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Classifying network traffic according to its applications is important to a broad range of network areas.
Since new applications, especially P2P applications, no longer use well-known fixed port numbers, the
native port-based traffic classification technique has become much less effective. In this paper, we pro-
pose a novel approach to identify P2P traffic by leveraging the data transfer behavior of P2P applications.
The behavior investigated in the paper is that downloaded data from a P2P host will be uploaded to other
hosts later. To find the shared data of downloading flows and uploading flows online, the content-based
partitioning scheme is proposed to partition the flows into data blocks. Flows sharing the same data
blocks are identified as P2P flows. Theoretical analysis proves that the content-based partitioning scheme
is stable and effective. Experiments on various P2P applications demonstrate that the method is generic
and can be applied to most P2P applications. Experimental results show that the algorithm can identify
P2P applications accurately while only keeping a small set of data blocks.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Classifying network traffic according to its applications is
important to a broad range of network areas including network
monitoring, network management and traffic optimization, net-
work security, traffic accounting, etc. Different from the traditional
applications (http, email, ftp), new applications, especially P2P
applications, usually use dynamic port numbers. The traffic classi-
fication technique based on native port has become less effective.
However, the payload signature-based traffic classification tech-
nique [1,2] can achieve high accuracy. But the technique also has
its limitations. It is ineffective in classifying encrypted traffic. Be-
sides, a lot of P2P applications use proprietary protocols. Lacking
open protocol specifications makes analyzing signatures and main-
taining up-to-date signatures difficult.

Recently, machine learning algorithms which classify network
traffic using flow statistical information [5–9] have been proposed.
There are several challenges in classifying network traffic by using
flow properties. First, the statistical characteristics used in classifi-
cation are unstable since the delays and/or the packet loss ratios of
the networks are dynamic. Second, flows belonging to different
applications can have similar per-flow statistical characteristics.
It is hard to distinguish these similar flows by using flow
properties.
ll rights reserved.
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This paper proposes a novel approach to identify P2P traffic based
on its data transfer behavior. The idea is based on the observation
that a P2P peer uploads data to other peers after downloading
it. The observation is first employed by Lu et al. [10]. In their
method, the first k bytes of each packet in downloading flows
are stored for each host. When the same content is found in
uploading flows of the host, the flows associated with the content
are classified as P2P flows. The partitioning scheme in their meth-
od is named the head packet partitioning scheme (i.e., searching
shared data in the first few bytes of packets) in this paper. As
shown in our experiments, the performance of the head packet
partitioning scheme is poor in identifying some P2P applications.

The content-based partitioning scheme (i.e., searching shared
data in the whole payload) is proposed in the paper to solve the
problem. The scheme divides payloads of flows into data blocks
(a data block is a contiguous content block of payload). The shared
files and videos in P2P applications are usually divided into small
data pieces during exchanges. For flows sharing the same data
piece, the scheme can synchronize the boundary of the data piece,
and extract the same part of the data piece as a data block. The
scheme is generic and can be applied to most P2P applications.

Our contributions are as follows: First, experiments prove that
the content-based partitioning scheme we proposed performs
much better than the head packet partitioning scheme. Besides,
head tail partitioning scheme (i.e., searching shared data in both
the first and the last few bytes of packets), a simple enhancement
of the head packet partitioning scheme, also can improve perfor-
mance greatly, though not as good as the content-based partition-
ing scheme. Second, we have studied the performance impact of
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some important issues. They are the size of the data block, the
number of the data blocks to be stored, the data block replacement
algorithms and the ratio of unobservable communications.

From the studies, we have drawn several conclusions. First, 256
bytes is a suitable size for data blocks. Second, the random replace-
ment algorithm is suggested in replacing old data blocks. Third, with
the random replacement algorithm, the method performs quite well
while only keeping a small data block set (3 min). Last, even though
the communications of a large fraction of peers (about 30%) are not
observed, the performance degradation is rather small.
2. Related work

Payload signatures are useful in classifying network traffic [1,2].
Application signatures are the common strings in P2P protocols to
identify P2P traffic, whereas our method focuses on the data being
shared in P2P applications.

In addition to signature-based methods, other payload-based
methods are also proposed. ACAS [3] uses the first N bytes of pay-
load as input to train a machine learning model to classify flows.
Levchenko et al. build several probabilistic models on payload,
including the statistical model treating each n-byte flow distribu-
tion as a product of N independent byte distributions and the Mar-
kov process model which relies on introducing independence
between bytes [4]. The models still employ frequently appearing
bytes in application protocols to classify traffic since the random
bytes in application data are meaningless in statistics.

The machine learning algorithms classify network traffic by
using traffic characteristics [5–9], such as average length of packets
and arrival interval of packets. The algorithms can be further sum-
marized into supervised and unsupervised methods. Zander et al.
compare several supervised algorithms, including Naive Bayes,
C4.5 decision tree, Bayesian Network and Naive Bayes Tree [9].
They find that the classification precision of the algorithms is sim-
ilar, but computational performance can be significantly different.
McGregor et al. use the unsupervised expectation maximum algo-
rithm to cluster the flows [6]. The experiment finds that the aver-
age precision of classification is very high, but some applications
are difficult to distinguish.

The special communication patterns of applications are used in
traffic classification. Karagiannis et al. study the communication
pattern of P2P traffic in transport layer to identify P2P traffic
[11]. BLINC attempts to capture the communication pattern of a
host at three levels: the social level, the functional level and the
application level [12]. Graphlet is used to describe the communica-
tion pattern of each application and classify network traffic.

It is hard to find a general communication pattern for all P2P
applications. Hu et al. propose a method to build behavioral pro-
files of the target application which then describes the dominant
communication patterns of the application [13]. The profiles of
each application are built with data mining algorithms in the train-
ing phase. The data transfer behavior used in our method is general
for all P2P applications, so our method does not need any training
phases.
Fig. 1. Shared data p
A similar work to ours has been presented by Lu et al. [10]. Their
work opens up a new approach to identifying P2P traffic by
inspecting data transfer behavior. But they only use the first k by-
tes of payload to find the shared data and the number of identifi-
able P2P applications is limited. We employ their ideas but
propose a new payload partitioning scheme. Experiments show
that our method is better and general for different kinds of P2P
applications. Besides, we have studied the parameters affecting
identification accuracy and examined the computation cost and
memory overhead.
3. P2P traffic discovery with the content-based partitioning
scheme

We first describe the content-based partitioning scheme used in
our algorithm. Then we illustrate that this scheme is very effective
because identification data blocks can be generated even when a
small amount of data is shared between flows. At last, we propose
a new traffic identification algorithm based on the content-based
partitioning scheme.
3.1. Payload partitioning schemes

The basic idea is simple. The method inspects the P2P data
transfer behavior on the host level. From the view of a host, flows
can be classified as downloading flows and uploading flows. If a
host downloads a data piece in a downloading flow, and then up-
loads it to other hosts in some uploading flows, these flows are
classified as P2P flows.

The biggest obstacle is to find the same data pieces in different
flows. One way is comparing the payloads of flows directly. But it is
time-consuming. Besides, complete payloads of flows have to be
saved in memory before comparing. It is quite difficult — and
therefore, impractical — as an online process.

In our method, payloads of flows are divided into data blocks
and then the signatures of the data blocks are compared. A payload
partitioning scheme decides how to divide the payload into data
blocks. The ideal result is that each data block is an exact data piece
in a P2P application. For example, for two distinct flows in Fig. 1,
the ideal case is that the generated data blocks in the first flow
equal to data pieces 1, 5 and 7, and the generated data blocks in
the second flow equal to data pieces 9, 4 and 1. Thus, the shared
data (data pieces 1) of the two flows can be found.

However, a prerequisite to generating such ideal results is the
detailed protocol information. As shown in Fig. 1, there are several
challenges in locating the boundaries of data pieces. First, a flow
can contain protocol fields with variable sizes. Second, the sizes
of data pieces are variable in some P2P live streaming applications,
where a data piece contains one second of video content. The size
of the data piece is variable in most video coding schemes.

Three partitioning schemes are considered. The first one is the
head packet partitioning used in [10]. If the packet size of a packet
exceeds the threshold S, the first S bytes of the packet is extracted
as a data block.
iece detection.



Fig. 2. Content-based partitioning algorithm.

Fig. 4. Principle of content-based partitioning.
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The second one is the head tail packet partitioning scheme, an
enhancement of the previous one. If the payload size of a packet
exceeds the threshold value S, the first S bytes of payload and
the last S bytes of payload are extracted as two data blocks. If
the target packets contain some protocol fields at the beginning
or at the end, the scheme can skip them.

The last one is the content-based partitioning scheme. It has
been used in saving bandwidth in network file systems [14] and
automatically generating signatures of worms in security fields
[15]. The scheme divides a flow into variable-size, non-overlapping
data blocks. It works as follows. First, a pair of pre-determined
integers D and r (r < D) are set. Then a W-width sliding window
moves across the byte sequence. The window begins from the first
W bytes in the sequence, and slides one byte at a time toward the
end. At every position of the byte sequence, a fingerprint F is calcu-
lated according to the content in the current window. If F mod D
equals r, the end of the window is a data block boundary (Fig. 2).

For example, in Fig. 3, the window size (W) is 5, D is 8 and r is 7.
A 5-byte-width window moves across the byte sequence and fin-
gerprints are calculated in each position. When the window
reaches {abcde}, two positions can satisfy the condition. Two data
blocks {tzynuns} and {ufabcde} are extracted.

The fingerprint is calculated with Rabin fingerprinting algo-
rithm [16] which has a low collision rate. Using the pre-computed
table, it is efficient to calculate the Rabin fingerprint [17].

The principle behind the content-based partitioning scheme is
that, because the scheme determines the boundaries of data blocks
based on the local content of payload in a small window, the
boundaries can synchronize in the same data pieces. For example,
in Fig. 4, there are two flows containing the same data piece (the
black part) in different positions. In the first flow, there are two
positions satisfying the condition. They locate at offset 100 and
500 from the beginning of the data sequence. In the second flow,
the positions at the same offsets from the beginning of the data
piece should also satisfy the condition, as the contents in the win-
dows are the same. The same data block is extracted in both flows.

The content-based partitioning scheme can create data blocks
with various sizes. Although the average size of blocks is D, the
data blocks can be as short as several bytes. Short data blocks
introduce many false positives, so the results are further filtered
to only keep data blocks whose sizes exceed threshold S.
Fig. 3. Content-based partitioning scheme.
The value of D decides the average size of data blocks. If D is
much smaller than S, many data blocks which are smaller than S
will be generated and filtered. So D is equal to S in the algorithm.
Since the performance is not sensitive to the value of r, we set r
to D� 1 in the algorithm.

The boundaries of data blocks are determined by the local con-
tent in the window. The window size should be much smaller than
the size of data pieces to generate data blocks inside a data piece.
However, a small window is sensitive to random content in flows.
In the experiments, the window size is 32 bytes.

3.2. Effectiveness of the content-based partitioning scheme

In this section we show the effectiveness of the content-based
partitioning scheme. Specifically, the relationship between the
probability of generating a data block and the shared data length
is studied.

Lemma 3.1. If the length of shared continuous payload between two
flows is L, and the content-based partitioning scheme generates a data
block in one flow whose offset is larger than W (sliding window width,
mentioned above), the same data block can be generated in the other
flow with the partitioning method.

Proof. Suppose the data sequences are S1 and S2 in the two flows.
The starting indexes of the shared payload are x1 and x2 separately.
Then we have

S1ðx1 þ iÞ ¼ S2ðx2 þ iÞ; 8i 2 f0;1; . . . ; L� 1g: ð1Þ

We can get a data block with the content-based partitioning scheme
and the Rabin fingerprinting algorithm. Suppose the generated data
block in flow S1 is S1½xb

1; x
b
1 þ Lb � 1�, whose length is Lb, then

x1 þW 6 xb
1; xb

1 þ Lb � 1 6 x1 þ L� 1. Furthermore,

rabinðS1½xb
1 �W; xb

1 � 1�Þ mod D ¼ r ð2Þ

and

rabinðS1½xb
1 þ Lb �W; xb

1 þ Lb � 1�Þ mod D ¼ r: ð3Þ

By Eqs. (1)–(3), we have

S2½xb
1 �W þ x2 � x1; xb

1 � 1þ x2 � x1� ¼ S1½xb
1 �W; xb

1 � 1�; ð4Þ

S2½xb
1 þ Lb �W þ x2 � x1; xb

1 þ Lb � 1þ x2 � x1�
¼ S1½xb

1 þ Lb �W; xb
1 þ Lb � 1�: ð5Þ

And finally,

rabinðS2½xb
1 �W þ x2 � x1; xb

1 � 1þ x2 � x1�Þ mod D

¼ rabinðS2½xb
1 þ Lb �W þ x2 � x1; xb

1 þ Lb � 1þ x2 � x1�Þ
mod D ¼ r: ð6Þ

That is to say, S2 also generates two data block boundaries and the
payload content between them is the same as that in S1, which com-
pletes the proof. h

Lemma 3.1 shows that the same data blocks can be generated
between different flows regardless of the different offsets of the
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shared data. So if the same data block is found in different flows,
we can demonstrate that they have shared data.

Lemma 3.2. The probability of generating a data block, whose offset
is no less than W, for the payload of length L with the Rabin
fingerprinting algorithm is

Pr ¼
0 if L 6W;

1� LþD�W
D

D�1
D

� �L�W if L > W:

(

Proof. The content-based partitioning scheme generates a Rabin
fingerprint in each byte boundary. A data block cannot be
generated if there are less than two data boundaries. Obviously
no signature of length larger than W can be generated if L 6W . If
L > W , the fingerprint F of a data block boundary must satisfy
ðF mod D ¼ rÞ. Suppose the payload content is randomly generated
(As everything can be shared between peers, the hypothesis is rea-
sonable.), then the probability that a piece of payload is a data
block boundary is p ¼ 1

D

� �
. Furthermore, as the Rabin fingerprints

are calculated by hashing, the probability of a data block boundary
of different positions can be assumed independent. So the proba-
bility PrðiÞ to generate i data block boundaries follows the binomial
distribution with parameters (L�W þ 1;1=D), which is

PrðX ¼ iÞ ¼ Ci
L�Wþ1

1
D

� �i D� 1
D

� �L�Wþ1�i

: ð7Þ

And the probability to generate at least two data block boundaries
with payload length L�W þ 1 is

Prði P 2Þ ¼ 1� Prð0Þ � Prð1Þ:

The probability to get a data block is

Prði P 2Þ ¼ 1� Lþ D�W
D

D� 1
D

� �L�W

� ð8Þ

Lemma 3.2 gives the probability of generating a data block with
the given data length.

Theorem 3.3 (Ye’s Theorem). Let the length of payload shared
between different flows be L, the probability to generate at least one
identifying data blocks with the content-based partitioning scheme is

Pr ¼
0 if L 6W;

1� LþD�W
D

D�1
D

� �L�W if L > W:

(

Proof. Lemma 3.2 says that the probability of generating at least
one data block is shown in Eq. (8). And Lemma 3.1 shows that
every data block from one flow will definitely appear in another
flow, so the probability of generating data blocks between flows
is the same as that in Lemma 3.2. h

Like Lemma 3.2, Theorem 3.3 gives the probability of generating
data blocks if payload of the given length is shared. The theorem
says that no data block can be generated if the shared data length
Fig. 5. Online process
is small, which filters a lot of noise. But if the shared data length is
tentatively large, it is probable to generate data blocks. So the con-
tent-based partitioning scheme is both stable and effective.
3.3. Algorithm

The details of the algorithm are as follows: For each host, the
algorithm keeps a hash set, which is called the downloading set,
to save data blocks. Payloads of flows are divided into data blocks.
Data blocks of each downloading flow and flow identifiers (a flow
identifier is the 5-tuple: source IP address, source port, destination
IP address, destination port, and protocol) are saved in the corre-
sponding downloading set. To save the memory capacity, signa-
tures of data blocks (Rabin fingerprint) are calculated and saved
instead of the original data blocks. If the size of the downloading
set exceeds the limitation, data block replacement is applied. Data
blocks of each uploading flow are checked whether they have been
saved in the corresponding downloading set already. If a data block
of the uploading flow has been saved in the downloading set, the
uploading flow, the downloading flow and their reverse flows are
identified as P2P flows.

A flow has two roles. One is the downloading flow of the target
host. The other is the uploading flow of the source host. The data
blocks of the flow are saved in the downloading set of the target
host and checked in the downloading set of the source host.

The online process of the algorithm is illustrated in Fig. 5. When
a packet arrives, it is first partitioned into several data blocks. And
then, the signatures of the data blocks are calculated. Finally the
signatures are saved into the downloading set of the destination
host and checked in the downloading set of the source host.

A more detailed algorithm description is shown in Fig. 6. Every
time a packet arrives, flow reassembly is done by concatenating
the payload of the packet to the remaining payload stored. The con-
tent-based partitioning scheme is applied to each byte offset to cal-
culate data block boundaries. If a data block boundary is found, a
valid data block is generated. Data blocks too small are dropped.
The Rabin fingerprint of the remaining data block is calculated.
And if it is found in the downloading set of the source host, the flow
is identified as P2P flow. The fingerprint is added to the downloading
set of the destination host if not found. Necessary replacement is
done if the downloading set is full. In the perspective of algorithm
performance, Rabin fingerprinting is the most time-consuming
since a fingerprint is calculated for each offset. In addition, about
every S bytes, a data block is found and its Rabin fingerprint is calcu-
lated. Thus, if the total packet length is Tot bytes, the number of Ra-
bin fingerprinting operations is about Tot þ Tot=S.
4. Evaluation

We study the parameters affecting identification accuracy in
this section. Computation cost and memory overhead are also
examined.
of the algorithm.



Fig. 6. Identifying P2P traffic by inspecting the data transfer behavior.

Table 1
P2P applications.

Type Applications

P2P file sharing BitTorrent, Emule
P2P live streaming PPLive, PPStream, TVAnt, FeiDian,

PPMate, SinaLive, TVULive
P2P video on demand PPLive VoD, XL VoD, PPStream VoD
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4.1. Experiments setup

Two metrics are used [20]. The first one is the true positive (TP)
rate. It is used to measure the traffic fraction that can be recognized
by the algorithm out of the traffic belonging to the given
application.

TP ¼ traffic classified as the application
Total application traffic

: ð9Þ

The second one is the false positive (FP) rate. It is used to mea-
sure the traffic fraction which is not really produced by a given
application out of the traffic classified as the application.

FP ¼ Non-application traffic classified as the applciation
Total traffic classified as the application

: ð10Þ

They are important metrics especially when flow type identifi-
cation is used in traffic management. For example, if network oper-
ators differentiate the service qualities according to the flow types,
high false positive or low true positive rates can make high priority
traffic suffer from performance degradation. A good algorithm
should have low false positive and high true positive rates.

As shown in Table 1, a lot of popular P2P applications are eval-
uated in the experiments. They are classified into three types: P2P
file sharing, P2P live streaming and P2P Video on Demand (VoD).

To evaluate the method, two kinds of traffic traces are captured
and replayed: pure application traces and mixed application traces.
The former traces are captured from a host which only has the gi-
ven application running on it. Each P2P file sharing application
trace contains the traffic generated by downloading several files.
Each P2P live streaming or P2P VoD application trace contains
the traffic generated by watching a video. The time slot of each
trace file varies from half an hour to one hour. The traces are only
used to evaluate the true positives.

The mixed traces are captured from a host running various
applications. Each trace contains the traffic generated by a P2P
application and some non-P2P applications, such as HTTP, FTP,
SMTP and POP3. P2P applications in them are labeled by their pay-
load signatures. In each mixed trace, the P2P traffic accounts for
30–40% of the total traffic. The traces are used to evaluate both
the true positives and the false positives. We have generated mixed
traces with two P2P applications. They are BitTorrent and PPLive.

4.2. Comparing partitioning scheme

First, the true positive of different partitioning schemes is stud-
ied by applying them on the pure application traces. In the exper-
iments, the threshold S is 256 bytes. To study the best true positive
that each scheme can achieve, the size of the downloading set is
unlimited.

True positives are shown in Fig. 7. Among the three partitioning
schemes, performance of the head packet partitioning scheme is
the worst. Quite a few P2P applications can’t be recognized by
the scheme. Performance of the head tail packet partitioning
scheme is almost as effective as the content-based partitioning
scheme, except for the FeiDian live streaming application. If the
applications have protocol fields in both the head and the tail of
the packets, the packet-based partitioning schemes do not work.
The content-based partitioning scheme is more generic.

For most applications, the true positives in bytes are more than
90%, but it is only 40% for the Emule application. There are two rea-
sons. First, the downloaded files which are then uploaded by Emule
are older than those by BitTorrent. Second, Emule transfers a part
of a file with 1300 bytes in a separate packet each time to avoid
fragmentation. The start position of the part in the file is specified
in a request message. The data pieces exchanged in BitTorrent pro-
tocol are globally divided, but the data pieces exchanged in Emule
protocol are not. It is more difficult to find the shared data pieces in
flows of the Emule application.

4.3. Parameter tuning

In this section, we study the parameters affecting identification
accuracy.

4.3.1. Data block size
The threshold S in the content-based partitioning scheme is

important. The effect of threshold S is evaluated in Fig. 8. Parame-
ters W and D are set to 32 and 256, respectively. The size of the
downloading set is unlimited.

The consequences of a smaller threshold S are: the generation of
more data blocks; higher memory consumption and increased false
positives. However, the probability of finding the shared data
pieces decreases as the threshold S increases.

True positives of most applications do not decrease significantly
when S is smaller than 1024 bytes, except the XLVoD application. It
implies that the data block size of most P2P applications are smal-
ler than 1024 bytes.

To further study the effect of parameters W and D on data block
size, we make another study with mixed traffic traces. We run
through the traces with different W and D values. Fig. 9 analyzes
the size of the generated data blocks and shows that smaller data
blocks (<D) can be more probably generated while large blocks
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(>4 * D) are rare. Parameter D has an obvious effect on data block
size. When in real environments, D can be adjusted tentatively
large to increase average data block size and decrease processing
overhead. On the other hand, window size W does not show great
impact on data block size (Fig. 9(a) and (b)). But it should neither
be set too large (>D) nor too small (a few bytes) in real cases.

Fig. 9 also explains why the true positive decreases when S is
large. If S is too large, chances to generate a data block decrease
and even become impossible. The threshold S of 256 bytes (for
D = 256) is suggested in the algorithm and used in the following
experiments.
4.3.2. Downloading set size
The algorithm keeps recent data blocks in a downloading set for

each host. Saving data blocks for an extended period can improve
the true positive, but it requires a lot of memory.

The effect of the downloading set size is shown in Fig. 10. The
threshold S is 256. The size of the downloading set is measured
in minutes. The size of 1 min means that the downloading set will
keep data blocks generated in the last 1 min.

Because peers exchange the video content in a small time win-
dow in P2P live streaming applications, the true positives of P2P
live streaming applications are much better than P2P file sharing
and P2P VoD applications for small downloading sets. For P2P file
sharing and P2P VoD applications, downloaded data pieces can be
uploaded after a long time. Keeping the most recent data blocks re-
quires a large time window for the applications.

The performance can be further improved using other replace-
ment policies instead of the current first-in, first out (FIFO) policy.
There are two other data block replacement policies to consider.
They are least recently used (LRU) and random replacement
(RANDOM).

We have evaluated the performance of several P2P applications
(Fig. 13). The x-axis is the size of the downloading set and the y-
axis is the normalized true positive. It is calculated by dividing
the current true positive by the true positive of the unlimited
downloading set. If the value is 1, it implies that the performance
of a small downloading set is as good as the one using the unlim-
ited downloading set.

The experimental results in Fig. 10 indicate that a one-minute
time window is large enough for P2P live streaming applications.
We also tried other replacement policies and each of the three pol-
icies works almost the same for them. But for P2P file sharing and
P2P VoD applications, the random replacement algorithm works
much better than the other algorithms (Fig. 13). A downloading
set of a three-minute time window is large enough for all P2P
applications using the random replacement policy.
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Fig. 9. Effect of parameters W and D on data block size.
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Fig. 10. True positives with different downloading set sizes.
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The idea of the random replacement policy is that, old data
blocks are more likely to be kept by the algorithm than other algo-
rithms. Keeping the old data blocks can improve true positives for
P2P file sharing and P2P VoD applications. Besides, the algorithm
has a positive bias to big flows, which can also improve true posi-
tives in bytes. A flow transferring more traffic has a higher proba-
bility to be recorded and identified in random replacement.

4.4. Algorithm performance

The computation and memory overhead are important in iden-
tifying P2P traffic online with our method. In this section, we first
estimate the throughput by counting the CPU cycles. Then we dis-
cuss memory usage.

4.4.1. Throughput
We break the algorithm into small operations and count the

CPU cycles (on a notebook with 1.60 GHz processor speed,
512 MB 798 MHz memory) for each operation. An approximately
600 MB mixed traffic trace is used. Because of variable packet sizes
and data block sizes, the average processing time and its deviation
is reported. The results are shown in Table 2. Specifically, the most
expensive operations are retrieved and evaluated. There are mainly
three components: payload concatenation (i.e., flow reassembly),
Rabin fingerprinting and hash set operation. The overall processing
time for the algorithm is also shown.
Table 2
Processing time (in microseconds).

Steps in Fig. 6 Mean Standard deviation

Payload concatenation 1), 22)
Per packet 0.89 0.117
Per byte 0.0024 –

Rabin fingerprinting
First fingerprint (32 bytes) 5) 0.336 0.073
Increment (per byte) 5) 0.031 –
Data block fingerprint 12) 2.026 0.177

Hash set operation
Hash set query 13) 0.78 0.110
Insert in hash set 17) 2.465 0.197
Remove in hash set 18) 2.2 0.186

Overall average processing
cost (per byte)

Case 1: fingerprinting
by software

0.498 1.827

Case 2: fingerprinting
by hardware

0.043 0.523
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Rabin fingerprinting is the most expensive operation and calcu-
lating it for data block boundaries dominates the overall cost. Fin-
gerprinting data blocks is also very expensive, so as the data block
set maintenance operations. But these operations are unusual since
small data blocks are filtered.

Table 2 shows that on average it takes 0.498 ls for each byte.
This equals to 0.06 ls per bit, or a 20 Mbps line rate. It can be
improved by accelerating the Rabin fingerprinting process with
hardware. Once the irreducible polynomial is determined, a pre-
computed table can be generated and fingerprinting is actually
looking up tables and doing logical computation with input charac-
ters [17]. A dedicated SRAM can meet our requirements and the
performance is expected to increase around 20–50 times. The over-
all average processing cost can be lowered to 0.043 ls, which is
about 200 Mbps line rate. It is the lower bound, and performance
can be much better in real environments. First, parallelism can
be explored and faster hardware can be employed. Second, not
all the data blocks are fingerprinted for P2P traffic. Because only
data blocks for unidentified flows are processed in real environ-
ments, and P2P traffic usually dominates the overall traffic volume,
there are far less data block fingerprinting operations. In addition,
data block set maintenance can be efficient since keeping data
blocks for a few minutes is enough. If 60% of the overall traffic is
P2P, throughput can reach about 500 Mbps. So the throughput is
expected to reach more than 500 Mbps in normal traffic environ-
ment if faster hardware is used.
4.4.2. Memory consumption
Memory consumption is also affordable in our algorithm. Mem-

ory is used mainly for two purposes. First, in the payload partition-
ing, the byte level partitioning schemes have to keep some
intermediate information for each flow. For example, to update
the fingerprint in the content-based partitioning scheme, the fin-
gerprint and the content of the last window are saved for each
flow. The intermediate information is quite small and 40 bytes
are enough to keep the intermediate status. Suppose there are
1 M concurrent flows, only 40 MB memory is needed.

Second, the signatures and flow identifiers of the data blocks are
saved. Suppose the size of a signature is 16 bytes and the size of the
flow identifier is 4 bytes (an index in the flow table is used instead
of original 5-tuple), 20 bytes are needed to record a data block. If a
data block is as large as 512 bytes, a bidirectional 1 Gbps link with
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Fig. 13. True positives for different kinds of applications.
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50% link utilization can generate at most 1 Gb=8=512 � 20 ¼ 5 MB
records per second. It costs about 300 MB of memory for saving
1-min records and 1.46 GB of memory for saving 5-min records.

The experiments show that keeping data blocks for several
minutes is enough. So the memory consumption is affordable in cur-
rent hardware capabilities. Besides, because a lot of small data blocks
are not saved, the simple estimationcauses the results to be the upper
bounds. Other methods can further reduce memory consumption.
For example, flows which are too small or too short are unnecessary
to be saved since they are unlikely to be P2P downloading flows.

4.5. False positive

The mixed traces are used to evaluate false positives for BitTor-
rent and PPLive. The size of the downloading set is unlimited in the
experiment. The results are shown in Fig. 12. The x-axis is the
threshold S while the left y-axis is the false positive and the right
y-axis is the true positive.

As the result, a threshold of 256 bytes can help to guarantee a
low false positive while non-P2P applications are transferring ran-
dom data. But some behaviors of non-P2P applications may lead to
false positives. For example, people forward email they received.
Some methods can be used to eliminate these false positives
[11]. Since a P2P host always has a service port, we can further
identify the P2P {IP,port} pairs which associate with many identi-
fied flows. The flows which are not associated with a P2P {IP,port}
pair are filtered to eliminate false positives. For other tricky data
transfer behaviors, such as viewing comments posted earlier,
checking in changes and checking out immediately when main-
taining software, similar methods can be employed to achieve best
identification accuracy.

4.6. Deploying place

In previous experiments, all the communications of the host can
be observed and analyzed. When deploying the algorithm in the
gateway of an institute or an edge router, the communications in-
side the intra-network are unobservable. The performance of ab-
sent communications is studied in the experiment. The threshold
S is 256 bytes, the size of the downloading set is 3 min and the ran-
dom replacement policy is used in the experiment.

The results are shown in Fig. 11. The x-axis is the fraction of unob-
servable hosts. For example, 0.2 means that flows between the mon-
itored host and 20% of the other hosts are filtered. The missed hosts
are selected randomly and the flows are removed from the original
trace. The y-axis is the true positive on the filtered trace.

The results indicate that even though a large fraction of hosts
(about 30%) are unobservable, the algorithm can still achieve a
high true positive. It also implies that the algorithm can work well
even when the deploying place is not close to the hosts being in-
spected, such as the gateways of large institutes and edge routers.

4.7. Discussion

Our payload-based method focuses on the same data being
shared in P2P applications, so it is ineffective in classifying en-
crypted traffic. Besides, the P2P applications using network coding
[18] are also undetectable with our method. We argue that encryp-
tion and network coding pose a burden on P2P application
developers, so the mainstreaming P2P applications are still trans-
ferring data without any transformation. Non-payload-based
methods are more efficient to identify encrypted traffic. There
are some studies using machine learning algorithms to identify en-
crypted traffic [19].

Besides, our method assumes that peers will upload the re-
ceived data to others. But some peers may only download data
without providing data to others. This causes some P2P traffic can-
not be identified. But this case is rare since incentive mechanism
for providing data is becoming popular. In addition, most users
use default settings for their P2P software, which usually enables
sharing data to others by default.

5. Conclusion and future work

The paper proposed the content-based partitioning scheme to
discover shared data and identify the P2P data transfer behavior.
Compared with head packet partitioning scheme and head tail
packet partitioning scheme, content-based partitioning scheme is
generic and more accurate. Some important issues are also studied
by experiments. The experiments show that our algorithm can
achieve a high true positive and a low false positive while only
keeping a rather small data block set with random replacement
policy. In addition, our method can scale to more than 500 Mbps
line rate if the fingerprinting process is implemented in hardware,
which is satisfiable for practical deployment for edge routers and
local area networks.
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Our future work is to distinguish different P2P application flows
by using their relationships in data exchange and flow properties.
Our algorithm has introduced several new traffic characteristics
including data block size and data block hit interval. We plan to
improve P2P identification accuracy with these features as well
as normally used flow characteristics. Furthermore, our method
may fail if users don’t upload the data they downloaded. We plan
to extend our algorithm by inspecting unidirectional flows to over-
come the affections. We are also interested in improving our algo-
rithm with sampling to adapt to high speed backbone network
environment.
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