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Abstract
Learning-based traffic analysis models exhibit significant vul-
nerabilities to adversarial attacks. Attackers can compromise
these models by generating adversarial network flows with
precisely optimized perturbations. These perturbations typi-
cally take two forms: additive modifications, which include
packet length padding and timing delays, and discrete al-
terations, such as dummy packet insertion. In response to
these threats, certified robustness has emerged as a promising
methodology for ensuring reliable model performance in the
presence of adversarially manipulated network traffic.

However, current approaches inadequately address the
multi-modal nature of adversarial perturbations in network
traffic, resulting in limited robustness guarantees against so-
phisticated attacks. To overcome this limitation, we intro-
duce CertTA, the first solution providing certifiable robust-
ness against multi-modal adversarial attacks in traffic analysis
models. CertTA incorporates a novel multi-modal smooth-
ing mechanism that explicitly accounts for attack-induced
perturbations during the generation of smoothing samples,
based on which CertTA rigorously derives robustness regions
that are meaningful against these attacks. We implement a
prototype of CertTA and extensively evaluate it against three
categories of multi-modal adversarial attacks across six traffic
analysis models and two datasets. Our experimental results
demonstrate that CertTA provides significantly stronger ro-
bustness guarantees than the state-of-the-art approaches when
confronting adversarial attacks. Further, CertTA is universally
applicable across diverse model architectures and flow repre-
sentations.

1 Introduction

Network traffic analysis is crucial to understanding network
activities and detecting cyberspace attacks. While learning-
based traffic analysis models achieve superior accuracies in
many traffic analysis tasks, they often struggle to maintain

# Corresponding author.

robustness against adversarial attacks. For instance, by prop-
erly introducing adversarial perturbations to the original
network traffic (such as inserting dummy packets, padding
the packet lengths or delaying packets), the researchers can
easily undermine the performance of traffic analysis mod-
els [15, 16, 22, 26, 29, 33, 40, 43].

To address this problem, our community explored a useful
paradigm, named certified robustness, which provably guaran-
tees that the learning-based models are secure against certain
adversarial attacks. Randomized smoothing [5] is the preva-
lent methodology to achieve certified robustness. Randomized
smoothing transforms a base classifier f into a certifiably ro-
bust model g as follows. Given an input sample xxx, it first
generates a set of smoothing samples {sss} in the vicinity of xxx
by applying randomized perturbations over xxx. It then feeds
these smoothing samples into f to collect a set of inference
results f ({sss}). Finally, it outputs g(xxx) as the majority class
from f ({sss}) and mathematically derives a robustness region
based on the probability distribution of f ({sss}). g is certifiably
robust because given any adversarial input x̃xx within the robust-
ness region of xxx, g(x̃xx) is provably equivalent to g(xxx), implying
that the adversity of x̃xx cannot disrupt the model prediction.
Based on this fundamental methodology, our community has
extensively studied certified robustness in the field of Com-
puter Vision (CV) [6, 18, 20, 42, 47] and Natural Language
Processing (NLP) [13, 49, 52, 54].

Yet, enabling certified robustness in learning-based traf-
fic analysis is fundamentally challenging due to the multi-
modality of adversarial perturbations. Specifically, existing
attacks can simultaneously apply additive perturbations (e.g.,
padding the packet lengths or delaying packets) and discrete
perturbations (e.g., inserting dummy packets) when generat-
ing adversarial network traffic [15, 16, 22, 26, 29, 33, 40, 43].
However, none of the state-of-the-art (SOTA) approaches have
considered certified robustness against multi-modal adversity.
For instance, BARS [39] only considers additive perturbations
applied to the network flow features (e.g., the mean, variance
and max of packet lengths) in its randomized smoothing pro-
cess. As a result, the insertion of a single dummy packet
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to the network flow may overwhelm the robustness regions
derived by BARS. Similarly, RS-Del [13], which considers
the discrete perturbations over sequence data (e.g., insertion,
substitution and deletion), is ineffective against the additive
perturbations in adversarial flows. In § 2, we present concrete
quantitative results to demonstrate that the multi-modal adver-
sity can easily undermine the robustness guarantees offered
by existing SOTA approaches.

To address this problem, we present CertTA, the first ap-
proach that enables certifiably robust traffic analysis models
against multi-modal adversarial attacks. CertTA is founded
on a critical insight: we explicitly account for the adversarial
perturbations introduced by these attacks when designing the
perturbation mechanisms in our system’s randomized smooth-
ing process. This enables us to derive robustness regions
that are meaningful against these attacks. To this end, CertTA
proposes a novel certification framework that (i) generates
smoothing samples by a multi-modal smoothing mechanism
and then (ii) derives robustness regions from the complicated
probability distribution of these smoothing samples.

Specifically, the multi-modal smoothing mechanism in
CertTA consists of a discrete smoothing mechanism that ran-
domly selects packets from a network flow, and an additive
smoothing mechanism that applies Exponential noises to the
metadata (e.g., the packet length and inter-arrival time) of
the selected packets. When deriving robustness regions, the
multi-modality of adversarial attacks introduces several criti-
cal challenges. First, discrete perturbations can cause signifi-
cant variations in the network traffic data. For instance, the
insertion of a single dummy packet can result in significant
displacement of the packet sequence (a key feature used by
many models [8, 25, 35, 38]), or significant changes in vari-
ous statistical flow features. Second, the robustness regions
derived from additive perturbations exhibit non-linear rela-
tionships with the number of input dimensions. This problem,
known as the “curse of dimensionality” [3, 17, 36], substan-
tially diminishes the effectiveness of the robustness regions
when processing extended flow sequences or analyzing multi-
ple flow statistics. These challenges are effectively addressed
in CertTA’s certification framework.
Contributions. The major contribution of this paper is the de-
sign, mathematical construction, and evaluation of CertTA, the
first approach provides certifiably robustness against multi-
modal adversarial attacks in traffic analysis models. We exten-
sively evaluate CertTA over six heterogeneous traffic analysis
models against three categories of adversarial attacks. The
experimental results show that CertTA exhibits the following
advantages over the SOTA approaches.

(i) Generality. CertTA is universally applicable to heteroge-
neous traffic analysis models trained using different flow rep-
resentations (e.g., flow statistics, raw flow sequences and raw
bytes) and architectures (e.g., traditional machine learning
based, deep learning based and Transformer-based). Mean-
while, the robustness regions derived in CertTA across dif-

ferent models are unified, serving as quantifiable metrics to
compare the robustness across different models.

(ii) Stronger Robustness Guarantees. CertTA demonstrates
significant performance advantages over the SOTA ap-
proaches in terms of certified accuracy, defined as the per-
centage of adversarial flows guaranteed to be classified cor-
rectly. Most notably, in scenarios where existing approaches
fail to maintain any certified accuracy, CertTA achieves 99%
certified accuracy with two Transformer-based models and
exceeds 80% certified accuracy across the four remaining
models.

(iii) Synergistic Integration with Anomaly Detection. We
propose a novel integration between CertTA and anomaly de-
tection systems, which creates a fundamental dilemma for the
attackers: stealth adversarial flows (i.e., with small perturba-
tions) which may bypass the anomaly detector are ineffective
against CertTA; and the adversarial flows with significant per-
turbations which may exceed CertTA’s certified robustness
regions can be easily captured by the anomaly detector. We
demonstrate that the integrated system achieves consistently
high Defense Success Rate against adversarial attacks with
varying attack intensities.

2 Problem Space and Motivation

Certified Robustness in CV and NLP. Our community
has extensively studied certified robustness in the area of
CV [6,18,20,42,47] and NLP [13,49,52,54]. The typical ran-
domized smoothing approach in CV, referred to as VRS [5],
provides an isotropic ℓ2-norm robustness radius against addi-
tive perturbations on image pixels. The paradigm of certifying
an image classifier against pixel-wise additive perturbations in
VRS can be straightforwardly adapted to certifying the robust-
ness of traffic analysis models against additive perturbations
on statistical flow features. Yet, due to the diverse scales of
different flow features (e.g., the percentage of outgoing pack-
ets is smaller than 1, while the average packet size is on the
order of hundreds), the isotropic ℓ2-norm robustness radius is
often impractical for certain features with larger scales.

Similarly, although initially proposed to provide robustness
guarantees against discrete perturbations (e.g., insertion, sub-
stitution and deletion) applied to sequence data like texts and
binary files, RS-Del [13] can be adopted in traffic analysis
models by viewing a network flow as a discrete sequence of
packets. However, the robustness regions derived from this
simple adaptation are inadequate when confronted with ad-
ditive perturbations in network traffic, such as packet length
padding and timing delays.
Certified Robustness for Traffic Analysis. BARS [39] rep-
resents the leading research on certified robustness in traffic
analysis. Specifically, BARS improves upon VRS by taking
into account the diverse scales of different flow features. It in-
troduces a distribution transformer to customize the scale and
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Table 1: Comparison with SOTA Approaches.

Effectiveness against Attacks Supported Learning Models

Additive
Perturbations

Discrete
Perturbations

Multi-modal
Perturbations

Flow
Statistics Input

Raw Flow
Sequences Input

Raw
Bytes Input

Base Model
Architecture

Unified Metrics
of Robustness

VRS [5]⋆ ✔ ✘ ✘ ✔ ✔ ✘ any ✘
BARS [39] ✔ ✘ ✘ ✔ ✔ ✘ DL-based ✘

RS-Del [13]⋆ ✘ ✔ ✘ ✔ ✔ ✔ any ✔
CertTA (Ours) ✔ ✔ ✔ ✔ ✔ ✔ any ✔

⋆ We adapt VRS and RS-Del for traffic analysis models, as discussed in § 2.

shape of the random noise added to each dimension of the fea-
ture vector. Consequently, BARS can provide anisotropic ro-
bustness radius for different dimensions and achieve stronger
robustness guarantees than previous work. However, BARS
still suffers from several critical drawbacks:

(i) Lack of Generality. The applicability of BARS is limited
by several factors. First, the noise-adding process in BARS
is not applicable to recent Transformer-based traffic analysis
models [24, 31, 55, 56] that directly take raw packet bytes
as input. This is because the raw packet bytes are discrete
structured data and not numerically continuous. Furthermore,
the noise-shaping process in BARS depends on the gradient
descent algorithm of Deep Learning (DL) based models. As a
result, traffic analysis models that are based on traditional Ma-
chine Learning (ML) techniques, such as Random Forest [11]
and Support Vector Machines [30], or include traditional ML
modules as part of their analysis pipeline [8], are also not
compatible with BARS. Finally, the ℓ2-norm robustness ra-
dius provided by BARS is model-specific, contingent upon
the particular flow features employed during model training.
This specificity results in non-comparable robustness mea-
sures across different models, hindering the establishment of
a unified robustness benchmark.

(ii) Ineffectiveness against Discrete Perturbations. The ℓ2-
norm robustness radius against additive perturbations is frag-
ile when countered with discrete perturbations. For traffic
analysis models that use flow statistics as input [7, 11, 27, 30,
57], inserting a dummy packet into the flow can cause signifi-
cant changes in certain statistical features (e.g., the maximum
packet length). For models that take raw flow sequences (e.g.,
the packet length sequence) as input [8,25,35,38,46] or mod-
els that take raw bytes as input [24,31,55,56], the introduction
of dummy packets creates input dimensional misalignment,
which readily exceeds the ℓ2-norm robustness radius estab-
lished by BARS.

(iii) Curse of Dimensionality. Mathematically, the ℓ2-norm
robustness radius in BARS exhibits non-linear relationships
with the number of input dimensions. This is a funda-
mental limitation of the randomized smoothing methodol-
ogy [3, 17, 36]. When processing extended flow sequences
or analyzing multiple flow statistics, the effectiveness of the
ℓ2-norm robustness radius diminishes substantially.
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Figure 1: The robustness certified by SOTA approaches is
fragile against multi-modal adversity in traffic analysis.

Quantitative Results. We quantify the aforementioned draw-
backs of these SOTA approaches using the following experi-
ment. Specifically, we train six heterogeneous traffic analysis
models kFP [11], Kitsune [27], Whisper [8], DFNet [38],
YaTC [55] and TrafficFormer [56] on the CICDOH20 [28]
dataset to classify tunneling traffic that utilize DNS over
HTTPS1. Based on these six models, we apply CertTA and
three SOTA approaches to create certifiably robust traffic clas-
sifiers. Subsequently, we generate adversarial flows from the
CICDOH20 dataset using the multi-modal adversarial attack
methodology specified in Blanket [29]. Finally, we evaluate
these certifiably robust traffic classifiers against the adver-
sarial flows. In Figure 1, we report the certified accuracies
offered by different approaches, quantified as the percentage
of adversarial flows that are certified to be classified correctly.
For traffic analysis models that use raw flow sequences as
input (i.e., Whisper (supervised) and DFNet) or use raw bytes
as input (i.e., YaTC and TrafficFormer), the certified accu-
racies offered by RS-Del, BARS and VRS are all zero. For
traffic analysis models that use flow statistics as input (i.e.,
kFP and Kitsune (supervised)), only BARS achieves 99% cer-
tified accuracy in Kitsune, while in other cases the certified
accuracies offered by all SOTA approaches are nearly zero. In
contrast, CertTA achieves over 92% certified accuracy across
all six traffic analysis models.
Design Goal. As summarized in Table 1, CertTA is designed

1Kitsune and Whisper are unsupervised models designed for anomaly
detection. We extend these two models to supervised versions for multi-class
classification.
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Figure 2: The workflow of CertTA.

to advance SOTA in both effectiveness and generality. Aware
of the multi-modal adversity in traffic analysis, CertTA pro-
poses the first certification framework that addresses both
additive and discrete perturbations applied to network traffic.
This framework offers several key advantages. First, com-
pared to prior art, CertTA provides significantly stronger per-
formance guarantees against existing adversarial attacks. Fur-
thermore, CertTA is universally applicable to enable certifiably
robust traffic analysis models with arbitrary architectures and
flow representations. Finally, CertTA offers unified metrics to
compare the robustness across various heterogeneous traffic
analysis models.
Assumptions and Threat Model. Given an input flow xxx,
the adversary’s objective is to generate an adversarial flow
x̃xx that successfully deceives a learning-based traffic analy-
sis model. The adversary may employ various traffic manip-
ulation techniques, including packet insertion, substitution,
deletion, packet length padding, and timing delays, either in-
dividually or in combination. Beyond random perturbations,
the adversary can leverage sophisticated attack methodolo-
gies (such as [15, 16, 22, 26, 29, 33, 40, 43]) to construct these
adversarial flows.

When constructing adversarial flows based on specific per-
turbations, it is imperative to comply with the feasibility con-
straints posed by network protocols [32]. For additive pertur-
bations (i.e., packet length padding and timing delays), the
attacker is limited to increasing the existing length or trans-
mission time of a packet, rather than reducing its original
attributes. As presented in § 4.2, CertTA’s certification quanti-
fies the additive perturbations using the ℓ1-norm of the incre-
mental lengths and times introduced into traffic packets. Con-
cerning discrete perturbations, namely packet insertion, substi-
tution, and deletion, existing attack methodologies [22,26,29]
demonstrate the feasibility of packet insertion-based adver-
sarial attacks. However, future adversarial attacks that rely
on packet substitution and deletion could induce certain side
effects, such as packet loss and retransmission. Consequently,
the attackers may need to concurrently implement packet in-
sertion to ensure adherence to feasibility constraints when
executing packet deletion or substitution-based adversarial

attacks. CertTA’s mathematical constructions regarding dis-
crete perturbations are exclusively based on the number of
inserted, deleted, and substituted packets within a flow, with-
out considering why these packets are induced. Therefore,
CertTA is applicable regardless of the methodologies adopted
when implementing the attacks. An important caveat, how-
ever, is that when the implementation of a specific deletion
or substitution-based adversarial attacks is available in the fu-
ture, we suggest refining CertTA’s mathematical constructions
based on such knowledge accordingly to further enhance its
certification effectiveness against this attack.

3 Workflow of CertTA

A brief workflow of CertTA is shown in Figure 2. Given a base
traffic analysis model f , CertTA constructs a certifiably robust
model g as follows. (i) Given an input flow xxx with n pack-
ets, CertTA generates a set of smoothing samples {sss}, where
each smoothing sample sss is created by randomly selecting d
packets from xxx and adding Exponential noises to the length
and inter-arrival time of each selected packet, respectively. (ii)
For each smoothing sample sss, CertTA processes it into flow
representations required by the base traffic analysis model f
and feeds these representations into f to obtain a prediction
result f (sss). (iii) CertTA obtains g(xxx) (i.e., the output of the
certifiably robust model g given input flow xxx) by taking the
majority class yA from f ({sss}) (i.e., the prediction results of
all smoothing samples). (iv) CertTA calculates the percentage
of yA in f ({sss}) and derives the certified robustness region
against both additive and discrete perturbations. Given any
adversarial flow x̃xx encompassed by the robustness region of xxx,
g(x̃xx) is certifiably equivalent to g(xxx). In the following section,
we present the mathematical construction underpinning the
above workflow.

4 Robustness Certification by CertTA

CertTA proposes a multi-modal randomized smoothing mech-
anism to generate smoothing samples and derives the robust-
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Table 2: Notations.

Notation Description

X ,Y Set of traffic flows, classes
Z,S Set of random variables, smoothing samples in X
xxx, x̃xx Input flow: original, adversarial
f ,g Traffic classifier: base, smoothed
ψ Smoothing function

yA, pA The predicted class of input xxx by g, and the
corresponding probability

pA The estimated lower bound of pA through
Monte Carlo sampling

ỹA, p̃A The predicted class of adversarial input x̃xx by g,
and the corresponding probability

n,d Number of the original, randomly selected packets in xxx
lll, ttt Packet length and inter-arrival time vectors of xxx

δδδ
l ,δδδt Noise vectors on packet length and inter-arrival time

βl ,βt Hyper-parameters for Exponential noises
(·)i For xxx, lll, ttt,δδδl ,δδδt : the i-th dimension

ness region against both additive and discrete perturbations.
In § 4.1, we introduce the preliminary of randomized smooth-
ing. To construct our multi-modal smoothing mechanism, in
§ 4.2, we incorporate a discrete smoothing mechanism based
on randomized packet selection and an additive smoothing
mechanism based on Exponential noise. In § 4.3, we derive
the robustness region from the probability distribution of the
smoothing samples and demonstrate its advantages in coun-
tering multi-modal adversarial perturbations. The frequently
used notations are summarized in Table 2.

4.1 Preliminary of Randomized Smoothing

Consider a traffic classification problem from traffic flows X
to classes Y and let Z be the set of random variables in X .
Given a base traffic classifier f : X → Y and a smoothing
function ψ : X → Z that generates a random variable zzz of
smoothing samples from flow xxx, we construct a smoothed
classifier g : X → Y that returns the most probable prediction
by f of smoothing samples from ψ(xxx):

g(xxx)≜ argmax
y∈Y

py(xxx), py(xxx)≜ Pzzz∼ψ(xxx)( f (zzz) = y). (1)

Given an input xxx, we denote the smoothed classifier’s predic-
tion g(xxx) as yA, and the corresponding probability pyA(xxx) as
pA. In practice, a lower bound pA of pA is estimated through
Monte Carlo sampling with a confidence level α.

Without imposing any assumptions about underlying base
classifier but the probability lower bound pA given an input xxx,
the goal of robustness certification is to derive a robustness
region R(xxx)⊆ X around xxx, in which the smoothed classifier’s
prediction is guaranteed to be consistent, i.e.,

g(x̃xx) = g(xxx) = yA ⇔ pyA(x̃xx)≥ max
y̸=yA

py(x̃xx), ∀x̃xx ∈ R(xxx).
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Figure 3: Partition of the smoothing samples generated by
CertTA’s discrete smoothing mechanism.

Denote pyA(x̃xx) as p̃A, for simplicity, we consider all classes
excluding yA as a combined class, such that pyA(x̃xx) ≥
max
y̸=yA

py(x̃xx) ⇔ p̃A ≥ 1/2. Based on [5, 19], the theoretical

derivations can be easily extended to multi-class certification.

4.2 Multi-Modal Smoothing Mechanism
In this section, we present the multi-modal smoothing mecha-
nism in CertTA, which consists of a discrete smoothing mech-
anism and an additive smoothing mechanism. Specifically,
given an input flow xxx, the multi-modal smoothing mechanism
generates smoothing samples in two steps: (i) it randomly
selects d packets from the input flow xxx while preserving their
original orders (d ≤ n), (ii) it applies Exponential noises to the
metadata (i.e., the packet length and inter-arrival time) of each
selected packet. The combination of smoothing mechanisms
with different modality results in a highly complicated proba-
bility distribution for the smoothing samples. Next, we give
the robustness region results when the discrete and additive
smoothing mechanisms are employed individually, which are
the foundations of derivations in § 4.3.

The discrete smoothing mechanism is designed based on
randomized packet selection. Given an input flow xxx with n
packets, it generates smoothing samples by randomly select-
ing d packets from xxx while preserving their original orders
(d ≤ n). Based on the probability distribution of these smooth-
ing samples, we give the certified robustness region against
three types of discrete perturbations (i.e., packet insertion,
substitution and deletion) in the following lemma.

Lemma 1. Consider a pair of traffic flows xxx, x̃xx ∈ X , where
xxx contains n packets and xxx can be perturbed into x̃xx by in-
serting nins packets, substituting nsub packets and deleting
ndel packets. Let ψsel(xxx,d) : X ×Z+ → Z be the smooth-
ing function that randomly selects d packets from flow xxx
while preserving their original orders (d ≤ n), and define the
smoothed classifier gdel as in Equation (1). Suppose yA ∈ Y
and pA ∈ [1/2,1] satisfy gdel(xxx) = yA and pA ≥ pA ≥ 1/2,
then we have gdel(x̃xx) = gdel(xxx) = yA if:

Cd
n

Cd
n+nins−ndel

(pA −1+
Cd

n−nsub−ndel

Cd
n

)≥ 1
2
, (2)
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where Cr
n is the combination formula n!/(r!(n− r)!).

Proof. Let X = {x1,x2, . . . ,xn} be the set of packets in flow
xxx, the packets in x̃xx can be divided into three categories: (i) a
group of original packets V = {v1, . . . ,vn−nsub−ndel} in xxx; (ii)
packets {x̃sub

1 , . . . , x̃sub
nsub} obtained by substituting a group of

packets in X−V ; (iii) packets {x̃ins
1 , . . . , x̃ins

nins} obtained through
insertion. Let vvv be the flow obtained by selecting packets
{v1, . . . ,vn−nsub−ndel} from flow xxx while preserving their orig-
inal orders. As illustrated in Figure 3, we define two sets of
flows S1,S2 as follows:

S1 ={sss ∈ X : Pzzz∼ψsel(vvv,d)(zzz = sss)> 0},
S2 ={sss ∈ X : Pzzz∼ψsel(xxx,d)(zzz = sss)> 0 ∧ sss /∈ S1}.

Based on the probability distributions of ψsel(xxx,d) and
ψsel(x̃xx,d), we have:

Pzzz∼ψsel(x̃xx,d)(zzz = sss)

Pzzz∼ψsel(xxx,d)(zzz = sss)
=

Cd
n

Cd
n+nins−ndel

, ∀ sss ∈ S1.

Let K =Cd
n/Cd

n+nins−ndel , the lower bound of p̃A can be derived
as follows:

pA = Pzzz∼ψsel(xxx,d)( f (zzz) = yA ∧ zzz ∈ S1)

+Pzzz∼ψsel(xxx,d)( f (zzz) = yA ∧ zzz ∈ S2),

p̃A = Pzzz∼ψsel(x̃xx,d)( f (zzz) = yA)

≥ Pzzz∼ψsel(x̃xx,d)( f (zzz) = yA ∧ zzz ∈ S1)

≥ K ∗Pzzz∼ψsel(xxx,d)( f (zzz) = yA ∧ zzz ∈ S1)

= K ∗ (pA −Pzzz∼ψsel(xxx,d)( f (zzz) = yA ∧ zzz ∈ S2))

≥ K ∗ (pA −Pzzz∼ψsel(xxx,d)(zzz ∈ S2))

= K ∗ (pA −1+Pzzz∼ψsel(xxx,d)(zzz ∈ S1))

= K ∗ (pA −1+Cd
n−nsub−ndel/Cd

n ). (3)

Finally, we can get Equation (2) by solving the inequality that
the lower bound of p̃A is not less than 1/2.

When employed individually, the additive smoothing mech-
anism generates smoothing samples by applying Exponential
noises to the metadata (i.e., packet lengths and inter-arrival
times) of all packets in input flow xxx. Recognizing the dispari-
ties in feature importance and numerical scale between packet

length and inter-arrival time, we apply Exponential noise of
different shapes to each of them. Based on the probability
distribution of the generated smoothing samples, we give the
certified robustness region against two types of additive per-
turbations (i.e., packet length padding and timing delays) in
the following lemma.

Lemma 2. Consider a pair of traffic flows xxx, x̃xx ∈ X , where xxx
contains n packets with packet length vector lll = (l1, l2, . . . , ln)
and inter-arrival time vector ttt = (t1, t2, . . . , tn), and xxx can be
perturbed into x̃xx by adding non-negative noise vectors δδδ

l =
(δl

1,δ
l
2, . . . ,δ

l
n) and δδδ

t = (δt
1,δ

t
2, . . . ,δ

t
n) to lll and ttt, respec-

tively. Let ψadd(xxx,βl ,βt) : X ×R+×R+ → Z be the smooth-

ing function that adds random variables εl
i

i.i.d.∼ Exp(β−1
l )

and εt
i

i.i.d.∼ Exp(β−1
t ) to li and ti (1 ≤ i ≤ n), respectively.

Define the smoothed classifier gadd as in Equation (1). Sup-
pose yA ∈ Y and pA ∈ [1/2,1] satisfy gadd(xxx) = yA and
pA ≥ pA ≥ 1/2, then we have gadd(x̃xx) = gadd(xxx) = yA if:

∑
n
i=1

βl +βt

βl
·δl

i +
βl +βt

βt
·δt

i ≤ radd, (4)

where the robustness radius radd =−(βl +βt) log2(1− pA).

Proof. Let S be the set of all possible smoothing samples gen-
erated by ψadd(xxx,βl ,βt). Represent a flow sss ∈ S by its packet
length vector lllsss = (lsss

1, l
sss
2, . . . , l

sss
n) and inter-arrival time vector

tttsss = (tsss
1, t

sss
2, . . . , t

sss
n). As illustrated in Figure 4, we partition S

into two sets of flows S1,S2 as follows:

S1 = {sss ∈ S : ∃ i ∈ [1,n],(lsss
i − li < δ

l
i)∨ (tsss

i − ti < δ
t
i)},

S2 = {sss ∈ S : ∀ i ∈ [1,n],(lsss
i − li ≥ δ

l
i)∧ (tsss

i − ti ≥ δ
t
i)}.

Based on the probability distributions of ψadd(xxx,βl ,βt) and
ψadd(x̃xx,βl ,βt), for all sss ∈ S1, we have:

Pzzz∼ψadd(x̃xx,βl ,βt )(zzz = sss)

Pzzz∼ψadd(xxx,βl ,βt )(zzz = sss)
= 0.

For all sss ∈ S2, we have:

Pzzz∼ψadd(x̃xx,βl ,βt )(zzz = sss)

Pzzz∼ψadd(xxx,βl ,βt )(zzz = sss)
=

∏
n
i=1 e−(lsss

i −li−δl
i)/βl · e−(tsss

i −ti−δt
i)/βt

∏
n
i=1 e−(lsss

i −li)/βl · e−(tsss
i −ti)/βt

= e∑
n
i=1 δl

i/βl+δt
i/βt .

Let K = e∑
n
i=1 δl

i/βl+δt
i/βt , the lower bound of p̃A can be derived
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Figure 5: Partition of the smoothing samples generated by
CertTA’s multi-modal smoothing mechanism.

as follows:

pA = Pzzz∼ψadd(xxx,βl ,βt )( f (zzz) = yA ∧ zzz ∈ S1)

+Pzzz∼ψadd(xxx,βl ,βt )( f (zzz) = yA ∧ zzz ∈ S2),

p̃A = Pzzz∼ψadd(x̃xx,βl ,βt )( f (zzz) = yA ∧ zzz ∈ S1)

+Pzzz∼ψadd(x̃xx,βl ,βt )( f (zzz) = yA ∧ zzz ∈ S2)

= 0+K ·Pzzz∼ψadd(xxx,βl ,βt )( f (zzz) = yA ∧ zzz ∈ S2)

= K · [pA −Pzzz∼ψadd(xxx,βl ,βt )( f (zzz) = yA ∧ zzz ∈ S1)]

≥ K · [pA −Pzzz∼ψadd(xxx,βl ,βt )(zzz ∈ S1)]

= K · [pA −1+Pzzz∼ψadd(xxx,βl ,βt )(zzz ∈ S2)]

= K · [pA −1+1/K]

≥ K(pA −1)+1. (5)

Finally, we can get Equation (4) by solving the inequality that
the lower bound of p̃A is not less than 1/2.

4.3 Robustness Region Derivation
When deriving the certified robustness regions in Lemma 1
and Lemma 2, we establish the probability distributions of
the smoothing samples generated by the discrete and addi-
tive smoothing mechanisms, respectively. In this section, we
combine these two probability distributions to derive the cer-
tified robustness region against both additive and discrete
perturbations.

Theorem 1. Consider a pair of traffic flows xxx, x̃xx ∈ X , where xxx
contains n packets with packet length vector lll = (l1, l2, . . . , ln)
and inter-arrival time vector ttt = (t1, t2, . . . , tn). xxx can be per-
turbed into x̃xx by two steps: (i) add non-negative noise vec-
tors δδδ

l = (δl
1,δ

l
2, . . . ,δ

l
n) and δδδ

t = (δt
1,δ

t
2, . . . ,δ

t
n) to lll and ttt,

respectively; (ii) insert nins packets, substitute nsub packets
and delete ndel packets. Let ψjnt(xxx,βl ,βt ,d) : X ×R+×R+×
Z+ → Z be the smoothing function that generates smoothing
samples from xxx by two steps: (i) randomly selects d packets
while preserving their original orders (d ≤ n); (ii) for every
selected packet xi, add random variables εl

i
i.i.d.∼ Exp(β−1

l )

and εt
i

i.i.d.∼ Exp(β−1
t ) to li and ti, respectively. Define the

smoothed classifier gjnt as in Equation (1). Suppose yA ∈ Y
and pA ∈ [1/2,1] satisfy gjnt(xxx) = yA and pA ≥ pA ≥ 1/2,
then we have gjnt(x̃xx) = gjnt(xxx) = yA if:

∑
d
i=1

βl +βt

βl
·δl

i +
βl +βt

βt
·δt

i ≤ radd
∗ ,

radd
∗ = (βl +βt) · [log(P1)− log(P2)],

P1 = 1−Cd
n+nins−ndel/2Cd

n ,

P2 = 2− pA −Cd
n−nsub−ndel/Cd

n ,

(6)

where (δ
l
1,δ

l
2, . . . ,δ

l
n) and (δ

t
1,δ

t
2, . . . ,δ

t
n) are obtained by

sorting δδδ
l and δδδ

t in descending order of δl
i/βl + δt

i/βt , re-
spectively.

Proof. Let X = {x1,x2, . . . ,xn} be the set of packets in flow xxx,
the packets in x̃xx can be divided into three categories: (i) pack-
ets {x̃add

1 , . . . , x̃add
n−nsub−ndel} obtained by adding length and time

noise to a group of original packets V = {v1, . . . ,vn−nsub−ndel}
in xxx; (ii) packets {x̃sub

1 , . . . , x̃sub
nsub} obtained by substituting a

group of packets in X −V ; (iii) packets {x̃ins
1 , . . . , x̃ins

nins} ob-
tained through insertion.

Let S be the set of all possible smoothing samples generated
by ψjnt(xxx,βl ,βt ,d), for every sss ∈ S, xxx can be perturbed into sss
by two steps: (i) generate a flow sss′ by randomly selecting d
packets (xsss′

1 ,x
sss′
2 , ...x

sss′
d ) from xxx while preserving their original

orders; (ii) for every selected packet xsss′
i , add a noise value gen-

erated from Exp(β−1
l ) to lsss′

i and another noise value generated
from Exp(β−1

t ) to tsss′
i , respectively. If {xsss′

1 ,x
sss′
2 , ...,x

sss′
d }⊈V , we

have:

Pzzz∼ψjnt(x̃xx,βl ,βt ,d)(zzz = sss)

Pzzz∼ψjnt(xxx,βl ,βt ,d)(zzz = sss)
= 0.

Define Ssel = {sss ∈ S : {xsss′
1 ,x

sss′
2 , ...,x

sss′
d } ⊆V}. As illustrated in

Figure 5, we partition Ssel into two sets of flows Sadd
1 ,Sadd

2 :

Sadd
1 ={sss ∈ Ssel : ∃ i ∈ [1,n],(lsss

i − lsss′
i < δ

l
i∗)∨ (tsss

i − tsss′
i < δ

t
i∗)},

Sadd
2 = {sss ∈ Ssel : ∀ i ∈ [1,n],(lsss

i − lsss′
i ≥ δ

l
i∗)∧ (tsss

i − tsss′
i ≥ δ

t
i∗)}.

Based on the probability distributions of ψjnt(xxx,βl ,βt ,d) and
ψjnt(x̃xx,βl ,βt ,d), for all sss ∈ Sadd

1 , we have:

Pzzz∼ψjnt(x̃xx,βl ,βt ,d)(zzz = sss)

Pzzz∼ψjnt(xxx,βl ,βt ,d)(zzz = sss)
= 0.

For all sss ∈ Sadd
2 , we have:

Pzzz∼ψjnt(x̃xx,βl ,βt ,d)(zzz = sss)

Pzzz∼ψjnt(xxx,βl ,βt ,d)(zzz = sss)
=

Cd
n

Cd
n+nins−ndel

· e∑
d
i=1

δl
i∗

βl
+

δt
i∗

βt ,

where i∗ is the original index of packet xsss′
i in (x1,x2, . . . ,xn).
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Define psel
A = Pzzz∼ψjnt(xxx,βl ,βt ,d)( f (zzz) = yA ∧ zzz ∈ Ssel), simi-

lar to Equation (3), the lower bound of psel
A can be derived as

follows:

psel
A = pA −Pzzz∼ψjnt(xxx,βl ,βt ,d)( f (zzz) = yA ∧ zzz /∈ Ssel)

≥ pA −Pzzz∼ψjnt(xxx,βl ,βt ,d)(zzz /∈ Ssel)

= pA −1+Cd
n−nsub−ndel/Cd

n . (7)

Define p̃sel
A = Pzzz∼ψjnt(x̃xx,βl ,βt ,d)( f (zzz) = yA ∧ zzz ∈ Ssel). As-

sume that (δ
l
1,δ

l
2, . . . ,δ

l
n) and (δ

t
1,δ

t
2, . . . ,δ

t
n) are obtained by

sorting δδδ
l and δδδ

t in descending order of δl
i/βl + δt

i/βt , re-

spectively. Let K = Cd
n/Cd

n+nins−ndel · e∑
d
i=1 δ

l
i/βl+δ

t
i/βt , similar

to Equation (5), the lower bound of p̃sel
A can be derived as

follows (see § A for detailed proof):

p̃sel
A ≥ K(psel

A −1)+Cd
n/Cd

n+nins−ndel . (8)

With the combination of p̃A ≥ p̃sel
A , Equation (7) and Equa-

tion (8), the lower bound of p̃A can be derived as follows:

p̃A ≥ p̃sel
A ≥ Cd

n/Cd
n+nins−ndel ·

[(pA −2+
Cd

n−nsub−ndel

Cd
n

) · e∑
d
i=1 δ

l
i/βl+δ

t
i/βt +1].

Finally, we can get Equations (6) by solving the inequality
that the lower bound of p̃A is not less than 1/2.

Equations (6) specify CertTA’s robustness region when the
adversary simultaneously applies additive perturbations (i.e.,
packet length padding and timing delays) and discrete per-
turbations (i.e., packet insertion, substitution and deletion).
Given the number of inserted, substituted and deleted packets
nins,nsub and ndel, we can calculate P1,P2 and subsequently
obtain the corresponding additive robustness radius radd

∗ . The
overall attack intensity is determined by the co-function of
additive and discrete perturbations. As nins,nsub and ndel in-
crease, the corresponding additive robustness radius radd

∗ be-
comes smaller. In contrast to certification methods that ad-
dress additive perturbations or discrete perturbations sepa-
rately, the certified robustness region offered by CertTA is
more aligned with the multi-modal adversarial perturbations
in traffic analysis.

Moreover, the robustness region provided by CertTA ex-
hibits several critical advantages in countering multi-modal
adversarial perturbations. Specifically, in inequality

∑
d
i=1

βl +βt

βl
·δl

i +
βl +βt

βt
·δt

i ≤ radd
∗

of Equations (6), we directly map the deviation values intro-
duced by additive perturbations (i.e., the items being summed
on the left side of the inequality) to original packets in the
flow. Therefore, when discrete perturbations (e.g., packet in-
sertion) result in the displacement of the packet sequence,

Table 3: Traffic analysis models and adversarial attacks used
in our evaluations.

Traffic Analysis Models Learning Algorithm Flow Representation

kFP [11] ML-based flow statisticsKitsune [27]⋆ DL-based

Whisper [8]⋆ ML-based raw flow sequencesDFNet [38] DL-based

YaTC [55] Transformer-based raw bytesTrafficFormer [56] Transformer-based

Adversarial Attacks Optimization Algorithm Perturbation Operation

Blanket [29] GAN-based insertion, padding,
delayingAmoeba [26]† RL-based

Prism [22] Explicit Modeling
⋆ Kitsune and Whisper are unsupervised models designed for anomaly detection.

We extend these two models to supervised versions for multi-class classification.
† We use CertTA-certified models as the targeted models for Amoeba, making

Amoeba an adaptive attack reacting to CertTA’s defense.

the effectiveness of our additive robustness radius radd
∗ will

not be diminished. Further, since we only sum the largest d
deviation values to compare with radd

∗ , rather than the total
n deviation values, the issue of “curse of dimensionality” is
alleviated. Consequently, we only need to consider d packets
when deriving the robustness region, regardless of the number
of packets manipulated by attackers when applying additive
perturbations. We also discuss the extension of CertTA to
include new types of perturbations in § C.

5 Evaluation

We evaluate CertTA extensively to demonstrate:

• When faced with multi-modal adversarial attacks, CertTA
outperforms the SOTA approaches significantly in both ef-
fectiveness and generality (§ 5.2). Across all six learning
models, CertTA provides consistently high robustness guar-
antees against all three categories of adversarial attacks,
while existing approaches have very limited applicability.

• We demonstrate a synergistic integration between CertTA
and anomaly detection systems that creates a fundamental
dilemma for the attacker (§ 5.3).

• We also evaluate the moving pieces in CertTA’s design and
application cases of CertTA (§ 5.4).

5.1 Experiment Setup
Traffic Analysis Models and Adversarial Attacks. We eval-
uate the performance of CertTA using six traffic analysis mod-
els against three types of multi-modal adversarial attacks. As
summarized in Table 3, the six traffic analysis models use dif-
ferent flow representations and learning algorithms. The three
categories of adversarial attacks employ Generative Adver-
sarial Network (GAN)-based, Reinforcement Learning (RL)-
based, and explicit modeling-based optimization algorithms,
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Table 4: Setting of smoothing hyper-parameters.

Datasets CICDOH20 TIISSRC23

Methods VRS BARS RS-Del CertTA VRS BARS RS-Del CertTA

Hyper-param. σ λ H f pdel βl βt d⋆ σ λ H f pdel βl βt d⋆

kFP 0.1 NA NA 0.8 100 20ms ⌈0.2n⌉ 0.03 NA NA 0.85 70 20ms ⌈0.15n⌉
Kitsune (sup.) 0.1 0.001 Gaussian 0.8 100 20ms ⌈0.2n⌉ 0.03 0.001 Gaussian 0.8 50 10ms ⌈0.2n⌉
Whisper (sup.) 80 NA NA 0.8 100 20ms ⌈0.2n⌉ 20 NA NA 0.8 30 10ms ⌈0.2n⌉

DF 80 0.001 Gaussian 0.85 100 40ms ⌈0.15n⌉ 35 0.001 Gaussian 0.85 70 10ms ⌈0.15n⌉
YaTC 80 0.01 Gaussian 0.9 200 40ms ⌈0.1n⌉ 80 0.01 Gaussian 0.9 200 40ms ⌈0.1n⌉

TrafficFormer 80 0.01 Gaussian 0.9 200 40ms ⌈0.1n⌉ 80 0.01 Gaussian 0.9 200 40ms ⌈0.1n⌉
⋆ Based on experimental experience, we set the smoothing hyper-parameter d as a proportion of flow length n for better performance.
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Figure 6: Certified accuracies of different certification methods against attacks Blanket, Amoeba and Prism (on CICDOH20).

respectively, to generate adversarial flows. For each experi-
mental configuration, we can employ these attack methodolo-
gies to generate adversarial flows using either multi-modal
perturbations (combining packet insertion, length padding,
and timing delays) or single-modal perturbations. We use
the open-source implementations of these approaches and
additional details about these methods are deferred to § B.

Datasets. We evaluate CertTA on two traffic analysis datasets.
(i) The CICDOH20 [28] dataset, which identifies tunneling

traffic that utilize DNS over HTTPS (DoH). We collect the
original pcap files for 4 classes (Benign, DNS2TCP, DNSCat2,
Iodine) from this dataset. The number of flows in each class is
3000, 1000, 1000, 1000, respectively. (ii) The TIISSRC23 [12]
dataset for intrusion detection. We collect the original pcap
files for 5 classes (Benign-audio, Benign-video, BruteForce-
http, BruteForce-telnet, Mirai) from this dataset. The number
of flows in each class is 1200, 1200, 800, 800, 800, respec-
tively. Each dataset is split into training set, validation set,
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Figure 7: Certified accuracies of different certification methods against attacks Blanket, Amoeba and Prism (on TIISSRC23).

and test set with a ratio of 8:1:1.

Baselines. We compare CertTA with three baseline certifica-
tion methods including VRS [5], BARS [39] and RS-Del [13].
VRS and BARS treat network flow features as an 1×D vector
and provide a ℓ2-norm robustness radius against additive per-
turbations on these features, while RS-Del views a network
flow as a discrete sequence of packets and provides robustness
guarantees against discrete perturbations like packet insertion.
The smoothing hyper-parameters of these methods across dif-
ferent traffic analysis models and datasets are listed in Table 4.
We provide additional details regarding these methods and
hyper-parameter settings in § B.

Implementation. We follow standard practice in random-
ized smoothing to obtain the smoothed classifier’s prediction
yA and the lower bound of corresponding probability pA by
Monte Carlo sampling. The number of smoothing samples
is 1000 and the confidence level of Monte Carlo sampling
is set to 0.999. When constructing a smoothed classifier g,
we fine-tune the base traffic classifier f by augmenting the
training data with smoothing samples, which is a common
technique in randomized smoothing for performance enhance-
ment. Additional details about our testbed are deferred to § B.

5.2 Certified Robustness against Adversarial
Attacks

In this experiment, we demonstrate that CertTA provides much
stronger robustness guarantees against adversarial attacks than
the SOTA approaches.

5.2.1 Robustness Regions of CertTA

We begin by evaluating CertTA’s robustness region, which
we quantify through certified accuracy measurements against
various combinations of adversarial perturbations, including
packet insertion, length padding, and timing delays. Our eval-
uation methodology fixes the number of inserted packets nins

and measures the system’s certified accuracy across different
additive robustness radius thresholds radd

∗ . The certified accu-
racy y represents the percentage of test flows that simultane-
ously maintain correct classification and achieve an additive
robustness radius greater than the specified threshold radd

∗ .
Specifically, when considering adversarial flows generated
with an attack intensity of (nins,radd

∗ ) - where nins represents
the number of inserted packets and radd

∗ bounds the magnitude
of additive perturbations - this certified accuracy indicates the
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Table 5: Classification performance of certified and non-certified traffic analysis models on clean traffic.

Methods Non-certified VRS BARS RS-Del CertTA

Metrics macro-P macro-R macro-F1 macro-P macro-R macro-F1 macro-P macro-R macro-F1 macro-P macro-R macro-F1 macro-P macro-R macro-F1

Encrypted Traffic Classification on DNS-over-HTTPS (CICDOH20)

kFP 0.998 0.998 0.997 0.980 0.980 0.980 NA NA NA 0.998 0.998 0.997 0.974 0.973 0.972
Kitsune (sup.) 0.998 0.998 0.997 0.993 0.992 0.992 0.998 0.998 0.997 0.993 0.993 0.992 0.974 0.973 0.972
Whisper (sup.) 0.995 0.995 0.995 0.959 0.958 0.957 NA NA NA 0.998 0.998 0.997 0.957 0.957 0.955

DFNet 0.995 0.995 0.995 0.973 0.973 0.973 0.984 0.983 0.982 0.998 0.998 0.997 0.972 0.970 0.970
YaTC 1.000 1.000 1.000 0.899 0.858 0.866 0.903 0.884 0.892 1.000 1.000 1.000 1.000 1.000 1.000

TrafficFormer 1.000 1.000 1.000 0.892 0.864 0.878 0.916 0.895 0.907 1.000 1.000 1.000 1.000 1.000 1.000

Network Intrusion Detection (TIISSRC23)

kFP 0.998 0.998 0.997 0.959 0.937 0.942 NA NA NA 0.998 0.998 0.998 0.972 0.968 0.969
Kitsune (sup.) 0.989 0.984 0.986 0.985 0.982 0.983 1.000 1.000 1.000 0.988 0.986 0.987 0.986 0.982 0.983
Whisper (sup.) 1.000 1.000 1.000 0.979 0.976 0.977 NA NA NA 1.000 1.000 1.000 0.968 0.962 0.963

DFNet 0.991 0.993 0.992 0.990 0.989 0.990 0.995 0.997 0.996 0.996 0.996 0.996 0.976 0.973 0.974
YaTC 1.000 1.000 1.000 0.900 0.880 0.881 0.909 0.900 0.903 1.000 1.000 1.000 1.000 1.000 1.000

TrafficFormer 1.000 1.000 1.000 0.903 0.895 0.898 0.915 0.911 0.912 1.000 1.000 1.000 1.000 1.000 1.000

percentage of adversarial flows that CertTA can guarantee to
classify correctly.

We present our quantitative results obtained from the CI-
CDOH20 and TIISSRC23 datasets in the sub-figures on the
leftmost column of Figure 6 and Figure 7, respectively. For
each attack intensity configuration (nins,radd

∗ ), higher certi-
fied accuracy values indicate stronger robustness guarantees
against adversarial flows. The results clearly reveal the dispar-
ity of robustness across different models. Among the models
using the same flow representations, DFNet demonstrates su-
perior robustness compared to Whisper (supervised) on both
datasets, while kFP outperforms Kitsune (supervised) on the
TIISSRC23 dataset. Notably, the Transformer-based models -
YaTC and TrafficFormer - exhibit substantially higher robust-
ness compared to other architectures.

5.2.2 Robustness Comparison Across Different Methods

In this section, we compare the effectiveness of the robust-
ness regions derived by CertTA and three baseline methods
(i.e., VRS [5], BARS [39] and RS-Del [13]). Since the ro-
bustness regions of the baseline approaches are derived from
single-modal perturbations, we cannot directly compare the
robustness regions across different approaches. Instead, we
create adversarial flows based on the attack methodology in
Blanket [29], Amoeba [26] and Prism [22], and then use the
certified accuracy on these adversarial flows to quantify the
robustness guarantees of different approaches. To determine
the attack intensities when generating adversarial flows, we
set a lower bound threshold Tlower and select three attack in-
tensities that are strong enough to degrade CertTA’s certified
accuracy to Tlower. The attack intensity configurations are
represented as tuples: (nins,0) indicates insertion-only pertur-
bations, (0,radd

∗ ) represents additive-only perturbations, and
(nins,radd

∗ ) denotes a combination of both perturbation types.
The experimental results from the CICDOH20 dataset and

the TIISSRC23 dataset are shown in the right-side three
columns of Figure 6 and Figure 7, respectively. Each row
of sub-figures represents the results for one traffic analysis

model. For the two transformer-based traffic analysis mod-
els YaTC and TrafficFormer, we set the threshold Tlower on
CertTA’s certified accuracy to 99%. For the remaining four
models, Tlower is 80%.

Across all traffic analysis models, RS-Del can provide
strong robustness guarantees against insertion-only pertur-
bations. However, it fails to provide any certified accuracy
against any of the three attacks with additive-noise-only per-
turbations or the combined perturbations. Further, the appli-
cability of VRS is even more limited: it is only effective for
certifying the traffic analysis models that use statistical flow
features (i.e., kFP and Kitsune (supervised)) against additive-
noise-only perturbations. BARS is designed to improve VRS
by applying random noises with customized scale and shape
to different flow feature dimensions. However, such improve-
ment is only applicable to the Kitsune model, since the flow
representations or architectures used by the other five models
are not compatible with BARS’s noise shaping process.

In contrast, CertTA maintains consistently high certified
performance guarantees against all categories of adversarial
attacks across all model architectures. Notably, it is the only
approach that provides effective robustness guarantees against
multi-modal adversarial perturbations for both Transformer-
based models and those utilizing raw flow sequences as input.

5.2.3 Performance on Clean Traffic

Certifiably robust models are trained on the adversarially ma-
nipulated datasets. Consequently, it is crucial to ensure that
these certified models maintain their efficacy on the “clean
dataset” devoid of adversarial perturbations. To this end, we
evaluate the classification performance of certified and non-
certified traffic analysis models on clean traffic using three
metrics: macro averaging of precision (P), recall (R) and F1-
score. The experimental results are reported in Table 5. For
models trained using statistical flow features and raw flow
sequences, CertTA exhibits a slightly larger reduction in per-
formance compared to the baseline certification techniques.
This outcome is attributable to CertTA’s strategy of aggres-
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Figure 8: Defense Success Rate of integrated and standalone systems against adversarial attacks with different intensities. The
left two columns represent models without defenses; the middle two columns represent “A.D.” (anomaly detection) systems, and
right two columns represent “Cert.” (certified) traffic analysis models offered by CertTA.

sively incorporating both additive and discrete perturbations
when generating smoothing samples, a design choice aimed at
tolerating multi-modal adversarial attacks. Nevertheless, the
performance degradation incurred by CertTA remains limited,
manifesting as an average decrease of only 0.025 in the macro
F1-score across kFP, Kitsune (supervised), Whisper (super-
vised), and DFNet, relative to the performance of non-certified
models. However, for Transformer-based models trained on
raw byte sequences, CertTA achieves zero performance re-
duction, whereas both VRS and BARS cause non-trivial per-
formance decreases. This discrepancy arises because VRS
and BARS severely distort the byte-level information through
the direct addition of numerical noises. Overall, these experi-
mental results demonstrate that CertTA imposes very minimal
performance reductions on clean traffic.

5.3 Integration with Anomaly Detection

Experiment Motivation. CertTA guarantees that any adver-
sarial perturbations within the certified robustness regions will
not disrupt the prediction of a smoothed traffic analysis model.
In other words, an adversarial flow must carry non-trivial per-
turbations that are intensive enough to bypass CertTA. This,
fortunately, will make it easier for anomaly detection sys-
tems (e.g., [8–10, 21, 27]) to capture these adversarial flows.
Therefore, synergistically integrating an anomaly detector
with CertTA can create a fundamental dilemma for the at-
tacker: stealth adversarial flows (i.e., with small perturba-
tions) which may bypass the anomaly detector are ineffective
against CertTA; and the adversarial flows with significant per-
turbations which may exceed CertTA’s certified robustness
regions can be easily captured by the anomaly detector.

Experiment Design. In this experiment, we integrate an un-
supervised anomaly detector Kitsune [27] with a CertTA-
certified TrafficFormer to implement a two-phase defense
system. We use attacks Blanket, Amoeba and Prism to gener-
ate adversarial flows with different levels of attack intensities
and evaluate the Defense Success Rate (DSR) of our system
against these adversarial flows. We compare our integrated
system with 9 baselines: three traffic analysis models without
defenses (i.e., Kitsune (supervised), DFNet, TrafficFormer),
three standalone anomaly detectors (i.e., KMeans [23], Whis-
per [8], Kitsune [27]) and three standalone certified traffic
analysis models (i.e., Kitsune (supervised), DFNet, Traffic-
Former). For all anomaly detectors used in this experiment,
we adjust its detection threshold to ensure that the False Posi-
tive Rate on the original test dataset is less than 1%.
Results. The experimental results are reported in Figure 8.
Clearly, the traffic analysis models without defenses achieve
poor DSRs against adversarial flows with various intensi-
ties. The standalone anomaly detectors struggle to defend
against low-intensity adversarial flows but are effective at
identifying high-intensity adversarial flows as anomalies. On
the contrary, the standalone certified traffic analysis models
can identify low-intensity adversarial flows accurately but in-
evitably misclassify high-intensity adversarial flows. Through
the synergistic combination of CertTA and anomaly detection,
our integrated system exhibits consistently high DSRs against
adversarial attacks across all attack intensities.

5.4 CertTA Deep Dive

Certification Delay. We measure the certification delays (i.e.,
the average time to obtain the classification result and ro-
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Figure 9: Certified accuracies of CertTA-certified traffic analysis models under truncated settings (on CICDOH20).

Table 6: Certification delay of different certification methods.

Certification Methods VRS BARS RS-Del CertTA

kFP 0.146s NA 0.224s 0.218s
Kitsune (supervised) 0.166s 0.183s 0.241s 0.251s
Whisper (supervised) 0.349s NA 0.316s 0.342s

DFNet 0.107s 0.192s 0.169s 0.166s
YaTC 0.533s 0.537s 0.708s 0.731s

TrafficFormer 3.401s 3.410s 3.573s 3.648s

Table 7: Macro-F1 of CertTA-certified models on clean traffic
under various truncated settings (on CICDOH20).

Truncated Settings 25% 50% 75% 100%

Kitsune (supervised) 0.9320 0.9553 0.9722 0.9722
DFNet 0.8895 0.9487 0.9578 0.9700

TrafficFormer 1.0000 1.0000 1.0000 1.0000

bustness region for an input flow) induced by CertTA and
baseline methods across six traffic analysis models. The ex-
perimental results using the CICDOH20 dataset are shown
in Table 6. Since CertTA and RS-Del both operate on raw
flow packets rather than extracted flow features, their certi-
fication delays are similar and slightly higher than those of
VRS and BARS. One possible strategy to expedite the certifi-
cation process is deriving certified classification results based
on a subset of flow packets. To investigate this approach, we
evaluate the certified accuracy and clean performance of three
CertTA-certified models (i.e., Kitsune (supervised), DFNet,
TrafficFormer) when observing the first 25%, 50%, 75%, and
100% of the packets comprising a flow. The experimental
results using the CICDOH20 dataset are shown in Figure 9
and Table 7. The results indicate that, generally, both Kitsune
(supervised) and DFNet require no less than 50% of the pack-
ets to achieve performance comparable to that observed with
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Figure 10: Evasion samples awareness by setting a threshold
on CertTA’s classification confidence (on CICDOH20).

complete flows, whereas TrafficFormer demonstrates to be
more tolerant of such data truncation.
Evasion Samples Awareness. Given an input sample, the
probability pA of the predicted class yA quantifies CertTA’s
classification confidence on this sample. By examining the
magnitude of pA, we can effectively recall the flows that have
successfully deceived a certified model, which are referred
to as evasion samples. This is because these evasion sam-
ples have different data distributions from clean samples in
the original dataset, resulting in abnormally small confidence
scores. To demonstrate this capability, we use attacks Blanket,
Amoeba and Prism to generate adversarial flows from the CI-
CDOH20 dataset, and evaluate these adversarial flows using
the CertTA-certified DFNet model. With an attack intensity
of (nins,radd

∗ ) = (5,500), the evasion success rate of Blan-
ket, Amoeba and Prism reaches 48.7%, 37.2% and 29.0%,
respectively. The distributions of the confidence score pA
of these test flows are shown in Figure 10. By establishing
a proper threshold on pA, we can effectively recall 94.9%,
85.6%, 94.3% of the evasion samples generated by Blanket,
Amoeba and Prism, respectively, while maintaining a low
False Positive Rate of 2.0% on clean samples.
Hyper-parameter Tuning. We investigate how smoothing
hyper-parameters and the number of smoothing samples af-
fect the performance of CertTA. Specifically, we evaluate the
performance of the CertTA-certified DFNet model under dif-
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Figure 11: Performance of CertTA-certified DFNet under dif-
ferent paramter settings (on CICDOH20).

ferent parameter settings, using the CICDOH20 dataset. The
experimental results are shown in Figure 11. In the sub-figures
on the left column, we fix the number of smoothing samples
at 1000 and quantify the robustness guarantees offered by
CertTA using various smoothing hyper-parameters (i.e., the
scale parameters βl ,βt for Exponential noises and the number
of selected packets d). The results indicate that in general,
smaller parameters constrain the theoretical upper bound of
CertTA’s robustness region, while larger parameters decrease
the classification accuracy of the smoothing samples. Empir-
ically, we select larger smoothing hyper-parameters before
experiencing significant accuracy losses for a traffic analysis
model. In the right column of Figure 11, we fix the smoothing
hyper-parameters and tune the number of smoothing sam-
ples. As the number of smoothing samples nsmooth increases,
CertTA-certified DFNet achieves better performance in robust-
ness guarantees. This is because the estimation of pA through
Monte Carlo sampling is more accurate. However, while the
performance improvement diminishes with larger nsmooth, the
inference overhead of smoothing samples will increase lin-
early. Considering the trade-off between the performance in
robustness guarantees and the inference overhead, we choose
1000 as the number of smoothing samples in our experiments.
Application Cases Discussed in BARS [39]. BARS [39]
discussed several use cases of certified robustness in traffic
analysis. In this section, we show that CertTA is also appli-
cable to these use cases, and even provides more benefits in
these cases. The use cases in BARS can be summarized into
three categories. (i) BARS can be applied to defend against ad-
versarial attacks, such as providing stronger robustness guar-
antees than VRS, reducing false alarms and defending against
evasion attacks. Based on the experimental results in § 5.2.2,
we demonstrate that CertTA outperforms BARS significantly
in both the applicability over heterogeneous traffic analysis
models and the certified accuracies against adversarial attacks.

Moreover, we propose a novel use case in § 5.3 that integrates
CertTA with anomaly detection, which creates a fundamen-
tal dilemma for the attacker. (ii) BARS can be applied to
quantitatively evaluate robustness. Yet, the robustness metric
offered by BARS is based on model-specific flow features. In
contrast, CertTA provides unified robustness regions across
heterogeneous models, as shown in § 5.2.1, ensuring easy
robustness comparison among these models. (iii) BARS is
capable of detecting and explaining evasion samples. In § 5.4,
we have just demonstrated that CertTA can also be applied to
detect evasion samples by examining the magnitude of the
classification confidence.

6 Discussion and Related work

Transformer with CertTA. In recent years, the paradigm
of using Transformer-based models to infer from raw packet
bytes led to promising improvements in the accuracy of traffic
analysis [24,48,55,56]. Yet, by simply inserting a few packets
at the start of the flow, the adversary can introduce a significant
change in the raw bytes input and undermine the performance
of these models. This vulnerability can be effectively miti-
gated by CertTA. As demonstrated by our evaluation results
in § 5, CertTA-certified Transformer-based models achieve
promising performance in both accuracy and robustness.
Empirical Robustness Enhancement. To improve the ro-
bustness of traffic analysis models, current works mainly fo-
cus on methods like data augmentation [2, 14, 34, 44, 50],
adopting more robust traffic representation [8, 37] or improv-
ing model designs [38]. CertTA is orthogonal to all these
approaches. Given an empirically robust model, its certified
robustness offered by CertTA is also improved. For instance,
CertTA achieves better performance after fine-tuning the base
classifier with the data augmentation of smoothing samples.
Robustness Certification Methods. Robustness certification
methods for individual input sample can be roughly catego-
rized into two types: deterministic and probabilistic. Deter-
ministic methods [41, 45, 51] aim to solve the deterministic
mapping from input variations to output variations, making
them computationally expensive and model-dependent. Proba-
bilistic methods like randomized smoothing [5,18,47] employ
sampling techniques to offer certification for arbitrary model
architectures efficiently. Due to their flexibility, we explore
randomized smoothing based approaches in this paper.
Network Anomaly Detection Systems. As one of the most
important techniques in security domains [4], anomaly de-
tection has been widely adopted for network intrusion detec-
tion [8–10, 21, 27]. Based on unsupervised learning, these
network anomaly detection systems are trained with normal
traffic data to detect anomalies that deviate from the learned
data distribution. Compared to supervised approaches, net-
work anomaly detection systems do not rely on well-labeled
datasets for training and generalize better on unknown threats
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such as zero-day attacks. However, it is challenging for these
systems to detect stealth attacks accurately while maintaining
a low False Positive Rate [9, 10]. Fortunately, the robustness
guarantees offered by CertTA are highly effective in defending
against stealth attacks, which enables a synergistic integration
with anomaly detection.
Practical Deployment. As model certification introduces ex-
tra overhead, one of the key challenges to deploy certified
models in production is to efficiently identify the “problem-
atic flows” that may require in-depth analysis by the certified
model, while leaving other flows processed by typical, real-
time models. Therefore, in production environments where
the vast majority flows are benign, the certified model only
processes small amount of traffic. One possible approach
is to employ an ensemble of heterogeneous (non-certified)
ML/DL/Transformer-based models for real-time traffic analy-
sis, and only forward the flows with inconsistent classification
results from these models to the certified model (the implica-
tion is that gradient/RL-based adversarial samples are crafted
to evade certain targeted models and exhibit poor transfer-
ability in models with different architectures and represen-
tations [1, 53]). An additional benefit of this approach is to
mitigate the tradeoff discussed in § 5.2.3, because the certified
model processes only a very limited volume of clean traffic.
We leave further investigation of this matter to future work.

7 Conclusion

In this paper, we present CertTA, a novel robustness certifica-
tion methodology that significantly advances state-of-the-art
in terms of both effectiveness and generality. CertTA is the first
certification framework that establishes robustness guarantees
against multi-modal adversarial perturbations. Meanwhile,
CertTA is universally applicable to various heterogeneous traf-
fic analysis models and provides unified metrics of model
robustness. We provide rigorous mathematical construction
regarding the robustness guarantees offered by CertTA. We
implement a prototype of CertTA and extensively evaluate the
prototype in various settings to quantify the advantages of
CertTA over the SOTA approaches.

8 Ethics Considerations

We have carefully considered the ethical implications at ev-
ery stage of our research, including the design, evaluation
and publication. The design and publication of CertTA will
contribute positively to the field. The datasets used in our eval-
uations are publicly available, and all third-party artifacts are
based on open-source implementations. We strictly followed
all terms of use, and no private or sensitive data were accessed
or disclosed. All experiments were conducted within in our
private testbed, ensuring that our research did not introduce
any risks or ethical concerns related to experimenting in live

systems or public networks.

9 Open Science

Our research artifacts associated with this work are available
on Zenodo2 and Github3. The source code of our CertTA pro-
totype, along with the experimental artifacts (e.g., the datasets,
the detailed implementations of traffic analysis models, adver-
sarial attack methodologies and baseline approaches), can be
accessed via these public repositories under an open-source
license.
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A Supplementary Proof of Theorem 1

In this section, we present the detailed derivations for the
lower bound of p̃sel

A in § 4.3, i.e.,

p̃sel
A ≥ K(psel

A −1)+Cd
n/Cd

n+nins−ndel ,

where K =Cd
n/Cd

n+nins−ndel · e∑
d
i=1 δ

l
i/βl+δ

t
i/βt .

Proof. Given any uuu = (xuuu
1 ,x

uuu
2 , . . . ,x

uuu
d) ∈ X satisfies

{xuuu
1 ,x

uuu
2 , . . . ,x

uuu
d} ⊆V , we define Ṡsel ⊆ Ssel as follows:

Ṡsel ={sss ∈ Ssel : ∀ i ∈ [1,n],xsss′
i = xuuu

i }.

For any sss ∈ Ṡsel, we have (xsss′
1 ,x

sss′
2 , . . . ,x

sss′
d ) = (xuuu

1 ,x
uuu
2 , . . . ,x

uuu
d).

Therefore, the original index i∗ of packet xsss′
i in (x1,x2, . . . ,xn)

remains unchanged. Subsequently, we divide Ṡsel into two
sets of flows Ṡadd

1 ⊆ Sadd
1 and Ṡadd

2 ⊆ Sadd
2 as follows:

Ṡadd
1 ={sss ∈ Ṡsel : ∃ i ∈ [1,n],(lsss

i − lsss′
i < δ

l
i∗)∨ (tsss

i − tsss′
i < δ

t
i∗)},

Ṡadd
2 = {sss ∈ Ṡsel : ∀ i ∈ [1,n],(lsss

i − lsss′
i ≥ δ

l
i∗)∧ (tsss

i − tsss′
i ≥ δ

t
i∗)}.

Based on the probability densities of ψjnt(xxx,βl ,βt ,d) and
ψjnt(x̃xx,βl ,βt ,d), for all sss ∈ Ṡadd

1 , we have:

Pzzz∼ψjnt(x̃xx,βl ,βt ,d)(zzz = sss)

Pzzz∼ψjnt(xxx,βl ,βt ,d)(zzz = sss)
= 0.

For all sss ∈ Ṡadd
2 , we have:

Pzzz∼ψjnt(x̃xx,βl ,βt ,d)(zzz = sss)

Pzzz∼ψjnt(xxx,βl ,βt ,d)(zzz = sss)
=

Cd
n

Cd
n+nins−ndel

· e∑
d
i=1

δl
i∗

βl
+

δt
i∗

βt .

Define:

ṗsel
A =Pzzz∼ψjnt(xxx,βl ,βt ,d)( f (zzz) = yA ∧ zzz ∈ Ṡsel),

˙̃psel
A =Pzzz∼ψjnt(x̃xx,βl ,βt ,d)( f (zzz) = yA ∧ zzz ∈ Ṡsel).

Let K̇ = Cd
n/Cd

n+nins−ndel · e∑
d
i=1 δl

i∗/βl+δt
i∗/βt , the lower bound

of ˙̃psel
A can be derived as follows:
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1 )
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Finally, we have:
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Cd
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.

B Experiment Setup

Traffic Analysis Models. We comprehensively investigate
recent learning-based traffic analysis models and observe that
the flow representations used by these models can be cate-
gorized into three types: flow statistics, raw flow sequences
and raw bytes. We choose kFP [11] and Kitsune [27] as rep-
resentative models that use flow statistics as input. We extract
175 statistical features from the lengths, timestamps and di-
rections of packets to serve as the input of these two models.
In terms of learning algorithms, kFP is based on traditional
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machine learning algorithm Random Forest, while Kitsune
uses an ensemble of neural networks called autoencoders. To
adapt Kitune from the unsupervised anomaly detection task to
our multi-class classification tasks, we feed the hidden vectors
encoded by Kitsune to a subsequent Multi-Layer Perceptron
to obtain the predicted class. Whisper [8] and DFNet [38]
are selected as representative models that take raw flow se-
quences as input. Specifically, these two models perform
inference based on the directional packet length sequence
and the inter-arrival time sequence of a flow. Given the raw
flow sequences, Whisper performs frequency domain analy-
sis based on Discrete Fourier Transformation, while DFNet
employs a Convolution Neural Network for classification. To
adapt Whisper from the unsupervised anomaly detection task
to our multi-class classification tasks, we feed its frequency
domain features to a subsequent Randomized Forest classifier.
For representatives of models that use raw packet bytes as
input, we select the MAE-based YaTC [55] and the BERT-
based TrafficFormer [56]. These two models extract raw bytes
from the header and payload of the first 5 packets in a flow
for analysis and carefully design pre-training and fine-tuning
tasks for traffic data. To avoid over-fitting on strong identifi-
cation information, we remove the Ethernet header, mask the
IP addresses and ports to zeros or ones to represent the packet
direction.
Adversarial Attacks. We thoroughly review recent adver-
sarial attack methods in the field of traffic analysis. The un-
derlying optimization algorithms of these methods can be
summarized into three categories: Generative Adversarial
Networks (GAN), Reinforcement Learning (RL) and explicit
modeling. We select a representative attack method from each
of these categories. For GAN-based methods, we choose Blan-
ket [29], which trains separate noise generators for different
types of perturbations and combines them to generate adver-
sarial flows. For RL-based methods, we select Amoeba [26],
which optimizes the perturbation policy using black-box pre-
diction results and attack overheads as rewards. For explicit
modeling based methods, we use Prism [22], which utilizes
a Time-Stacked State Transition Model to capture the tem-
poral patterns of each flow class and crafts adversarial flows
based on these patterns. Given an input flow from the test
dataset, we use Blanket, Amoeba and Prism to optimize the
perturbation operations of packet insertion, length padding
and timing delays. Subsequently, we generate an adversarial
flow by applying the optimized perturbation operations to the
original input flow.
Certification Methods. Existing certification methods focus
on single-modal adversarial perturbations. Specifically, we
compare CertTA with three baseline certification methods
including VRS [5], BARS [39] and RS-Del [13].

• VRS treats network flow features as an 1×D vector and
applies Gaussian noises with unified shape parameters of
(0,σ2) to generate smoothing samples. For traffic analysis
models using different flow representations, σ measures

the scale of the numerical noise added to a statistical flow
feature, the length and timing of a packet, or a raw byte. Fur-
ther, VRS provides an isotropic ℓ2-norm robustness radius
against additive perturbations on network flow features.

• BARS improves upon VRS by taking into account the
diverse scales of different flow features and providing
anisotropic robustness radii for different dimensions of the
feature vector. It introduces a distribution transformer to
automatically optimize the shape of random noise added to
each dimension of the feature vector. λ is a regularization
weight for training the distribution transformer, while H f
represents the type of noise distribution.

• RS-Del views a network flow as a discrete sequence of
packets and provides robustness guarantees against dis-
crete perturbations like packet insertion. When generating
a smoothing sample, each packet of the flow will be deleted
by RS-Del with a probability of pdel.

We use the open-source implementations of these certifica-
tion approaches and tune the smoothing hyper-parameters to
ensure that the certified models retain sufficient efficacy on
the clean dataset. The parameter tuning methods follow the
recommendation in the original papers of these approaches.
Software and Hardware. We implement CertTA with Py-
Torch under Python 3. The “pathos.multiprocessing” Python
library is utilized to generate multiple smoothing samples
in parallel for acceleration. Experiments are conducted on
a Supermicro SYS-740GP-TNRT server with two Intel(R)
Xeon(R) Gold 6348 CPUs (2 × 28 cores), 512GB RAM, one
NVIDIA A100 GPU and two NVIDIA GeForce RTX 4090
GPUs.

C Certification against Packet Reordering

In addition to the current five types of traffic perturbations
(i.e., packet insertion, substitution, deletion, length padding
and timing delays), the network traffic may include other
types of perturbations, such as packet reordering caused by
networking variations or adversarial attacks. In this section,
we provide a certification method against packet reordering,
which can be integrated into the certification framework of
CertTA in future work.

Lemma 3. Consider a pair of traffic flows xxx, x̃xx ∈ X , where
xxx contains n packets (x1,x2, . . . ,xn) and xxx can be perturbed
into x̃xx by reordering (x1,x2, . . . ,xn) to (xi1 ,xi2 , . . . ,xin). Define
the reordering perturbation vector δδδ

reo = (δreo
1 ,δreo

2 , . . . ,δreo
n ),

where δreo
j = i j − j. Let ψreo(xxx,λ) : X × Z+ → Z be the

smoothing function that (i) randomly selects a start offset
from [−λ + 2,1]; (ii) splits flow xxx into windows of λ con-
secutive packets from the start offset and randomly shuf-
fles the packets within each window (λ ≤ n). Define the
smoothed classifier greo as in Equation (1). Suppose yA ∈ Y
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Figure 12: The possible new indices of packet x5 in smoothing
samples generated by the reordering smoothing mechanism.

and pA ∈ [1/2,1] satisfy greo(xxx) = yA and pA ≥ pA ≥ 1/2,
then we have greo(x̃xx) = greo(xxx) = yA if:

∑
n
j=1 |δ

reo
j |< rreo, (9)

where the robustness radius rreo = λ(2pA −1).

Proof. When generating smoothing samples by ψreo(xxx,λ),
the j-th packet x j in flow xxx may fall into different windows
based on the randomly selected start offset. Figure 12 gives
an illustrative example where j = 5 and λ = 3. Since x5 could
fall into 3 windows, its new index in the smoothing samples
is in the range of [3,7]. Similarly, denote the new index of
x j in the smoothing samples as j′, j′ is in the range of J =
[ j− (λ−1), j+λ−1]. Based on the probability distribution
of ψreo(xxx,λ), we have:

P( j′ = j+ k) = max(λ−|k|,0)/λ
2. (10)

According to the definition of δδδ
reo, the new index of x j in

flow x̃xx is j+δreo
j . Further, denote the new index of x j in the

smoothing samples generated by ψreo(x̃xx,λ) as j̃′, j̃′ is in the
range of J̃ = [ j+δreo

j − (λ−1), j+δreo
j +λ−1].

When δreo
j ∈ [0,λ), according to Equation (10), we have:

P( j′ ∈ J− J̃) =P( j′ ∈ [ j− (λ−1), j+δ
reo
j −λ)])

=∑
δreo

j −λ

k=−(λ−1) max(λ−|k|,0)/λ
2

=
δreo

j (δreo
j +1)

2λ2 ≤
δreo

j

2λ
,

P( j′ /∈ J− J̃,∀ j ∈ [1,n]) =1−∑
n
j=1P( j′ ∈ J− J̃)

≥1−
∑

n
j=1 δreo

j

2λ
.

Let S be the set of all possible smoothing samples generated
by ψreo(xxx,λ). We partition S into two sets of flows S1,S2:

S1 = {sss ∈ S : j′ /∈ J− J̃,∀ j ∈ [1,n]},
S2 = {sss ∈ S : j′ ∈ J− J̃,∃ j ∈ [1,n]}.

Based on the probability distribution of ψreo(xxx,λ) and
ψreo(x̃xx,λ), we have:

Pzzz∼ψreo(x̃xx,λ)(zzz = sss)
Pzzz∼ψreo(xxx,λ)(zzz = sss)

=

{
1, ∀sss ∈ S1,

0, ∀sss ∈ S2.

The lower bound of p̃A can be derived as follows:

pA = Pzzz∼ψreo(xxx,λ)( f (zzz) = yA ∧ zzz ∈ S1)

+Pzzz∼ψreo(xxx,λ)( f (zzz) = yA ∧ zzz ∈ S2),

p̃A = Pzzz∼ψreo(x̃xx,λ)( f (zzz) = yA)

≥ Pzzz∼ψreo(x̃xx,λ)( f (zzz) = yA ∧ zzz ∈ S1)

= Pzzz∼ψreo(xxx,λ)( f (zzz) = yA ∧ zzz ∈ S1)

= pA −Pzzz∼ψreo(xxx,λ)( f (zzz) = yA ∧ zzz ∈ S2)

≥ pA −Pzzz∼ψreo(xxx,λ)(zzz ∈ S2)

= pA −1+Pzzz∼ψreo(xxx,λ)(zzz ∈ S1)

= pA −1+P( j′ /∈ J− J̃,∀ j ∈ [1,n])

≥ pA −
∑

n
j=1 δreo

j

2λ
.

Finally, we can get Equation (9) by solving the inequality
that the lower bound of p̃A is not less than 1/2. When δreo

j ∈
(−λ,0], Equation (9) can be derived in a similar way.
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