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Abstract—Federated Learning (FL) has emerged as a privacy-
preserving training paradigm, which enables distributed devices
to jointly learn a shared model without raw data sharing.
However, the inaccessible client-side data and unverifiable local
training leave FL vulnerable to Byzantine attacks. Most defense
strategies focus on penalizing malicious clients in server-side
aggregations and ignore clients-side weight units poisoning as-
sessment, failing to maintain robustness and convergence in non-
IID settings. In this paper, we propose Federated learning with
Benignity-assessable Bayesian Dropout and variational Attention
(FedBDA) to achieve local robust training based on fine-grained
benignity indicators and guarantee global robustness over non-
IID data. Specifically, FedBDA integrates variational inference
explanation of dropout into local training, where each client
individually quantifies the benign degree of weight units to
determine a resilient dropping pattern for the local Bayesian
model, enabling client-side robust training with Bayesian in-
terpretability. To accommodate variational distributions of local
Bayesian models and globally assess their benign potentials, we
design a joint attention mechanism based on Jensen-Shannon
divergence among local, global, and median distributions for
robust weighted aggregation. Theoretical analysis proves the
robustness and convergence of FedBDA. We conduct extensive
experiments on four benchmark datasets with five typical attacks,
and the results demonstrate that FedBDA outperforms status quo
approaches in model performance and running efficiency.

Index Terms—Federated learning, Byzantine attack, dropout
defense, robust aggregation

I. INTRODUCTION

The growing concerns over data privacy have triggered
significant interest in Federated Learning (FL), a distributed
training paradigm [1], [2] that enables edge devices to col-
laboratively learn a global model without raw data exchange.
In particular, resource-constrained edge devices (e.g., smart-
phones) locally maintain their data and individually train local
models to get client-side updates, which are periodically up-
loaded to a central server. Subsequently, the server aggregates
received local updates to obtain a global model.
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Despite the benefits in data location and privacy protection,
FL remains vulnerable to Byzantine attacks from distributed
devices (i.e., clients) due to the inaccessible local data and
training procedure [3], [4]. Byzantine attackers can stealthily
invade clients and manipulate local training [5], [6]. The
clients compromised by attackers (i.e., malicious clients) inject
fake parameters into local models or modify data labels, bring-
ing wrong local updates. With the global aggregation, mali-
cious updates further contaminate the global model, thereby
deteriorating accuracy and hampering FL convergence [7].

Against Byzantine attacks, previous defense methods focus
on global careful aggregations [8], [9], [10], where the server
penalizes likely malicious updates and aggregates other up-
dates in resilient rules [11]. Some statistical properties like
median are utilized to circumvent poisoning outliers [12].
Distance-based defenses such as Krum [13] and Clipped-
Cluster [10] examine the distance or similarity betweenlocal
updates to identify malicious clients and weaken or exclude
them from aggregation. However, these methods rely on a
strong assumption of Independent and Identically Distributed
(IID) data [3], which are ineffective in practical scenarios with
non-IID data [14], [15]. Elaborate attack designs in pioneering
studies [16], [17] can bypass extant resilient aggregations [18].

In actual FL settings, heterogeneous data and different
poisoning states have superimposed effects on local updates
such that the attack situation of clients cannot be accurately
reflected by the global-view evaluation of pairwise entire local
models. Non-IID data across clients leads to inconsistent local
updates regardless of whether it is attacked [19], [20]. Besides,
Byzantine attacks can generate distinct malicious effects on
different weight units (e.g., recurrent rows or channel matri-
ces) of local models [21]. Therefore, the fine-grained benign
assessment of weight units is required from the local view, so
malicious error can be promptly eliminated to achieve local
robust training and cooperate with global resilient aggregation.

To this end, we propose Federated learning with Benignity-
assessable Bayesian Dropout and variational Attention
(FedBDA), a novel Byzantine-robust framework that enables
local and global benignity assessments at different granular-
ities. Specifically, FedBDA involves two core modules: (i)
Bayesian adaptive dropout by locally quantifying weight unit-
wise benign effect and (ii) variational attention-based aggre-
gation with globally JS divergence-dependent maliciousness
evaluation of entire model distributions. First, we integrate
variational Bayesian inference with local dropout training and
allow each client to adaptively quantify the benign score
indicator of weight units over client-side data. Guided by local
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benign indicators, clients can promptly drop out poisonous
weight units and customize robust dropping patterns for vari-
ational distributions of client-side Bayesian models, thereby
mitigating the malicious impact of wrong information during
local training. Then, only non-zero variational parameters after
dropout are uploaded to the server, which is beneficial for
reducing uplink costs. Second, on the server side, variational
distributions of different clients still have distinct impacts on
global generalization and robustness. A variational attention
mechanism is designed to globally evaluate the benign poten-
tials of local variational distributions according to joint metrics
of Jensen-Shannon (JS) divergences among local, global, and
median distributions, further achieving server-side resilient
aggregation. In this way, FedBDA provides dual local-global
robustness guarantees in non-IID settings.

Contributions. Our contributions are summarized as follows:
• We propose a robust and efficient FL framework against

Byzantine attacks, termed FedBDA, which takes the first
step to quantify the benign contribution of each weight
unit on client-specific data in a Bayesian interpretable
way, improving Byzantine robustness in non-IID settings
with less uplink communication overhead.

• We design a benignity-guided Bayesian dropout to cus-
tomize resilient dropping patterns for local variational
distributions, enabling client-side robust training. To ac-
commodate local updates of variational distributions and
realize resilient aggregation, a variational attention mech-
anism is developed for server-side robustness guarantee.

• We theoretically prove the robustness of FedBDA and
further analyze the generalization error bound and con-
vergence property of FedBDA on heterogeneous data.

• We conduct extensive experiments to evaluate FedBDA
against various Byzantine attacks on real-world datasets.
The results show that FedBDA provides 1.14%-11.74%
benign accuracy gains on highly non-IID data with up to
2× uplink costs reduction, which brings up to 56.9% run-
ning time saving compared to state-of-the-art baselines.

II. RELATED WORK

Byzantine Attacks. The Byzantine attack is a typical security
threat in FL, which can intrude and control clients to violate
federation protocols and transmit malicious updates to the
server [22], thereby injecting wrong information into the
global model [11]. Current Byzantine attacks can be roughly
classified into two types: the training data-based attack and
the model parameter-based attack. The former tampers with
training data labels and further injects incorrect knowledge
into local models during training [23], [24]. For example,
Label Flipping (LF) attack [25] flips the labels of a chosen
data subset. The latter directly crafts poisoning parameters
and uploads them to the server, [9], [26]. Typical parameter-
based attacks include “A Little is Enough” (ALIE) [16], Inner
Product Manipulation (IPM) [27], and Sign Flipping (SF).

Byzantine-Robust FL. Many resilient aggregations have been
proposed to defend against Byzantine attacks [9], [10], [28],
which can be roughly categorized into three directions. (1)

Performance-driven decisions [29] test the performance of
local models in the server to detect malicious clients, which
additionally require a central clean dataset for performance
verification. However, the auxiliary data still involves the pri-
vacy problem, hindering their practicability [9]. (2) Statistical
aggregations calculate statistics measures of local updates as
new global parameters. For instance, coordinate-wise median
and trimmed mean of local parameters are regarded as rep-
resentatives of a majority of clients in [12]. These statistics
are more likely to be skewed towards poisoning updates
as malicious clients increase. (3) Distance-based defenses
try to distinguish poisoned updates according to distance or
similarity differences. For example, FoolsGold [14] exploits
inter-client cosine similarity to detect abnormal updates. These
defenses are only feasible when a malicious update is dis-
persed and deviates from all benign updates.

Furthermore, several pioneering studies explore auxiliary
defense techniques to collaborate with resilient aggregations.
GAS [28] splits high-dimensional local updates into sub-
vectors in the server and then applies robust aggregation to
sub-vectors in non-IID settings, which still only focuses on
detecting malicious updates from the global view and ignores
client-side robust optimization. Dropout [30] is also regarded
as an effective auxiliary defense. FedREP [31] and FLAP
[32] integrate dropout with robust aggregation to mitigate at-
tack effects while improving communication efficiency. FLAP
prunes the global model after the aggregation, which does
not involve client-side robust optimization and convergence
support. FedREP directly zeros out lower-magnitude weights
without considering the malicious effect of model weights on
local performance. Both cannot adapt to non-IID data across
clients in real FL scenarios, leading to robustness degradation
and convergence disorder. Unlike the aforementioned methods,
this work locally assesses benign score of each weight unit and
independently drops out poisoning and insignificant weight
units of client-side Bayesian models during local training to
promptly mitigate malicious errors and achieve client-side
robust training in non-IID settings.

III. PROBLEM STATEMENT

A. FL with Bayesian Neural Networks

We consider a FL system with K devices (i.e., clients) and
a central server. Each client k ∈ K possesses its data Dk and a
true function fk0 , where yk = fk0 (x

k) for (xk, yk) ∈ Dk. The
data Dk are utilized to train the DNN model to estimate fk0 .
Considering the generalization and theoretical interpretability,
Bayesian Neural Network (BNN) is introduced into FL [33],
which offers a probabilistic interpretation and a measure of
uncertainty for DNN [34], [35]. In BNN, each model weight is
viewed as a random variable denoted by Gaussian distribution,
called the prior distribution. By incorporating knowledge of
prior distributions of model weights and a functional form of
the likelihood, we infer the posterior distribution of model
weights. For modern Bayesian models, exact computation of
the posterior is intractable due to the high dimensionality and
non-convexity, so approximate posterior inference is resorted.
Variational inference is a popular solution for approximate
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posterior [36]. In this work, we focus on variational Bayesian
inference in FL. Specific expressions of variational Bayesian
inference are elaborated in Section IV.

By applying variational Bayesian inference in FL, each
client k locally learns a BNN model represented by an
approximate posterior distribution π̃k(θ|Dk) ∈ F [37], [38],
[39]. Here, θ is a model weight set, and F denotes a feasible
model distribution set. The local model distribution π̃k(θ|Dk)
is determined by the posterior mean and variance parameters,
as referred to [33]. We define the variational parameter set
Uk to represent the posterior mean of the model distribution.
Following [35], [40], we suppose that the posterior variance s̃2

is constant for all clients and is not updated and transmitted.
The local updates of π̃k(θ|Dk) only involve the variational
parameters, which are periodically uploaded to the server.
Then, the server can get a global Bayesian model denoted
by the global distribution π̃g ∼ N (U, s̃2I), where U denotes
the global variational parameters obtained by aggregating
all local updates. In practical applications, the distributed
dataset {D1, . . . ,Dk} is essentially non-IID, and the uplink is
typically much slower than the downlink (e.g., 17.6Mbps up
vs. 204.9Mbps down in the T-Mobile 5G network [41]). We
explore a Bayesian inference-based resilient dropout for clients
in such non-IID and limited uplink bandwidth scenarios.

B. Byzantine Attack Modeling in FL

In FL, Byzantine attackers manipulate clients, but do not
compromise the server [29]. The goal of the adversary is to
degrade global performance and impair convergence. Attackers
have the capability to know the local training data of malicious
clients and local updates of all clients. We suppose that
malicious clients still complete local training and parameter
upload of the current round with poisoning data or interfered
parameters after being attacked. The server can only access
global parameters and local updates without other knowledge.

Let A denote the malicious client set, which is fixed over
time. Aligned with prior works [7], [18], we assume that the
number of malicious clients holds |A| < K/2. The rest clients
K\A are benign and will faithfully implement local training. If
attackers modify partial data labels of client k ∈ A, we define
a local poisonous dataset as Dk

A, and other data Dk\Dk
A are

honest. In this setting, we aim at learning the optimal global
Bayesian model to minimize the average loss over all honest
data across clients, formulated as:

min
π̃g∈F

1

K

{ ∑
k∈K\A

Lk(π̃g;Dk)

|Dk|
+

∑
k∈A

Lk(π̃g;Dk\Dk
A)

|Dk\Dk
A|

}
. (1)

Here, Lk(·;Dk) denotes the local loss over Dk.

IV. PRELIMINARY

A. Variational Bayesian Inference of DNN

A Deep Neural Network (DNN) fθ learned from the dataset
(X,Y ) is used to approximate an unknown true function f0
such that y = f0(x) and fθ(x) ≈ f0(x) for any (x, y) ∈
(X,Y ), where θ is the weight set. Two common types of
DNN, i.e., non-recurrent neural network and Recurrent Neural

Network (RNN) are considered. We recursively express a non-
recurrent neural network fθ : Rd → Ro with L layers as:

xl = ϕ(Wlxl−1), fθ(x) = xL for l = 1, . . . , L,

where d is the input dimension and o denotes the output
dimension. ϕ denotes an activation function and x0 = x.
Besides, Wl denotes the weight matrix in the l-th layer such
that θ = {W1, . . . ,WL}. As referred to [35] and [33], we
employ an equal-width DNN to facilitate analysis, meaning
that the hidden dimension of all layers is equal to D, where
d ≤ D and o ≤ D. For sequence tasks, the RNN is more
powerful. In RNN models, the input is an embedding sequence
x = [x1, . . . , xL]

⊤ ∈ RL×d, xl ∈ Rd, which is mapped by

hl = ϱ(Wxxl +Whhl−1), fθ(x) = ρ(hL) for l = 1, . . . , L.

ϱ and ρ are activation functions, and L deno dtes a fixed input
sequence length. The input-hidden weight matrix Wx ∈ RD×d

and hidden-hidden weight matrix Wh ∈ RD×D (i.e., recurrent
connections of RNN) consist of the weight set θ = {Wx,Wh}.

With Bayesian inference theory [40], [35], θ can be regarded
as random variables denoted by prior π, and the target of
model training is to calculate the posterior π(θ|X,Y ). For
easier posterior estimation, we introduce the tempered poste-
rior πm,α ∝

∑m
i=1 α ln p(yi|xi, θ)π(dθ), mentioned in [42].

Here, α ∈ (0, 1), and m denotes the number of training sam-
ples. With Variational Inference (VI) [37], [43], a variational
approximation π̃ is learned to estimate the tempered posterior
πm,α. First, we define

Definition IV.1. The generalization error of the variational
approximation π̃ is Ge(π̃) = E

[ ∫
∥fθ − f0∥22π̃(dθ)

]
.

For the optimization of variational approximation π̃, the loss
function is represented as

L(π̃;D) = α

2σ2

m∑
i=1

∫ (
yi−fθ(xi))

2π̃(dθ
)
+KL(π̃∥π), (2)

where σ2 is the likelihood variance, i.e., p(yi|xi, θ) follows a
Gaussian distribution with the variance σ2 for any (xi,yi) ∈
D with D = (X,Y ). The second term is approximated to L2
regularization [44], beneficial to avoid overfitting. The local
loss Lk(·;Dk) in optimization target (1) is calculated by (2).

B. Bayesian Interpretation of Dropout

Defining S as the number of nonzero parameters in the
local model, the sparse model is constructed by (S,L,D),
where ΘS,L,D denotes the feasible weight space. We focus on
structured dropout, which involves a structure-level dropping
granularity. The model weights of the smallest network unit
that can be represented by the dropping granularity are defined
as the weight unit. We consider that a DNN model contains J
sparsifiable weight units. The dropout zeros out some weight
units, which can be accomplished by placing spike-and-slab
distributions [35] over the DNN model. Inspired by [40], the
distribution of the j-th weight unit wj can be expressed as

π̃wj
= (1− p)N (µj , s̃

2I) + pδ(0), (3)
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Fig. 1: The overview diagram of FedBDA. In each round, 1⃝ the server randomly selects clients and sends global variational
parameters to them. 2⃝ Each selected client locally trains model distributions with Bayesian adaptive dropout according to the
unit-wise benignity indicator. 3⃝ After training, the non-zero variational parameters and binary dropping pattern are uploaded
to the server. 4⃝ The server robustly aggregates local variational parameters with JS divergence-based attention scores.

where µj denotes variational parameters that need to be
optimized in local training, and s̃2 is the posterior variance.
Besides, p is a dropout rate, and δ(0) denotes an impulse
function. For the clear representation of the dropout, we
introduce the dropping pattern Γ = [γ1, . . . , γJ ]⊤ ∈ {0, 1}J
to point out which weight units are masked. If γj = 0, the
j-th weight unit is zeroed out.

V. THE FEDBDA FRAMEWORK

A. Overview of FedBDA

In this study, we propose the FedBDA framework to achieve
local robust training with Bayesian interpretability and enable
dual local-global robustness in non-IID settings. Consider-
ing the superimposed effects of non-IID data and poisoning
states on local models, FedBDA assesses the contributions
of weight units to the performance gain from a local view
and quantifies them as unit-wise benignity indicators. The
benignity indicator induces a resilient dropping pattern for the
variational distribution of the local Bayesian model, which
promptly mitigates the malicious impact of poisoned weight
units, facilitating local robust training. To accommodate lo-
cal updates of variational distribution, we design variational
attention based on JS divergence for the global aggregation,
guaranteeing the generalization and robustness of the global
model. Figure 1 illustrates the procedures of FedBDA in
a round, which involves: 1⃝ The server randomly selects
clients to participate in the training of the current round and
sends global variational parameters to them. 2⃝ Each selected
client locally trains model distributions with Bayesian adaptive
dropout based on the benignity assessment of weight units. 3⃝
After training, the non-zero variational parameters and binary
dropping pattern are uploaded to the server. 4⃝ Finally, the
server aggregates local variational parameters with variational

attention to obtain the global model distribution. Specifically,
the two core designs of FedBDA are as follows:

• Local training with Bayesian adaptive dropout: Each
client initializes the local model with receiving global vari-
ational parameters and then drops out partial weight units.
During local training, the client adaptively adjusts dropping
patterns based on the changing trend of training loss. The
dropout experiences are accumulated in a score vector to
reflect the benign effect of weight units. After training, the
nonzero variational parameters and binary dropping pattern
(much less than variational parameters and even can be
ignored) are uploaded to the server.

• Global aggregation with variational attention: The server
reconstructs client-side variational distributions and filters
deemed malicious clients by clustering. Then, by measuring
JS divergences among local, global, and median approxima-
tions, different attentions are assigned to local variational
parameters for robust weighted aggregation. Iteratively, the
server randomly selects clients for training in the next round
and sends newly aggregated variational parameters to them.

Detailed process is summarized in Algorithm 1.

B. Bayesian Adaptive Dropout with Benignity Indicator

In the whole FL process, Byzantine attackers continuously
inject poisonous information into malicious clients, while
benign clients are contaminated by the delivered poisoning
global model. Regardless of attacked or benign clients, mali-
cious errors always remain during local training, and different
weight units exhibit diverse malicious impacts on each client
[45]. Superimposing non-IID data, the same unit has distinct
impact on different clients. Therefore, it is crucial to granularly
distinguish the effect of weights unit from the local view to
promptly alleviate malicious impact for local robust training.
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Algorithm 1: FedBDA
Input: dropout rate p; client selection fraction κ; local datasets
{D1, . . . ,DK}; global training round R; the number of
local iterations V ; stage boundary τR.

Initialize: global variational parameters U0; the number of
selected clients c← max(⌊κ ·K⌋, 1); dropping pattern
set ZS ; posterior variance s̃2.

Output: global variational approximation π̃g = N (UR, s̃
2I)

ServerRun:
1: for each round r = 1, 2, . . . , R do
2: Cr ← randomly select c clients
3: Transmit Ur−1 to each selected client
4: for each client k ∈ Cr in parallel do
5: Γk,V

r , {µk,V
r,j } ← LocalUpdate(Ur−1, r)

6: end for
7: Reconstruct local spike-and-slab distribution

π̃k,V
r = Γk,V

r N (Γk,V
r ◦ Uk,V

r , s̃2I) + (1− Γk,V
r )δ(0)

8: Ur ← VarAttAgg({π̃k,V
r |k ∈ Cr}, Ur−1)

// variational attention-based aggregation by Algorithm 2
9: end for

10: return π̃g = N (UR, s̃
2I)

LocalUpdate(Ur−1, r):
11: Set Uk,0

r ← Ur−1 and θk,0r ∼ N (Uk,0
r , s̃2I)

12: if r ≤ τR then
13: Γk,0

r = . . . = Γk,2τ
r ← Draw from ZS randomly

// stage one
14: else
15: Γk,0

r = . . . = Γk,V
r ← Calculate based on local

benignity indicator Bk // stage two
16: end if
17: for each iteration v = 0, 1, . . . , V − 1 do
18: θk,vr ∼ π̃k,v

r = Γk,v
r ◦ N (Uk,v

r , s̃2I)
19: Uk,v+1

r ← Uk,v
r − η

[
Γk,v
r ◦ ∇ULk(π̃k,v

r ; dk
v)
]
, dk

v ∈ Dk

20: if r ≤ τR and v > τ and v% τ = 0 then
21: Calculate ∆Lk,v

r using (4)
22: if ∆Lk,v

r > 0 then
23: Γk,v+1

r = . . . = Γk,v+τ
r ← Draw from ZS randomly

24: else
25: Γk,v+1

r = . . . = Γk,v+τ
r ← Γk,v

r

26: end if
27: Update benignity indicator Bk by (5)
28: end if // only execute in stage one
29: end for
30: return Γk,V

r , {µk,V
r,j |µ

k,V
r,j ∈ Uk,V

r , γk,V
r,j ̸= 0}

Unit-wise Benignity Indicator. To locally quantify the effect
of weight units, we develop a benignity indicator for each
client, which accumulates experience in local performance
gains of weight unit dropout. With the benignity indicator,
the client customizes robust dropping patterns for variational
distributions to adaptively drop out malicious and insignificant
weight units, enabling client-side robust training.

For local performance gains of weight units, we consider the
ability of each unit to facilitate loss reduction. Specifically, a
fixed iteration interval τ is preset to evaluate change trends of
training loss, and client k maintains the same dropping pattern
in such τ iterations. Suppose dk

v is a batch of training samples
in the v-th iteration, we define L̂k,v

r =
∑v

i=v−τ+1 Lk(π̃k,i
r ;dk

i )
as the average loss of the (v − τ + 1)-th iteration to the v-th
iteration in round r. The loss gap between adjacent τ iterations

∆Lk,v
r = L̂k,v

r − L̂k,v−τ
r , v ≥ 2τ (4)

can represent the loss change caused by current dropping
pattern Γk,v

r of client k in round r. ∆Lk,v
r > 0 indicates that

the current dropping pattern effectively facilitates loss decrease
and defends against attacks, which can be kept in the next τ
iterations. Otherwise, client k adjusts local dropping patterns
by resampling from the feasible pattern set ZS . Then, we
update the local benignity indicator Bk = [bk1 , . . . , b

k
J ]

⊤ ∈ RJ .
If the j-th weight unit is held in the v-th iteration, the benignity
score bkj is updated in the next iteration by

bkj =

{
bkj + 1, if ∆Lk,v

r ≤ 0,

bkj + γk,v+1
j , if ∆Lk,v

r > 0.
(5)

A higher score means that the unit is more conducive to per-
formance gain and should be retained. The benignity indicator
is fed back to determine a resilient dropping pattern such that
poisonous units are promptly pruned for local robust training.

Local Update. The function ClientUpdate(·,·) in Algorithm 1
describes the local update process. Specifically, given dropout
rate p, we have non-zero parameter number S = (1−p)J×D.
The feasible pattern set ZS is also specific. In round r, the
selected client k ∈ Cr initializes variational parameter Uk,0

r ←
Ur−1 and samples the local model θk,0r ∼ N (Uk,0

r , s̃2I) (line
11). Then, a dropping pattern is required to remove malicious
weight units in the local model. For pattern determination,
Bayesian adaptive dropout can be divided into two stages
by the round boundary τR. In stage one (i.e., global round
r ≤ τR), client k ∈ Cr samples the initial dropping pattern
Γk,0
r from ZS (line 13). Each weight unit with the dropping

label γk,0r,j = 0 is zeroed out such that the initial variational
distribution of client k is denoted as

π̃k,0
r (Γk,0

r , Uk,0
r ) = Γk,0

r N (Uk,0
r , s̃2I) + (1− Γk,0

r )δ(0) (6)

for sparse model characterization. Subsequently, this sparse
model is locally trained. For the v-th iteration, the variational
parameters Uk,v

r = [µk,v
r,1 , . . . ,µ

k,v
r,J ]

⊤ of local spike-and-slab
distribution π̃k,v

r are updated by

Uk,v+1
r = Uk,v

r −η
[
Γk,v
r ◦∇ULk

(
π̃k,v
r (Γk,v

r , Uk,v
r );dk

v

)]
(7)

with the learning rate η. At intervals of τ iterations, client
k calculates the training loss gap by (4) and adaptively
adjusts dropping patterns, as reported in lines 21-26. Moreover,
the dropout experiences of weight units are accumulated in
benignity indicator Bk via (5) at each pattern adjustment.

Until r > τR, FedBDA enters stage two, where the be-
nignity indicator Bk is adequate to customize a high-quality
dropping pattern (line 15). The weight units with lower benign
scores exhibit weak performance gains over local data in
historical exploration, which are discarded preferentially. With
the dropout rate p, client k computes a score threshold λk as
the p-quantile of Bk such that the benignity indicator-based
dropping pattern of client k in round r > τR is formulated by

Γk,v
r = ψ(Bk − λkI), for v ∈ {0, . . . , V − 1}, (8)

where ψ(·) is a step function. The remaining variational
parameters Γk,v

r ◦ Uk,v
r are locally trained by (7) for client-

side robust optimization. After V local iterations, only nonzero
variational parameters {µk,V

r,j |µ
k,V
r,j ∈ Uk,V

r , γk,Vr,j ̸= 0} and
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binary dropping pattern Γk,V
r are transmitted to the server,

which mitigates uplink communication overhead.

C. Variational Attention-based Aggregation

The server can reconstruct variational distributions of local
Bayesian models based on received variational parameters and
dropping patterns. The next step is to aggregate them into a
robust global approximation. Traditional average aggregation
cannot penalize malicious updates such that the global model
deviates from what it should be optimized [29], further affect-
ing local updates of benign clients. As shown in Figures 2,
the LF attack significantly changes the distributions of local
model updates even for benign clients under the classical
FedAvg framework [1]. Moreover, existing robust aggregations
[10], [14], [28] focus on weight values with certainty and
fail to analyze model distributions with Bayesian uncertainty.
Thus, there is a need for global maliciousness evaluation of
local variational distributions with Bayesian uncertainty to
guarantee robust aggregation of variational distributions.

Clustering for Local Variational Distributions. In view of
the significant derivations of some malicious updates, cluster-
ing has shown a superior detection capability for poisoning
updates. We introduce a JS divergence-dependent clustering
to accommodate local variational distributions with Bayesian
uncertainty. Specifically, the server first reconstructs local
variational distributions {π̃k,V

r |k ∈ Cr} by

π̃k,V
r =

[
π̃wk,V

r,1
, . . . , π̃wk,V

r,j
, . . . , π̃wk,V

r,J

]⊤
(9)

with

π̃wk,V
r,j

=

{
N (µk,V

r,j , s̃
2I), if γk,Vr,j ̸= 0,

δ(0), if γk,Vr,j = 0.
(10)

Here, wk,V
r,j denotes the j-th weight unit of the local model

uploaded by client k. Thus, we can rebuild local variational
distributions with the form of (6). The JS divergence between
pairwise variational distributions for clients k1, k2 ∈ Cr is

χk1,k2
r = JS(π̃k1,V

r ∥π̃k2,V
r )

=
KL

(
π̃k1,V
r ∥(π̃k1,V

r + π̃k2,V
r )/2

)
2

+
KL

(
π̃k2,V
r ∥(π̃k1,V

r + π̃k2,V
r )/2

)
2

.

(11)

Based on JS divergences among all selected clients, we
separate clients into two clusters C1r , C2r , where

C1r , C2r = arg min
C1
r∪C2

r=Cr

(
max

k1∈C1
r ,k2∈C2

r

χk1,k2
r

)
, (12)

as described in lines 1-6 of Algorithm 2. Following [46], we
suppose that most clients in Cr are benign and belong to a
larger cluster, while other clients are deemed malicious and
should be excluded from global robust aggregation. Defining
Cpr as the remaining client set after clustering, it is denoted by

Cpr ← arg max
C∈{C1

r , C2
r}
|C|, (13)

and only local variational parameters of client k ∈ Cpr
participate in subsequent aggregation.
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(a) FedAvg without attack (b) FedAvg with LF attack (c) Our FedBDA with LF attack

(a) Partial parameter distribution of local model updates on the benign client.
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(a) FedAvg without attack (b) FedAvg with LF attack (c) Our FedBDA with LF attack

(b) Local partial update distribution of the malicious client in round R.

Fig. 2: The comparison of partial parameter distributions of
local model updates with or without attack.

Variational Attention. Among the remaining local updates
after clustering, there may still be residual maliciousness for
the global model in non-IID settings. Hence, we design a joint
metric to measure benign potentials for global generalization
and robustness based on JS divergences among local, global,
and median distributions. The global variational approximation
is denoted as π̃g

r−1 = N (Ur−1, s̃
2I). The difference between

local variational distributions and the global approximation
reflects the generalization [47], which is expressed as

χk,g
r = JS(π̃k,V

r ∥π̃g
r−1), ∀ k ∈ Cpr . (14)

Considering the longstanding history of median in robust
statistics [48], we introduce UMed

r as the median of the
remaining variational parameters. The median approximation
is denoted as π̃Med

r = N (UMed
r , s̃2I). The JS divergence

between local variational distributions and the median approx-
imation is associated with global robustness, denoted as

χk,Med
r = JS(π̃k1,V

r ∥π̃Med
r ), ∀ k ∈ Cpr . (15)

With χk,g
r and χk,Med

r , we design a joint maliciousness metric

νkr = −χk,g
r + ϵ · χk,Med

r . (16)

Here, ϵ is a divergence weighting factor, which is a preset
constant. Applying softmax on the joint metrics, the attention
score for client k ∈ Cpr is

ζkr = softmax(−νkr ) =
exp−νk

r∑
k∈Cp

r
exp−νk

r

. (17)

We aggregate the remaining variational parameters weighted
by attention scores as the new global variational parameters:

Ur =
∑
k∈Cp

r

ζkr (Γ
k,V
r ◦ Uk,V

r ). (18)

Essentially, the global variational approximation is denoted as

θr ∼ π̃g
r = N (Ur, s̃

2I), (19)

where θr denotes global weights in round r. In this way,
FedBDA achieves resilient aggregation to guarantee the gen-
eralization and robustness of the global model.
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Algorithm 2: Variational attention-based aggregation
Input: Rebuild local variational distributions {π̃k,V

r |k ∈ Cr}
Output: aggregated global variational parameters Ur

1: for k1 ∈ Cr do
2: for k2 ∈ Cr\k1 do
3: Calculate JS divergence χk1,k2

r between π̃k1,V
r

and π̃k2,V
r via (11)

4: end for
5: end for
6: C1r , C2r ← argminC1

r∪C2
r=Cr

(
maxk1∈C1

r ,k2∈C2
r
χk1,k2
r

)
7: Cpr ← argmaxC∈{C1

r , C2
r} |C|

8: Compute χk,g
r by (14) for any k ∈ Cpr

9: Count the median of the remaining parameters and
calculate χk,Med

r for any k ∈ Cpr
10: Obtain joint metric νk

r ← −χk,g
r + ϵ · χk,Med

r for k ∈ Cpr
11: Calculate attention scores based on joint maliciousness

metrics for all clients in Cpr via (17)
12: Ur ← weighted sum with attention scores via (18)
13: return Ur

VI. ANALYSIS OF FEDBDA

A. Robustness Analysis

The robustness against Byzantine attacks has been defined
in previous works [2], [17], as mentioned in Definition VI.1.

Definition VI.1 ((a, b)-robustness). Supposed the proportion
of malicious clients a = K

|A| ≤ amax ≤ 0.5, we are
given local parameters {Uk1 , . . . , Ukc} with a good subset
G ⊆ {k1, . . . , kc} and |G| > (1 − a)c. For any ki, kj ∈ G,
there exists a constant ℓ > 1 such that

E∥Uki − Ukj∥2 ≤ ℓ2. (20)

Defining Ū = 1
|G|

∑
ki∈G U

ki , the output Û of the robust
aggregation satisfies

E∥Û − Ū∥2 ≤ abℓ2. (21)

Based on Definition VI.1, we derive the robustness of
FedBDA. The good subset is denoted as Gr = Cr ∩ (K\A)
in round r. The server measures JS divergences of pairwise
local variation distributions. Let local variational parameters
from benign clients satisfy

E
∥∥Γki,V

r ◦ Uki,V
r −Γkj ,V

r ◦Ukj ,V
r

∥∥2 ≤ ℓ2, ∀ki, kj ∈ Gr. (22)

With p = 0.5 and s̃2 ≤ 1, following the basic techniques of
[35], we can derive that

JS(π̃ki,V
r ∥π̃kj ,V

r )

≤ S log(N) +

∥∥Γki,V
r ◦ Uki,V

r − Γ
kj ,V
r ◦ Ukj ,V

r

∥∥2
8

≤ S log(2LD2) +
ℓ2

8
, ∀ki, kj ∈ Gr, (23)

where the total parameter size satisfies N ≤ 2LD2 for
the local model with L layers and D hidden sizes in each
layer. If local variational distribution of client kl exists
JS(π̃kl,V

r ∥π̃ki,V
r ) > S log(2LD2)+ℓ2/8, it must hold kl ∈ A.

This is a sufficient condition, and the opposite direction may
not necessarily hold. Our clustering strategy preserves benign

updates and filters some poisonous updates with larger JS
divergence differences (i.e., larger than S log(2LD2) + ℓ2/8).

For the remaining client set Cpr after clustering, there exists a
constant z ≥ 1 such that E∥Γki,V

r ◦ Uki,V
r −Γkl,V

r ◦Ukl,V
r ∥2 ≤

zℓ2 for any ki, kl ∈ Cpr , where it is possible that kl ∈ Br,
and Br denotes the malicious client set included in selected
clients in round r with Br = Cpr ∩A = Cpr − Gr. The optimal
attention factor for client ki ∈ Gr is defined as ζk,∗r = 1−a

|Gr| ,
where |Gr| > (1 − a)c such that |Br| = |Cpr | − |Gr| ≤ ac.
Referring to [2], we recall

Ūr =
1

|Gr|
∑

ki∈Gr

Γki,V
r ◦ Uki,V

r . (24)

Based on the aggregated parameters Ûr by (18), it holds that

E
∥∥Ûr − Ūr

∥∥2

= E
∥∥∥∥ ∑

kl∈Cp
r

ζk,∗r

(
Γkl,V
r ◦ Ukl,V

r

)
− 1

|Gr|
∑

ki∈Gr

Γki,V
r ◦ Uki,V

r

∥∥∥∥2

≤ 2a2E
∥∥∥∥ 1

|Br|
∑

kl∈Br

Γkl,V
r ◦ Ukl,V

r − Ūr

∥∥∥∥2

≤ 2a2

|Br|
∑
k∈Br

∥∥Γkl,V
r ◦ Ukl,V

r − Ūr

∥∥2 ≤ 2azℓ2, (25)

Thus, we prove that our variational attention-based aggrega-
tion can achieve (a, 2z)-robustness.

B. Convergence Analysis

The global variational approximation π̃g is explored in
FedBDA to estimate the tempered posteriors of all client-side
data. Sampling global weights θ ∼ π̃g , we obtain the global
model fθ. Each device k ∈ K owns its benign data Dk\Dk

A
and unknown true function fk0 such that yk = fk0 (x

k) for
any (xk, yk) ∈ Dk\Dk

A, where Dk
A = ∅ if client k is not

manipulated by the attacker. To analyze the convergence, we
start with the following assumptions.

Assumption 1. The activation functions ϕ, ϱ, and ρ are 1-
Lipschitz continuous.

Assumption 2. The absolute values of all weights in the
optimal model θ∗ have an upper bound T ≥ 2.

Assumption 1 and 2 are common in Bayesian analysis works
[35], [33] and they hold in the real world. The activation func-
tions we used (i.e., relu function ρ, tanh function ϱ, sigmoid
function ϕ) are 1-Lipschitz continuous. The optimal global
model is defined as θ∗ = argminθ∈FS,L,D

1
K

∑K
k=1 ∥fθ −

fk0 ∥22, which is fixed. Hence, the absolute values of all weights
in θ∗ are fixed, and they must have an upper bound.

Definition IV.1 shows the generalization error of a Bayesian
variational approximation. In FedBDA, we extend to the
average generalization error of the global model θ ∼ π̃g across
all client-side data, which can be defined as the expected
average of the squared L2-distance between the global model
fθ and local true functions {fk0 |k ∈ K}, i.e.,

E
[
1

K

K∑
k=1

∫
∥fθ − fk0 ∥22π̃g(dθ)

]
. (26)
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To bound (26), we first introduce a specific posterior variance

s̃2 =
S

16md2
log(3D)−1(2TD)−2L

{
1

(2TD)2 − 1

+
2

(2TD − 1)2
+
(
d+ 1 +

1

TD − 1

)2
}−1

, (27)

where m is the number of samples participating in training.
As mentioned in Section IV, the number of nonzero weights
is represented by S. The input dimension is d, and we suppose
that each hidden layer has D hidden units. Besides, L is
the number of layers in DNN. With such a specific posterior
variance, we derive the convergence of FedBDA.

Theorem 1. Let Assumptions 1 and 2 hold. Considering
different numbers of local data in different clients such that the
minimum amount of total input data up to round r is denoted
as mr = r×V ×min{|D1|, . . . , |DK |}, for any α ∈ (0, 1), the
average generalization error of the global model fθ learned by
FedBDA satisfies:

E
[
1

K

∑
k∈K

∫
∥fθ − fk0 ∥22π̃g(dθ)

]

≤ 2σ2

α(1− α)
(1 +

α

σ2
)εS,L,D

mr
+

2

K(1− α)

K∑
k=1

ξk (28)

with

εS,L,D
mr

=
ST 2

2mr
+
SL

mr
log(2TD) +

3S

mr
log(LD)

+
2S

mr
log

(
4dmax(

mr

S
, 1)

)
, (29)

and
ξk = inf

θ∗∈ΘS,L,D

∥fθ∗ − fk0 ∥2∞, (30)

where θ is the global weights sampled by (19) and σ2 is a
likelihood variance defined in Section IV-A.

The proof of Theorem 1 is shown in the appendix. Theorem
1 provides an upper bound of the average generalization
error of the global model θ ∼ π̃g , which can guarantee the
convergence of FedBDA. Specifically, it involves two cases.
First, if local true functions are actually neural networks with
the structure of (S,L,D), the term ξk calculated by (30) is
zero. Only the first term in (28) needs to be considered, in
which εS,L,D

mr
explicitly decreases with the increasing of mr,

according to (29). As training round r grows, the iterative
training data amount mr increases. Consequently, the upper
bound of the generalization error reduces as the round grows,
and FedBDA gradually converges.

On the other hand, if local true functions {fk0 |k ∈ K}
cannot be precisely represented by a neural network with the
structure of (S,L,D), the error term ξk must be measured.
Motivated by [33], [49], we assume that {fk0 |k ∈ K} are β-
Hölder smooth functions with 0 < β < d. Based on basic
techniques in [33] and Corollary 3 in [35], there exist constants

C, C ′ such that ξk ≤ Cm
−2β
2β+d
r and εS,L,D

mr
≤ C ′m

−2β
2β+d
r ·

log2mr. Hence, Inequality (28) holds that

E
[
1

K

K∑
k=1

∫
∥fθ − fk

0 ∥22π̃g(dθ)

]
≤ C1m

−2β
2β+d
r · log2 mr, (31)

where C1 > 0 is a constant. Moreover, according to the
minimax lower bound in Theorem 8 of [50], there exists a
constant C2 > 0 such that

inf
θ

1

K

K∑
k=1

∫
∥fθ − fk

0 ∥22π̃g(dθ) ≥ C2m
−2β
2β+d
r . (32)

The Inequality (31) bounds the generalization error for
FedBDA with β-Hölder smooth functions, while Inequality
(32) gives a minimax lower bound [50], [33] of the gener-
alization error. Both (31) and (32) have the same term of

m
−2β
2β+d
r , which indicates that the average generalization error

of FedBDA converges at the minimax optimal rate m
−2β
2β+d
r up

to a squared logarithmic factor for the expected L2-distance.

C. Overhead Analysis

Referring to [51], [52], we adopt Floating Point Operations
(FLOPs) to characterize computation costs, which are cor-
related with the number of parameters updated during local
training. Previous works [53], [54] have demonstrated that
the dropout can reduce client-side FLOPs, where each client
only updates nonzero parameters of the resulting model after
dropout, contributing to mitigating local computation burden.
For global aggregation, variational attention has a O(c2N)
time complexity, same as several advanced aggregations (e.g.,
ClippedClustering [10] and FoolsGold [14]). Considering the
powerful computing capability on the server, our variational
attention will not delay the training process.

As for uplink communication costs, the uploaded parameter
size is only determined by the dropout rate p. The larger
dropout rate conduces to more dropped weight units and fewer
uploaded parameters, bringing fewer uplink communication
costs. However, a larger dropout rate is more likely to deteri-
orate model accuracy [55]. Therefore, it is crucial to choose
an appropriate dropout rate for the trade-off between uplink
cost reduction and model accuracy guarantee. According to
historical experience in [56], [57], we generally adopt the
dropout rate of 0.5 in this work, which provides 2× reduction
of uplink communication costs. In terms of downlink commu-
nication, the server transfers relatively dense global parameters
to clients such that FedBDA has similar downlink costs as
conventional FL frameworks (e.g., FedAvg [1]).

VII. EXPERIMENTS

A. Experiment Setup

Datasets. We consider four classic datasets for experiment
evaluation, including MNIST [58], Fashion-MNIST (FM-
NIST) [59], CIFAR-10 [60], and Reddit [61]. Reddit is a
federated benchmark for next-word prediction, which involves
public comments posted on the social network. We adopt the
top 100 users with more data as clients, where the distributed
data are inherently non-IID. Other datasets are widely used
for image classification. MNIST and FMNIST datasets contain
60,000 gray-level images in 10 object classes. For CIFAR-10,
there are 60,000 color figures from 10 classes. We utilize the
pathological partition [53] to simulate non-IID data, where
each client is randomly assigned 2 classes of data.
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TABLE I
Accuracy and uplink cost results for various Byzantine attacks on MNIST and FMNIST.

Methods
MNIST FMNIST

ALIE IPM SF Mimic LF UpComm ALIE IPM SF Mimic LF UpComm

Median 67.35±1.56 79.69±1.51 64.61±2.59 83.30±1.60 74.44±1.09 0.83MB 62.83±2.55 69.22±1.45 67.69±1.99 67.20±1.93 71.28±1.31 7.76MB
Trim-Mean 78.39±2.27 90.38±0.72 88.41±1.56 88.03±1.61 83.80±1.23 0.83MB 69.12±1.39 76.46±1.25 74.54±1.37 73.77±0.89 72.80±1.25 7.76MB
RFA 86.51±1.00 93.16±0.57 88.67±1.48 90.98±0.95 89.77±0.78 0.83MB 72.47±0.68 76.40±0.89 76.28±1.31 74.53±0.95 75.17±1.43 7.76MB
Krum 42.78±3.10 24.54±4.43 34.90±2.47 42.16±2.42 16.57±3.29 0.83MB 32.88±1.54 34.02±1.37 41.05±2.57 35.67±1.49 37.61±3.29 7.76MB
Bulyan 86.35±2.07 91.44±1.20 91.01±1.11 87.90±0.59 91.17±0.71 0.83MB 70.78±1.58 70.56±0.73 72.50±1.25 71.32±0.58 73.84±1.38 7.76MB
FoolsGold 89.07±0.85 88.62±0.78 86.58±1.37 88.03±0.98 85.39±0.88 0.83MB 74.82±1.00 75.32±1.10 72.76±0.53 75.44±0.98 71.62±0.47 7.76MB
CC 92.33±1.82 92.41±0.44 91.82±0.86 93.36±0.69 93.80±0.44 0.83MB 73.04±1.22 72.10±0.71 71.80±0.93 72.24±0.82 72.79±0.81 7.76MB
ClippedCluster 81.29±1.48 88.20±1.07 86.33±1.39 87.55±1.76 88.55±0.84 0.83MB 71.98±1.94 75.11±1.57 73.34±0.86 71.95±1.13 75.89±1.27 7.76MB
Bucketing 90.20±1.18 93.51±1.37 92.74±1.47 93.41±1.58 92.19±1.05 0.83MB 69.70±0.60 70.58±1.28 72.40±0.62 73.18±0 71.80±0.77 7.76MB
GAS 89.03±0.82 92.96±0.85 90.47±0.84 90.89±0.61 93.92±0.40 0.83MB 74.46±0.68 76.09±0.76 73.71±0.94 74.72±1.78 75.20±1.25 7.76MB
BayBFed 83.62±0.98 93.89±0.97 93.43±0.63 94.15±0.62 93.95±1.05 0.83MB 72.93±0.96 73.71±0.91 75.28±1.61 74.54±1.11 73.42±1.18 7.76MB
FLAP 86.33±0.75 88.71±1.09 93.25±0.72 91.91±0.97 91.31±0.92 0.80MB 73.83±1.13 75.13±0.83 76.49±1.03 73.54±0.79 73.85±0.75 7.76MB
FedREP 90.64±1.07 92.31±0.77 91.32±0.69 92.13±0.60 93.43±0.46 0.43MB 72.42±0.95 71.14±0.79 72.11±1.31 73.75±1.37 73.81±0.63 3.94MB
FedBDA 95.36±0.40 95.22±0.33 95.18±0.59 95.40±0.37 95.02±0.14 0.43MB 76.08±0.95 78.74±0.65 77.67±0.82 77.42±1.07 78.86±0.71 3.94MB

TABLE II
Accuracy and uplink cost results for various Byzantine attacks on CIFAR-10 and Reddit.

Methods
CIFAR-10 Reddit

ALIE IPM SF Mimic LF UpComm ALIE IPM SF Mimic LF UpComm

Median 30.54±1.28 26.38±1.78 33.24±2.14 35.75±0.16 33.97±1.49 30.44MB 30.87±0.11 30.29±0.24 29.44±0.17 29.69±0.17 30.58±0.30 284.38MB
Trim-Mean 32.18±1.58 43.27±1.35 42.22±1.14 40.33±1.06 39.53±1.93 30.44MB 31.39±0.29 30.61±0.42 29.56±0.42 30.32±0.23 31.11±0.36 284.38MB
RFA 42.93±1.37 41.03±1.40 43.57±1.70 40.51±1.40 42.99±1.31 30.44MB 31.27±0.45 30.60±0.40 29.35±0.46 30.17±0.24 31.01±0.28 284.38MB
Krum 12.35±1.02 11.10±0.32 18.86±1.50 16.58±0.98 14.44±1.04 30.44MB 23.00±0.56 23.52±0.49 22.96±0.60 24.47±0.23 22.98±0.59 284.38MB
Bulyan 15.78±3.02 15.40±2.66 19.30±1.11 17.06±2.01 17.76±2.15 30.44MB 30.90±0.09 30.22±0.21 29.62±0.33 29.61±0.31 29.61±0.37 284.38MB
FoolsGold 42.77±0.67 43.44±2.93 43.39±1.06 38.59±1.07 43.60±1.76 30.44MB 30.27±0.41 29.22±0.18 28.24±0.33 29.06±0.13 29.46±0.30 284.38MB
CC 35.71±1.07 30.78±1.42 33.14±0.64 35.81±1.06 33.39±1.56 30.44MB 31.38±0.70 31.07±0.06 30.90±0.15 31.13±0.11 31.11±0.04 284.38MB
ClippedCluster 40.68±0.96 41.07±1.21 43.42±1.85 41.01±1.39 41.35±2.56 30.44MB 31.44±0.56 30.24±0.25 30.34±0.51 30.21±0.18 30.89±0.28 284.38MB
Bucketing 34.66±2.62 32.42±1.90 32.10±1.19 33.78±1.28 31.57±1.23 30.44MB 31.39±0.07 31.08±0.05 31.26±0.12 31.20±0.04 31.65±0.06 284.38MB
GAS 43.53±1.92 43.35±1.80 44.14±1.36 42.84±0.78 43.37±1.88 30.44MB 30.61±0.34 30.03±0.21 30.64±0.30 29.92±0.32 30.61±0.33 284.38MB
BayBFed 40.97±1.36 38.97±1.24 42.57±1.25 42.33±2.58 42.76±2.09 30.44MB 31.10±0.14 30.19±0.21 29.18±0.41 30.13±0.30 30.93±0.17 284.83MB
FLAP 38.87±0.95 41.63±0.84 43.86±0.81 41.48±1.24 40.64±1.41 30.44MB 31.67±0.11 30.18±0.12 29.28±0.57 29.98±0.19 30.74±0.48 284.38MB
FedREP 37.77±0.82 40.41±0.97 40.62±0.82 41.16±1.38 40.14±1.26 15.36MB 30.94±0.20 30.42±0.04 29.75±0.36 30.34±0.29 30.99±0.15 227.16MB
FedBDA 46.56±0.88 45.94±0.82 45.48±1.15 44.10±0.51 46.08±0.85 15.36MB 33.16±0.06 33.36±0.23 32.98±0.15 33.09±0.20 33.34±0.21 156.17MB

Models. CNN-based classification models are used for MNIST
and CIFAR-10, referring to [62], [63]. A two-layer Fully-
Connected Neural Network (FCNN) is trained on FMNIST.
Following [61], we adopt a RNN model with two LSTM layers
for Reddit, where a vocabulary with 10,000 words is built.

Implementation Settings. In our experiments, there are 100
clients for all datasets, and the proportion of malicious clients
is 10% by default. In each round, the server randomly selects
c = 10 clients to participate in training. We set a uniform
dropout rate p = 0.5 for all clients. During local training, the
batch size is set to 20, and the loss gap is evaluated every
τ = 3 iterations for Reddit. In terms of image datasets, each
client assesses the loss gap every five iterations with a batch
size of 32. We set the total round to R = 100 on three image
datasets, while R = 60 is adopted for Reddit. The boundary
of two stages in Bayesian adaptive dropout is set to τR = 55
for Reddit and τR = 90 for other datasets.

Byzantine Attacks. We consider five Byzantine attacks.

• ALIE. The attacker counts the mean Ū and standard
deviation σ̄ of benign parameters, and poisons clients by
sampling model parameters from (Ū − z1σ̄, Ū + z1σ̄).

• IPM. The model parameters of malicious clients are
tampered by − z2

|Gr|
∑

ki∈Gr
Uki with z2 = 0.1 .

• SF. The signs of all local model parameters in malicious
clients are simply flipped.

• Mimic. The attacker picks a good client and copies its
model parameters to malicious clients.

• LF. The data labels of malicious clients are flipped by
𭟋(y) := CD − y, where CD is the number of classes.

For implementation details, Byzantine attacks are injected
into malicious clients in each round. Due to the random
client selection, a portion of malicious clients are selected to
participate in training in each round. Referring to [16], [17],
[64], attacked operations and target clients remain unchanged
throughout the FL process. For the malicious client, the first
four model parameter-based attacks (i.e., ALIE, IPM, SF, and
Mimic) poison parameters once in a random iteration during
local training. After local training, the same attack is injected
again before parameter transmission, following [10], [17].
The final local parameters are partially masked based on the
dropping pattern and then transmitted in a sparse form. Data-
based LF attack relabels a data class of malicious clients, and
these wrong data are used to train in the FL process [65].
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(a) The evaluation results of AER, TPR, TNR for FedBDA with ALIE.
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(b) The evaluation results of AER, TPR, TNR for FedBDA with LF.

Fig. 3: The attack resistance results about AER, TPR, TNR.

Baselines. We compare against a variety of robust FL frame-
works, including (1) statistical aggregations, (2) distance-based
defenses, and (3) combined strategies with auxiliary defenses
and resilient aggregations. For statistical aggregations, we
consider Median, Trim-Mean [12], and RFA [66], which calcu-
late the coordinate-wise median, trimmed mean, and geometric
median of all local updates to estimate new global parameters.
For distance-based defenses,

• Krum [13] and Bulyan [8] are typical distance-based
aggregations, which detect and penalize some malicious
clients according to Euclidean distances.

• FoolsGold [14] identifies malicious updates based on
cosine similarity of pair-wise local updates.

• Centered Clipping (CC) [2] clips local updates based on
L1 distances between local and global model parameters.

• ClippedCluster [10] integrates local update clipping and
cosine similarity-based clustering.

In terms of combined strategies, we compare against
• Bucketing [17] locally weighs current updates with the

updates in the last round, globally partitions all updates
into several buckets, and aggregates the averages of every
bucket by existing robust rules (e.g., CC).

• GrAdient Splitting (GAS) [28] splits local gradients into
sub-vectors and detects malicious gradients by evaluating
L1 distances between sub-vectors.

• BayBFed [18] filters out malicious updates by drawing
probabilistic distributions of local updates and adapting
the Chinese Restaurant Process to JS divergences between
pairwise distributions.

• FLAP [32] zeros out partial weight units of the global
model after server-side robust aggregation.

• FedREP [31] introduces magnitude-based unstructured
sparsification into local models, and sparse updates are
aggregated with existing resilient rules on the server.

Evaluation Metrics. In our experiments, test accuracy is
used as a main metric, which can show the overall learning
performance under Byzantine attacks [11], [67]. Referring to
[18], [68], we further introduce three metrics to intuitively
reflect the ability to resist attacks, including: (1) Attack

TABLE III
Malice resistance degree of two modules.

MCR
MNIST FMNST CIFAR-10

BAD VAA BAD VAA BAD VAA

ALIE-0.1 80% 20% 75% 25% 86% 14%
ALIE-0.2 75% 25% 88% 12% 80% 20%
ALIE-0.3 95% 5% 85% 15% 95% 5%
ALIE-0.4 48% 42% 87% 10% 83% 15%

LF-0.1 80% 20% 65% 18% 80% 10%
LF-0.2 90% 10% 80% 5% 73% 18%
LF-0.3 90% 10% 80% 5% 72% 8%
LF-0.4 80% 2% 65% 12% 52% 23%

Escape Rate (AER) [68] indicates the rate at which malicious
clients escape from the defense method, equivalent to the
success rate of attacks [64]. A smaller AER means stronger
attack resistance. (2) True Positive Rate (TPR) [18] indicates
how accurately the defense resists attacks. The total number
of correctly recovered/detected malicious clients is called True
Positives (TP), and the number of malicious clients judged to
be benign is called False Negatives (FN). TPR = TP / (TP
+ FN). (3) True Negative Rate (TNR) [18] indicates the
ability to identify benign clients. The total number of correctly
identified benign clients is called True Negatives (TN), and the
number of benign clients detected to be malicious is called
False Positives (FP). TNR = TN / (TN + FP).

B. Experimental Results

The test accuracy and uplink communication results of four
datasets on various attacks are listed in Table I and II. For
the next-word prediction task on Reddit, we adopt the top-3
accuracy to evaluate global benign performance, since mobile
keyboards generally include three candidates, as mentioned in
[69]. We observe that FedBDA consistently achieves state-of-
the-art accuracy with fewer uplink communication costs on
four datasets with different Byzantine attacks.

First, statistical aggregations Median and Trim-Mean gen-
erally offer poor performance on image classification tasks,
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Fig. 4: Test accuracy versus rounds on four datasets with ALIE attack.
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Fig. 5: Test accuracy versus total uplink communication costs on four datasets with ALIE attack.

especially under ALIE and mimic attacks. It implies that
simple median and mean aggregation can be bypassed by
some Byzantine attacks. RFA explores the geometric me-
dian through alternating minimization, which typically shows
higher accuracy than Median and Trim-Mean. Compared to
RFA, FedBDA presents significant benefits in accuracy and
uplink efficiency, which improves 1.39%-8.85% accuracy with
2× uplink cost reduction on four datasets under ALIE attack.

Second, two typical distance-based methods Krum and
Bulyan show poor performance in non-IID settings. With
cosine similarity of pairwise local updates, FoolsGold out-
performs Krum and Bulyan, which has the second-highest
accuracy on CIFAR-10 with IPM and LF attacks. Compared
to FoolsGold, FedBDA achieves up to 9.31% accuracy gains
while reducing 2× uplink costs. Besides, parameter magni-
tude clipping is proposed in CC, and ClippedCluster further
integrates it with cosine similarity-based clustering. We notice
that ClippedCluster generally provides higher accuracy than
CC on CIFAR-10 and Reddit, while FedBDA outperforms
ClippedCluster in both test accuracy and uplink costs.

Furthermore, although Bucketing and GAS integrate auxil-
iary defenses with robust aggregations to alleviate the non-IID
problem, they still are not enough to solve the performance
degradation problem and offer lower accuracy in our highly
non-IID settings, as shown in Tables I and II. FedBDA outper-
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Fig. 6: Time to Target Accuracy (TTA) evaluations.

forms Bucketing and GAS in accuracy and uplink efficiency,
which achieves 1.1%-6.33% accuracy improvements while
reducing 2× uplink costs compared to GAS. With probabilistic
measures of local updates, BayBFed provides the second-
largest accuracy on MNIST with four attacks. Compared with
BayBFed, FedBDA provides 1.66%-11.74% accuracy gains
with 2 × uplink cost reduction. Moreover, FLAP and FedREP
introduce dropout into robust FL. FLAP prunes the global
model in the server, which only affects downlink overhead
without involving more constrained uplinks. FedREP sparsifies
client-side model parameters and is applied to fully connected
and convolutional layers in [31] without considering recurrent
layers. Thus, for image classification tasks with CNNs or
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TABLE IV
Ablation experiment results.

Methods MNIST FMNIST CIFAR-10 Reddit

FedAvg 87.84±0.88 74.34±1.22 42.91±1.18 29.31±0.62

B-FedAvg 93.30±0.70 75.66±2.05 44.24±1.73 29.61±0.17

B-VAA 95.41±0.59 76.29±1.84 45.15±1.48 29.99±0.39

BD-FedAvg 94.83±0.23 76.42±0.73 44.36±1.06 31.59±0.12

FedBDA 95.18±0.59 77.67±0.82 45.48±1.15 32.98±0.15
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Fig. 7: The local update distribution for the malicious client.

FCNN, FedBDA does not significantly outperform FedREP in
uplink costs, but it increases accuracy by 1.59%-8.79% com-
pared to FedREP. For Reddit with LSTM models, FedBDA
can accommodate recurrent connections, which brings 1.5 ×
uplink reduction compared to FedREP. Meanwhile, FedBDA
offers up to 2.35% accuracy gains on Reddit.

Resistance. To intuitively reflect the ability to resist attacks,
we evaluate AER, TPR, and TNR under different malicious
client ratios. Note that if the test accuracy of the local model
trained with Bayesian Adaptive Dropout (BAD) under attacks
is better than the received global model, the malicious client
is considered to be successfully resisted during local training.
As for calculating the three metrics, FedBDA integrates local
attack resistance of BAD and global resistance of Varia-
tional Attention-based Aggregation (VAA). Similarly, FedREP
jointly considers the attack resistance of local magnitude-based
dropout and global resilient aggregation with distance-based
clustering. As shown in Figure 3, FedBDA consistently outper-
forms baselines in terms of AER and TPR, which overcomes
all malicious clients in most cases, achieving AER = 0 and
TPR = 1. For TNR, FedBDA generally provides higher TNR,
sometimes reaching TNR = 1. Compared to ClippedCluster,
FedBDA can decrease 10%-80% AER and improve up to 80%
TPR with up to 19% TNR gain. Besides, FedBDA achieves
10%-60% reduction in AER and up to 60% gain in TPR,
compared to FedREP. With the increase of the malicious client
ratio, FedBDA still effectively resists the Byzantine attack and
maintains the lowest AER and highest TPR.

Furthermore, we analyze the resistance degree of the two
modules of FedBDA (i,e., BAD and VAA) separately. Table
III shows the results of the two modules under ALIE and
LF attacks. If the test accuracy of the uploaded local model
is better than that of the original global model, we consider
that the malice is successfully resisted by BAD. For ALIE
attacks, BAD removes malicious units with the benignity-
guided dropping pattern when the attacker injects the attack
during local training. Even if the attack is injected again before
transmission, the highly malicious units can also be promptly
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Fig. 8: Test accuracy of local models for the malicious client.

dropped based on the benignity-guided pattern, so that the
model accuracy will not fluctuate greatly, guaranteeing the
success of BAD. For data-based LF, BAD can mitigate model
shifts caused by the poisoned data during client-side training
to ensure local robustness. The reason why the sum of BAD
and VAA terms is not up to 1 is that FedBDA cannot resist all
malicious clients (i.e., AER > 0) in a few cases. By observing
the experimental results, we get that local BAD can catch most
malicious attacks, the remaining small amount of malicious
clients are resisted by global VAA. For instance, on MNIST
with 10% malicious clients, BAD can cover 80% malicious
attacks, while the remaining 20% is defended by VAA.

Convergence. To evaluate the convergence of FedBDA, we
report the test accuracy varying with global rounds and total
uplink costs. We observe from Fig. 4 that FedBDA quickly
converges to higher accuracy than baselines. For example,
FedBDA reaches up to 46% accuracy on CIFAR-10 with
the ALIE attack after 100 rounds, while ClippedCluster and
FedREP offer less than 40% accuracy. Besides, FedBDA
consistently provides the highest accuracy under the same
uplink costs, as shown in Fig. 5. For MNIST, FedBDA reaches
95.76% with 40MB uplink costs, while FLAP and FedREP
only offer 80.39% and 89.43% accuracy, respectively.

For further quantifying efficiency advantages of FedBDA,
we adopt Time to Target Accuracy (TTA) [70] to characterize
the total running time reaching target accuracy. TTA results are
shown in Fig. 6, where ’None’ means that the method cannot
achieve target accuracy. 81%, 72%, 38%, and 31% are preset
target accuracy for MNIST, FMNIST, CIFAR-10, and Reddit.
We notice that Trim-Mean cannot reach the preset target accu-
racy for FMNIST and CIFAR-10, and BayBFed is unable to
obtain 32% accuracy on Reddit. Although FedREP alleviates
the uplink burden, it utilizes unstructured sparsification and
needs to traverse all model weights, leading to larger time
delays for complicated models. Thus, FedREP shows the larger
time costs on CIFAR-10 and Reddit with complex models. It
can be seen that FedBDA always takes the shortest time to
obtain target accuracy. For CIFAR-10, FedBDA reaches 38%
after 70.15s, which reduces more than 40% (vs. 12.83s) time
delay compared to the state-of-the-art method. For MNIST,
FedBDA saves 56.9% time costs compared to baselines.

C. Ablation Studies

We verify the effectiveness of two core modules (i.e.,
Bayesian adaptive dropout and variational attention-based
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Fig. 9: Test accuracy versus malicious client ratios on four datasets.

aggregation) in FedBDA. First, we evaluate the impact of
Bayesian models under FedAvg. Table IV shows the accuracy
results of conventional FedAvg (with fixed model parameters)
and FedAvg with Bayesian models (i.e., B-FedAvg) where
model parameters are viewed as random variables. We observe
that B-FedAvg achieves significant accuracy gains on MNIST
and FMNIST compared to FedAvg. In particular, B-FedAvg
improves accuracy by more than 5% on MNIST.

Effect of Benignity Indicator-based Bayesian Dropout.
Without dropout, each client directly trains a dense Bayesian
model and the server aggregates local updates with variational
attention (i.e., B-VAA). As shown in Table IV, for MNIST,
FedBDA reduces 2× uplink costs with the accuracy guarantee
compared with B-VAA. For the other three datasets, FedBDA
outperforms B-VAA in accuracy and uplink costs, indicating
the effectiveness and efficiency of Bayesian adaptive dropout.

To further verify the local success of BAD , we compare the
partial parameter distributions of local updates in the malicious
client. As shown in Figure 7, the LF attack causes local up-
dates to severely deviate from the original distribution without
the attack. While BAD with benignity indicator effectively
addresses this deviation and brings local updates closer to
the original distribution, which proves that BAD can remove
malicious weight units to maintain a benign model distribution,
thereby mitigating local performance loss. Quantitatively, we
evaluate the local model accuracy of the malicious client on
the test dataset to demonstrate the performance advantage of
the BAD. As shown in Figure 8, without dropout, LF and
ALIE attacks severely degrade local accuracy. The magnitude-
based dropout in FedREP slightly alleviates the loss, but the
local accuracy is still much lower than the cases without the
attack (i.e., w/o attack). Under the Byzantine attack, BAD can
generally recover the local accuracy to the same level as the
unattacked case, or even slightly improve it, which indicates
the effectiveness of our Bayesian dropout.

Effect of Variational Attention-based Aggregation. With
Bayesian models, we compare the test accuracy of B-FedAvg
and B-VAA, where only the global aggregation strategies
are different. It can be seen from Table IV that B-VAA
consistently outperforms B-FedAvg in terms of test accuracy
on four datasets, demonstrating the advantages of our varia-
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Fig. 10: Test accuracy on different non-IID levels.

tional attention-based aggregation. Furthermore, with Bayesian
adaptive dropout, we also evaluate the performance of average
aggregation (i.e., BD-FedAvg) and variational attention-based
aggregation (i.e., FedBDA). We observe that BD-FedAvg
always shows lower test accuracy than FedBDA across four
datasets, implying that our variational attention-based aggre-
gation effectively enhances the robustness of the global model.

D. Hyperparameters Test

We analyze the impact of several hyperparameter settings,
including malicious ratios, non-IID levels, divergence weight-
ing factor, and dropout rates.

Malicious Client Ratios. Fig. 9 shows the accuracy results
under different malicious ratios. We observe that FedBDA
keeps the best performance under different malicious ratios,
compared to other baselines. Generally, as more malicious
clients are injected, the global model accuracy declines. Trim-
Mean performs worst on MNIST and FMNIST with below
83% and 71% accuracy. Although FedREP mitigates uplink
overhead, it provides the poorest performance for CIFAR-
10 and Reddit. FedBDA achieves apparent accuracy gains on
FMNIST and CIFAR-10, bringing up to 10% improvement
compared to the state-of-the-art baseline.

Non-IID Levels. The accuracy results of different non-IID
levels are reported in Fig. 10, where non-IID levels are
characterized by the missing number of classes in the training
data, and the more lacking classes indicate the higher non-
IID degrees. As shown in Fig. 10, FedBDA consistently
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Fig. 11: Test accuracy versus divergence weighting factors ϵ.

��� ��� ��� ��	 ��
 ��� ���
����� ������

��
�

���


�����

����


���
�

�
��
 �
��
"

����!�
����
������
������

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7

TT
A

 (s
)

Dropout rate

FedAvg FLAP
FedREP FedBDA

(a) Accuracy and TTA versus dropout rates on MNIST.

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7

TT
A

 (s
)

Dropout Rate

FedAvg
FLAP
FedREP
FedBDA

��� ��� ��� ��	 ��
 ��� ���
������������

����

����

���	

����

���

���

�
��
��
��
!

���� �
����
������
������

(b) Accuracy and TTA versus dropout rates on FMNIST.

Fig. 12: Accuracy and TTA versus dropout rates.

outperforms baselines under different non-IID levels. The ac-
curacy gains are more obvious on CIFAR-10, where FedBDA
enhances accuracy by 2.4%-5.6% compared to the state-of-
the-art baseline. The colorful CIFAR-10 images contain more
complicated features than gray-level images of MNIST, thus
FedBDA performs better on complex datasets. The global
performance generally decreases with the increase of non-
IID levels. While the accuracy advantage of FedBDA becomes
apparent as the non-IID level rises, especially on CIFAR-10.

Divergence Weighting Factor ϵ. In (16), divergence weight-
ing factor ϵ is introduced to obtain the joint maliciousness
metric, which affects the attention scores of local updates. We
evaluate test accuracy under different divergence weighting
factors ϵ ∈ {0.2, 0.4, 0.6, 0.8, 1}. As shown in Figure 11,
different choices of ϵ have a little fluctuation in accuracy.
Empirically, we recommend setting ϵ ∈ [0.6, 0.8]. Notably, the
test accuracy of FedBDA is consistently better than that of the
state-of-the-art method under different divergence weighting
factors, proving the robustness of FedBDA.

Dropout Rates. So far, there have been many empirical
discussions about dropout rate settings [55], [56], [57], [71].
Following [57], [71], the dropout rate should be set em-
pirically between 0.1 and 0.6 for the trade-off between ac-
curacy and efficiency. We evaluate the test accuracy and
Time to Target Accuracy (TTA) for different dropout rates
p ∈ {0.1, 0.2, . . . , 0.7} on MNIST and FMNIST with the LF

TABLE V
The comparison of dropout rate strategies.

Dataset
Fixed (p = 0.5) Ada (p ∈ [0.1, 0.6])

Acc (%) UpComm Acc (%) UpComm

MNIST 95.02±0.14 43MB 95.12±0.28 59MB
FMNIST 78.86±0.71 394MB 77.45±0.50 565MB
CIFAR-10 46.08±0.85 1536MB 46.14±0.74 2193MB
Reddit 33.34±0.21 9.15GB 33.22±0.28 9.38GB

attack. As shown in Fig. 12, accuracy results of FedREP and
FLAP generally trend downward as the dropout rate increases.
With p ≤ 0.5, FedREP and FLAP outperform FedAvg.
However, the performance of FLAP significantly drops at
p > 0.5, even 3.15% lower than FedAvg on FMNIST. FedREP
shows 0.86% accuracy loss at p = 0.7. As for time delay,
FedREP and FLAP take more time to reach the target accuracy
than FedAvg at some dropout rates (e.g., p = 0.3 and p = 0.6
on FMNIST). Noticeably, FedBDA can provide the highest
accuracy with the least time costs compared to baselines,
demonstrating the effectiveness and stability of FedBDA.

Furthermore, FedMP [55] proposes a Multi-Armed bandit-
based online learning strategy to adaptively determine dropout
rates, which is orthogonal to our work and can be directly
applied to FedBDA. As shown in Table V, we compare
the fixed setting with p = 0.5 and the adaptive strategy in
FedMP under the FedBDA framework. The adaptive strategy
slightly improves accuracy on MNIST and CIFAR-10 with
more uplink costs. For FMNIST and Reddit, the fixed setting
with p = 0.5 performs better than the adaptive strategy.

E. Discussion
The variational attention-based aggregation in FedBDA has

a computational complexity of O(c2N), where c is the number
of selected clients in a round and N is the parameter size.
This quadratic complexity can be alleviated by approximate
attention to make our framework more feasible for large-
scale FL. We explore a simpler approximate attention mecha-
nism, Global-Median Divergence-based weighted Aggregation
(GMDA), which removes the clustering step of FedBDA. For
c local updates of the selected clients in a round, GMDA
integrates their JS divergences with the global distribution
and with the median distribution into the joint metric in (16)
as the aggregation weight. In this way, the computational
complexity of the GMDA is reduced to O(cN), where N
is the number of global variational parameters. As shown in
Table VI, GMDA performs slightly worse than Variational
Attention-based Aggregation (VAA) in most cases, but it
always outperforms other baselines as listed in Table I and
Table II. Thus, GMDA with a O(cN) complexity can be
considered in large-scale FL deployments. Our proposed VAA
generally achieves the highest accuracy, which is a better
choice in scenarios with strict accuracy requirements.

VIII. CONCLUSION

In this paper, we propose a novel FL robust framework,
termed FedBDA, which takes the first step to locally quantify
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TABLE VI
Accuracy results of the approximate attention and our variational attention aggregations.

Attacks
MNIST FMNST CIFAR-10 Reddit

GMDA VAA GMDA VAA GMAD VAA GMDA VAA

ALIE 93.12±0.40 95.36±0.40 76.99±0.68 76.08±0.95 45.42±0.82 46.56±0.88 33.41±0.15 33.16±0.06

IPM 94.01±0.46 95.22±0.33 78.39±0.69 78.74±0.65 45.43±0.74 45.94±0.82 33.01±0.22 33.36±0.23

SF 92.68±0.69 95.10±0.59 77.05±0.67 77.67±0.82 44.61±0.79 45.48±1.15 32.86±0.24 32.98±0.15

Mimic 94.25±0.50 95.40±0.37 77.50±0.41 77.42±1.07 44.09±0.76 44.10±0.51 32.71±0.16 33.09±0.20

LF 94.70±0.91 95.02±0.14 77.63±0.63 78.86±0.71 45.04±1.12 46.08±0.85 33.28±0.30 33.34±0.21

weight units-wise benign scores and enables dual local-global
robustness guarantee with theoretical Bayesian interpretation
in non-IID settings. Specifically, we introduce variational
Bayesian inference into local models to characterize dropout
using spike-and-slab distributions. Each client independently
maintains a unit-wise benignity indicator according to local
performance changes, and adaptively drops poisonous and in-
significant units of local variational distributions for client-side
robust training. Furthermore, a variational attention scheme
is designed to globally detect the potential maliciousness of
local variational distributions based on joint metrics of JS
divergence among local, global, and median distributions for
resilient weighted aggregation. The effectiveness and effi-
ciency of FedBDA are demonstrated through formal theoreti-
cal analysis and extensive experiments on four classic datasets.
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