∑

i∈Î

brixi) (12)

and λ is a vector of Lagrangean multipliers, λ =
(λ1, . . . , λr, . . . , λ|R̂|).

Therefore, we get the Lagrangen dual problem LD of the
primal problem:

(LD) zLD =min zLR(λ)

s.t. λr ≥ 0 ∀r ∈ R̂ (13)

Computing zLD is easy, since there are many subgradient
algorithms for the Lagrangean relaxation. Our problem can be
deemed as a case of the Traveling Salesman Problem (TSP),
and then the subgradient algorithm is applied. A subgradient
of the Lagrangean function L(x,y;λ) is defined as:

g = ∂L(x,y;λ)/∂λ (14)

Iterate λ(k) is generated according to the update recursion:

λ(k+1) = λ(k) + t(k)g(k) (15)

where t(k) being a scalar representing the step size and g(k) a
subgradient of the function L(x,y;λ) at the point λ(k).

The key point is to decide transaction prices. The constraint
∑

i∈Î brixi −
∑

j∈Ĵ arjyj = 0(∀r ∈ R̂) restricts that the total
demand of all mobile users is equal to the total supply of all
providers. Because the vector of the Lagrangean multipliers
relaxes it, the λ can be interpreted as a price vector. When
the Lagrangen dual problem LD is solved, the optimal vector
λ = (λ1, . . . , λr, . . . , λ|R̂|) is also obtained. Therefore, the

transaction prices of the commodities are decided, and λr

is the transaction price of the commodity r. In our MCC
combinatorial double auction, one type of goods only has one
price. The trade prices of the dummy goods all equal to 0.

VI. SIMULATION AND EVALUATION

We consider a simulation scenario with a set R of com-
modities, a set I of mobile users and a set J of MCC providers.
Suppose each user only submits an atomic bid (〈S, vS〉),
and each provider only offers an ask for one type of goods
(〈r, c, q〉). The bundle Si that user i bids is selected from the
2|R|−1 subsets of R randomly. User values, provider’s offered
prices and quantities are random numbers.

To compare the allocation performance of the proposed
combinatorial double auction with the single-minded auctions,
we can construct |R| sequential auctions a1, . . . , ar, . . . , a|R|,
where the r − th auction sells the commodity r. If user i
submits Bi = (〈Si, v

S
i 〉), Si = {rl, rm, rn}, the bid can be

divided into 3 bids for the single-minded auctions sal, sam and
san, and the value for each bid is set as vSi /3. We evaluate
the following three criterions: The Social Welfare, Es; The
Transaction Volume, Ev; The Average Ratio of Transaction
Prices, α.

In order to provide optimal solutions to each single-minded
auction ar, we use the Marshallian path to match bids and asks
[23].

Figures 3 and 4 give the comparisons of the combinatorial
auctions and sequential auction on social welfare, transaction
volume and transaction price in two scenarios on different
scales. The amount of users and that of providers are fixed,
while the number of commodities is on the increase. In Fig.
3, |I| = 2000, |J | = 100 and |R| = 2, 3, . . . 10. While in Fig.
4, |I| = 5000, |J | = 200 and |R| = 2, 3, . . . 15.

Comparing the simulation results, we can observe that as
the number of commodities increases, the allocation perfor-
mance of combinatorial auctions is always close to the optimal
sequential auctions. Furthermore, the transaction prices are
stable.

To evaluate the computational efficiency of our mechanism,
we analyze how many iterations are executed in simulation
markets on different scales, as shown in Fig. 5. The number
of commodities is fixed, |R| = 10. In Fig. 5a, the amount of
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Fig. 3. Allocation performance of the proposed MCC combinatorial double auction mechanism (Scenario 1)
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Fig. 4. Allocation performance of the proposed MCC combinatorial double auction mechanism (Scenario 2)
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Fig. 5. Simulation results: computational efficiency (iterations executed to get the optimal solution) of the proposed MCC combinatorial double auction
mechanism

users and that of providers are both on the increase. Figure 5b
gives the iteration curve with different amount of users, when
the number of providers is also fixed, |J | = 100. Figure 5c
shows iterations varying with the amount of providers with
fixed numbers of commodities and users. The results prove
that the algorithm is feasible.

Overall, from the simulation results we can conclude that:
first, allocation efficiency of our approach is high because
the social welfare and transaction volume of our approach
are close to the social optimal solution and transaction prices
are stable. Second, our WDP algorithm is convergent and can
obtain the optimal results with acceptable iterations.

VII. CONCLUSION

In this paper, we apply the combinatorial double auction
mechanism in MCC resource allocation and design an online
auction framework to implement the mechanism. It enables
mobile users to bid bundles of cloud services at one auction.
For the consideration of facilitating mobile users, a novel
bidding language is designed to express user’s valuations
concisely. Then a model of WDP for our auction mechanism
is formulated, which can determine winners and prices of each
auction in affordable time. The experiment results show that
the allocation performance of our solution is very close to the
social optimal allocation and the computational cost is also
feasible.
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