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Abstract—Traffic Engineering (TE) leverages information of
network traffic to generate a routing scheme optimizing the traffic
distribution so as to advance network performance. However,
optimizing the link weights for OSPF to the offered traffic
is an known NP-hard problem. In this paper, we model the
optimal TE as the utility maximization of multi-commodity flows
and theoretically prove that any given set of optimal routes
corresponding to a particular objective function can be converted
to shortest paths with respect to a set of positive link weights,
which can be explicitly formulated using the optimal distribution
of traffic and objective function. This can be directly configured
on OSPF-based protocols. On these bases, we employ the Network
Entropy Maximization (NEM) framework and develop a new
OSPF-based routing protocol, SPEF, to realize a flexible way to
split traffic over shortest paths in a distributed fashion. Actually,
comparing to OSPF, SPEF only needs one more weight for each
link and provably achieves optimal TE. Numerical experiments
have been done to compare SPEF with the current version
of OSPF, showing the effectiveness of SPEF in terms of link
utilization and network load distribution.

Index Terms—Traffic engineering, OSPF, Utility, Routing

I. INTRODUCTION

The primary role of Internet Service Providers (ISPs) is
to guarantee service via deploying infrastructures, managing
network connectivity and balancing traffic load inside their
networks [9]. The goal of Traffic Engineering (TE) is to ensure
efficient routing to minimize network congestion, so that users
can experience low packet loss, high throughput, and low
latency. Traffic Engineering leverages information from traffic
entering and leaving the network to generate a routing scheme
that optimizes network performance. In particular, an ISP
solves the TE problem by adjusting the routing configuration
to the prevailing traffic.

In this paper, we focus on traffic engineering within a
single Autonomous Systems (AS), in which we assume that
the egress point of each external destination is known and
fixed. Traffic engineering thus depends on a set of performance
objectives that guide path selection, as well as effective mech-
anisms for routers to select paths that satisfy these objectives
[15].

Open Shortest Path First (OSPF) is a commonly used intra-
domain routing protocol [23], which provides the network
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operators a way to control network routing by configuring
OSPF link weights. The quality of OSPF-based traffic en-
gineering depends largely on the choice of weights. Link
weights can have a reasonable default configuration based
on link capacity, e.g., Cisco’s InvCap [10] sets the weight
of a link inversely proportional to its capacity, which can
be explained by the M/M/1 queuing model. Although fairly
intuitive and convenient, these setting approaches might lead to
undesirable network load distribution, since they do not take
the expected traffic demand into consideration. In practice,
given network link capacities and expected traffic demands, the
link weights can be optimized by ISPs according to a certain
object function. However, computing the optimal link weights
under the evenly traffic splitting scheme has been proven to
be NP-complete [12].

Challenges. In this paper, we take an important step towards
building an OSPF-based routing protocol that can achieve
the optimal traffic engineering. Although this optimization
problem has attracted a great research interests and been
extensively studied (e.g., [14], [15], [19]), there are still several
challenges to be further studied, including the following:

1. Can we guarantee the universal existence of optimal
link weights? Network providers are usually interested in
various indicators to improve the network performance in
different ways, e.g.,some of them might prefer to lower the
maximum link utilization, while others might try to minimize
path lengths. Accordingly, various objective functions have
been proposed to capture these demands. Based on the results
derived from linear programming, Wang et al. [15] proved that
any arbitrary set of routes can be converted to shortest-paths
with respect to some set of positive link weights. Although
this outcome is encouraging to some extent, we still prefer to
ensure the universal existence of optimal link weights which
are explicitly determined by the objective function and the
optimal distribution of traffic.

2. Can we achieve the optimal TE for intra-domain
IP networks based on OSPF? As a distributed link-state
routing protocol, OSPF uses the shortest path routing with des-
tinations based hop-by-hop forwarding and Equal-Cost Multi-
Path (ECMP) mechanism to evenly split the corresponding
traffic over all available equal-cost paths. Many approaches
are proposed attempting to achieve the “optimal” routing based
on OSPF. Wang et al. [15] and Srivastava et al. [14] proposed
flexible solutions to efficiently split traffic over shortest paths,
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but these centralized solutions went against the distributed fea-
ture of OSPF. A new link-state protocol named PEFT, recently
proposed by Xu et al. [16], successfully realized a flexible
traffic splitting scheme in a distributed manner, whereas failed
to maintain the shortest paths in packet forwarding thus
sacrificing a key benefit of OSPF. Guaranteeing the crucial
features of OSPF in terms of scalability and efficiency are thus
a great challenge in achieving the optimal traffic engineering
goals based on OSPF.

Our Approach and Contributions. In this paper, we model
the optimal TE as the utility maximization of multi-commodity
flows and propose a distributed dual decomposition method
to compute the optimal link weights. Based on these, we
develop a new OSPF-based protocol, Shortest paths Penalizing
Exponential Flow-splitting (SPEF). It has been proved able to
achieve the optimal TE.

Toward the optimal TE, in SPEF, we only need one more
weight for each link. For simplicity, we hereafter refer to
the optimal and the additional link weights as the first and
second link weights, respectively. In SPEF, packets forwarding
is the same as OSPF: hop-by-hop along the shortest paths
constructed based on destination according to the first link
weights. When there are multiple shortest paths for the same
source-destination pairs from the perspective of the first link
weights, the flow split ratio over these multiple shortest paths
can be independently computed by routers using the second
link weights. In particular, we address the above challenges as
follows:

1. To ensure the existence of optimal link weights, we model
the optimal TE as the utility maximization of multi-commodity
flows and theoretically show that any given set of optimal
routes corresponding to a particular objective function can be
converted to shortest paths with respect to a set of positive link
weights, which can be explicitly formulated using the optimal
distribution of traffic and objective function. Inspired by the
rate control scheme in congestion control [7], we investigate
a class of (q, β) utility function as the objective function to
extract various demands in TE.

2. To achieve the optimal TE based on OSPF, we develop
a new routing protocol, SPEF, proving that it can achieve the
optimal TE for intra-domain IP networks. Although we lever-
age the NEM framework proposed in PEFT, the key difference
between them is in that: SPEF realizes a flexible flow splitting
over shortest paths in a distributed fashion, guaranteeing the
crucial features of OSPF in terms of scalability and efficiency.

Paper Organization. The rest of the paper is organized
as follows. We present the utility maximization of multi-
commodity flows and theoretically prove the universal exis-
tence of the optimal link weights in Section II. In Section III,
we propose the (q, β) utility function to extract various needs
in TE and then explore characteristics of the utility maximiza-
tion problem with the logarithmic utility objective function.
The new OSPF-based protocol is developed in Section IV,
following which is the performance evaluation in Section V.
Related work is summarized in Section VI, before we conclude
with the achievements and extensions in Section VII.

II. OPTIMAL WEIGHTS EXISTENCE

In this section, we first present the network model and resort
to the utility maximization of multi-commodity flows to model
the optimal TE. Then we theoretically prove that the optimal
link weights always exist under the generic objective functions
with different parameters.

A. Network Model

We consider a directed network G = (N ,J ) with vertex
set N , edge set J , and R source-destination vertex pairs
{s1, t1}, · · · , {sR, tR}. Each edge (i, j) has a capacity cij ,
which is a measure for the amount of traffic flow it can
take. A demand (traffic) for (sr, tr) is dr, which denotes the
average intensity of traffic entering the network at vertex sr
and exiting at vertex tr. In the following, we use notations
N, J to denote the cardinalities of sets N and J respectively
and R = {1, · · · , R} to denote the source-destination vertex
pairs index set.

The multi-commodity flow problem is a network flow prob-
lem with multiple commodities (or goods) flowing through
the network, with different source and sink nodes. The more
customary way to treat routing in a network is to consider it
as a multi-commodity flow problem. Denote the destination
node set with D = {t ∈ N : ∃ r ∈ R s.t. tr = t}. The
traffic flow to each destination t ∈ D can be regarded as a
commodity. The flow of commodity t along edge (i, j) is f tij .
Find an assignment of flow satisfying the constraints:

fij =
∑
t∈D

f tij ≤ cij , ∀(i, j) ∈ J (1a)∑
j:(s,j)∈J

f tsj −
∑

i:(i,s)∈J

f tis = dts,∀t ∈ D,∀s ∈ N\{t}, (1b)

f tij ≥ 0, ∀t ∈ D, (i, j) ∈ J , (1c)

where (1a) and (1b) are the capacity constraints and flow
conservation constraints, respectively, and dts ≥ 0 is the
expected traffic entering the network at node s and destined
to node t. Set dts = dr if there exists r ∈ R such that sr = s
and tr = t, or set dts = 0 otherwise.

We say a traffic distribution f = (fij , (i, j) ∈ J ) is feasible
if there exists (ft, t ∈ D) such that (f, ft, t ∈ D) satisfies the
multi-commodity flow constraints (1). If f is feasible, the total
load on and the utilization of the link (i, j) ∈ J are fij and
fij
cij

respectively, which depend on how the network decides to
route the traffic. Now, one main task is to find an appropriate
and feasible traffic distribution f.

An objective function enables quantitative comparisons be-
tween different routing solutions in terms of load fij on the
links. Traffic engineering usually considers a link-cost function
Φ(f, c) that is an increasing function of f. Optimal traffic
engineering [11] means that the TE cost function is minimized
over multi-commodity flow constraints (1).

B. Utility Model of Traffic Engineering

For the offered traffic, TE changes routing to minimize
network congestion. Here we use the utility maximization
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solution to route traffic, which is equal to the multi-commodity
flow solution. The reason is two-fold: (a) it is optimal, i.e., it
guarantees the routing with maximum spare capacity utility;
(b) it can be realized by routing protocols that use MPLS
tunneling, or in a distributed fashion by OSPF routing.

We associate link (i, j) with an operator, and assume that if
a spare capacity sij is held by operator (i, j), which has utility
Vij(sij) to the operator. We assume that the utility Vij(sij) is
an increasing, concave and continuously differentiable func-
tion of sij over the range sij ≥ 0, and V ′ij(sij) > 0 over the
range sij ≥ 0. Assume further that utilities are additive, so that
the aggregate utility of spare capacity s = (sij , (i, j) ∈ J ) is∑

(i,j)∈J Vij(sij).
It is the concavity of the function Vij that balances traffic

distribution among links. If Vij is a convex increasing function
instead of a concave, then maximize the aggregate utility.
Larger spare capacity sij should be increased, since the rate of
increase of Vij is increasing in sij . When Vij is linear, the rate
of increase of Vij is the same for all sij . When Vij is concave,
a smaller spare capacity sij is preferred, since V ′ij(x) > V ′ij(y)
holds if x < y.

Now the optimal traffic engineering can be formulated as
maximizing the aggregated utility under the multi-commodity
flow constraints (1).
TE(V,G, c,D)

maximizeft≥0
∑

(i,j)∈J

Vij(sij) (2a)

subject to c−
∑
t∈D

ft = s ≥ 0 (2b)

Bft = dt, ∀t ∈ D, (2c)

where B, an N×J node-arc incidence matrix for network G, is
introduced to represent the multi-commodity flow constraints
(1). The j-th column of B corresponding to link (u, v) ∈ J
is defined as

Bij =

 1, i = u
−1, i = v
0, otherwise,

There is a unique optimum for the spare capacity vector s,
since the objective function (2a) is a strictly concave function
of s. But there may be many values of the flow vector
(ft, t ∈ D) satisfying relations (2b) and (2c). Say that s
solves TE(V,G, c,D) if there exists (ft, t ∈ D) such that
(s, ft, t ∈ D) solves the optimization problem (2).

C. Optimal Weights Existence

From the general theory of constrained convex optimization
[2], it follows that (s, ft, t ∈ D) solves problem (2) if and only
if there exists Lagrangian multiplier vectors w and νt, t ∈ D

that satisfy

c−
∑
t∈D

ft =s, Bft = dt, ∀t ∈ D (3a)

V ′ij(sij)− wij =0, if sij > 0 (3b)

≤0, if sij = 0 (3c)
νtj − νti − wij =0, if f tij > 0 (3d)

≤0, if f tij = 0. (3e)

We define c′ij = cij − sij as the target capacity for each link,
which is no greater than the actual capacity cij (a “virtual”
capacity). This is also desirable since it leads to an empty
equilibrium.

From V ′ij(sij) > 0 as well as Eq. (3b) and (3c), we
have wij > 0. The Lagrangian multiplier vectors w and νt

have several simple interpretations. Let p : i0i1i2 · · · im be a
possible path of source-destination pair (s, t), where i0 = s
and im = t. For example, if yp = mink=1,2,··· ,m f

t
ik−1ik

> 0,
we have

∑
(i,j)∈p wij = νtt − νts ≤

∑
(i,j)∈p̄ wij for any other

path p̄ that connects the same source-destination pair (s, t)
under the conditions (3d) and (3e). We may view wij as the
implied cost of traffic through link (i, j). Alternatively, wij is
the shadow price of additional capacity at link (i, j). We can
also regard w as the weight set by the operator.

Let w = (wij : (i, j) ∈ J ) and (s, ft, t ∈ D) be a solution
of (2). We have shown that ft determines the shortest path for
each source-destination pair (s, t) under the link weights w,
which is determined explicitly by the utility function Vij and
the spare capacity sij through Eq. (3b) and (3c).

If link (i, j) is charged price of per unit spare capacity, and
is capable to freely vary the spare capacity sij , then the utility
maximization problem for link (i, j) becomes
Linkij(Vij ;wij)

maximize Vij(sij)− wijsij
subject to sij ≥ 0.

(4)

If the network receives a revenue wij per unit spare capacity
from link (i, j), and is allowed to freely vary the spare capacity
sij , then the revenue optimization problem for the network is
as follows.
Network(G, c,D;w)

maximizeft≥0
∑

(i,j)∈J wijsij

subject to c−
∑
t∈D ft = s ≥ 0

Bft = dt, ∀t ∈ D.
(5)

s solves Network(G, c,D;w) if there exists (ft, t ∈ D) such
that (s, ft, t ∈ D) solves the problem (5). Reducing the spare
capacity s from (5), we have that Network(G, c,D;w) is a
minimum cost multi-commodity flow problem [3], i.e.

minimizeft≥0
∑

(i,j)∈J wij
∑
t∈D f

t
ij

subject to
∑
t∈D f

t
ij ≤ cij ,∀(i, j) ∈ J

Bft = dt, ∀t ∈ D.
(6)

Theorem 1 (weight-setting): There exists a weight vec-
tor w = (wij , (i, j) ∈ J ) such that the vector s =
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Fig. 1. An simple network topology

(sij , (i, j) ∈ J ), formed from the unique solution sij to
Linkij(Vij ;wij), solves Network(G, c,D;w). The vector s
also solves TE(V,G, c,D).

As the space is limited, please see our extended version [22]
for the proofs of Theorem 1 and other theorems hereafter.

We now examine the engineering implications of Theorem
1. It is true that, the Lagrangian multiplier vector (wij , (i, j) ∈
J ) gives link weights such that all the traffic flow will be
forwarded along the minimum cost multi-commodity prob-
lem solution. Meanwhile the link (i, j) maximizes its utility
through retaining a proper spare capacity. Inversely, if there
exists link weights (wij , (i, j) ∈ J ) such that the vector
s = (sij , (i, j) ∈ J ), formed from the unique solution sij
to Linkij(Vij ;wij) for each (i, j) ∈ J , is the same with the
solution of minimum cost multi-commodity problem (6), then
{wij , (i, j) ∈ J} is a set of link weights such that all the
commodity flow will be forwarded along the shortest paths.
Meanwhile, s solves the optimal traffic engineering problem
TE(V,G, c,D).

Remark 1: Wang. [15] shown that for any given set of
routes, it is either shortest-path-reproducible or loopy. A
theoretical insight behind the result is that an optimal solution
for any traffic engineering problem can always be converted to
a set of shortest-paths with respect to some link weights [13].
In this paper, we use the convex optimization theory directly
show that the universal existence of optimal link weights.
The most important is that there is a close form of the link
weights which are explicitly determined by the objective and
the optimal distribution of the traffic.

III. UTILITY FUNCTION

In this section we investigate a class of (q, β) utility
function, which is motivated by the rate control scheme in
congestion control [7], as the objective function in (2a).
With different parameter settings, a family of specific utility
functions can be derived to extract various needs of ISPs. Then
we deeply analyze characteristics of the utility maximization
problem with the logarithmic utility objective function.

A. (q, β) Utility Function

Encouraged by [7], we investigate mathematic features of
the rate control scheme in congestion control and propose a
similar utility function for the optimal TE problem.

The (q, β) utility function used as a objective function in
(2a) is given by

Vij(sij) =

{
qij log sij if β = 1

qij(1− β)−1s1−β
ij if β 6= 1.

(7)

Since the piecewise-linear approximation of the M/M/1 delay
formula proposed by Fortz et al. [12] is a commonly used
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Fig. 2. Different link cost as a function of the load for a link capacity 1,
where FT denotes the one proposed by Fortz and Thorp [11] and qij = 1 in
(7)

cost (objective) function, we make a brief comparison between
these two objective functions and the results are plotted in Fig.
2. To be fair, here the link capacity is fixed to be 1s and qij
in (7) is thus also set to be 1s.

Based on Theorem 1 and the above utility function, we can
derive a family of utility functions with different parameter
settings. Now we will illustrate the engineering interpretation
of some specific cases.

Case 1: When qij and β are both set to be 1s, the traffic dis-
tribution f solves the TE problem (2) with Vij(sij) = log sij .
From Eq. (3b) and (3c), we can get wij = 1

cij−fij , i.e. the
average packet delay on link (i, j) is based on the M/M/1
queueing model [1], where fij =

∑
t∈D f

t
ij . From the discus-

sion above, we have that if path p∗ for (s, t) bears positive
traffic yp∗ > 0, then

∑
(i,j)∈p∗

1
cij−fij ≤

∑
(i,j)∈p

1
cij−fij for

any other path p for (s, t). The facts above show that the traffic
distribution vector f not only minimizes the average packet
queueing delay of (s, t) for all s, t ∈ N , but also minimizes
the average delay over all the links.

If a network is running with low utilization, then fij �
cij , and therefore, the delay 1

cij−fij ≈
1
cij

. As such InvCap
recommended by Cisco can be suitable.

Case 2: If qij and β are respectively set to be cij and 2, then
the traffic distribution f solves (2) with Vij(sij) =

−cij
cij−fij =

−1− fij
cij−fij . In this case, we can see that (2) tries to minimize

the total average queueing delay by the M/M/1 queueing
model with respect to optimal link weights wij =

cij
(cij−fij)2

for (i, j) ∈ J .
Case 3: Let dij be the processing and propagation delay

on link (i, j). If qij and β are respectively set to be dij and
0, then the traffic distribution f solves the TE problem (2)
with Vij(sij) = dij(cij − fij) = dijcij − dijfij . In this case,
we can see that (2) tries to minimize the total processing and
propagation delay, and we have that the optimal link weights
wij = dij for unsaturated link (i, j) ∈ J and wij ≥ dij for
saturated link (i, j). If dij = 1, we have the minimum hop
routing.

We use the network topology in Fig. 1 to illustrate these
cases. There are four edges with capacities all being 1s. The
nonzero demands are 1 for source-destination pair (1, 3) and
0.9 for source-destination pair (3, 4), respectively. There are
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two paths for source-destination pairs (1, 3), namely 1-3 and
1-2-3. There is a single path for source-destination pair (3, 4),
i.e., 3-4. Fig.3 (a) and (b) plot the link weights and the link
utilization versus parameter β, when qij is 1, respectively.
Detailed numerical results are shown in TABLE I.

Remark 2: Gourdin et al. [20] and Ben-Ameur et al. [21]
proposed the numerical studies giving some insight on the
impact of using one objective function rather than another,
especially the (q, β) utility functions with β = ∞ and β =
2. In this paper, we investigate the optimal link weights for
(q, β) utility function and firstly show the optimal distribution
resulted from a general objective function is the same with
that from the logarithmic utility function in Theorem 2.

B. Utility versus Logarithmic Utility Function

In this subsection, we will deeply explore characteristics of
the utility maximization problem with the logarithmic utility
objective function and show that the solution of such utility
maximization problem also satisfies the optimal TE problem.

If link (i, j) can choose an amount to pay per unit time,
nij , and receive in return a spare capacity sij proportionally
to nij , say sij =

nij

wij
, where wij could be regarded as a charge

per unit flow for link (i, j), the utility maximization problem
for link (i, j) becomes
Linkij(Vij ;wij)

maximize Vij(
nij

wij
)− nij

subject to nij ≥ 0.
(8)

Let n = (nij , (i, j) ∈ J ),D(n) = {(i, j) ∈ J : nij > 0}. We
define the optimization problem as
Network(G, c,D;n)

maximizeft≥0
∑

(i,j)∈D(n) nij log sij

subject to c−
∑
t∈D ft = s ≥ 0

Bft = dt, ∀t ∈ D.
(9)

Note that if nij = 1 for (i, j) ∈ J , then the solution to
Network(G, c,D;n) reduces to the traffic allocation in Case
1 in Section III-A. If nij , (i, j) ∈ J , are all integers, then the
solution to Network(G, c,D;n) can be constructed as follows.

For each (i, j) ∈ J , replace the single link (i, j) by
nij identical sub-links, calculate traffic allocation over the
resulting

∑
(i,j)∈J nij traffic, and then provide link (i, j) the

aggregate spare capacity allocated to its nij associated sub-
links. The load per unit charge is then equivalent to the traffic
distribution in Case 1.

Say that s solves Network(G, c,D;n) if there exists (ft, t ∈
D) such that (s, ft, t ∈ D) solves the optimization problem (9).
For the general theory of constrained convex optimization [2],
it follows that (s, ft, t ∈ D) solves problem (9) if and only if

there exist Lagrangian multiplier vectors νt and w that satisfy:

c−
∑
t∈D ft = s, Bft = dt, ∀t ∈ D
nij

sij
− wij = 0, if (i, j) ∈ D(n)

−wij = 0, if (i, j) /∈ D(n), sij > 0
−wij ≤ 0, if (i, j) /∈ D(n), sij = 0

νtj − νti − wij = 0, if f tij > 0
≤ 0, if f tij = 0.

Theorem 2: There exist vectors n = (nij , (i, j) ∈
J ),w = (wij , (i, j) ∈ J ), and s = (sij , (i, j) ∈ J ) such
that

i) wij > 0 and nij = wijsij , for (i, j) ∈ J ;
ii) nij solves Linkij(Vij ;wij) (8), for (i, j) ∈ J ;
iii) s solves Network(G, c,D;n) (9).

Given any such triple (n,w, s), the vectors n and s are
uniquely determined, and s solves TE(V,G, c,D).

Since Theorem 2 is straightforward, here we do not present
the detailed proof. It shows that if each link operator is able
to choose a charge per unit time prepares to pay, and if the
network allocates spare capacities so that the spare capacity
per unit charge is equivalent to the traffic distribution in Case
1, then a system optimum is achieved when the link operator’s
choices of charges and the network’s choice of allocated spare
capacities are in equilibrium.

IV. A NEW ROUTING PROTOCOL: SPEF

We are now in a position to design a new routing protocol
based on the above theoretical results. In the following, we
first present the distributed algorithms to achieve the optimal
link weights, also called the first link weight. And then we
derive the second link weights from the conceptual framework
Network Entropy Maximization [16].

In the Shortest paths Penalizing Exponential Flow-splitting
(SPEF), each router can construct the shortest paths for each
destination based on the first link weights and independently
calculate the traffic split ratio among all equal-cost shortest
paths using only the second link wights, which not only
achieves the optimal traffic engineering but also remains the
path diversity.

A. Obtaining the First Link Weights

We now show a distributed algorithm to obtain the first link
weights, which in fact is the sub-gradient projection method
[2] applied to the dual of TE(V,G, c,D). The algorithm
comprises three parts: updating the weight vector, specifying
the spare capacity and modifying the routing variables, as
described in Algorithm 1.

Given the link weight w, the route problem (10) for each
destination is a minimum-cost network flow problem [3]. In
(11), γk is the step size and (z)+ = max(0, z). And the dual
gap

gap(w(k), s(k), f(k)) =
∑

(i,j)∈J

w
(k)
ij (
∑
t∈D

f t
(k)
ij + s

(k)
ij − cij)

is selected as the measure of optimality.
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Fig. 3. An example illustrating specific TE cases

TABLE I
WEIGHT AND LINK UTILIZATION FOR DIFFERENT OBJECTIVE FUNCTIONS OF TE

β = 0 β = 1 B. Fortz & M. Thorup [11] β →∞ MLU [15]
Link

weights utilizations weights utilizations weights utilizations weights utilizations weights utilizations

(1, 3) 2 1.00 3 0.67 4.6 0.67 0.50 0 a‡

(3, 4) 1 0.90 10 0.90 40.0 0.90 0.90 1 0.90

(1, 2) 1 0.00 1.5 0.33 2.3 0.33 0.50 0 1− a
(2, 3) 0 0.00 1.5 0.33 2.3 0.33 0.50 0 1− a
‡a is a constant in interval [0.1, 0.9]

Theorem 3: The link weight sequence {w(k)} generated
by Algorithm 1 converges to the first link weights w∗ if∑
k γk = ∞ and γk → 0. Furthermore, if there are no

saturated links, i.e. s∗ij > 0,∀(i, j) ∈ J , the first link weights
w∗ is uniquely determined and the optimal traffic distribution
is f∗ = c− s∗, where s∗ij = V ′ij

−1
(w∗ij).

Algorithm 1 Dual decomposition for the first link weights

Given tolerance tol and initial weight w(0) (such as w
(0)
ij =

1/cij), k = 0;
for the given weight w(k) do

Each link (i, j) solves Linkij(Vij ;w
(k)
ij ) to find

the spare capacity s(k)ij ;
Each destination t ∈ D solves Routet(w(k);dt):

minimizeft≥0

∑
(i,j)∈J w

(k)
ij f

t
ij

subject to Bft = dt
(10)

to find the routing variable ft(k);
Each link (i, j) ∈ J updates the link weight

w
(k+1)
ij =

(
w

(k)
ij − γk(cij −

∑
t∈D

f t(k)

ij − s
(k)
ij )
)
+

; (11)

k ← k + 1;
Until gap(w(k), s(k), f(k)) < tol.

end for

We have proposed a link weight configuration method that
can achieve the optimal traffic engineering. We can determine
the set of shortest paths ON = {ONt : t ∈ D} (i.e., deciding
which outgoing link should be chosen on the shortest path)
based on the first link weights, where ONt is the shortest path
set for any node s ∈ N to destination t ∈ D. Specifically, SPr

denotes the shortest path set for (sr, tr). Let SP = {SPr : r ∈
R}. When the first link weights generate multiple equal cost
paths for a source-destination pair or next hops for a given
destination routing prefix, we need to split the traffic among
the multiple shortest paths or the next hops to keep paths
diversity while achieving the optimal traffic engineering.

B. Obtaining the Second Link Weights

Motivated by PEFT [16], we propose an exponential-
weighted flow split in the presence of multiple equal cost
paths for a given ingress and egress pair (sr, tr). The proposed
method features that each router can independently compute
the flow split only based on alternative link weights, where
routers can direct traffic on the shortest paths determined by
the first link weights. This method can achieve network-wide
traffic engineering objective through OSPF while keeping the
simplicity and scalability of link-state routing protocols.

We maximize the relative entropy of the traffic split vector
among the multipath in SPr to maintain the path diversity.
Maximizing the relative entropy [?] of the traffic split vector
can be formulated as follows.
NEM(SP, f∗,D):

maximize−
∑
r∈R

dr

nr∑
k=1

prk log prk (12a)

subject to
∑
r∈R

∑
k:(i,j)∈SPr

k

drp
r
k ≤ f∗ij ,∀(i, j) ∈ J (12b)

nr∑
k=1

prk = 1, ∀r ∈ R, (12c)

where nr denotes the number of the shortest paths from sr to
tr. SPrk denotes the k-th shortest path from sr to tr.
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Remark 3: Comparison the NEM problem proposed for
PEFT, the NEM(SP, f∗,D) only splits the traffic on the short-
est paths determined by the first link weights. The resulted
benefit is we can design Algorithm 3 obtaining the optimal
solution, but not a heuristic algorithm as in [16] for PEFT.

We will show that the optimal solution to (12) is realiz-
able with hop-by-hop forwarding to exponential penalty. Let
(pr, r ∈ R) be a solution of (12). Then there exist Lagrangian
multipliers vector v = (vij , (i, j) ∈ J ) and (νr, r ∈ R) satis-
fying that (1 + log prk) +

∑
(i,j)∈SPr

k
vij + νr

dr
= 0, ∀r ∈ R, k

and
∑nr

k=1 p
r
k = 1. Under these conditions, we have

prk =
e−v

r
k∑nr

i=1 e
−vr

i
, ∀r ∈ R, k, (13)

where vrk =
∑

(i,j)∈SPr
k
vij . In the following, we refer to

Lagrange multipliers vector v as the second link weight. vrk is
the length of path SPrk with respect to the second weight v.

Theorem 4: The optimal traffic engineering for a given
traffic can be realized with the second link weights using
exponential flow split (13).

To provide a foundation for the second link weight
computation, we investigate the Lagrange dual problem of
NEM(SP, f∗,D) and a dual-gradient-based solution. Denote
the dual variables for constraints (12b) as vij for link (i, j)
(or v as a vector). We first write the Lagrangian L(p,v)
associated with problem NEM(SP, f∗,D) as

L(p,v) = −
∑
r∈R

dr

nr∑
k=1

(prk log prk + vrkp
r
k) +

∑
(i,j)∈J

vijf
∗
ij ,

where vrk =
∑

(i,j)∈SPr
k
vij . The Lagrange dual function is

d(v) = maximize L(p,v)
subject to

∑nr

k=1 p
r
k = 1, ∀r ∈ R.

The dual problem is then formulated as

minimize d(v) subject to v ≥ 0. (14)

To solve the dual problem, we first consider the maxi-
mization of the Lagrangian over p. Note that, the L(p,v)
is separable for a given dual variable v, i.e., the traffic split
subproblem for each r ∈ R is independent of the others since
they are not coupled together with link capacity constraint
(12b). So we can solve a subproblem (15) below for each
r ∈ R separately:

maximize −dr
∑nr

k=1

(
prk log prk + vrkp

r
k

)
subject to

∑nr

k=1 p
r
k = 1.

(15)

Then, the dual problem (14) can be solved by using the
gradient projection method as follows for iterations indexed
by k,

v
(k+1)
ij =

(
v

(k)
ij − γ(f∗ij −

∑
r∈R dr

∑
l:(i,j)∈SPr

l
prl

(k))
)

+

=
(
v

(k)
ij − γ(f∗ij − f

(k)
ij )

)
+

(16)

TABLE II
FORWARDING TABLE FOR SPEF ROUTING.

Lengths of multiple equal cost shortest paths through
Next hop link (s,next hop) to t in view of the second link weights

v1 (v
(s,t)
11 , · · · , v(s,t)1n1

)

...
...

vms (v
(s,t)
ms1

, · · · , v(s,t)msnms
)

where γ > 0 is a constant step size, (pr1
(k), · · · , prnr

(k)) are
solutions of the traffic split subproblem (15) for v(k), and f (k)

ij

is the total flow on link (i, j) ∈ J .
It is important to note, from (16) in iteration k + 1, the

procedure of link weight updating needs f (k)
ij , the aggregate

bandwidth usage. We now show how to calculate it efficiently.
First, we need to establish the forward table for node s

to destination t as shown in Table II, where nk denotes the
number of shortest path from node s through node vk to node
t, v(s,t)

kj is the length of the j-th path from node s through
node vk to node t, and ms denotes the number of next hop
for s in ONt. Then the traffic to destination t can be split
according to the formula

Γt(s, vk) =

∑nk

j=1 e
−v(s,t)

kj∑ms

i=1

∑ni

j=1 e
−v(s,t)

ij

, k = 1, · · · ,ms. (17)

Finally, the formal algorithm for the second link weights
can be described as follows, in which Algorithm 3 is needed
to get the traffic distribution matching to the current second
link weights v(k).

Algorithm 2 Dual decomposition for the second link weights
Input the optimal traffic distribution f∗ and tolerance ε;
Given the initial second link weights v(0) = 0, k = 0;
For the given weights v(k), do

Get the traffic distribution matching to v(k), i.e.

f(k) ← TrafficDistribution(v(k)).

Each link (i, j) updates the second link weights

v
(k+1)
ij ←

(
v
(k)
ij − γ(f∗ij − f

(k)
ij )
)
+

;

k ← k + 1;
Until f (k)

ij ≤ f
∗
ij + ε for all (i, j) ∈ J .

The following result can be proved with standard conver-
gence analysis for gradient projection algorithms [2]:

Theorem 5: Let {v(k)} be the sequence generated by
Algorithm 2. We have that {v(k)} converges to the optimal
dual solutions v∗, and the corresponding primal variables p∗

according to (13) is the globally optimal solution of (12).
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Algorithm 3 TrafficDistribution(v)
Input ON = {ONt : t ∈ D};
Compute the path length for each path in ON

in view of the second link weights v;
Compute the traffic split Γt(i, j) according to (17);
For each destination t do

Do sorting on the distance of node s to t
in view of the first link weights

Each source s 6= t in the decreasing distance order do
d̄st = dst +

∑
(j,s)∈ONt f

t
js;

For all j such that (s, j) ∈ ONt

f t
sj = d̄stΓ

t(s, j);
end for

end for
fij =

∑
t∈D f

t
ij for all (i, j) ∈ J ;

Return /* set of f */

Here d̄st denotes the total incoming flow destined to node
t at node s (including traffic originating at s as well as any
traffic arrived from other nodes).

We now present a new link-state routing with hop-by-hop
forwarding, which can achieve the optimal traffic engineering.

Algorithm 4 SPEF routing
Running Algorithm 1 to obtain the first link weights (wij , (i, j) ∈ J )
and optimal traffic distribution f∗.
For each destination node t ∈ D do

Run Dijkstra’s algorithm with the first link weights
to get all the shortest paths ON = {ONt : t ∈ D}.

end for.
Running Algorithm 2 to obtain the second link weights (vij , (i, j) ∈
J ).
For each t ∈ D do

For each source node s:
Establish the forward routing table shown in Table II.

end For
end For

V. PERFORMANCE EVALUATION

How well can the new routing protocol SPEF perform?
In the first part, we will illustrate its performance with a
simple example. In the second part, we demonstrate the
performance of SPEF with numerical experiments over two
real backbone networks and several synthetic networks. Here
we make comparison between SPEF and OSPF, where the
latter protocol sets link weight inversely proportional to its
capacity and evenly splits the traffic on the set of equal-cost
next hops.

A. An Example

Fig. 4 shows a simple network topology, as used in [15].
Each link has a capacity of 5 units and each demand needs a
bandwidth of 4 units. For simplicity, we omit six links unused.
The numbers on the links are the link indices.

The link utilizations for optimal TE with a different param-
eter β are shown in Fig. 6. For the results of β = 0, link 1 is a
bottle link. And the first link weight is 3. The first link weight
of others are all 1s. Considering link 1, the link utilization
is decreasing in β. From Eq. (3b), the first weight of links 2
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Fig. 6. The link utilization for the topology shown in Fig.4

and 3 are the same when β = 0, 1 or 5, since all the spare
capacities are equal to 1. For β = 1, from Fig.7 (b), it can
be seen that all the second link weights are zero except for
link 1 and link 5. The fact that the second weight of link 1
is increasing in β shows we route fewer traffic through link 1
with larger β.

B. Simulation Environment

The properties of the networks used are summarized in
TABLE III. The real backbone networks, the Abilene network
and Cernet2 network shown in Fig.8. The first network has
11 nodes and 28 directional links with 10Gbps capacity,
and the latter has 20 nodes and 44 directional links with
10Gbps capacity for 8 backbone links (plotted by bold black)
and 2.5Gbps for others. The traffic demands for Abilene
network is generated as those in Fortz and Thorup [12].
The traffic demands for Cernet2 network are generated by a
gravity model with the link aggregated load extracted from the
sample Netflow data, which was captured during 2010/1/10
to 2010/1/16. To simulate networks with different congestion
levels, we create different test cases by uniformly increasing
the traffic demands until the maximal link utilization almost
reaches 100% with SPEF.

We test the algorithms proposed in this paper on the
same topologies and traffic matrices as in Fortz and Thorup
[12]. The 2-level hierarchical networks were generated using
GT-ITM, which consist of two kinds of links: local access
links with 1 unit capacity and long distance links with 5-
unit capacity. In the random topologies, the probability of
having a link between two nodes is a constant parameter,
and all link capacities are 1 unit. In these test cases, for
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Fig. 7. The first and second link weights for the network topology shown in Fig. 4 with different β

1

8

10

7

11

3

9

5

6
2

4

(a) Abilene network

16

9

3

8

10G

2.5G

18

20

19

2

1
4

5

6

10

11

12

13

14

15

7

17

(b) Cernet2 network

Fig. 8. Backbone network topologies

TABLE III
PROPERTIES FOR DIFFERENT NETWORKS

Net. ID Topology Node # Link #

Abilene Backbone 11 28
Cernet2 Backbone 20 44

Hier50a 2-level 50 222
Hier50b 2-level 50 152

Rand50a Random 50 242
Rand50b Random 50 230
Rand100 Random 100 392

each network, traffic demands are proportionally increased to
simulate different congestion levels.

For SPEF, we employ the utility function with β = 1
to determine the first link weights. The resulted utility is
normalized, which means

∑
(i,j)∈J log (1− uij), where uij

is the link (i, j)’s utilization. The utility is −∞ if MLU is
greater than 1, which is not shown in Fig. 10.

C. Performance Comparison Against OSPF

The sorted link utilizations for Abilene network and Cernet2
network are shown in Fig. 9, where the network load is the
ratio of total demand over the total capacity. Typical results
for different topologies are shown in Fig.10.

From Fig. 9, it can be seen that some underutilized links
in OSPF are used efficiently in SPEF. At the same time the
traffic on the over-utilized links in OSPF is removed in SPEF.
The results shown in Fig. 10 indicate that the utility difference
between SPEF and OSPF becomes obvious with the increasing
of network load. SPEF still works when MLU of OSPF is
greater than 1.

Due to space limitation, more comparison results between
SPEF and PEFT could be found in our extended version [22].

D. Convergence Behavior

In Algorithm 1, the initial link weights w
(0)
ij = 1

cij
for

all link (i, j) ∈ J are a proper choose. The step sizes in
Algorithm 1 can be constant or dynamically adjusted. We find
that setting the step size in Algorithm 1 to the reciprocal of
the maximum link capacity 1

max{cij :(i,j)∈J} performs well in
practice. Fig. 11 (a) shows the evolution of dual objective
value of TE obtained by Algorithm 1 with different step sizes,
within the first 2000 iterations for Cernet2 network. It provides
convergence behavior typically observed. The legends show
the ratio of the step size over the default setting which is

1
max{cij :(i,j)∈J} . It demonstrates that Algorithm 1 developed
for the SPEF routing convergence very fast with default
setting.

In Algorithm 2, the initial link weights v(0)
ij = 0 for all

link (i, j) ∈ J are a proper choose. We find that setting the
step size in Algorithm 2 to the reciprocal of the maximum
optimal traffic distribution 1

max{f∗
ij

:(i,j)∈J} performs well in
practice. Fig. 11 (b) shows evolution of dual objective value
of NEM obtained by Algorithm 2 with different step sizes for
Cernet2 network. It provides convergence behavior typically
observed. The legends show the ratio of the step size over
the default setting which is 1

max{f∗
ij

:(i,j)∈J} . It demonstrates
that the initial link weights for Algorithm 2 are a good
approximation solution for the dual problem of NEM. And
Algorithm 2 developed for the SPEF routing also convergence
very fast with default setting. Algorithm reduces the dual
objective value of NEM to 0.6695 after 100 iterations and
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Fig. 9. Comparison of SPEF and OSPF in terms of the sorted link utilization
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Fig. 10. Comparison of SPEF and OSPF in terms of utility

0.66945 after 300 iterations. In addition, increasing step size
a little will speed up the convergency.

E. Equal Cost Paths

One of the key features of SPEF routing is the ability to
balance traffic across multiple equal-cost paths. Intuitively,
SPEF routing is more likely to use multiple paths to balance
traffic at higher loads. Hence, we focus on a different uti-
lization scenarios for Cernet2 network, for which we compute
the number of equal cost paths used by SPEF routing. TABLE
IV shows the results, where ni denotes the number of ingress-
egress pairs that have i equal cost paths. It can be seen that the
equal cost paths for some ingress-egress pairs are increasing
with the increase of network load. But OSPF routing has not
change with the network load.

VI. RELATED WORK

Among the papers focused on TE, MLU [15] and piecewise-
linear approximation of the M/M/1 delay formula [11] are
two frequently-used cost functions. Minimizing MLU ensures
that the traffic is moved away from congested hot spots to less
utilized parts of the network. The latter formula proposed by
Fortz et al. [11] is based on discussions with the technicians
in AT&T Lab. Srivastava et al. [14] constructed a composite

TABLE IV
COMPARISON OF SPEF AND OSPF IN TERMS OF THE NUMBER OF EQUAL

COST PATH FOR EACH INGRESS-EGRESS PAIR

Routing Network loading n1 n2 n3 n4

OSPF 0.13, 0.17, 0.21 355 25 0 0

0.13 330 48 0 2
SPEF 0.17 325 53 0 2

0.21 321 54 3 2

cost function which was a positive linear combination of the
used capacity and MLU, and then proposed a heuristic hybrid
method combining the sub-gradient projected method and a
genetic algorithm to determine the link weight system. Yuan
[19] proposed an approach for robust OSPF routing using
an artificial objective function embedded into a local search
algorithm.

Researchers in group of congestion control are mainly
concerned with fairness and efficiency. Network utility maxi-
mization (NUM) [4], especially the proportionally fair, is a
trade-off objective for this aim. In addition, to design the
end-to-end algorithms for joint routing and rate control, many
following researches replace capacity constraints with barrier
functions that specify the congestion cost at the link (e.g., [4],
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Fig. 11. Evolution of dual objective value obtained by Algorithm 1 and Algorithm 2 with different step sizes for Cernet2 network

[6]). Generally, a function Φij(fij) is defined, which can be
regarded as a penalty function that describes the rate at which
the cost is incurred at resource (i, j) with capacity cij when the

load through it is fij . He et al. [8] choose Φ(fij , cij) = e
fij
cij

to model M/M/1 queuing delay. Xu et al. in [17] defined
Φij(fij) = −qij ln(cij − fij).

Fortz et al. [12] showed that optimizing the link weights
for OSPF with evenly split over ECMP to the offered traffic
is an NP-hard problem and proposed a local search heuristic.
Sridharan et al. [13] used a centralized greedy computation
to select the subset of next-hops for each prefix to attain
load balance much better than even splitting among the
shortest paths. But these solutions fail to enable routers to
independently compute the flow-splitting ratios only using
link weights. PEFT, recently proposed by Xu et al. [16], is
a promising link-state routing protocol splitting traffic over
multiple paths with an exponential penalty on longer paths. In
order to prevent loops and promote computational efficiency,
PEFT used Downward PEFT for traffic splitting, which does
not provably achieve optimal TE [16]. However, PEFT shed a
new light for studies on developing an OSPF-based protocol.

VII. CONCLUSION

In this paper, we explore the problem of achieving the
optimal traffic engineering in intra-domain IP networks. We
model the optimal TE as the utility maximization of multi-
commodity flows and theoretically show that any given set of
optimal routes corresponding to a particular objective function
can be converted to shortest paths with respect to a set of
positive link weights, which can be directly configured on
OSPF-based protocols. On these bases, we develop a new
OSPF-based routing protocol, SPEF, to realize a flexible way
that splits traffic over shortest paths in a distributed fashion.
The inspiring fact lies that comparing to OSPF, SPEF only
needs one more weight for each link and provably achieves
optimal TE. Numerical experiments have been done to com-
pare SPEF with the current version of OSPF, showing the
effectiveness of SPEF in terms of link utilization and network
traffic distribution.

A direction for further studies is that we should analyze the
computational complexity in network environment with OSPF
as well as other existing approaches including PEFT.
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