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Abstract—TCP incast has become a practical problem for high-
bandwidth, low-latency transmissions, resulting in throughput
degradation of up to 90% and delays of hundreds of milliseconds,
severely impacting application performance. However, in virtu-
alized multi-tenant data centers, host-based advancements in the
TCP stack are hard to deploy from the operators perspective.
Operators only provide infrastructure in the form of virtual
machines, in which only tenants can directly modify the end-host
TCP stack. In this paper, we present R-AQM, a switch-powered
reverse ACK active queue management (R-AQM) mechanism
for enhancing ACK-clocking effects through assisting legacy
TCP. Specifically, R-AQM proactively intercepts ACKs and
paces the ACK-clocked in-flight data packets, preventing TCP
from suffering incast collapse. We implement and evaluate R-
AQM in NS-3 simulation and NetFPGA-based hardware switch.
Both simulation and testbed results show that R-AQM greatly
improves TCP performance under heavy incast workloads by
significantly lowering packet loss rate, reducing retransmission
timeouts, and supporting 16 times (i.e., 60→1000) more senders.
Meanwhile, the forward queuing delays are also reduced by 4.6
times.

I. INTRODUCTION

Data centers have evolved rapidly over the last few years,
providing a wide variety of cloud services [1], [2] using
TCP as the dominant transport layer protocol. However, the
TCP incast problem causes drastic performance degradation
when multiple senders synchronously send data to one re-
ceiver (i.e., many-to-one communication) with high-bandwidth
and low-latency links [3], [4]. As the number of senders
increases, bottleneck switches can quickly become overfilled.
Inevitable packet drops would impose TCP retransmission
timeout (RTO) for hundreds of milliseconds, resulting in
goodput (the application-level throughput [5]) reduction of up
to 90% [6], which affects the performance of applications.

Recently, a large number of improvements of TCP have
been proposed [1], [6]–[10]. Some work identifies the cause
of performance degradation and suggests adjusting existing
congestion control (CC) parameters to match the data center
network. For instance, Reducing-RTO [6] reduces the min-
imum retransmission timeout (RTOmin) value and reduces
unnecessary waiting after packet drops. Others have suggested
redesigning CC, using a new lossless RDMA (Remote Direct
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Memory Access) based network stack, or even designing
entirely new data center transmission protocols. For example,
DCTCP [1] accurately controls the total throughput through
the explicit congestion notification (ECN) identifier provided
by the switch to avoid overloading the switch buffer and packet
loss. DCQCN [8] is a CC for the lossless network protocol
RoCEv2 (RDMA over Converged Ethernet version 2) [11],
which uses Priority-based Flow Control (PFC) [12] to avoid
buffer overflow by forcing the immediate upstream entity to
pause data transmission. NDP [9] redesigns the entire data
center transport protocol, including routing and CC, to provide
low latency and high throughput.

Although many of the above proposals have proven to be
commercially available, they face a great challenge on real-
world deployment in public and multi-tenant data centers [13].
This is because that the common physical infrastructures such
as switches and network interface cards (NIC) are shared
by multiple tenants in the form of virtual machines (VMs).
It is the tenants who are able to deploy applications in
the VMs, select the corresponding transport layer protocols,
and decide end-system protocol stack parameters such as
ECN support and RTOmin value. Consequently, from the
perspective of operators of multi-tenant data centers, when the
tenants have already run the VMs, it requires more effort to
modify the network protocol stack than to modify the common
physical infrastructures (see Section II-B). In this case, simply
changing the controllable physical infrastructure without any
modifications to the legacy transport protocol stack in order
to improve transmission performance transparently would be
a contribution for data center operators.

A basic idea of transparently enhancing the transport proto-
col stack is an intrusive modification to the headers of packets
forwarded by switches. For example, HSCC [14] rewrites
the value of the receive window (denoted by rwnd) to one
MSS (Maximum Segment Size) in the ACK headers for all
congested flows. These approaches, however, are limited by an
artifact of the current window-based transport protocol design
(e.g., NewReno [15], CUBIC [16], and DCTCP [1]), in which
the window indicates the number of full-sized packets. In other
words, rwnd can not be rewritten to a proper fraction (i.e.,
rwnd /∈ (0, 1)). This coarse granularity significantly limits
the scale of concurrency.

In this paper, we present a new mechanism called R-AQM978-1-6654-4131-5/21/$31.00 ©2021 IEEE
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Figure 1. The general idea of R-AQM an illustrative example.

(Reverse Active Queue Management), which is transparent to
end-systems and fine-grained. Figure 1 illustrates the general
idea of R-AQM. The fundamental premise of R-AQM is
ACK-clocking [17], i.e., ACKs not only acknowledge receipts
of data packets but also trigger new packet sending. Unlike
existing AQM schemes [18], [19] that intrusively modify the
content of packets, R-AQM proactively intercepts ACKs to
prevent the source from sending the next packet too fast, which
also slows down the increase of the sending window. In this
way, R-AQM is able to deploy active queue management for
ACKs in the reverse path to adjust the in-flight traffic without
overwhelming the switch in the case of incast congestion.

The rest of the paper is organized as follows. We introduce
the background of the TCP incast problem, the deployment
challenges for multi-tenant data centers, and the degradation
of goodput by RTO in Section 2. Section 3 illustrates the
design rationale of our solution. The detailed design of R-
AQM is demonstrated in Section 4. In Section 5, we address
the implementation of R-AQM on NetFPGA. In Section 6 and
Section 7, we evaluate R-AQM in NS-3 and a small-scale
testbed. Section 8 surveys the related work. Finally, Section 9
concludes this paper.

II. BACKGROUND AND MOTIVATION

A. TCP Incast Problem Hurts Transmission Performance

TCP incast is a catastrophic goodput collapse that occurs as
the number of servers sending data to a client increases beyond
the ability of an Ethernet switch to buffer packets. This sce-
nario often happens intra data center communication when re-
questing data for file systems [20], during the shuffle phase of
cloud computing systems [21], and in the partition/aggregate
pattern of large-scale web applications [1]. The synchronous
request workload causes packets to exceed the buffer on the
bottleneck link, resulting in severe packet losses. Packet loss
further causes costly timeout, which lasts for hundreds of
milliseconds (varies in different scenarios). As a result, the
goodput of the link drops due to wasting opportunities for
sending data during the retransmission timeouts. We also give
a quantitative analysis on the TCP incast problem below.

Assume that N incast flows with the same RTT are sharing
a bottleneck link with the capacity of C. Each flow needs to

send X bits, let n be the number of RTTs it takes to complete
the transfer of one flow and m be the average RTO times. As
illustrated in [14], the average goodput of the link is given by:

Goodput =
X

n ·RTT +m ·RTO + X·N
C

In the case that RTT = 100µs and RTO = 100ms (the lower
bound in the Linux implementations), since RTO is usually
three orders of magnitude larger than RTT, it is easy to see
that a single time of RTO can lead to a sharp drop in goodput.

B. Deployment Challenges for Multi-tenant Data Centers

To control the TCP incast, data center operators need to up-
grade their hardware and (or) software. In private data centers,
administrators can not only change the physical infrastructure
such as switches and network interface cards (NIC), but also
modify the transport protocol stack at end-systems. Therefore,
improvements (e.g., Reducing-RTO [6], DCTCP [1], DCQCN
[8], NDP [9]) are possible to be deployed by systematically
upgrading infrastructures and systems.

However, in public and multi-tenant data centers, it requires
more effort for operators to modify the network protocol
stack than to modify the common physical infrastructures.
In virtualized multi-tenant data centers [13], [22], the com-
mon physical infrastructures are shared by multiple tenants
in the form of virtual machines (VMs). Generally, the data
center operators deploy a default transport protocol stack in
the system image of each VM. It is the tenants who are
able to deploy applications or systems in the VMs, select
the corresponding transport layer protocols, and decide end-
system protocol stacks (e.g., Use BBR [23] between the user
and the data center, use DCTCP [1] or NewReno [15] with
ECN within the data center) and parameters (e.g., ECN support
and RTOmin value).

Consequently, from the operators’ perspective, it requires
extra effort to modify the network protocol stack after tenants
have already run the VMs. For example, enabling virtual
CC in the hypervisor as specified in prior works such as
AC/DC TCP [24] and vCC [25]. Both of which provide
congestion agents in the hypervisor that transparently place
efficient CCs for tenant VMs. However, these methods require
full TCP state tracking and full TCP finite-state machines in
the hypervisor, which may overload the hypervisor and slow
it down considerably. In addition, since incast usually happens
on the last-hop switch, the end-to-end hypervisor-based way
may still suffer from incast problems. In other words, simply
applying the hypervisor-based solution only solves part of the
problems [9].

Based on above observations, we seek a solution that not
only works on the incast problems, but also requires no change
to the TCP stack at end hosts.

C. Fine Granularity Requirement of Window Control

HSCC is a switch-based congestion controller [14] that
rewrites the value of receive window (denoted by rwnd) to
one MSS (Maximum Segment Size) in the ACK headers for
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Figure 2. The experiment to show the incast problem.

all congested flows without modifying TCP itself. However,
HSCC cannot cooperate with legacy TCP CCs very well in
data centers. Legacy TCP CCs in the Linux Kernel are almost
window-based (NewReno [15], CUBIC [16], BBR [23], and
DCTCP [1]). These window-based CCs have fundamental
flaws in small RTT networks, because they cannot reduce the
sending window infinitely (i.e., not less than 1 MSS). Since
the bandwidth-delay product (BDP) in a data center netowrk
is usually small due to the small RTT, it is very easy for
the in-flight packets to become less than the BDP+buffer. In
this case, the extra packets can only be dropped or be resent
by retransmission. However, when incast occurs, flows may
fail to build large enough in-flight packets to recover via
fast retransmission (e.g., 3-duplicate ACKs). As a result, this
coarse granularity significantly limits the scale of concurrency
and we need fine-grained window control.

To motivate the requirement of fine-grained window control,
we give a modeling analysis as below. Assume that the window
size of flow i at time t is wi(t), the switch buffer and the link
capacity are B and C, respectively. The queue size q(t) in the
switch at time t in the case of N incast flows is given by:

q(t) =

N∑
i=1

wi(t)− C·RTT

In the case of a large number of concurrent flows when
N ·MSS − C·RTT ≥ B, a considerable proportion of
flows may fall back to the stop-and-wait paradigm to avoid
packet loss and RTO. That is, there must be some flows
stopping sending data and setting the window to zero. This
coarse granularity significantly limits the scale of concurrency.
Particularly, the number of concurrent flows is limited to 4060
in most modern switches [1], [26], [27]. However, this is not
nearly enough to sustain real data center communications.
For example, a cluster running data mining tasks have more
than 80 concurrent flows per node [28], [29]; In Facebook’s
Memcached cluster [30], a single Web server may access
over 100 Memcached servers. Worse, a production data center
with 6000 servers supporting Web search applications has
over 1000 concurrent traffic on work nodes [1]. It is obvious
that even 1 MSS of sending window per flow is enough to
overwhelm the switch buffer on a synchronous burst.

To better understand how does the granularity of window
control impacts the scale of concurrency, we further conduct
a simulation. Each sender sends a 320KB message to a fixed

receiver. Three common CCs (NewReno with ECN, NewReno
without ECN, DCTCP) and one particular CC that always sets
the congestion window to 1 MSS (similar to HSCC [14]) are
investigated. Figure 2 shows the goodput and RTO times with
different scales of concurrency. Some insights are listed below:

(1) Even one RTO occurs, the loss of goodput is enormous.
(2) NewReno does not work well. Even with ECN, the

number of senders cannot exceed 10.
(3) DCTCP can alleviate the occurrence of incast collapse,

but the concurrency can only be maintained around 60.
(4) Even if the sending window is always 1 MSS, only about

80 concurrent flows can be maintained.
In summary, a more fine-grained window control is needed

to solve the incast problem. Meanwhile, switch-based mech-
anisms have the potential to overcome the deployment chal-
lenges for multi-tenant data centers. These greatly motivate
the design ideas and principles of R-AQM.

III. DESIGN RATIONALE

Our goal is to design an incast control mechanism in
the multi-tenant data center to handle as many concurrent
connections as possible effectively. We came up with a new
active ACK control approach called R-AQM. The critical
factor that inspires the new ACK control approach is that if a
sender does not receive an ACK, the sender cannot send the
next data packet. If the ACK can be intentionally delayed,
the senders’ following sending action will also be delayed
accordingly. The protocol that relies on the arrival of ACK
packets to infer that the network can accept more packets is
called window-based ACK-clocking protocol [17], [31].

When incast occurs, the switch can proactively intercept the
ACK packet in the backward direction and send ACKs at a
rate that does not make the ACK-triggered data packet over-
whelming the switch. In this way, we can leverage active ACK
control to adjust in-flight traffic without being constrained by
the minimum window size shared by window-based solutions.
We only need to adjust the ACK rhythm appropriately in the
switch. Consequently, it is ideal for multi-tenant cloud data
center networks. Moreover, because the bottleneck switch can
capture the instantaneous queue length, it can sense incast
more quickly and thus make decisions more quickly to prevent
further congestion.

The rationale of R-AQM is to lower the nontrivial forward
data queuing delay by introducing a trivial backward ACK
queuing delay. In the incast traffic pattern applications, the for-
ward packet is usually the service request packet (e.g., Reduce
in MapReduce [21]), while the reverse packet is usually only
the ACK without piggybacked data. Compared with the ACK’s
backward queuing delay, applications pay more attention to
the forward queuing delay of the data packets. Forward delay
refers to the time taken by a packet departing from the sender
to the receiver, which is very important for the application’s
QoE. Backward delay in the reverse direction only delays the
confirmation of a data packet [32], [33], which does not greatly
impact application QoE.
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Figure 3. Window Size and Queue Size Process.

Figure 3 shows the window size and queue size with R-
AQM and ECN. We now analyze the steady-state behavior of
the R-AQM control loop in a simplified setting to understand
how to convert the forward queuing delay to the backward
queuing delay. We assume that the N flows are synchronized
for convenience of understanding; i.e., their sawtooth window
dynamics are in-phase. At time t0, output queue length (Qout)
exceeds Kr−aqm, and the switch starts to buffer ACKs ac-
tively. From time t0 to t1, the senders need time to react to
the ACK buffer action on the switch. From time t1 to t2,
the senders do not receive ACKs, so the window remains
unchanged. Meanwhile, the sending window does not change,
the total number of packets in the network also does not
change, so Qin+Qout remains unchanged. But the input queue
length (Qin) begins to grow, and the output queue length
(Qout) begins to decline. At time t2, the source begins to
receive ACKs again. R-AQM will repeat the same action to
keep Qout at a low level while the extra inflight ACK packets
are stored in Qin. Through the above steps, the data queue
transforms into the ACK queue, and the forward queuing delay
transforms into the backward queuing delay. R-AQM alleviates
the excessive window growth rate of DCTCP (Figure 3(b))
without loss of throughput (Qout>0).

With these benefits, the next questions are how to properly
hold and send back ACKs in the switch, what problems active
ACK interception can cause, how to fix it, and so on. In the
next section, we introduce how we solve these problems by
proposing R-AQM.

IV. R-AQM

R-AQM is an incast control mechanism that aims to mitigate
buffer overflow problems by shaping ACKs in the switch
through assisting legacy TCP. Figure 4(b) presents our design
framework, which contains three main functional components:
the Virtual Input Queue, the Token Bucket, and the State
Machine. As shown in Figure 4, packets sent by the sender
are queued on the bottleneck port as usual, and each packet a
sender sends will be acknowledged by the receiver. (1) When
the returned ACK enters the bottleneck port, the VIQ (virtual
input queue) located in the switch input port recognizes
ACKs, intercepts them and stores them; (2) The Token Bucket
monitors the immediate egress sending packets and generates
tokens to the bucket to trigger the VIQ dequeue action; (3)
The State Machine parses queue length information, calculates
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Figure 4. R-AQM design.

the draining rate according to the congestion state. After the
sender receives the ACK, the sender adjusts the sending rate
and sends the next packet.

In this section, we propose our design by answering the
following four questions:

• How to intercept and buffer ACKs?
• What is the ACK dequeue policy in the switch?
• How to determine the draining rate of ACKs?
• What are the side effects, and how to compensate?

A. How to intercept and buffer ACKs?

The first step is to distinguished between different ACKs,
based on which the piggybacked ACKs (which can affect the
application QoE) and ACKs with the FIN flag (which can not
trigger a new data packet either) are excluded. In this paper,
we define pure ACKs as ACKs without FIN and ACKs that
are not piggybacked, which are determined by the combination
of the packet size and the header tag. With the input arbiter,
pure ACKs are queued in VIQ, and others are queueing in
the original input queue. VIQ is located between the switch
input port and the forward core. To better control the pure
ACK draining rate, we need to separate the ACKs from other
packets, setting up a virtual input queue for pure ACKs. VIQ
sets the highest priority of each ACK to prevent delay and
packet loss due to reverse-path congestion. Even if the ACK
packet size is small, VIQ still needs some memory to store
ACKs, so the design needs to consider how to drop packets.
When the ACK is dropped, the sender will assume that the
data was not received, which wastes forward throughput and
might cause RTO.

There are two reasons why we choose to set up a VIQ
instead of an ACK output queue. First, ACKs of congested
flows should be proactively intercepted. As shown in Figure
4(a), port C’s output queue is the congestion point. If the
output queues of A and B are proactively intercepted, then
the wrong ACKs from other ports may be buffered, affecting
non-congested traffic. Second, deploying on an input queue
is relatively easier. The input queue can directly obtain the
output queue length within the same port, and the changes in
operation logic are minimized, which does not affect the top
design of the switch.
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B. What is the ACK dequeue policy in the switch?

A proper switch implementation requires a hardware input
queue, and its dequeue action needs to be controlled by a data
plane. R-AQM uses the token bucket to trigger the dequeue
action. The token bucket is an algorithm for traffic shaping
in packet-switched networks. It can be used to check whether
data transmission at the packet granularity conforms to the
defined limits of bandwidth and burst, which measures the un-
evenness or variability of traffic. As shown in Figure 4(b), the
token bucket controls the token input rate by monitoring the
average value of Rsending . Each increment of a token triggers
an enqueue action (not necessarily sending, see Section IV-C).
Using the token bucket, on the one hand, we can regulate the
sending rhythm of ACKs. On the other hand, the draining rate
Rack can be adjusted by controlling the proportion of the ACK
consumption token.

C. How to determine the draining rate of ACKs?

Having figured out how to buffer ACKs proactively, we need
to figure out when to drain ACKs. We use the State Machine
to judge the congestion state and adjust the ACK draining rate.
A simple idea is mapping the output queue length directly to
the ACK draining rate. The longer the queue, the more severe
the congestion and the slower the ACK should be sent. The
shorter the queue, the less severe the congestion, and the faster
the ACK should be sent. However, such a naive idea suffers
from some issues.

First, mapping functions are costly for hardware [5]. The
mapping of a linear function is difficult to implement in
ASIC or FPGA hardware due to the requirement of division
operation. In general, the linear function is approximated
by a step function [34], [35]. Second, the feedback latency
causes oscillation. Since the network is a pipelined model,
when R-AQM buffers ACKs, it does not immediately reduce
congestion. Frequent changes in the ACK rate can cause
oscillations. Third, queue length does not identify a burst.
This is because a low threshold is too sensitive to identify
the burst, and a high threshold makes it difficult to identify a
burst accurately.

In R-AQM, we use queue length and its gradient to judge
the congestion state comprehensively, and only three corre-
sponding states are set, greatly simplifying the design. Figure
5 shows the state transition diagram, which is the most critical
part of R-AQM. Compared to general AQMs, it uses variation
in queue length to determine the state of congestion. First,
it calculates whether the queue length continues to grow or
decline in time T . If the queue continues to grow, there will
be a burst, so no matter how long the current queue is, it

Algorithm 1 VIQ send algorithm. state is the R-AQM state
of one port. α and n are the number of tokens consumed and
the number of ACKs emitted at each time. α and n control
the ACK draining rate.

1: function viq_send( )
2: if state is NS and token ≥ α1 then
3: token -= α1; VIQ.pop(n1) // Normal State
4: else if state is DS and token ≥ α2 then
5: token -= α2; VIQ.pop(n2) // Draining State
6: else if state is CS and token ≥ α3 then
7: token -= α3; VIQ.pop(n3) // Congest State
8: end if
9: end function

should trigger an active buffer to accommodate burst (left part
of Figure 5). If the queue length continues to decrease, it
means that the burst has ended. The ACK can be returned
at this point, rather than waiting for the queue to decrease to
a certain value (right part of Figure 5). When the network state
is stable, just like the traditional AQM, it can be determined
by the threshold (middle part of Figure 5).

Algorithm 1 illustrates the process of the ACK send action
in the switch. Generating a token in the token bucket triggers
the procedure viq_send() at Line 1. There are three states
to represent the different actions, namely Congest State (CS),
Draining State (DS), and Normal State (NS). We use α to
represent the number of tokens consumed and n to represent
the number of ACKs emitted at each time. NS is the steady-
state of the switch and requires only a uniform ACK response.
In NS, α1

n1
= 1 (Line 2-3). DS indicates that the forward queue

is about to empty, so we need to speed up emptying the reverse
ACK queue. In DS, α2

n2
< 1 (Line 4-5). CS means extreme

congestion. In CS, α3

n3
>> 1 (Line 6-7). R-AQM needs to

ensure that the ACK is sent at a low rate, but not stopped.
First, it avoids RTO caused by senders that do not receive any
ACKs for a long time. Second, it prevents some of the flows
from starvation in the case of burst congestion.

D. What are the side effects on TCP, and how to compensate?

Interaction with TCP RTO:
One concern of R-AQM is its interaction with TCP RTO.

R-AQM limits the rate of ACK in order to prevent RTO caused
by packet loss, so it is inevitable to increase RTT. It is not sure
whether this will cause RTT to be prolonged beyond RTOmin,
leading to TCP timeouts and spurious retransmissions. For this
reason, we specifically measure the RTTs in our experiments.
We find that our ACK control does not adversely prolong the
RTTs (for example, with 200 connections, the 99th percentile
RTT is less than 0.3ms). And we do not observe any spurious
retransmission.

Even though this phenomenon is rare, we still take into
account the possibility and design counter-measures. As each
pure ACK enters the switch, R-AQM records the time stamp
in the auxiliary packet header. When each pure ACK exits the
switch, R-AQM makes a judgment that if there is more than



5ms (which is the recommended as the smallest RTOmin in
[6]), it is considered as an old ACK (which may be caused
by TCP timeout and retransmission), and will be dropped.
The reason is that by dropping the out-of-order ACKs, R-
AQM avoids disturbing the TCP at the sender for subsequent
unnecessary retransmissions.

Interaction with TCP CC:
Another concern of R-AQM is its interaction with TCP

CC. R-AQM takes effect before packet loss and ECN trigger.
Therefore, when R-AQM senses congestion, it not only needs
to delay the ACK transmission, but also needs to prevent the
sender from increasing the sending window.

Two mechanisms are recommended to compensate. The first
is a BECN-like mechanism [36] that directly marks the ECN-
Echo in the TCP packet header of the ACK in the switch when
there exists congestion. The senders therefore can use ECN
to reduce the sending window, avoiding congestion quickly.
Second, by considering packet loss as the congestion signal
[37], it is recommended to adopt a mechanism similar to
HSCC [14] that directly sets the ACK headers rwnd to 1 in
the switch when incast congestion occurs.

With these two mechanisms, R-AQM works well with
existing CCs in the Linux kernel (NewReno [15], CUBIC [16],
and DCTCP [1]). It can also coexist with different CCs and
TCP settings, while R-AQM limits the sending window (rwnd
by HSCC) to 1 MSS, therefore treating each sender fairly.

E. Discussions

Parameters Guidance: According to Algorithm 1, nine pa-
rameters of R-AQM need to be set. Kmax and Kmin repre-
sent the maximum and minimum values in the steady state,
respectively, and T stands for burst duration. α1, α2, α3 and
n1, n2, n3 control the ACK draining rate in different state. The
setting of these parameters is a trade-off. A small value of
K indicates that R-AQM will be triggered when the forward
queue is small, which will lead to low end-to-end latency but
also low throughput. In order to keep high throughput, we need
to make sure there are always packets in the forward queue.
Therefore, Kmin can be set to 0.5-1.0 times BDP, Kmax can
be set to 2 times BDP, and T can be set to 0.2-0.6 times RTT,
which depends on the CC algorithm and the traffic workload
in datacenters. As discussed in section IV-C, α1

n1
= 1, α2

n2
< 1

and α3

n3
>> 1, this paper suggests α2

n2
= 0.5 and α3

n3
= 10.

Different ACK Mechanism: R-AQM assumes that the tenants
are using per-packet ACK (one incoming packet triggers
one ACK), which provides more precise control [35], [38].
However, tenants may need to modify their ACK mechanism,
such as enabling Delayed ACK [39] so that an ACK can
trigger more than one data packet at a time. Hence data
center operators should encourage tenants to use the default
TCP stack to get better performance. In the worst case, this
phenomenon can still be alleviated by adjusting Kmax, Kmin

and α.

Symmetric Routing Dependency: R-AQM by design requires
the ACKs to return on the same backward path as the data
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flows through. This requirement can be easily met given the
common deployment of ECMP routing in data centers [14],
[28], [38].

Non-ACK-clocking Cases: R-AQM cannot work with UDP
and non-ACK-clocking CCs (like BBR). Although 99% of
flows in data centers use TCP [1], R-AQM has no effect on
UDP flows. In this case, the administrator can reserve a small
portion of the switch bandwidth exclusively for UDP, while
TCP with R-AQM monopolizes most bandwidth. BBR [23]
is usually used for transmission in the wide area network. R-
AQM, designed for intra data center, has little effect on BBR.

Elephant Flow and Mice Flow: R-AQM’s motive is to
address the TCP incast problem. Thus, like CC, R-AQM only
controls elephant flows and has little control over mice flows,
with only a few ACKs. However, R-AQM can reduce the FCT
of mice flows. Most mice flows can end up in a single sending
window, and R-AQM makes the forward queue length very
small, so mice flows can pass quickly.

Maximum support senders and Memory usage: There is
an upper limit to the number of R-AQM concurrency, which
depends on the use of two pieces of memory (VIQ and the
regular output queue). R-AQM controls the senders sending
action by shaping the ACKs, so it cannot reduce packet loss
during the first control loop only by increasing the output
queue memory. When traffic is stable, the number of senders
depends on the VIQ size. Because the ACK is smaller than
the data packet (60B v.s. 1460B), R-AQM can support more
senders than traditional methods.

V. IMPLEMENTATION

Ideally, the R-AQM’s Token Bucket and the State Machine
would be implemented in switch ASICs. We build a prototype
of such a solution using the NetFPGA-SUME platform [40], a
programmable hardware platform. It has four 10Gb/s Ethernet
interfaces and a Xilinx Virtex-7 FPGA with QDRII+ and
DDR3 memory resources.

Figure 6 shows the top design of the R-AQM switch in
NetPFGA. Packets enter one of the 10Gb/s interfaces and
are stored in a regular input queue or VIQ. VIQ is allocated
36KB of SRAM, which separates from the regular input queue.
ACKs are recognized while entering the input port. Pure ACKs
enter VIQ, and others enter the regular input queue. The input
arbiter takes packets from the input queues using a round-robin



(RR) scheduling policy and feeds them to the L2 switching
logic via a 256bit-wide 200MHz bus, which is fast enough to
support more than 40Gb/s. The token bucket is used to trigger
the VIQ sending action. The state machine determines the
network congestion and adjusts the ACK draining rate through
the queue length and its gradient. Pure ACK requires tokens
and enters the input arbiter. Other packets can directly go to
the input arbiter. After a conventional L2 forwarding decision
is made, the packet reaches output queues.

Clearly, R-AQM implementation is quite simple, and the
processing delay at the switch is very small. R-AQM does
not operate normally for every packet, because it is only
triggered to avoid packet dropping. Therefore, the additional
processing delay at the switch is not introduced frequently. In
addition, R-AQM introduces only a little resource consumption
on switches. The R-AQM switch uses 58,610 LUTs (14%
of the Virtex7s capacity), 29,370 FlipFlops (10%), and 1,470
blocks of RAM (45%). In comparison, the ECN-version FPGA
switch uses 12%, 9%, and 40% respectively, so the complexity
added by R-AQM is quite small.

We conclude that the implementation complexity, process-
ing delay, and resource consumption of R-AQM are accept-
able; thus, R-AQM can be built into commercial switches.

VI. SIMULATIONS

In this section, we conduct a simulation analysis of R-
AQM performance using NS-3 [41]. Specifically, we evaluate
three critical aspects of R-AQM as follows: (1) The flow
scalability of R-AQM in terms of goodput, drop times, RTO
times, latency and queuing. (2) The incast reaction details of
R-AQM, concurrency, sensitivity and fairness analysis of R-
AQM. (3) The effectiveness of R-AQM under all to all traffic.

A. Settings

The topology in the NS-3 simulations is a FatTree [42].
There are 16 Core switches, 20 Aggregation switches, 20
ToRs (Top-of-Rack switches) and 320 servers (16 in each
rack), and each server has a single 10Gbps NIC connected
to a single ToR. The capacity of each link between Core and
Aggregation switches, Aggregation switches and ToRs are all
40Gbps. All links have a 1µs propagation delay, which gives
a 12µs maximum base RTT. The switch per port’s buffer
is 300 packets (or about 400KB) derived from real device
configurations.

We use two standard AQMs as baselines, ECN and droptail.
We list the terminologies below:

• ECN: The corresponding senders’ CC for ECN uses
DCTCP.

• R-AQM (ECN): The corresponding senders’ CC for
ECN uses DCTCP and the switch deploys R-AQM.

• DropTail: The corresponding senders’ CC uses TCP
NewReno.

• R-AQM (DropTail/DropT): The corresponding senders’
CC uses TCP NewReno and the switch deploys R-AQM.

The relevant parameters are set as follows: For R-AQM,
we set Kmin to 20 packets, Kmax to 40 packets, T to 3µs,
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Figure 7. Goodput, Drop times, RTO times, Latency, RTT and Queue Length
with many concurrent flows

α1

n1
= 1, α2

n2
= 0.5 and α3

n3
= 10 in Algorithm 1. The switch

VIQ is 500 packets, about 23KB. TCP is set to the default
TCP RTOmin of 100 ms. For the ECN threshold, we scale
the ECN threshold proportional to the link bandwidth. We set
ECNKmin = ECNKmax = 65 packets according to [1].

B. Incast

In incast, N hosts send a 3.2MB flow to a host. We vary the
number of flows from 1 to 200. Figure 7 shows the results.

Goodput: First, we measured the goodput. In general, R-AQM
can easily handle 200 concurrent connections without seeing
any trend in performance degradation, while Droptail and ECN
begin to downgrade when the numbers of connections exceed 5
and 60, respectively. When the number of connections is small,
DCTCP with R-AQM shows little advantage over TCP with R-
AQM in goodput (a few Gbps). For TCP, R-AQM only limits
the sending window by limiting rwnd, so utilization decreases
when the number of senders is small. However, R-AQM can
continue to achieve near 9.8 Gbps goodput with an increasing
number of connections.

Packet Drops and RTO: Second, we measured the drop
times and RTO times. As shown in Figure 7(b) and 7(c),
when the concurrency value is less than 200, R-AQM does
not lose packets and trigger RTO. This also explains why R-
AQM has no goodput loss. However, in the case of ultra-high
concurrency, it still causes packet loss and RTO, which will
be analyzed later.
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Latency and RTT: Third, we measured forward one way
latency and RTT. It can be seen that the latency can be
significantly reduced with R-AQM. R-AQM achieves from
4.6× to 7.5× lower 99th latency compared to ECN. Droptails
latency is very low because its goodput is low, and the switch
cannot be utilized effectively. As the number of concurrent
connections increases, the 99th RTT increases but the 99th
latency almost remains unchanged, indicating that R-AQM can
keep the forward delay at a low value regardless of the number
of concurrent flows. We also find that R-AQM delivers little
impact on RTT. For example, when there are 200 concurrent
connections, 99% of them are less than 0.3ms. Currently,
many production data centers have reduced RTOmin to a
low value (e.g., 10ms [1]). In Linux, the lowest possible RTO
value is 5 jiffies (5ms) [6]. This suggests that R-AQM can
work smoothly and will not result in issues like spurious
timeouts and retransmissions in production datacenters with
low RTOmin.

Queue Length: Fourth, we measure the switch buffer use of
R-AQM. Figure 7(f) shows that the buffer occupation of R-
AQM is much lower than that of ECN. Moreover, as the num-
ber of senders increases, the buffer grows less significantly,
while the ECN fills up when the sender is 70. In combination
with Figure 7(d) and 7(e), with the sender number increasing,
latency is unchanged while RTT is increasing, indicating that
the reverse latency is increasing. This proves that the forward
queue length is unchanged while the reverse VIQ is increasing
all the time. The increase of ACK numbers makes little use
of the buffer, so the utilization of the buffer can be reduced.

Response Details of R-AQM: Fifth, we analyzed R-AQM
response details and found why it could alleviate incast and
reduce latency. Figure 8(a) shows the change in the queue
length of the bottleneck switch overtime where N=36. R-
AQM’s queue starts to drop as it grows to 50 packets, while
the ECN needs to grow to 250 before it can be adjusted.
Fast adjustment of queue length can avoid more packet loss
and reduce more RTO times. Moreover, R-AQM converges
fast, which converges before 1000µs while ECN converges
after 2000µs. Also, R-AQM negative feedback regulates queue
length, maintaining a short queue length.

Concurrency and Sensitivity Analysis of R-AQM: To
explore the maximum number of connections that R-AQM
can handle, we fix the total traffic volume and gradually
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Figure 9. Fairness of different CCs

increase the number of senders. We also repeat the simulation
experiment using different parameters to assess the sensitivity
of R-AQM to the setting of parameters. The results show that
goodput is affected by the choice of the parameter VIQ length.
Other parameters (omitted due to space) are not very sensitive
to goodput. From Figure 8(b), we find that R-AQM can easily
support more than 500 concurrent connections and sustain near
9Gbps goodput when facing 1000 senders. The goodput loss
of 400p in R-AQM with 256 senders was due to VIQ dropping
the ACK. As VIQ’s Buffer grows, it can support up to 512
nodes, but not more. As discussed earlier, the reason is that
excessive concurrency causes forward data packet loss in the
first control loop.

Fairness: Multi-tenant data centers might provide different
CCs in use at the same time, so we also explore the fairness of
hosts using different CCs. We observed the FCT distribution
of different CCs’ flow in the incast scenario. We discuss two
scenarios, 10-to-1 incast and 100-to-1 incast, in which 50%
of hosts use DCTCP, and the other 50% of hosts use TCP.
In the 100-to-1 incast, the flow size is 3.2MB. In the 10-to-1
incast, to keep the time scale the same, we use 32MB flows.
Figure 9 shows the results. In the 100-to-1 incast, R-AQM can
reduce the gap between the two CCs. In the 10-to-1 incast, R-
AQM can reduced the gap in 99th FCT. We believe this is
because that R-AQM avoids RTO (abnormal state) effectively
and different CCs behave similarly in normal state.

C. All to All

The all-to-all traffic patterns commonly happen in the shuf-
fle step of MapReduce [21], which generates incast towards
each host running a task. We simulate an all-to-all workload
using NS-3. We select three machines on each rack, a total of
3×20=60 machines. Each machine sends a 500KB elephant
flow and 50 5KB mice flows to the other 59 machines. So each
machine sends and receives 3,540 (60×59) elephant flows and
177,000 (60×59×50) mice flows.

Figure 10 shows the CDF of the flow completion time under
different loads. Because Droptail results are unsatisfactory,
which causes many RTO, it is omitted here.

At the load of 40% scenarios, with R-AQM, the completion
time of the mice flows is reduced. The 50th percentile FCTs
are reduced from 208µs to 128µs and the 99th percentile FCTs
are reduced from 768µs to 466µs in R-AQM. In ECN, 20%
of the flow timeout, while in R-AQM there is no flow timeout.
ECNs require queues long enough to trigger, so there is a lot
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Figure 10. Shuffle workload

of traffic resulting in RTOs due to packet loss, resulting in
very long tail completion times. At 40% load, the R-AQM’s
mice-flow completion time was lower than that of the ECN,
with no timeouts. This can prove that R-AQM can maintain
a short forward queue, significantly improving the mice-flow
application experience.

At the load of 80% scenarios, more than 15% of mice flows
and 80% of elephant flows timeout in ECN, and only a small
number of elephant flow timeouts in R-AQM. Even though
the network load is very high, making ECN almost unusable,
R-AQM guarantees that mice flows will not be RTO.

Through the above experiments, on the premise of avoiding
RTO as much as possible, R-AQM can also provide a low
latency for mice flows, which is enough to show that R-AQM
can effectively alleviate the incast problem.

VII. TESTBED EXPERIMENTS

In this section, we conduct a testbed experiment to validate
the performance of R-AQM on the small-scale network. We
verify R-AQM’s ability to mitigate packet loss and low latency
in a small-scale scenario through two typical workloads.

A. Settings

The topology of the testbed experiment mimics a small rack
of the datacenter. The testbed includes one ToR NetFPGA
switch and four servers connected via four 10Gbps links. Each
server is equipped with a single Intel Xeno CPU and two dual-
port Intel 82599 10G NICs. The CC algorithm at the hosts is
DCTCP. TCP’s results are similar and are therefore omitted
later. On the NetFPGA switch, we also implemented the ECN
version for comparison. The relevant parameters are set as
follows: For R-AQM, we set Kmin to 20 packets, Kmax to
40 packets, T to 3µs, α1

n1
= 1, α2

n2
= 0.5 and α3

n3
= 10 in

Algorithm 1. For the ECN threshold, R-AQM and pure ECN
both set the 65 packets according to [1], and the switch output
drop threshold is 300 packets.

B. Incast

We run a 3-to-1 incast: the frontend application on one
host sends requests to another three servers. Upon receiving
the request, each server replies with continuous elephant flow
immediately. Meanwhile, a 1KB test mice flow is sent every
second, which is used to measure the end to end latency. We
calculate throughput and latency per second for each computer
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NIC port. At the same time, we apply the same scenario in
the simulation to validate the testbed.

Figure 11 shows the throughput and latency of ECN and
R-AQM in both simulation and testbed. We can see that the
simulation experiment results are similar to the testbed exper-
iment. For the 50th percentile throughput, R-AQM performs
almost equally well compared to ECN, with the throughput of
2.88Gbps for ECN and 2.90Gbps for R-AQM. ECN has a long
tail of 8.84Gpbs, which means an extremely unfair distribution
of throughput could occur, with one port higher and the other
two lower. The reason is that when a flow suffers from RTO
caused by packet loss, other traffic takes up the bandwidth. In
contrast, R-AQM shows a more even distribution of throughput
and provides better fairness.

For latency, the 50th percentile and the worst case of R-
AQM are 25µs and 103µs, respectively, both of which are
lower than ECN. The 50th percentile of one-way delay for
R-AQM is approximately 78µs, which is just slightly bigger
(10µs) than the optimum transfer time in an idle network
(67.7µs, labeled as without load in the figure). The improve-
ment in latency by R-AQM is not outstanding due to the small
scale of the testbed and the fact that the system kernel latency
occupies a certain proportion of the overall latency. Despite
that, it has been proved that R-AQM is effective in reducing
latency.

C. All to All

To further demonstrate the functionality of R-AQM, we
performed an all to all traffic pattern. Each host sends requests
to the other three at the same time. The reply traffic’s load
varies from 10% to 90%. Meanwhile, a 1KB test mice flow
is sent every second, which is used to measure the end to
end latency. As shown in Figure 12, with the increase of load
before 40%, the latency of ECN increases linearly, while R-
AQM does not change. At 40%, R-AQM achieves 1.06× faster
average latency than ECN, and the gap is more significant at
the 99th percentile. This shows that R-AQM can effectively
reduce end-to-end latency. Over 40%, the switch cannot handle
more data, and packet loss begins, so the latency for both ECN
and R-AQM starts to decrease. However, it is evident from the
figure that R-AQM can keep the loss rate lower. Compared
with ECN, R-AQM achieves up to 3.22 lower packet loss rates.

To conclude from our experiment, R-AQM effectively tames
incast problems, decreases packet loss rate, reduces latency,
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and provides better fairness.

VIII. RELATED WORK

Many proposals address the incast congestion problem in
data centers. Nevertheless, there has been relatively little effort
to address incast in multi-tenant data centers. AC/DC TCP
[24], vCC [25], DCTCP [1] and HSCC [14] can be used
in multi-tenant data centers, but as discussed earlier, when
incast arrived, even all senders’ send windows are 1 MSS, the
concurrency would not support much.

The most related works to R-AQM is PAC [27], which
controls the sending rate of ACKs on the receiver to prevent
incast congestion. We clarify the differences between R-
AQM and PAC in three aspects. (1) PAC is an end-hosts
mechanism, while R-AQM is a switch mechanism. (2) PAC
cannot accurately predict the incast because the incast often
occurs on the last-hop switch. R-AQM can directly obtain the
queue length of the last-hop switch and take effect in advance.
(3) It is difficult to deploy PAC in multi-tenant data centers
because it requires each tenant to modify or update its kernel.

In addition to the above works, a number of other data center
transport designs have emerged, although their primary design
space is not suitable for multi-tenant data centers.

Congestion control in private datacenter:
ICTCP [26] handles incast by adaptively adjusting the

receiver sides receive window to throttle aggregate through-
put. Tuning ECN [43] accelerates the delivery of congestion
notifications using dequeue marking instead of traditional
enqueue marking. D2TCP [44] adds deadline-awareness at
the top of the DCTCP. It adjusts the congestion window
to meet the deadline based on congestion conditions and
deadline information. ExpressPass [38] uses credit packets
for the preallocation of bandwidth to avoid congestion and
to guarantee bounded queues.

DCQCN [8] and TIMELY [45] are proposed as the new
end-to-end CC scheme designed for RDMA over Converged
Ethernet v2 (RoCEv2) [11]. RoCEv2 enables lossless net-
works through Priority-based Flow Control (PFC), so there
is no problem with large-scale RTO and goodput degradation.
HPCC [35] also is a RoCEv2 CC that uses switch INT (in-
network telemetry) to obtain the precise switch congestion
state and calculates the remaining bandwidth. However, incast
can also cause other congestion problems, such as PFC storm
[35] and PFC deadlock [46], [47], resulting in high latency
and unusable network.

All of the above approaches may face deployment issues in
multi-tenant data centers and is out of the design scope of R-
AQM. However, there is a theoretical possibility that R-AQM
can be incrementally deployable with these approaches.

Switch-assisted mechanisms and CCs:
QCN [48] sends the quantized value of the congestion

metric as feedback to senders, requiring fine parameters ad-
justment. PFC [12] allows switches to avoid buffer overflows
by forcing the direct upstream switch or NIC to suspend data
transfers. XCP [49] and RCP [50] use explicit feedback to
measure the extent of congestion. D3 [51] achieves explicit
rate control based on deadline information to guarantee dead-
lines. HULL [52] uses phantom queues to simulate a network
at less than 100% utilization and relies on ECN to deliver
congestion information. CP [53] and NDP [54] realizes fast
packet loss notification by cutting packet payload in the switch
and sending packet header back to the sender quickly.

These approaches share the same idea that switches cooper-
ate with congestion control through congestion signals (packet
loss, ECN, RTT, INT, etc.). However, most of them require
an intrusive modification to the protocol stack. In contrast,
R-AQM is an incremental and transparent design for end-
systems, helping to alleviate the incast problem and gaining
marginal benefit in terms of concurrency.

IX. CONCLUSION AND FUTURE WORK

In this paper, we present R-AQM, a transparent reverse ACK
active queue management design for multi-tenant data centers
to tame the TCP incast problem through active ACK control.
The basic principle of R-AQM is to reduce the nontrivial
forward queue delay by introducing a trivial backward ACK
delay. The critical design idea behind R-AQM is to proactively
intercept the ACK in the switch and release it at a moderate
rate to prevent too fast new packets from overwhelming the
switch. R-AQM set up VIQs to buffer the ACK and use the
Token Bucket to shape the flow. R-AQM also uses queue
length and its gradient to judge burst and congestion. Our
extensive simulations and experiments have shown that R-
AQM can enhance existing CC solutions by supporting 16
times more senders and reducing forward queue delay by
4.6 times. One of the limitations of R-AQM is that it can
only cooperate with window-based ACK-clocking protocols.
As a part of our future work, we are modifying the rate-based
DCQCN and TIMELY to some extent so that R-AQM can
help alleviate the incast problem and provide a low-latency
data center network.
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