
IEEE Network • July/August 202390 0890-8044/23/$25.00 © 2023 IEEE

Abstract
Deep reinforcement learning (DRL) has been

widely used to find optimal routing schemes to
meet various demands of users. However, the
optimization goal of DRL is typically static, where-
as the network environment is dynamic. Changes
in traffic environment or reconfiguration of net-
work equipment often lead to periodic changes
in network performance (e.g., throughput degra-
dation and latency peaks). The traditional static
target configuration cannot reflect the importance
difference of different metrics in the dynamic net-
work environment, resulting in the inflexibility of
DRL-based routing algorithms.

To address the above issue, we propose
G-Routing, an online routing optimization algo-
rithm that uses graph neural networks (GNNs)
and DRL. By modeling and comprehending the
relationship among different features (e.g., path,
flow, and link) of the network, our proposed
GNN model can predict the future development
of network performance metrics (i.e., latency,
throughput, and loss), thereby adjusting the rout-
ing algorithm’s target promptly. Then, with the
DRL model we proposed, the agent can learn the
optimal path to adapt to different environmen-
tal changes. We implement the G-Routing meth-
od on the control plane and perform simulation
experiments using real-world network topology
and traffic data. Experimental results demonstrate
that when the network environment changes
significantly, our proposed G-Routing converges
faster, achieves lower jitter, and generates more
reliable routing scheme.

Introduction
Intelligent Internet architecture [1] has become
an emerging trend. In various intelligent models
based on deep neural networks (DNNs), DRL has
exhibited the outstanding advantages in network
decision-making and system adaptation problems,
for example, congestion control [2], adaptive
bitrate streaming [3], and so on. Among them,
intelligent routing based on DRL [4] has received
great attention.

Specifically, modern applications (e.g., in-car
networking, AR/VR, and metaverse) have more
fine-grained requirements for low latency, slight
jitter, high throughput, and low loss. Due to the
significant expansion of network scale, the tradi-
tional best-effort forwarding method cannot solve
the optimization problem in a large search space1,
and it cannot meet the demands of a variety of
applications at the same time. DRL brings new

light to the resolution of these gaps. Depending
on the characterization ability of DNN and the
optimization ability based on environment inter-
action, DRL can well solve the large-scale spatial
optimization problem. Moreover, through reason-
able configuration of target policy2, DRL can also
meet the fine-grained requirements of different
applications. Therefore, DRL-based online intel-
ligent routing has attracted extensive attention
from both academia and industry.

Regarding DRL-based intelligent routing, the
process of route generation consists of two parts:
First of all, according to the network state, the
agent automatically generates routing paths that
meet the policy target, and loads them to the data
plane for execution. Immediately afterwards, the
agent adjusts the model parameters according to
the reward feedback from the data plane. Since
rewards are calculated according to the target
policy, the upper bound on the convergence of
the DRL-based routing algorithm is closely related
to the target policy.

Due to the diversity of traffic demand, exist-
ing intelligent routing algorithms often focus on
a multi-objective optimization problem, where
different objectives may conflict with each other
(e.g., low latency and high throughput). One
common approach is to utilize weighted factor
programming to convert it into a single-objective
optimization problem, which is the policy target
of DRL. The policy target calculation is typically
expressed as a combination of metrics, for exam-
ple, throughput, latency, and loss. These coef-
ficient parameters of each metric can explicitly
indicate the relative importance of these metrics
based on application requirements.

However, determining these weighting coef-
ficients can be challenging and can significantly
impact the system’s performance. Existing DRL-
based intelligent routing algorithms generate fixed
and unchanged weighting coefficients through
manually defined methods. Although they can
achieve good convergence performance under
fixed requirements and network environments,
these algorithms cannot adapt when the algo-
rithm environment changes or new application
requirements emerge. This leads to various issues,
such as weak generalization and poor flexibility.

To address above challenges (i.e., weak gen-
eralization and poor flexibility), we propose an
online routing optimization algorithm based on
GNN and DRL, namely G-Routing. The core of
G-Routing is a novel dynamic-target DRL frame-
work, which automatically adjusts the weighting

G-Routing: Graph Neural Networks-Based Flexible Online Routing
Huihong Wei, Yi Zhao, and Ke Xu

1 The optimization problem
in a large search space refers
to how to effectively select
the optimal routing solution
from a large number of avail-
able routing options in a net-
work with a large topology.

2 The target policy refers to
the method of configuring
the reward function. Differ-
ent methods of configuring
the reward function can
guide DRL-based algorithms
to continuously optimize
toward different targets.

INTERPLAY BETWEEN MACHINE LEARNING AND NETWORKING
SYSTEMS

Digital Object Identifier:
10.1109/MNET.012.2300052 The authors are with Tsinghua University, China. Yi Zhao and Ke Xu are the corresponding authors.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 18:38:42 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2023 91

coefficient of the policy target to enhance the
fl exibility of the routing algorithm. The newly pro-
posed G-Routing consists of two parts: DRL-based
routing generation algorithm and GNN-based
metric prediction algorithm. The DRL-based rout-
ing generation algorithm adopts an Actor-Critic
model to generate optimal paths in real-time that
meet the target requirements. The GNN-based
metric prediction algorithm perceives the global
network environment for a certain time period
and dynamically adjusts the weighting coeffi cient
of the policy target. It is implemented based on
the GNN message passing mechanism [5], which
can perform relational reasoning and combinatori-
al generalization. By modeling the graph structure
information, it predicts network performance met-
ric accurately.

Although there are many literatures on network
modeling based on GNN to achieve metric predic-
tion, most of them cannot be well adapted to spe-
cific application scenarios. G-Routing establishes
a customized GNN model to better adapt to the
dynamic network change scenario, and considers a
new feature type (i.e., fl ow) into our GNN model.
The algorithm can aggregate and update the
information from various features (i.e., path, fl ow,
and link) to comprehend the intricate relationship
between routes and traffi c. This enables accurate
estimation of path-level metrics in the next time
period, and assists the routing algorithm to adjust
the target policy in real-time. Therefore, G-Routing
can rapidly adapt to changes in the environment
and select a relatively optimal path.

The application scenario of our G-Routing is
illustrated in Fig. 1. Specifi cally, the network envi-
ronment often presents large gaps in network
states according to the occurrence of specifi c sce-
narios, such as network load aggravation caused
by traffi c change, network link failure caused by
attacks or emergencies, and network topology
changes caused by configuration. This leads to
large changes in the state and demand of the
network in the next time period. For example,
during the live broadcast of the World Cup, the
video backbone network traffic will surge at the
beginning of the game, and the network load will
increase. This new environment will last 90 min-
utes or even longer. To ensure the quality of live
video applications, we should pay more atten-
tion to the two metrics of latency and throughput.
Correspondingly, our G-Routing can fl exibly adapt
to this new demand. By sensing and modeling
the current network environment, the predicted
future information can adjust the reward weights
(i.e., w1, w2, and w3 illustrated in Fig. 1) in real
time. Therefore, the agent can fl exibly grasp the
current focus of the network, and then learn a
more realistic optimal routing path.

We summarize the key contributions of this
article as follows:
• We propose a context-aware routing optimiza-

tion algorithm framework, which utilize GNN
to assist DRL agents in routing selection. By
flexibly changing the configuration of target
policy, the agent can adapt to environmental
changes faster and more accurately.

• We propose a customized GNN-based met-
ric prediction algorithm for dynamic network
environments, which takes into account the
cyclic dependency relationships among three

network features (i.e., path, fl ow, and link).
• By using the network topology and traffic

data in the real world, multiple comparison
experiments are carried out under two envi-
ronment change scenarios. Extensive experi-
mental results demonstrate the reliability and
stability of G-Routing.

rElAtEd WorK
This section mainly introduces relevant research
on network modeling and intelligent rout-
ing, including the development path and latest
research achievements of the two fi elds.

nEtWorK modElIng
The task of the network modeling is to predict the
network performance metrics (e.g., throughput
and latency) under various “what-if” scenarios,
such as network device reconfi gurations. Network
modeling offers the advantage of reducing the
cost of online performance monitoring through
real-time reasoning. Traditional network modeling
can be approached in two ways. One approach
involves using queuing theory to establish an anal-
ysis model with simplified assumptions, but the
problem with this approach is that the assump-
tions may be too strong to be practical. Another
approach involves using network simulators (e.g.,
NS3) to simulate real scenarios, but this approach
has high computational costs and cannot perform
real-time reasoning tasks.

With the development of deep learning, there
have been many relevant network modeling
works. For example, Deep-Q[6] uses the gener-
ative models to infer the network quality of ser-
vice (QoS). However, its model is relatively simple
and cannot be generalized. GNN has been found
to be very suitable for modeling graph structure
information. Moreover, GNN-based network
modeling can improve generalization and accura-
cy. For example, RouteNet [7] performs accurate
path-level performance estimation and generalizes
to unseen topologies and routing schemes, while

FIGURE 1. Routing optimization algorithm scenario.

Dynamic Reward
throuput + latency + loss

time-step T

Dynamic Reward
throuput + latency + loss

Network Environment Change

time-step T+1

Topo ChangeLink FailureTraffic Change

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 18:38:42 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 202392

xNet [8] fully considers the fi ne-grained require-
ments of network model prediction and provides
flow-level modeling capabilities. However, the
problem with RouteNet is that it is too simple to
be applied to complex scenarios. On the other
hand, although xNet is detailed, the model is too
complex and considers too many elements, mak-
ing it also unsuitable for simple scenarios.

Taking into account the above considerations,
we propose a customized GNN architecture for
dynamic network changes, which endows DRL-
based routing with generalization capabilities to
adapt to specifi c scenarios.

IntEllIgEnt routIng
Intelligent routing [9] has become a research
hotspot. For example, Mao et al. [10] envision
a supervised deep learning system to construct
the routing tables. Geyer et al. [11] propose a
distributed routing algorithm that uses GNN to
learn shortest paths and max-min routing strat-
egies. However, the routing method based on
supervised learning can only learn the policy of a
specifi c network. It is diffi cult to adapt and gener-
alize under the dynamic change of the network.

To improve the generalization ability, DRL-
based routing methods are proposed. For example,
Liu et al. [12] propose an online routing algorithm
that uses multi-agent DRL to meet various service
requirements. It models the route generation pro-
cess as a multi-agent Markov decision process.
However, it mainly focuses on a variety of appli-
cation requirements, and its target policy is fi xed.
Therefore, it still cannot adapt well to dynamically
changing network environments. Paul et al. [4] pro-
pose a DRL+GNN architecture for routing optimi-
zation. It optimizes network routing by modeling
the Q-value in deep Q-network (DQN) with GNN,
and generalizes on arbitrary topologies never seen
before. However, the DRL algorithm used by Paul
et al. [4] is too simple and cannot be well adapted
to complex network environments.

To solve the above contradiction, our pro-
posed DRL-based routing can easily select the
appropriate action in the continuous action space
and achieve a single-step fast update. At the
same time, the target policy used in G-Routing

can dynamically change with the environment to
enhance fl exibility.

g-routIng scHEmE
In this section, we fi rst introduce the architecture
of G-Routing in detail, including the input and out-
put of each part. Then we introduce the design
details of DRL-based routing generation algorithm
and GNN-based metric prediction algorithm.
Finally, we introduce the weight update method
of the policy target.

ArcHItEcturE
Our proposed G-Routing requires the control
plane to quickly perceive changes in the network
environment. It explores the potential of routing
algorithm to fi nd the optimal target policy in the
current environment, and chooses a better path
for each incoming traffic demand. The architec-
ture of the algorithm is illustrated in Fig. 2.

The control plane algorithm consists of two
parts: a GNN-based metric prediction algorithm
that predicts future path-level information, and
a DRL-based routing generation algorithm that
learns the optimal route in real-time. Both GNN
model and DRL agent receive real-time network
state information from the data plane. The DRL
agent generates routing scheme based on traffi c
demand and sends it to the GNN model and data
plane simultaneously. The GNN model generates
the next-stage predictive information of metrics
based on routing scheme and network state (i.e.,
topology, traffi c matrix). It also updates the target
policy in real-time based on the predicted values,
and guides the DRL agent’s routing behavior in
the next time period.

dEsIgn
Here, we provide a detailed introduction to the
control plane in Fig. 2. including internal architec-
ture details and the network design of G-Routing,
illustrated in Fig. 3.

DRL-Based Routing Generation Algorithm: It
is deployed on the DRL agent, which selects the
appropriate next hop based on the network state
and traffi c demand. When the selected next hop
reaches the destination, the source-destination
path is generated, and loaded to the data plane
for execution.

The DRL agent adopts the proximal policy
optimization (PPO) algorithm [13], and it solves
the problem of low sample utilization. As illustrat-
ed in Fig. 3, PPO algorithm belongs to Actor-Critic
algorithm and includes two models (i.e., actor and
critic). The actor model probabilistically selects
an action, while the critic model assesses the
score of that action based on the reward feed-
back from the environment. Moreover, the actor
model modifi es the probability of action selection
according to the critic’s score.

The state input of the DRL agent consists
of the environment state S and the condition
state C. The environment state S includes traffic
demands (e.g., source node, destination node,
and data rate), topology information, and state
information (e.g., remaining link capacity). The
conditional state C indicates the selected nodes
for the soon-to-be generated path. The output of
the actor model is the probability distribution of
which neighbor node to choose as the next hop,

FIGURE 2. Architecture of routing optimization algorithm.

- State:

Network state
Traffic demand
Reward

SDN Controller

Network State
+

New Traffic Demand
[src,dst,traffic_demand]

DRL agent

- Action:
Routing policy for the
current traffic demand

Control Plane

Data Plane

traget policy

GNN model

Performance Metrics
(per-path delays, throughput, loss)

Evaluate Configuration
(routing scheme)

State
(topology, traffic matrix)

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 18:38:42 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2023 93

and the next hop is selected randomly based on
the set probability distribution. After the path is
generated, it will be loaded into the data plane for
execution, and the model will be updated based
on the reward feedback from the environment. Rt
is defi ned as the reward value of the action taken
at time t. To calculate the reward Rt, the utility
function combines multiple performance metrics
(i.e., throughput Thr, latency Lat, and loss Loss),
which can be compatible with various fl ows. Let
Thrt, Latt and Losst be the throughput, latency and
loss of the fl ow at time t, respectively. The utility
function is illustrated in Eq. 1.

(1) Rt = w1logThrt – w2Latt – w3Losst

where w1, w2, and w3 represent the weighting
coeffi cient of each performance metric. The pre-
dicted values generated by our GNN-based met-
ric prediction algorithm will be used to update w1,
w2, and w3, as detailed below.

GNN-Based Metric Prediction Algorithm: As
illustrated in Fig. 3, our GNN model considers
three network features, namely path, link, and
flow. It learns the complex relationships among
these three features to accurately estimate the
performance metrics of each source-destination
pair’s path.

Our prediction algorithm periodically collects
various environmental information from the net-
work, including topology, global routing schemes,
path-level information (e.g., average latency,
throughput, and loss), link-level information (e.g.,
bandwidth, usage of the link), and flow-level
information (e.g., maximum data rate). It uses
a fixed-dimensional vector to encode the state
of path, link, and flow, defined as hp, hl, and hf,
respectively. The information is propagated and
updated among states using the message pass-
ing mechanism. This mechanism for each feature
state consists of two parts: message passing and
updating. Message passing collects and aggre-
gates hidden states from different features. And
then, updating encodes the new aggregated
information and the hidden state of that feature
together to generate the next stage’s hidden state.

More specifi cally, our message passing mecha-
nism is based on three considerations:
• The state of a path depends on the states of

all the links in the path and the fl ows fl owing
through the path.

• The state of a flow depends on the state of
the path it travels.

• The state of a link depends on the states of
all the fl ows passing through the link.
Based on the cyclic dependency relationship

among the features described above, we depict
the computation path of the GNN model as
illustrated in Fig. 3. We also provide a detailed
description of the forward propagation process of
the GNN via Algorithm 1.

In Algorithm 1, our GNN model takes the
route description P, flow description F, link
description L, initial path feature hp

0, initial flow
feature hf

0, and initial link feature hl
0 as input, and

outputs the inferred metric ŷp for each path.
Specifically, lines 2 to 10 represent the mes-

sage passing process of the path. Lines 4 and 7
represent that each path collects information from
all the links it contains and all the flows flowing

through it, respectively. Due to the sequential
dependencies of links within each path, a recur-
rent neural network (RNN) is utilized to aggregate
link-level messages. Specifi cally, the RNN employs
a gate recurrent unit (GRU) network for this pur-
pose. Since there is no sequential correlation for
all fl ows along this path, summation is used directly
to aggregate fl ow-level messages. Line 9 represents
the update process of path-level information, and
the update function uses three diff erent trainable
neural networks f, m, and p. Lines 11 to 13 repre-
sent the message passing process of the fl ow. It is
set up in a simple way by directly specifying the
path-level information that the fl ow fl ows through
as the collected fl ow-level information. And then,
a trainable neural network ψ is used to update the
flow-level information. Lines 14 to 17 represent
the message passing process of the link, where the
states of all fl ows passing through the link is aggre-
gated by summing, and another RNN is used to
update the link-level information. The algorithm
loop the three-stage message passing process T
times to reach a convergent state.

Finally, Readout (line 19) represents a read-
out function that uses the path hidden state hp

T

to predict some path-level metrics (ŷp). The GNN
model outputs three predicted performance met-
rics for Thr, Lat, and Loss. Correspondingly, we
use the triplet (i, j) = [Thr, Lat, Loss] to stores
the prediction information (i.e., Thr, Lat, and Loss)
on the path from source node i to destination
node j in the next time period. The global average
performance of each metrics is calculated and
standardized. Further more, w1, w2, and w3 are
automatically confi gured according to the propor-
tion of diff erent metrics, as illustrated in Eq. 1.

WEIgHt updAtE
The initial weights are set to w1 = 0.4, w2 = 0.3,
and w3 = 0.3. The experiment is designed to gen-
erate a sample per 100 source-destination pair

FIGURE 3. The network design of G-Routing.

Per-path Performance Metrics

Paths ...

Flows ...

RNN RNN RNN

...

...

Links ...

Metric Prediction Algorithm
(GNN)

RNN RNN

Readout

Paths ...

Routing Generation Algorithm
(DRL)

Dynamic Reward
throuput + latency + loss

Action(Path)

State

Actor Critic

Train

Update

RNN

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 18:38:42 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 202394

requests, which includes the routing scheme on
each path, path-level information (e.g., through-
put, latency, and loss), and link-level information
(e.g., link utilization). When 10 samples have
been generated, the function is called to pack
the 10 samples into a dataset for the current time
period. The pre-trained GNN model uses these
samples of the dataset and predicts the metrics
of the next time period. The GNN model updates
the parameters based on the feedback of the next
time period.

The average performance of each metrics
returned by the GNN is computed and saved in
their respective lists. Take Thr as an example, the
change rate Thrchange between the prediction and
the current metric is calculated. Thrchange is multi-
plied by the weight w1

t of Thr from the previous
stage, and then the weight w1

t+1 =w1
t  Thrchange of

Thrt+1 can be obtained. The weights (i.e., w2
t+1 and

w3
t+1) of Latt+1 and Losst+1 are updated in the same

way, and new weights can be used to calculate the
reward for the next time period of DRL agent.

Experiments
This section focuses on the evaluation method
and experimental results of G-Routing.

Experimental Configuration
We use Ryu and Mininet [14] to build SDN archi-
tecture, in which Ryu is used as the controller and
Mininet is used to simulate data plane. On the
control plane, we use Pytorch 1.0 to implement
our proposed G-Routing.

Parameter Setting: In the experiment, the DRL
model we used is composed of three parts, name-
ly the input layer, the feature extraction layer, and
the policy layer. Our GNN model chooses a size
of 32 for the hidden state of the path (hp), 32 for
the hidden state of the flow (hf), and 16 for the
hidden state of the link (hl). In addition, for each
forward propagation, we perform T = 8 iterations.

We utilize the Adam optimizer to minimize losses,
and the learning rate is set to 0.001.

Datasets: We use two real-world network topol-
ogies (i.e., Abilene [14] and GEANT [15]), where
Abilene is a topology with 11 nodes and 14 bidi-
rectional links, and GEANT is a larger topology with
23 nodes and 37 bidirectional links. Each nodes is
connected to a host, and requests for flows are
randomly generated based on the measured real
traffic matrix. The sending rate of flow is fixed at
1500 kb/s, and the flow duration is 10 time slots.
The environmental information (e.g., latency,
throughput ratio, loss, and transmitted packets) is
recored per 20 packets on each path.

Evaluation Criteria: Regarding comparison
baselines, we first evaluate shortest path routing
(SPR), which always uses the route with the least
number of hops for each flow request. Second,
we evaluate a DRL-based routing algorithm (DRL-
OR) [12], which configures a fixed target through
expert experience and uses it to learn a DRL
model. We evaluate the average latency, through-
put ratio, and loss of flows over a period of time
when using each method in our experiments.

We compare the performance (i.e., latency,
throughput ratio, and loss) of G-Routing with two
baselines under environment change scenarios,
and evaluate the adaptability of two DRL-based
algorithms. Environment change scenarios include:
•	 Traffic change: Change the load in the net-

work environment. A light load scenario with
a flow duration of 10 time slots at initial time
t0 changes to a heavy load scenario with 30
time slots at time t1.

•	 Link failure: Link failure occurs. All links are
intact at the initial time t0, and a small num-
ber of links are disconnected at time t1.

Analysis of Performance
We evaluated the stability, generalization, and
adaptability of G-Routing under link failure and
traffic change. Specifically, for Fig. 4, the upper
subplots and the lower subplots represent the
experimental results under Abilene topology and
GEANT topology, respectively. Likewise, the two
row subplots in Fig. 5 are also the same configu-
ration. Note that the analysis on stability is based
on Abilene topology (i.e., the upper subplots in
Figs. 4 and 5). Experiments on GEANT topology
are used to compare the generalization ability
between two DRL-based algorithm (i.e., DRL-OR
and G-Routing).

Stability: Figures 4 and 5 illustrate the stability
of different algorithms under two scenarios: traf-
fic change and link failure. For traffic change, we
simulate traffic bursts at time slot 10,000. As illus-
trated in Fig. 4a, when using DRL-OR based on
a fixed policy target, the latency would increase
sharply, even gradually entering a stable state,
up to 75ms, which cannot adapt well to the new
environment. Since the path selected by SPR
is always fixed, that is, only the shortest path is
selected, the change in the environment will not
cause a significant fluctuation in performance of
SPR. Our proposed G-Routing can quickly adapt
to changes in the environment and maintain a
lower latency after stabilization, approximately
13.5ms. Therefore, G-Routing reaches a stable
state more quickly and obtains more stable rout-
ing schemes.

ALGORITHM 1. Internal architecture of GNN.

	 Input:	 P, F, L, h0
p, h0

f, h
0
l

	 Output:	̂yp
1	 for t = 1:T do
		 // Message passing of paths
2		 foreach pi in P do
3			 foreach lj in pi do
4				 mp,l = RNN(ht

pi, h
t
lj)

5			 end
6			 foreach fj in pi
7				 mp,f = Sht

fj
8			 end
9			 hpi

t+1 = f(m(mp,l), p(mp,f), h t
pi)

10		 end
		 // Message passing of flows
11		 foreach fi in F do
12			 hfi

t+1 =ψp:fp(hpi
t+1, ht

fi)
13		 end
		 // Message passing of links
14		 foreach li in L do
15			 mli = Slif hf

t+1

16			 hli
t+1 = RNN(hli

t, mli)
17		 end
18	 end
	 // Readout function
19:	ŷp = Readout(hp

t=T)

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 18:38:42 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2023 95

By comparing the throughput ratio of diff erent
algorithms in Fig. 4b under traffi c change, except
for the SPR algorithm, both DRL-based routing
algorithms (i.e., DRL-OR and G-Routing) have a
decreased throughput ratio after traffic change,
but G-Routing still has a relatively small change and
higher throughput ratio after stabilization, indicat-
ing that our proposed G-Routing is more stable.

Similarly, for link failures, we simulate bottleneck
link failures at time slot 10,000. In Figs. 5a and 5b,
it can be found that the G-Routing algorithm is still
the most stable among the three algorithms.

We also use boxplots to illustrate the data jitter
under traffi c change and link failure, illustrated in
Figs. 4c and 5c, respectively. The boxplots illus-
trate the latency and throughput ratios from the
beginning of environmental changes to the algo-
rithm convergence (the data were extracted from
time slots 10,000 to 20,000). It can be found that
the variance of DRL-OR is signifi cantly higher than
that of G-Routing, indicating that our algorithm
has stronger stability.

Generalization: Figures 4a, 4b, 5a, and 5b
contain experimental results on different topol-
ogies (i.e., Abilene and GEANT), with the same
experimental environment. They illustrate that our
algorithm can achieve better stability on diff erent
topology structures, proving that our algorithm
can generalize to diff erent topologies.

Adaptability: To demonstrate the adaptability

of G-Routing to new environments, we compare
it to DRL-OR. Under traffic change, Fig. 6 illus-
trates the change in rewards of G-Routing and
DRL-OR over time. The reward curve of G-Rout-
ing illustrates that the convergence speed of
G-Routing is signifi cantly faster than that of DRL-
OR. Specifically, the reward of G-Routing basi-
cally converges at around the 25,000th time slot,
while the convergence of DRL-OR is around the
40,000th time slot, indicating that G-Routing has
a 2X faster convergence speed. Furthermore, the
fi nal convergence reward of G-Routing is higher
than that of DRL-OR.

conclusIon And futurE WorK
In this article, we propose G-Routing, an online
routing algorithm based on GNN and DRL. The
algorithm employs GNN to predict the evolution
of network performance metrics in the future time
period, and assist DRL-based routing algorithm in
selecting the optimal path. We implement G-Rout-
ing on the control plane, and simulate it under
two environment change scenarios. Experimen-
tal results demonstrate that when the network
environment changes signifi cantly, our proposed
G-Routing converges faster and produces a more
dependable routing scheme.

The proposed GNN-based online routing
sheds new light on better adapt to changes in the
network environment. Due to the lack of inter-

FIGURE 4. Results on fl ow latency and throughput ratio under traffic change: a) latency under traffi c change; b) thr. ratio under traffi c
change; c) boxplot of the latency under traffi c change.

a) b) c)

FIGURE 5. Results on fl ow latency and throughput ratio under link failure: a) latency under link failure; b) thr. ratio under link failure; c)
boxplot of the latency under link failure.

a) b) c)

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 18:38:42 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 202396

pretability of the neural network on which GNN
relies, there are still potential pitfalls in large-scale
deployment. In the future, we will focus on the
interpretability of such methods. With a clearer
explanation of the internal mechanism of GNN,
we can further improve the efficiency of intelli-
gent routing.

AcKnoWlEdgmEnts
This work was in part supported by the Nation-
al Key R&D Program of China with No.
2022YFB3102302, National Science Foundation
for Distinguished Young Scholars of China with No.
61825204, National Natural Science Foundation of
China with No. 61932016, No. 62132011 and No.
62202258, Beijing Outstanding Young Scientist
Program with No. BJJWZYJH01201910003011,
China Postdoctoral Science Foundation with No.
2021M701894, China National Postdoctoral Pro-
gram for Innovative Talents, and Shuimu Tsinghua
Scholar Program. In this work, Huihong Wei and Yi
Zhao made equal contributions. We also thank our
editors and anonymous reviewers for their com-
ments and guidance.

REFERENCES
[1] Y. Zhao et al., “Collaboration-Enabled Intelligent Internet

Architecture: Opportunities and Challenges,” IEEE Network,
vol. 36, no. 5, 2022, pp. 98–105.

[2] N. Jay et al., “A Deep Reinforcement Learning Perspective
on Internet Congestion Control,” Proc. ICML, 2019, pp.
3050–59.

[3] H. Mao, R. Netravali, and M. Alizadeh, “Neural Adaptive

Video Streaming with Pensieve,” Proc. ACM SIGCOMM,
2017, pp. 197–210.

[4] P. Almasan et al., “Deep Reinforcement Learning Meets
Graph Neural Networks: Exploring a Routing Optimization
Use Case,” Computer Commun., vol. 196, 2022, pp. 184–
94.

[5] F. Scarselli et al., “The Graph Neural Network Model,” IEEE
Trans. Neural Networks, vol. 20, no. 1, 2009, pp. 61–80.

[6] S. Xiao, D. He, and Z. Gong, “Deep-Q: Traffi c-Driven QoS
Inference using Deep Generative Network,” Proc. Workshop
on Network Meets AI & ML, 2018, pp. 67–73.

[7] K. Rusek et al., “Unveiling the Potential of Graph Neural
Networks for Network Modeling and Optimization in SDN,”
Proc. ACM Symposium on SDN Research, 2019, pp. 140–51.

[8] M. Wang et al., “xNet: Improving Expressiveness and Granu-
larity for Network Modeling with Graph Neural Networks,”
Proc. IEEE INFOCOM, 2022, pp. 2028–37.

[9] N. Kato et al., “The Deep Learning Vision for Heterogeneous
Network Traffi c Control: Proposal, Challenges, and Future
Perspective,” IEEE Wireless Commun., vol. 24, no. 3, 2016,
pp. 146–53.

[10] B. Mao et al., “Routing or Computing? The Paradigm Shift
Towards Intelligent Computer Network Packet Transmission
Based on Deep Learning,” IEEE Trans. Computers, vol. 66,
no. 11, 2017, pp. 1946–60.

[11] F. Geyer and G. Carle, “Learning and Generating Distribut-
ed Routing Protocols Using Graph-Based Deep Learning,”
Proc. Workshop on Big Data Analytics and Machine Learning
for Data Communication Networks, 2018, pp. 40–45.

[12] C. Liu et al., “DRL-OR: Deep Reinforcement Learning-Based
Online Routing for Multi-Type Service Requirements,” Proc.
IEEE INFOCOM, 2021, pp. 1–10.

[13] J. Schulman et al., “Proximal Policy Optimization Algo-
rithms,” arXiv preprint arXiv:1707.06347, 2017.

[14] B. Lantz, B. Heller, and N. McKeown, “A Network in a
Laptop: Rapid Prototyping for Software-Defi ned Networks,”
Proc. ACM HotNets, 2010, pp. 1–6.

[15] S. Uhlig et al., “Providing Public Intradomain Traffi c Matri-
ces to the Research Community,” ACM SIGCOMM Comput-
er Commun. Review, vol. 36, no. 1, 2006, pp. 83–86.

BIOGRAPHIES
HUIHONG WEI received her B. Eng. degree from the School
Ph.D. degreeof Software and Microelectronics, Harbin Insti-
tute of Technology, Harbin, China, in 2017. Currently, she is
pursuing a MA.Sc degree in the Institute of Network Science
and Cyberspace at Tsinghua University. Her research interests
include Intelligent Routing and machine learning.

YI ZHAO [S’19, M’21] received his B. Eng. degree from the
School of Software and Microelectronics, Northwestern Poly-
technical University, Xi’an, China, in 2016, and his Ph.D. degree
from the Department of Computer Science and Technology,
Tsinghua University, Beijing, China, in 2021. Currently, he is an
Assistant Researcher and Postdoctoral Fellow at the Department
of Computer Science and Technology, Tsinghua University.
He is a recipient of the Shuimu Tsinghua Scholar Program. His
research interests include next-generation Internet, network
security, machine learning, and game theory. He is a member of
IEEE, and a member of ACM.

KE XU [M’02, SM’09] received his Ph.D. from the Department
of Computer Science and Technology of Tsinghua University,
Beijing, China, where he serves as a Full Professor. He has pub-
lished more than 200 technical papers and holds 11 US patents
in the research areas of next-generation Internet, Blockchain sys-
tems, Internet of Things, and network security. He is a member
of ACM and senior member of IEEE. He has guest-edited several
special issues in IEEE and Springer Journals. He is an editor of
IEEE IoT Journal and has served as a steering committee chair of
IEEE/ACM IWQoS.

FIGURE 6. Adaptability to new environment.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 09,2023 at 18:38:42 UTC from IEEE Xplore. Restrictions apply.

