Computer Networks 54 (2010) 1229-1241

Contents lists available at ScienceDirect

et

Computer Networks k)

journal homepage: www.elsevier.com/locate/comnet

Proxy caching for peer-to-peer live streaming ™

Ke Xu?, Ming Zhang ", Jiangchuan Liu¢, Zhijing Qin ¢, Mingjiang Ye?

2 Department of Computer Science, Tsinghua University, Beijing 100084, PR China

b School of Software, Tsinghua University, Beijing 100084, PR China

€School of Computing Science, Simon Fraser University, Vancouver, BC, Canada
dSchool of Software and Microelectronics, Peking University, Beijing 100871, PR China

ARTICLE INFO ABSTRACT

Article history:

Received 6 May 2009

Received in revised form 25 September
2009

Accepted 29 November 2009

Available online 6 December 2009
Responsible Editor: I. Habib

Peer-to-Peer (P2P) live streaming has become increasingly popular over the Internet. To
alleviate the inter-ISP traffic load and to minimize the access latency, proxy caching has
been widely suggested for P2P applications. In this paper, we carry out an extensive
measurement study on the properties of P2P live streaming data requests. Our measure-
ment demonstrates that the P2P living streaming traffic exhibits strong localities that
could be explored by caching. This is particularly noticeable for the temporal locality,
which is often much weaker in the conventional P2P file sharing applications. Our
Keywords: results further suggest that the request time of the same data piece from different peers
P2P exhibits a generalized extreme value distribution. We then propose a novel sliding win-
dow (SLW)-based caching algorithm, which predicts and caches popular data pieces
according to the measured distribution. Our experimental results suggest that the P2P
live streaming can greatly benefit from the proxy caching. And, with much lower over-
head, our SLW algorithm works closer to an off-line optimal algorithm that holds the
complete knowledge of future requests.

Live streaming
Proxy caching

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Recent years have witnessed the tremendous success of
the peer-to-peer (P2P) communication paradigm. With
each participating node contributing its own resources,
the P2P communication architecture scales extremely well
with user population. It has been widely used in such
applications as file sharing [1,2], voice over IP (VoIP) [3],
live streaming and video-on-demand (VOD) [4]. They to-
gether have contributed to a great portion of the overall
Internet traffic [5], and its ever growing trend has posed

* This work has been supported in part by NSFC Project (60970104,
60873253), NSFC-RGC Joint Research Project (20731160014), 973 Project
of China (2009CB320501), 863 Project of China (2008AA01A326) and
Program for New Century Excellent Talents in University.

* Corresponding author. Tel.: +86 6 260 3064; fax: +86 6 277 0753.

E-mail addresses: xuke@tsinghua.edu.cn (K. Xu), tigerCN7@gmail.com
(M. Zhang), jcliu@cs.sfu.ca (J. Liu), qzj@csnet1.cs.tsinghua.edu.cn (Z. Qin),
yemingjiang@csnet1.cs.tsinghua.edu.cn (M. Ye).

1389-1286/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2009.11.013

a significant threat to sustainable operations of Internet
Service Providers (ISP) [6].

To mitigate the traffic load, particularly the costly inter-
ISP traffic, caching data of interest closer to end-users has
been frequently suggested in the literature. There have
been extensive studies on caching the traffic of web [7,8]
or streaming video in the client/server architecture (video
streaming for short) [9]. Recent works have also examined
caching for P2P file sharing [6,10]. The caches are generally
deployed at gateways of institutions, referred to as proxy
caching. Through satisfying requests from the local storage,
they not only reduces the bandwidth consumption, but
also minimizes the access latency [11]. The latest experi-
ments further suggests that caching is very effective for
P2P file sharing, too (with a bandwidth reduction of over
60% [12]).

There are however important differences between liv-
ing streaming and the conventional web and file sharing
applications. For the latter two, the data pieces exhibit a
skewed distribution, and the pieces frequently requested

http://dx.doi.org/10.1016/j.comnet.2009.11.013
mailto:xuke@tsinghua.edu.cn
mailto:tigerCN7@gmail.com
mailto:jcliu@cs.sfu.ca
mailto:qzj@csnet1.cs.tsinghua.edu.cn
mailto:yemingjiang@csnet1.cs.tsinghua.edu.cn
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

1230 K. Xu et al./ Computer Networks 54 (2010) 1229-1241

in the past tend to be frequently requested in the future.
This is not the case in living streaming that demands
sequential playback. The data pieces in living streaming
on the other hand has strong temporal correlations, since
they are exchanged in a small playback window. With
the playback window moves over time, the popularity
and even usefulness of the data pieces change as well. To
the best of our knowledge, proxy caching for P2P live
streaming traffic has yet to be examined, despite several
pioneer studies on collaborative caching on the peer side
[13,14].

In this paper, we present a systematic study on the proxy
caching for P2P live streaming. We first analyze the real data
request of a popular P2P live streaming application, PPLive
[4], and identify its key characteristics. In particular, we find
that the request time of the same data piece from different
peers exhibits a generalized extreme value distribution.
We then develop a data request generator that can closely
synthesize P2P live streaming traffic. We further propose a
novel sliding window (SLW) caching algorithm that explores
the unique distribution of the live streaming requests.

We evaluated the performance of our algorithm and
compare it with typical caching strategies. Our experi-
ments show that our algorithm well suites the P2P live
streaming traffic, and its cache hit rate is very close to that
of an off-line optimal algorithm. We further model the the-
oretical performance of the new algorithm, and provides
general guidelines for the configuration and optimization
of the algorithm.

The rest of the paper is organized as follows. In Section 2,
we survey the related work. In Section 3, we compare the
traffic characteristics of P2P live streaming and P2P file shar-
ing, followed by a measurement study on the data request
distribution of PPLive in Section 4. We then present our
caching algorithm in Section 5, and evaluate its performance
in Section 6. Section 6 further models the performance of our
caching algorithm. Finally, Section 7 concludes the paper.

2. Related work

There have been a series of measurement studies on
P2P live streaming systems, particularly PPLive [15,16].
Hei et al. [15] carry out an in-depth analysis of PPLive,
and find that PPLive users experience large start-up delay
and playback lags. They conclude that dedicated proxy
nodes are necessary to help with delivering videos at high-
er playback rate. According to Ali et al. [16], P2P live
streaming has a greater impact on network bandwidth
than P2P file sharing, because the upload bandwidth is un-
fairly exhausted by some peers. These studies reveal a lot
of statistical information about PPLive, but the request dis-
tribution, which is of critical importance to cache design,
has yet to be identified.

In the past, web caching has been extensively studied
[8]. The importance and feasibility of caching P2P traffic
have been demonstrated in [17,12] and [18]. Studies [17]
and [12] show that P2P traffic is highly redundant and
caching can reduce as much as 50-60% of the traffic. The
work in [18] further suggests deploying proxy caches and
making P2P protocols locality-aware, so as to reduce in-
ter-ISP traffic. Other studies on proxy caching for P2P file

sharing include [6] and [10]. We summary the key issues
addressed in these studies as follows:

e Object popularity. Incorporating object popularity into
caching algorithms can help with improving the cache
hit rate. The pattern of object popularity is usually stud-
ied as part of the caching algorithm design process [6].
Typical object popularity patterns can be found in [7]
and [19]. These studies all prove the effectiveness of
the Pareto principle (or 80-20 rule). The channel popu-
larity in P2P live streaming also satisfies the 80-20 rule
which is an important consideration for caching algo-
rithm design in our work.

e Temporal and spatial locality. Locality of reference char-
acterizes the ability to predict future accesses to objects
from the history information [8]. There are two impor-
tant types of locality: temporal and spatial. Temporal
locality refers to the repeated accesses to the same
object within short time periods. It implies that recently
accessed objects are likely to be accessed again in the
future. Spatial locality refers to the patterns that acces-
ses to some objects imply accesses to certain other
objects. That said, the references to some objects can
be a predictor of future references to other objects. Least
Recently Used (LRU) is a classic algorithm utilizing tem-
poral locality. The SLW algorithm proposed in our work
exploits both the temporal and spatial locality of data
requests.

Despite the common issues, existing studies have sug-
gested that web, video streaming and P2P file sharing traf-
fic all have their distinct features, and specialized policies
are preferred to cache their respective traffic [10]. Also
note that the popular pre-fetching policies to minimize
the startup latency or to meet certain time constraints
[9,20-23] are not necessarily useful for living streaming.
This is because the data pieces are released gradually over
time. In this work, we concentrate on achieving best cache
hit rate without considering time constraint explicitly. We
will see later that these two goals actually do not conflict.

3. Proxy caching for P2P live streaming: a general view

In this section, we first give a generic architectural view
of caching for P2P live streaming, in particular, where and
how the caches are deployed. We then analyze the differ-
ences between live streaming and file sharing in terms of
cache design, which motivates our study.

3.1. Generic cache architecture for P2P traffic

In the P2P communication paradigm, each node (peer)
has dual roles: downloading from other peers as a client,
and uploading to other peers as a server. To avoid long-dis-
tance sessions, particularly those between peers of differ-
ent institutions such as Autonomous Systems (ASes), the
cache servers can be deployed at the access points of regio-
nal networks (as in [24]), as shown in Fig. 1a.

Once operated, the gateway intercepts the P2P down-
loading requests originated from its associated regional
network and redirects them to the P2P cache server

K. Xu et al./ Computer Networks 54 (2010) 1229-1241 1231

P2P Cache Server

3O

Internet,

@

(a) P2P Cache Deployment Position

Peer1 Cache Server Peer2 Data Source

requesting piece #1
serve piece #1

uffer map exchange message: " | have piece #1:"

requesting piece #1 from:Peer2

e (not in cache, requesting from peers)

timejline Send request of piece #1 to Peel

Serve piece #1
(store data in cache)

serve piece #1

Campus Network Internet

(b) P2P Proxy Cache Working Mechanism

2

Fig. 1. P2P cache deployment.

(Fig. 1). Such interception can be either implemented by
redirecting signals or using forged IP addresses of remote
peers [25]. The objective is to serve as many data requests
locally as possible. The server will fetch data from remote
peers only when the data cannot be found in its local
cache. The old data will be evicted if the cache space is ex-
hausted. Note that the cache server is transparent to P2P
peers, since only the downloading requests are intercepted
while other control signals such as buffer map exchange
messages remain untouched.

Fig. 1 shows that every downloading request sent to the
Internet will first be processed by the cache server. Never-
theless, the peers in the same regional network may also
exchange data, e.g., using the collaborative cache mecha-
nism to fetch as much data locally as possible [18].

3.2. Distinct features of P2P live streaming

Numerous P2P live streaming applications have been
developed, including CoolStreaming [26], PPLive [4] and
PPStream [27]. The design of these applications shares
many similarities with that of P2P file distribution, partic-
ularly BitTorrent [1]. They both divide the whole file into
smaller data pieces and maintain a mesh-like overlay
among the peers for them to exchange the data availability
information, issue requests, and then fetch data from
partners.

There are nevertheless important differences between
P2P live streaming and P2P file sharing (Table 1). First, only
the data pieces around the playback point are requested in
live streaming, while any data piece may be exchanged at
any time in file sharing. Second, given the skewed popular-
ity, a frequently accessed file can be cached as a whole to
save bandwidth; in live streaming, caching the whole ob-
ject is generally impossible because the data is unavailable

Table 1
Comparison between P2P live streaming and P2P file sharing.

P2P file sharing P2P live streaming

Exchanged Can be any part of an Only those around the

data object playback point

Caching Whole file/whole Only segments
unit segment

Cached Can be popular for a become obsolete soon
data long time

Popular Can be discrete parts of Continuous and always
data a file/the whole file around the playback point

until being released. In general, the data requests gener-
ated by live streaming peers are semi-ordered and contin-
uous, concentrating in a limited window, as shown in
Fig. 2. As the playback window moves over time, the data
popularity changes as well. In contrast, file sharing may
have multiple hot spots that are relatively stable. Such dif-
ferences imply that the existing caching algorithms of P2P
file sharing must be substantially re-designed to fit the
uniqueness of living streaming.

4. Data request analysis and data request synthesis for
P2P live streaming

In P2P applications, peers exchange data by sending
data requests to other peers. Existing studies on caching
P2P file sharing traffic mainly focus on the spatial charac-
teristics of data requests, including the amount of requests
for each object and the request distribution among seg-
ments inside the object. In this section, we study the tem-
poral characteristics of live streaming data requests with
real data traces from PPLive.

PPLive is a typical P2P live streaming system which is
very popular in China and has a significant user base in
North America as well. It employs the mesh-pull P2P data
exchange architecture, which is also used in CoolStrea-
ming, PPStream, UUSee, SopCast, TVAnts, VVSky and many
other P2P IPTV systems [15]. Because data pieces get stale
soon in live streaming, it is always of high priority to fetch
the rarest and the most urgent data pieces to meet the real-
time constraints. Considering the applications all use the
mesh-pull architecture, the request scheduling mecha-
nisms are similar. Thus we believe PPLive is representative
of these live streaming applications in the perspective of
data request characteristics.

The traces are collected by passively sniffing the PPLive
clients. When a user opens the PPLive software, the end-
point is activated by joining the overlay network. It re-

| BitTorrent Window {
t PPLive Window):
NN NS N (N S N S [N G S D D

[3 Desired Piece [l Got Piece

Fig. 2. Windows for BitTorrent and PPLive.

[] Requesting Piece

1232 K. Xu et al./ Computer Networks 54 (2010) 1229-1241

trieves channel list and peer list from root servers and ex-
changes buffer map with partners. Finally, it sends data re-
quests to other peers for video data. These requests are
collected with a proprietary tool provided by PPLive com-
pany (we have cooperation with PPLive) and stored for
off-line analysis.

Typically the whole movie file is divided into data seg-
ments each containing sixteen data pieces. The information
stored for a data request includes request sending time
(also known as time stamp), request segment sequence
and data piece sequence (Fig. 3). The data requests are sent
based on data piece to different peers. The collected re-
quests for each host are then preprocessed by filtering
duplicate requests, removing segment sequence number
and translating the relative data piece sequence number
into absolute one. We have collected traces generated by
five PPLive clients on different hosts in our campus watch-
ing the same program for 2 h.

4.1. Characteristics of data requests for individual users

In this section, we study the characteristics of data re-
quests for single users.

4.1.1. Stable requesting rate

We plot the data requests as points (Fig. 4a) and find the
linear relationship between the data piece sequence num-
ber and time stamp. It indicates that the requesting rate (re-
quests sent per second) represented by the slope is stable.
We have also studied requests for other channels and on
different platforms. The linear relationship is also observed
though the slope may be different.

4.1.2. Request groups and subgroups

We have found grouping features of data requests. In
Fig. 4a, the requests in the box are sent in 1 s (e.g., from
101.5 s to 102.5 s). We call these requests a request group.
Requests in a request group can be further divided into
two subgroups, request subgroupl and request subgroup2,
according to the thickness of request time stamp. The
interval between the centers of the two subgroups is about
0.5 s. We define the group/subgroup size as the number of
requests in a group/subgroup. From Fig. 4b and c, we learn
that most groups are of size 32 or 48. And the later ac-
counts for about 75% of all the groups. This implies that
PPLive client is designed to send 32 or 48 data requests
per second. To learn the proportion of requests sent in sub-
groupl to those sent in the whole group, we plot the
subgroupl size djistribution for group size 32 and 48, respec-

group size

tively (Fig. 4e and f). Both figures show that most of the re-

Time Debug Print

11. 88516808 [3096] albert: Send Subpiece Request 21:3 to 222. 165.94. 37: 2565
11.88522434 [3096] albert: Send Subpiece Request 21:4 to 222. 166.94.37:2565
11, 88527870 [3096] albert: Send Subpiece Request 21:5 to 222, 165.94.37:2565
11.88533487 [3096] albert: Send Subpiece Request 21:6 to 222. 165.94. 37:2565
11.88540077 [3096] albert: Send Subpiece Request 21:7 to 222.165.94. 37:2565
11. 88550377 [3096] albert: Send Subpiece Request 16:6 to 222.42.190.51:7100
11.88556004 [3096] albert: Send Subpiece Request 16:7 to 222.42,190.51:7100

time stamp peer address : port

segment sequence number : data piece sequence number

Fig. 3. Data request information.

quests are sent in subgroup1, and relatively more requests
are sent in subgroup 2 for group size 48. We have also
studied the interval between adjacent requests of the same
subgroup. Fig. 4d shows that more than 97% is between 0
and 0.0005 s.

These study results reveal the data request generation
mechanisms for single users, which are the basis of the
data request generator algorithm in Section 4.4.

4.2. Request lag distribution among peers

Playback lag refers to the phenomenon that some peers
watch frames in a channel minutes behind other peers
[15]. Here, by request lag, we mean the phenomenon that
some peers fetch a data piece in a channel seconds behind
other peers in the same network. Request lag is very
important because it indicates the lifetime of a data piece
in live streaming. The interval between the first and last re-
quests of a data piece is the lag length. If a data piece is al-
ready released and not yet obsolete (still being requested),
we say it is active. The number of active data pieces in a
channel at any given time is limited. These active data
pieces are continuous, which are called the requesting win-
dow of a channel.

To study the request lag characteristics, we divide the
data requests from five hosts into smaller segments each
with 500 data requests, and 4140 request segments are ac-
quired. These request segments are all normalized to start
from request sequence number 0 and time stamp 0.0. Each
request segment represents the requests of a single user.
So we obtained requests of 4140 peers from the data cap-
tured in five clients. Then the lags among peers fetching
the same data piece are analyzed. We retrieve the time
stamp (logged in each request record) of data request
number 300 (the 300th of 500 requests, which is around
the middle) from each group, calculate the lag to the earli-
est request of the group and plot its probability distribu-
tion in Fig. 5. By fitting the distribution of request lags in
matlab with distribution models including exponential, ex-
treme value, generalized extreme value, generalized pare-
to, logistic, normal and t location-scale, we find that it
follows the generalized extreme value (GEV) distribution
with parameters k =0.214242, u=2.46523, o =1.992
42 (Fig. 5) and the log likelihood is —25582.2. The GEV dis-
tribution fits the data well in the view of both probability
density and cumulative probability. Another way to mea-
sure the distribution of a pile of data is empirical distribu-
tion. It usually can fit the real data better. But the
distribution function of empirical distribution can be
complicated and not typical. We tend to fit the data with
a well studied distribution and the benefits will be found
when analyzing the performance of our new caching
algorithm.

The GEV distribution is widely used in risk manage-
ment, finance, insurance, economics, hydrology, material
sciences, telecommunications, and many other industries
dealing with extreme events [28]. Its probability density
function (PDF) can be expressed as (k # 0)

K. Xu et al./ Computer Networks 54 (2010) 1229-1241

Request Characteristics

5500
* First Request H
5450 i I
8 o
e i
- I
4 .
g;'; 5400 Subgroup1 . ,-!
A [}
] 2 'y 10°macro view
o N g3
o 5350 Sy s
o] . Q 2
w %]
a 2]
5300 &
. ©
8 2000 4000 6000
5250 Time (sec.)
101 102 103 104 105
Time (sec.)
(a) Request Characteristics View
Request Group Size Distribution
(1 sec. period for each group)
0.3 request group size digtribution |
0.25
> 02
‘@
5
o 0.15
0.1
0.05
0 = S

10 20 30 40 50 60 70 80
Request Group Size (# of Requests)

(c) Request Group Size(Probability View)

(Subgroup1 Size/Group Size) Distribution

30|

(Subgroup1 Size/Group Size) Distribution

a

el

0 0.2 0.4 0.6 0.8 1
Ratio (Subgroup Size/Group size)

o

(e) Subgroupl Size Over Group Size(Size 32)

1233

Request Group Size Characteristics
(1 sec. period for each group)

80 v
* Request Group
70
[}
N
»n
Q
3
<
O
®
(]
3
o
Q
14
10
0 n n n n b
0 1000 2000 3000 4000 5000 6000
Request Group Sequence
(b) Request Group Size Variation
Small Interval(request interval in subgroup)
Length Distribution
2000
Interval [0, 0.0005]
Probability = 0.974331
1500 ——
| — Small Interval Length Distribution
2
2
S 1000
a
500

0 0.02 0.04 0.06 0.08 0.1
Short Interval Length (sec.)

(d) Request Interval Distribution Inside Subgroup

(Subgroup1 Size/Group Size) Distribution

(Subgroup1 Size/Group Size) distribution

Density
(o]

0 0.2 0.4 0.6 0.8 1
Ratio (Subgroup Size/Group size)

(f) Subgroupl Size Over Group Size(Size 48)

Fig. 4. Characteristics of live streaming data requests.

where 7 =1+ x*¥ 2> 0 and k, o, u are the shape, scale,
and location parameters, respectively.

Fig. 5 shows that the lag length is about 15 s, which cov-
er more than 95% of the overall data requests. The lag dis-
tribution describes the lifetime of a data piece. When a
data piece is first released, it is requested by only a few
peers. Then it becomes very hot because more and more
data copies are available in the P2P network and the play-

back position of most users moves to this data piece. How-
ever, as the playback window forwards, the data piece
becomes unpopular again, and is obsolete after about
15s. The findings are inspiring in caching algorithm de-
sign. For a channel with average group size of
32 0.25+48 0.75=44 (refer to SectioQ 4.1) data*pieces.
the *playback rate is about 44 1KBytes 8 bits/
Byte 1s=352Kkbps since the typical data piece size is

1234 K. Xu et al./ Computer Networks 54 (2010) 1229-1241

Lag Distribution Fit

Lag Distribution Fit

(Density) (Cumulative Probability)
1 —
Lag Data
02 Generalized Extreme Value Distribution Fit
0.8
2 /> parameters:
3 - k=0.214242
. 0.15 § 0.6 mu = 2.46523
= 5 sigma = 1.99242
5 g
o 01 g 0.4
parameters: IS
k =0.214242 3
(] tvrr Lag Data
0.05 mu = 2.46523 0.2) P,
sigma = 1.99242 Generalized Extreme Value Distribution Fit
0 0
0 5 10 15 20 0 5 10 15 20

Lag Data(sec.)
(a) Probability Density View

Lag Data(sec.)
(b) Cumulative Probability View

Fig. 5. Lag distribution fit.

1 KBytes. So the cache needgd for a channel with 352 kbps
playback rate is about 44 1KBytes 15 =660 KBytes. If
cached data is carefully updated and all the current active
data pieces are cached, a small cache can achieve nearly
100% hit rate.

So far, we have investigated the request characteristics
of P2P live streaming, assuming all the requested data is
fetched from the Internet rather than the local regional
network. Because of the poor locality discovery mecha-
nism, the assumption is reasonable and also proved by
our inspection on real traces. But there’s still possibility
that data is fetched from the local regional network espe-
cially if the streaming content is static and data source lo-
cates in the same regional network. We argue that
different data pieces have the same probability to be
fetched locally, so the request characteristics observed in
the gateway won’t change dramatically, although much
less data requests can be seen.

4.3. Channel popularity

Similar to the role of object popularity in P2P file shar-
ing caching, channel popularity (i.e. the online user number
of a channel) is important for live streaming in caching
algorithm design. Channel popularity varies when user
joins the overlay network or aborts connection. When
designing caching algorithms for P2P live streaming, cache
should be allocated according to channel popularity.

To study channel popularity, we measure the online
user number of totally 4403 channels at 21:30 pm on
2008-11-07 with the help of PPLive. The online user num-
ber versus channel rank distribution is plotted in the log-
log scale in Fig. 6. The distribution can be modeled as a line
with slope of about 0.53. The relationship is expressed as

logy = alogx + B, (2)

where 0 < logx <y, o = -0.53, $=3.73, y=3.0,y is the
online user number and x is the channel rank.

We have also modeled the distribution with stretched
exponential distribution [19], but found that although the
distribution fits the unpopular channels well, it is not so
good for the top 20 channels. Because popular channels ac-
count for larger fraction of network traffic, we prefer to

model the top 100 channels with a more accurate linear
relationship.

Eq. (2) can be used as a guideline in deciding channel
user number for generating synthetic data requests. Given
the channel number, we can pick points evenly on the line
so that both popular and unpopular channels are generated
proportionally.

4.4. Data request synthesis

We have studied request characteristics for single users,
the lag distribution among peers in a channel and channel
popularity. Now we show how to utilize the findings to
generate synthetic data requests for caching algorithm
evaluation. There are two objectives when generating syn-
thetic requests. One is to match real traces as well as pos-
sible. The other is to follow the typical patterns. We
achieve these goals by strictly following the models in pre-
vious sections and adding randomness if necessary. The
synthetic data request generator algorithm is described
in Fig. 7.

The procedure involves six steps:

1. Determine online user number for each channel (Fig. 7,
Line 1,2). Given the channel number chN, first we deter-
mine the online user number for each channel. Accord-

Online Users

10° 10
Channel Rank

Fig. 6. Channel popularity modeling.

K. Xu et al./ Computer Networks 54 (2010) 1229-1241 1235

Data Requests Generator
input:
chN: channel number
groups ize: group size
duration: playback duration (seconds)
output:
requests for chN channels, lasting duration seconds
Requests Generator:
1. for each channel ch from 1 to chN
2. online user chArr[ch] = 100*0/chN)«chp
// see Equation 2
3. for each channel ci from 1 to chN
4. for each user user from 1 to chArr[ch]
5. generate lag array lagArr[ch][user] using matlab
// see Figure 5, Equation 1
6. for each channel ci from 1 to chN
7. for each user user from 1 to chArr[ch]
8. generate requests for user lasting duration seconds
// see Figure 4, Section 4
9. merge and sort all the requests using time stamp as the key

Fig. 7. Data request generator.

ing to the channel popularity relationship in Eq. (2), we
generate a series of online user numbers (y) by picking
rank values (logx) evenly on the x-axis.

. Generate lag data (Fig. 7, Line 3,4,5). As discussed in Sec-
tion 4.2, peers of the same channel have a certain lag
between each other. The request lags obey the GEV dis-
tribution (Fig. 5), so we use matlab to generate request
lags for each channel and assign a lag to each user as the
initial request time stamp. The distribution parameters
are marked in Fig. 5.S0 far, the online user number in
each channel and the initial request time stamp for each
user have been determined. The following two steps are
for generating requests for each user in step 5.

. Determine request interval. As shown in Section 4.1,
request intervals are classified into two types: request
interval between groups/subgroups and request inter-
val inside subgroups. We use 1s as request interval
between groups and 0.5s between subgroups
(Fig. 4a). To match real traces better, some randomness
is added(e.g., add —0.05 ~ +0.05 for the group/sub-
group interval). Request interval inside subgroups is
0-0.0005 as shown in Fig. 4d. Note that the request
interval is calculated when generating every new
request.

. Determine subgroup size. Group size reflects the request-
ing rate. Higher requesting rate means more requests
are sent in each group, thus larger group size. In our
case, groups of size 32 and 48 dominate (Fig. 4b and
c). So only these two sizes are used. The probability
for group size of 32 is 0.25 and 0.75 for 48 (Fig. 4c).
Whether requests of the same group are sent in sub-
groupl or subgroup 2 is determined according to
Fig. 4e and f in a probabilistic fashion.

. Generate request data for each user (Fig. 7, Line 6,7,8). We
assign a lag generated in step 2 as the initial time tamp
to each user and generate requests ([time stamp, chan-
nel ID, sequence number] entry) using steps 3,4. The

sequence number starts from 1, monotonically increas-
ing. Steps 3,4 are executed iteratively until time stamp
exceeds duration seconds.

6. Merge all the requests and get output (Fig. 7, Line 9). Every
request has its time stamp, which indicates its sending
time. We merge all the requests by sorting them with
the key of time stamp. The output data contains the
(time stamp, channel ID, sequence number) entry for
each request, which is the final synthetic data.

The synthetic data generation process is almost online
except that the lag between requests must be generated
with matlab. Since it’s very convenient to generate data gi-
ven a distribution with matlab, we decide to do it off-line
after balancing the efforts and gains of implementing a
new distribution data generating algorithm. Also generat-
ing data with matlab makes the process easier-to-under-
stand. But we can also do it online, which is actually an
implementation issue.

5. Sliding window (SLW) caching algorithm

Based on the observations in previous sections, we pro-
pose a novel caching algorithm for P2P live streaming
called sliding window (SLW) algorithm. SLW caches the
hottest data pieces in the requesting window and distrib-
utes cache among channels according to their popularity.
Although P2P live streaming traffic is very favorable for
caching (see Section 4.2), it’s unnecessary and wasteful to
cache all the active data pieces of all channels because
most of the channels are not popular. Our caching objec-
tive is to reduce the traffic on the link. So a well-designed
caching algorithm should cache data pieces of popular
channels preferentially.

The caching unit of SLW is data piece since it’s the data
transmission unit in P2P live streaming. Different data
pieces are usually fetched from different peers. The data
piece size is fixed (1KB) in PPLive [29].

The basic idea of SLW is to maintain a caching window
storing the most popular data pieces in the requesting win-
dow for each channel. At any given time, all the data pieces
in the requesting window are active, but some are re-
quested more frequently. As data pieces are released grad-
ually and data piece sequence number increases
monotonically, these popular data pieces are continuous
in the requesting window according to the lag distribution
in Section 4.2. SLW stores these data pieces in cache which
are called the caching window of a channel. The caching
window size should not be larger than the requesting win-
dow size, or it is a waste of cache. We denote the request-
ing window size as ©, and it can be calculated by

Q=R+L. 3)

where R is the requesting rate and L is the lag length. Data
piece is the unit of the cache size, the caching window size
and the requesting window size.

The requesting window is sliding forward, so the cach-
ing window should also slide forward to accommodate the
popularity change of data pieces. That's why we call our

1236 K. Xu et al./ Computer Networks 54 (2010) 1229-1241

new algorithm the sliding window algorithm. To decide
whether the caching window should be moved forward,
we sample the request count of the head and tail parts of
the caching window. If the data pieces at the head are more
popular than those at the tail, we know it’s time to admit
new data pieces into cache and evict those at the tail. In
this way, it’s guaranteed that the most popular data pieces
are always cached. The pseudo-code of the SLW algorithm
is shown in Fig. 8.

The algorithm “Cache Replacement” in Fig. 8 describes
the process of sliding the caching window, while the algo-
rithm “Channel Cache Size Adjustment” updates the cache
allocation among channels periodically according to the
trend of channel popularity. The channel popularity statis-
tics are maintained in line 2 and reset after each adjust-
ment. They reflect not only the number of online users
but also the channel requesting rate. Cache is allocated
proportionally among channels according to their popular-
ity statistics. The upper limit of the allocated cache for each
channel is its requesting window size Q. We distribute
cache among the channels according to the data request
number instead of online user number of each channel be-
cause the data request number is more accurate with re-
gard to the different requesting window sizes for
different channels.

Compared with the typical LRU (Least Recently Used)
algorithm, which utilizes temporal popularity by caching
the most popular data pieces, SLW also exploits spatial
locality by maintaining a continuous caching window.
Although the popularity of the data pieces in the caching
window may vary temporarily, which can be reflected by
LRU immediately, the caching window does not move for-
ward until the data pieces at the head are more popular
than those at the tail. So the employment of spatial locality
helps resist temporary popularity fluctuations.

The SLW algorithm has several advantages.

SLW Caching Algorithm
Cache Replacement:
1. for each request < ch, piece >
2 chHot[ch] + +, total ChHot + +
3 if piece >= lower[ch]&&piece <= upper[ch]
4 cache hit
5. if piece belongs to the tail part of caching window
6. tailHot + +
7 else if piece belongs to the head part of caching window
8 headHot + +
9. if headHot > tailHot
10. reset headHot and tailHot
11. lower[ch]+ = of fset,upper[ch]+ = of fset
// forward the window by of fset
Channel Cache Size Adjustment:
12. sort channel hot in reverse order
13. for each channel ch
14. cacheSize[ch] = totalS ize * chHot[ch]/total ChHot
15. if cacheSize[ch] > Q

16. cacheSize[ch] = Q
17. total ChHot— = chHot[ch]
18. totalS ize— = cacheSize[ch]

// cache size € is enough

Fig. 8. The SLW caching algorithm.

o Flexible. Section 4.2 shows that the request lag follows
the GEV distribution, but the parameters may vary in
different network environments or time periods. SLW
employs the distribution indirectly by sampling the data
popularity in the head and tail parts, irrelevant to the
specific parameters of the GEV distribution. Besides,
it's common in a P2P network that peers join the net-
work or abort connections frequently. SLW accommo-
dates channel popularity variation by maintaining
channel popularity statistics and adjusting cache size
accordingly.

o Skillfully using the characteristics of P2P live streaming
traffic. SLW integrates information regarding all aspects
including channel popularity, temporal and spatial
locality. SLW always caches the most popular data
pieces in the playback window and slides ahead when
data pieces at the head become more popular. These
cached data pieces are always continuous and accesses
to the most popular data pieces indicate the increase
of accesses to the data pieces of the head part. Moreover,
as new data pieces get popular very quickly (Fig. 5), they
are cached very soon once appear, which speeds up data
delivery.

e Computationally-efficient. As Fig. 8 shows, the overhead
of cache management is low. The time complexity for
cache replacement is O(1), and the space complexity is
O(chN). The periodic adjustment of channel cache size
has O(chN) both as the time and space complexity.

6. Evaluation and discussion

In this section, we use synthetic data requests to evalu-
ate the performance of our SLW algorithm, and compare it
with three typical web caching algorithms (LRU, LFU, GDS)
and two caching algorithms (LSB, P2P) proposed for P2P
file sharing. The usual FIFO and OPT algorithms are also
implemented for comparison. Then we show how to calcu-
late the theoretical performance curve of the SLW algo-
rithm and standardize it as guidelines for estimating SLW
performance.

6.1. Experimental setup

The main objective of caching P2P live streaming traffic
is to reduce extra traffic on the network link. So the most
important metric of the caching algorithms is the cache
hit rate, i.e. the percentage of data requests served locally.
Usually the cache size is based on the unit of bytes. As the
cache eviction and admission are based on data piece for
live streaming, we employ the data piece number to de-
note cache size.

We use synthetic data requests generated in Section 4.4
to evaluate caching algorithms. Some typical parameters of
the data set are listed in Table 2. Note that all the ten chan-
nels have the same lag length, group size and duration
values.

We compare the performance of SLW with that of five
other algorithms. Implementation details of some caching
algorithms are modified to accommodate the P2P live

K. Xu et al. / Computer Networks 54 (2010) 1229-1241 1237

Table 2

Synthetic data requests parameters.
Channel number (chN) 10
Lag length (L) 15s

Group size (groupSize) 32 for probability 0.25
48 for probability 0.75
44 data pieces per second on average

Duration (duration) 3000 s

streaming traffic. The algorithms are implemented as
follows:

e OPT: The OPT (Optimal) algorithm eliminates the data
pieces that will be latest used. It serves as a benchmark
for the performance of other algorithms. The result of
OPT is the upper bound which can hardly be achieved
by other algorithms since OPT uses future information
which is not known a priori in practice.

e FIFO: The FIFO (First In First Out) algorithm evicts data
pieces in the first-in-first-out fashion. It’s the first algo-
rithm that comes to mind when we find the sliding win-
dow characteristics of the traffic.

e LRU: The LRU (Least Recently Used) algorithm evicts the
least recently used data pieces. It explores the temporal
locality of data and is widely used.

e LFU-LSB: The LSB (Least Sent Bytes) algorithm uses the
transmitted bytes of an object as eviction criteria [10].
The LFU (Least Frequently Used) algorithm evicts the
object with the least access frequency. As the request
frequency and served bytes correlate with each other
in live streaming, these two algorithms are imple-
mented as the same: first look for a channel least fre-
quently accessed, and then eliminate the data piece
least requested.

e GD: As the GDS (GreedyDual-Size) algorithm [30] takes
object size into consideration, which cannot be directly
applied for live streaming, we implement the more basic
GD algorithm [31]. The GD algorithm assigns a weight to
each newly cached data piece. When cache miss occurs,
the data piece with the least weight is removed, and the
weights of the other pieces in cache are reduced by the
least weight. If a data piece is hit, its weight restores to
the original value. The mechanism of the GD algorithm
is very similar to that of LRU.

e P2P: The P2P algorithm [6] is proposed for P2P file shar-
ing. It evicts the object with the lowest y;, where 7; is
updated by “y;+ = hit/cached size of object i". For P2P
live streaming, the algorithm is implemented to
eliminate the least frequently requested data piece from
the channel with the lowest y;, and y; is updated with
“y;+ = hit/cached size of channel i". So cache eviction
always occurs in the channel with least requests, like
LFU.

6.2. Performance results

The examined algorithms fall into five categories as
previously illustrated: OPT, SLW, LRU, FIFO and LFU. We

100 ——
90 '
80 N
A‘A
T 70 s s
-1
§ 60 E
= 50 B - - FIFO| {
T o/ o @D
£ 4 - - —LFU
[5]
8 20 OPT
ol 7 A P2P
B C SLW
10} —LRU
0.
0 2000 4000 6000 8000
Cache Size (# of Data Pieces Cached)
(a) Performance Results
60
50
R 40
€
£
£ 30
>
o
Q
£ 20
10

0
0 1000 2000 3000 4000 5000 6000 7000
Cache Size (# of Data Pieces Cached)

(b) Performance Gain of SLW over LRU

Fig. 9. Algorithms comparison.

can also see the grouping in their performance results
(Fig. 9). LFU is not suitable for live streaming because
data piece popularity is changing all the time. The fre-
quent access of some data pieces especially those at the
tail of the requesting window does not indicate that they
will be requested again. Temporal locality is observed
from the good performance of LRU. But it does not utilize
the continuity of popular data pieces (i.e., spatial local-
ity), so its performance is not so good as SLW. SLW
works best among the online algorithms since it explores
both temporal and spatial locality. The performance of
SLW is the closest to that of the off-line OPT algorithm,
gaining nearly 50% improvement over the performance
gap between LRU and OPT (Fig. 9). The poor performance
of FIFO implies that simply applying the FIFO policy can-
not achieve very good results.

Fig. 9 verifies that P2P live streaming traffic is very
favorable for caching. In our case, the requesting window
size (Q) of a single channel is 660. When cache size is about
6600 (chN * Q), the cache hit rate of SLW nearly reaches
100%. So it is with the OPT, GD, LRU and FIFO algorithms.
The sharp increase of cache hit rate with the increase of
cache size is considerable when cache size is small. Only
about 2000 data pieces need to be cached to serve 80% of
the data requests. That’s to say, deploying a small cache
in the network can significantly reduce the traffic imposed
by P2P live streaming systems.

1238

100

K. Xu et al./ Computer Networks 54 (2010) 1229-1241

P @ ®
o o =]

Cache Hit Ratio(%)

[N
o

//

- - —3724
- — —2582
- - —1791
- — —1242
- — — 861
597
414
- - —287
- — —199
- - —138

average

0 200 400 600 800 1000
Cache Size(# of Data Pieces Cached)

Fig. 10. Online user number affecting SLW performance.

To examine the effect of online users on the SLW perfor-
mance, we run SLW through the synthetic data in each
channel with different online user numbers ranging from
138 to 3724. The experimental results (Fig. 10) show that
the SLW performance on a single channel is irrelevant to
the online user number and the cache hit rate is nearly
100% when cache size is as large as Q =44 x 15 = 660.
It's because the cache size determines the fraction of re-
quests that can be cached in the requesting window. If
the requesting window size is the same, the cache hit rate
depends on the cache size only.

It’s common that different channels may have different
requesting rates. We run SLW on a data set with average
requesting rate of 76 data pieces per second to study the
requesting rate impact on its performance. The new data
set has the requesting window size Q =76 x 15 = 1140.
Fig. 11 shows the SLW performance on this data set. We
normalize the performance curve linearly to that of the
data set with group size 44 and find that the two curves
match very well (Fig. 11). The experimental results verify
that the requesting rate correlates linearly with the perfor-
mance of SLW. It implies that the same cache performance
can be maintained by linearly increasing requesting win-
dow size while requesting rate increases.

6.3. Modeling the SLW algorithm performance

In this section, we try to answer the question: how to
estimate the SLW algorithm performance on a specific data

100 - —_— —
.-
.-
< ra ‘<
801 ’,
— ’
X ¢
g .
T 60r ’
o ’
B ’
o a0 |1
’ - -
3 7 groupSize 76, normalized
o 7 = = = groupSize 76, 3724 peers
20 fr groupSize 44, average
i
0

0 500 1000 1500
Cache Size(# of Data Pieces Cached)

Fig. 11. Group size affecting SLW performance.

set given a cache size? We calculate the cache hit rate the-
oretically with the GEV distribution and then compare it
with the experimental SLW performance. Results show
that the theoretical performance and the experimental
one matches perfectly. Consequently the performance pro-
files by theoretical computation can be employed to esti-
mate the SLW performance, which is shown at the end of
this section.

We have obtained the experimental performance of
SLW. Now we try to calculate its performance theoreti-
cally. The point-in-time data requests of one channel are
studied. Ideally the cache hit rate for any given time is
the same since the data requesting rate is stable. So the
cache hit rate calculated with a snapshot can represent
the overall algorithm performance. The GEV distribution
describes the data piece popularity during its lifetime.
We assume the first data requests for every two adjacent
data pieces are released with the same interval length,
which is reasonable with stable requesting rate. Conse-
quently all the data pieces in the requesting window corre-
spond to the points (i.e. the age of each data piece) evenly
distributed in the x-axis span (Fig. 12) and their current
popularity can be reflected by the corresponding y values
of the points on the distribution curve. Popular data pieces
have more requests while unpopular ones have less. In
other words, the discrete x value can be viewed as a data
piece in the requesting window, and the corresponding y
value reflects the proportional population requesting the
data piece. As SLW always caches the most popular data
pieces, we can calculate the shadowed area in Fig. 12 as
the cache hit rate and formulate it (h) as

h =F(x2) — F(x1), (4)
with the constraints

flx2) = f(x1),

where F(x) and f(x) are the cumulative distribution func-
tion and probability density function respectively. The
function value f(x) reaches its maximum when x = p,. Var-
iable t is the cache size. We need to obtain the relationship
between h and t.

For each x;, we can calculate x, (thus t) with binary
search in x (x> ;) on the GEV distribution curve in

X1 +t=X2, X1 < Uy <X,

GEV distribution (Density)

0.2

0.15

Density

0.1

0.05

AN

A\

o
o
>
>=
N

5 10 15 20
Lag Data(sec.)

Fig. 12. Cache hit ratio calculation.

K. Xu et al./ Computer Networks 54 (2010) 1229-1241 1239

100

80

60

40

Curve 1: theoretical results
—— Curve 2: experimental results

Cache Hit Ratio(%)

20

0 20 40 60 80 100
Cache Size(# of Data Pieces Cached)

Fig. 13. Theoretical vs. experimental results.

Fig. 12. Then h can be calculated with Eq. (4). By enu-
merating x;, we can obtain a list of (h,t) pairs. We mul-
tiply 100/L to every t to normalize the results from
requesting window size Q =L (L =15 here) to 2 =100
(100 is chosen just for convenience), and plot the new
(h,t) pairs in Fig. 13(Curve 1), which is the theoretical
SLW performance. The x-axis indicates the percentage
of data pieces cached over the requesting window, and
the y-axis indicates the percentage of data requests
served from cache. To compare the theoretical perfor-
mance with the experimental one, we also normalize
the experimental performance curve to Q =100 (Curve
2 in Fig. 13) and find that these two curves almost coin-
cide with each other.

The theoretical performance curve, only relevant to the
requesting window property decided by the GEV distribu-
tion parameters, matches the experimental results very
well. We call it a standard profile. By theoretically calculat-
ing the cache hit rate for some specific distributions, we
obtain some standard profiles shown in Fig. 14. Table 3
lists the distribution parameters. The different perfor-
mance curves reflect the different properties of different
distributions.

Now we can use these standard profiles as guidelines to
estimate the SLW performance given a cache size. First dis-

Cache Hit Ratio(%)

0
0 20 40 60 80 100
Cache Size(# of Data Pieces Cached)

Fig. 14. Comparison of different distributions.

Table 3
Different distribution parameters.
Distribution Parameters Lag length
GEV 1 GEV K =0.214242 15s
= 2.46523
o =1.99242
GEV 2 GEV k=01,u=10,0=14 85s
NORM normal n=750=32 15s

tribute cache size among the channels according to their
channel popularity and data requesting rates (refer to the
“Channel Cache Size Adjustment” routine in Fig. 8). And
then use the requesting rate and the standard profiles to
compute cache hit rate of each channel. At last, the overall
cache hit rate can be calculated by adding the cache hit
rate of single channels weighted by its proportional
popularity.

6.4. Cache size optimization

We can also estimate the required cache size to achieve
certain cache hit rate. Since the cache hit rate of SLW in-
creases with the increase of cache size, we can use binary
search to estimate the required cache size with a given
cache hit rate. The estimation can help avoid unnecessary
cache usage and optimize cache size.

For example, the cache hit rate of SLW nearly reaches
100% when cache size is about 6600 in Fig. 9. Actually
we can calculate the required cache size with any given
cache hit rate. The calculated cache size is also the mini-
mum one to reach certain cache performance. Extra cache
can be spared if the performance already meets real
requirements.

7. Conclusion

In this paper, we studied the characteristics of data re-
quests in P2P live streaming and modeled the lag distribu-
tion with the generalized extreme value distribution. With
the help of the findings, we designed a data request gener-
ator to generate synthetic traffic for P2P live streaming
applications. Furthermore, we proposed a novel caching
algorithm for P2P live streaming applications-SLW. The
SLW algorithm explores both temporal and spatial locality
of data requests and gets the best performance among the
online caching policies including LRU, LFU and FIFO. Exper-
iments prove that the P2P live streaming traffic is very
favorable for caching. Deploying a small cache in the net-
work can significantly reduce the traffic imposed by the
P2P live streaming systems. By studying the factors affect-
ing SLW performance, we calculated standard performance
profiles with the lag distributions and illustrated their
practical usage in estimating algorithm performance. In
the future, we plan to make a similar study on the caching
strategies for P2P video-on-demand traffic. Since P2P VoD
traffic does not have obvious synchronization characteris-
tics as P2P live streaming, caching strategies for P2P VoD
traffic may share more similarities with those for P2P file

1240 K. Xu et al. / Computer Networks 54 (2010) 1229-1241

sharing traffic. The effectiveness and benefits of the SLW
algorithm in real environments need further investigation
as well.

References

[1] <http://www.bittorrent.com>.

[2] <http://[www.emule.org>.

[3] <http://www.skype.com>.

[4] <http://www.pplive.com>.

[5] T.Karagiannis, A. Broido, N. Brownlee, K.C. Claffy, M. Faloutsos, Is P2P
dying or just hiding? in: Proceedings of the GLOBECOM 2004
Conference, IEEE Computer Society Press, Dallas, Texas, 2004.

[6] O.Saleh, M. Hefeeda, Modeling and caching of peer-to-peer traffic, in:
ICNP '06: Proceedings of the 2006 IEEE International Conference on
Network Protocols, IEEE Computer Society, Washington, DC, USA,
2006, pp. 249-258. doi:http://dx.doi.org/10.1109/ICNP.2006.320218.

[7] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web caching and zipf-
like distributions: evidence and implications 1 (1999) 126-134,
doi:10.1109/INFCOM.1999.749260.

[8] S. Podlipnig, L. Boszormenyi, A survey of web cache replacement
strategies, ACM Comput. Surv. 35 (4) (2003) 374-398. doi:<http://
doi.acm.org/10.1145/954339.954341>.

[9] J. Liy, J. Xu, Proxy caching for media streaming over the internet
communications magazine, IEEE 42 (8) (2004) 88-94, doi:10.1109/
MCOM.2004.1321397.

[10] A. Wierzbicki, N. Leibowitz, M. Ripeanu, R. Wozniak, Cache
replacement policies revisited: the case of P2P traffic, in:
Proceedings of the 2004 IEEE International Symposium on Cluster
Computing and the Grid, 2004, pp. 182-189. doi:10.1109/
CCGrid.2004.1336565.

[11] J. Wang, A survey of web caching schemes for the internet,
SIGCOMM Comput. Commun. Rev. 29 (5) (1999) 36-46.
doi:<http://doi.acm.org/10.1145/505696.505701>.

[12] RJ. Dunn, Effectiveness of caching on a peer-to-peer workload,
Master’s Thesis, University of Washington, Seattle, 2002.

[13] Y. Chen, C. Chen, C. Li, A measurement study of cache rejection in
p2p live streaming system, in: ICDCSW '08: Proceedings of the 2008
the 28th International Conference on Distributed Computing
Systems Workshops, IEEE Computer Society, Washington, DC, USA,
2008, pp. 12-17.

[14] S. Deshpande,]J. Noh, P2P live streaming of video in peer-to-peer
systems, in: ICME, IEEE, 2008, pp. 649-652. <http://dblp.uni-
trier.de/db/conf/icmcs/icme2008.html#DeshpandeN08>.

[15] X. Hei, C. Liang,]. Liang, Y. Liu, K. Ross, A measurement study of a
large-scale P2P iptv system, IEEE Transactions on Multimedia 9 (8)
(2007) 1672-1687, doi:10.1109/TMM.2007.907451.

[16] S. Ali, A. Mathur, H. Zhang, Measurement of commercial peer-to-
peer live video streaming. <http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1>.

[17] N. Leibowitz, A. Bergman, R. Ben-shaul, A. Shavit, Are file swapping
networks cacheable? characterizing P2P traffic, in: Proceedings of
the 7th International WWW Caching Workshop, 2002.

[18] T. Karagiannis, P. Rodriguez, K. Papagiannaki, Should internet service
providers fear peer-assisted content distribution? in: IMC '05:
Proceedings of the 5th ACM SIGCOMM conference on Internet
Measurement, USENIX Association, Berkeley, CA, USA, 2005,
pp. 6-6.

[19] L. Guo, E. Tan, S. Chen, Z. Xiao, X. Zhang, Does internet media traffic
really follow zipf-like distribution? in: SIGMETRICS '07: Proceedings
of the 2007 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, ACM, New
York, NY, USA, 2007, pp. 359-360. doi:<http://doi.acm.org/
10.1145/1254882.1254929>.

[20] S. Chen, H. Wang, X. Zhang, B. Shen, S. Wee, Segment-based
proxy caching for internet streaming media delivery, IEEE
MultiMedia 12 (3) (2005) 59-67. doi:http://dx.doi.org/10.1109/
MMUL.2005.56.

[21] S. Chen, B. Shen, S. Wee, X. Zhang, Designs of high quality streaming
proxy systems, in: Proceedings of IEEE, 23th Annual Joint Conference
of the IEEE Computer and Communications Societies, INFOCOM, vol.
3, 2004, pp. 1512-1521. doi:10.1109/INFCOM.2004.1354565.

[22] S. Sen,]. Rexford, D. Towsley, Proxy prefix caching for multimedia
streams, in: Proceedings of IEEE, 18th Annual Joint Conference of the
IEEE Computer and Communications Societies, INFOCOM, vol. 3,
1999, pp. 1310-1319. doi:10.1109/INFCOM.1999.752149.

[23] K.-L. Wu, P.S. Yu, J.L. Wolf, Segment-based proxy caching of
multimedia streams, in: WWW ’01: Proceedings of the 10th

International Conference on World Wide Web, ACM, New York,
NY, USA, 2001, pp. 36-44. doi:<http://doi.acm.org/10.1145/
371920.371933>.

[24] M. Hefeeda, C. Hsu, K. Mokhtarian, Design and evaluation of a proxy
cache for peer-to-peer traffic, Tech. Rep., Simon Fraser University
(Sep 2008).

[25] <http://www.cachelogic.com>.

[26] X. Zhang,]. Liu, B. Li, Y.-S. Yum, Coolstreaming/donet: a data-driven
overlay network for peer-to-peer live media streaming, in:
Proceedings of IEEE, 24th Annual Joint Conference of the IEEE
Computer and Communications Societies, INFOCOM, vol. 3, 2005, pp.
2102-2111. doi:doi:10.1109/INFCOM.2005.1498486.

[27] <http://[www.ppstream.com>/.

[28] Extreme value distribution. URL: <http://www.mathwave.com/
articles/extreme-value-distributions.html>.

[29] Y. Huang, T.Z. Fu, D.-M. Chiu,].C. Lui, C. Huang, Challenges, design
and analysis of a large-scale P2P-vod system, in: SIGCOMM ’08:
Proceedings of the ACM SIGCOMM 2008 Conference on Data
Communication, ACM, New York, NY, USA, 2008, pp. 375-388.
doi:<http://doi.acm.org/10.1145/1402958.1403001>.

[30] P. Cao, S. Irani, Cost-aware www proxy caching algorithms, in:
USITS’97: Proceedings of the USENIX Symposium on Internet
Technologies and Systems on USENIX Symposium on Internet
Technologies and Systems, USENIX Association, Berkeley, CA, USA,
1997, pp. 18-18.

[31] N. Young, The k-server dual and loose competitiveness for paging,
Algorithmica 11 (1994) 525-541.

Ke Xu was born in Jiangsu, PR China, in 1974.
He received the B.S., M.S. and Ph.D. degrees in
computer science from Tsinghua University,
China in 1996, 1998 and 2001, respectively.
Currently, he is an Associate Professor in the
department of computer science of Tsinghua
University. His research interests include next
generation Internet, switch and router archi-
tecture, P2P and overlay network. He is a
member of ACM SIGCOMM, member of IEEE
and IEEE Communication Society.

Ming Zhang is currently a M.S. candidate of
School of Software, Tsinghua University. His
research interests include network traffic
classification and applications, peer-to-peer
systems and networking security.

Jiangchuan Liu received the BEng degree
(cum laude) from Tsinghua University, Bei-
jing, China, in 1999, and the Ph.D. degree from
The Hong Kong University of Science and
Technology in 2003, both in computer sci-
ence. He is currently an Associate Professor in
the School of Computing Science, Simon Fra-
ser University, British Columbia, Canada, and
was an Assistant Professor in the Department
of Computer Science and Engineering at The
Chinese University of Hong Kong from 2003 to
2004.

His research interests include multimedia systems and networks, wire-
less ad hoc and sensor networks, and peer-to-peer and overlay networks.
He is an Associate Editor of IEEE Transactions on Multimedia, and an
editor of IEEE Communications Surveys and Tutorials. He is a Senior
Member of IEEE and a member of Sigma Xi.

http://www.bittorrent.com
http://www.emule.org
http://www.skype.com
http://www.pplive.com
http://dx.doi.org/10.1109/ICNP.2006.320218
http://dx.doi.org/10.1109/INFCOM.1999.749260
http://doi.acm.org/10.1145/954339.954341
http://doi.acm.org/10.1145/954339.954341
http://dx.doi.org/10.1109/MCOM.2004.1321397
http://dx.doi.org/10.1109/MCOM.2004.1321397
http://dx.doi.org/10.1109/CCGrid.2004.1336565
http://dx.doi.org/10.1109/CCGrid.2004.1336565
http://doi.acm.org/10.1145/505696.505701
http://dblp.uni-trier.de/db/conf/icmcs/icme2008.html#DeshpandeN08
http://dblp.uni-trier.de/db/conf/icmcs/icme2008.html#DeshpandeN08
http://dx.doi.org/10.1109/TMM.2007.907451
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1
http://doi.acm.org/10.1145/1254882.1254929
http://doi.acm.org/10.1145/1254882.1254929
http://dx.doi.org/10.1109/MMUL.2005.56
http://dx.doi.org/10.1109/MMUL.2005.56
http://dx.doi.org/10.1109/INFCOM.2004.1354565
http://dx.doi.org/10.1109/INFCOM.1999.752149
http://doi.acm.org/10.1145/371920.371933
http://doi.acm.org/10.1145/371920.371933
http://www.cachelogic.com
http://dx.doi.org/10.1109/INFCOM.2005.1498486
http://www.ppstream.com
http://www.mathwave.com/articles/extreme-value-distributions.html
http://www.mathwave.com/articles/extreme-value-distributions.html
http://doi.acm.org/10.1145/1402958.1403001

K. Xu et al. / Computer Networks 54 (2010) 1229-1241

Zhijing Qin is currently a Master student of
School of Software and Microelectronics,
Peking University. His research interests
include traffic identification, P2P live stream-
ing and network pricing.

1241

Mingjiang Ye received the B.Eng. degree in
computer science from Tsinghua University,
China, in 2000. He is currently a Ph.D. candi-
date in Department of Computer Science and
Technology, Tsinghua University, China. His
research interests are in the filed of Internet
technologies and applications, including net-
work traffic management, network traffic
classification and peer-to-peer systems and
overlay networks.

	Proxy caching for peer-to-peer live streaming
	Introduction
	Related work
	Proxy caching for P2P live streaming: a general view
	Generic cache architecture for P2P traffic
	Distinct features of P2P live streaming

	Data request analysis and data request synthesis for P2P live streaming
	Characteristics of data requests for individual users
	Stable requesting rate
	Request groups and subgroups

	Request lag distribution among peers
	Channel popularity
	Data request synthesis

	Sliding window (SLW) caching algorithm
	Evaluation and discussion
	Experimental setup
	Performance results
	Modeling the SLW algorithm performance
	Cache size optimization

	Conclusion
	References

