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Abstract
Deep reinforcement learning (DRL) has been 

widely used to find optimal routing schemes to 
meet various demands of users. However, the 
optimization goal of DRL is typically static, where-
as the network environment is dynamic. Changes 
in traffic environment or reconfiguration of net-
work equipment often lead to periodic changes 
in network performance (e.g., throughput degra-
dation and latency peaks). The traditional static 
target configuration cannot reflect the importance 
difference of different metrics in the dynamic net-
work environment, resulting in the inflexibility of 
DRL-based routing algorithms.

To address the above issue, we propose 
G-Routing, an online routing optimization algo-
rithm that uses graph neural networks (GNNs) 
and DRL. By modeling and comprehending the 
relationship among different features (e.g., path, 
flow, and link) of the network, our proposed 
GNN model can predict the future development 
of network performance metrics (i.e., latency, 
throughput, and loss), thereby adjusting the rout-
ing algorithm’s target promptly. Then, with the 
DRL model we proposed, the agent can learn the 
optimal path to adapt to different environmen-
tal changes. We implement the G-Routing meth-
od on the control plane and perform simulation 
experiments using real-world network topology 
and traffic data. Experimental results demonstrate 
that when the network environment changes 
significantly, our proposed G-Routing converges 
faster, achieves lower jitter, and generates more 
reliable routing scheme.

Introduction
Intelligent Internet architecture [1] has become 
an emerging trend. In various intelligent models 
based on deep neural networks (DNNs), DRL has 
exhibited the outstanding advantages in network 
decision-making and system adaptation problems, 
for example, congestion control [2], adaptive 
bitrate streaming [3], and so on. Among them, 
intelligent routing based on DRL [4] has received 
great attention.

Specifically, modern applications (e.g., in-car 
networking, AR/VR, and metaverse) have more 
fine-grained requirements for low latency, slight 
jitter, high throughput, and low loss. Due to the 
significant expansion of network scale, the tradi-
tional best-effort forwarding method cannot solve 
the optimization problem in a large search space1, 
and it cannot meet the demands of a variety of 
applications at the same time. DRL brings new 

light to the resolution of these gaps. Depending 
on the characterization ability of DNN and the 
optimization ability based on environment inter-
action, DRL can well solve the large-scale spatial 
optimization problem. Moreover, through reason-
able configuration of target policy2, DRL can also 
meet the fine-grained requirements of different 
applications. Therefore, DRL-based online intel-
ligent routing has attracted extensive attention 
from both academia and industry.

Regarding DRL-based intelligent routing, the 
process of route generation consists of two parts: 
First of all, according to the network state, the 
agent automatically generates routing paths that 
meet the policy target, and loads them to the data 
plane for execution. Immediately afterwards, the 
agent adjusts the model parameters according to 
the reward feedback from the data plane. Since 
rewards are calculated according to the target 
policy, the upper bound on the convergence of 
the DRL-based routing algorithm is closely related 
to the target policy.

Due to the diversity of traffic demand, exist-
ing intelligent routing algorithms often focus on 
a multi-objective optimization problem, where 
different objectives may conflict with each other 
(e.g., low latency and high throughput). One 
common approach is to utilize weighted factor 
programming to convert it into a single-objective 
optimization problem, which is the policy target 
of DRL. The policy target calculation is typically 
expressed as a combination of metrics, for exam-
ple, throughput, latency, and loss. These coef-
ficient parameters of each metric can explicitly 
indicate the relative importance of these metrics 
based on application requirements.

However, determining these weighting coef-
ficients can be challenging and can significantly 
impact the system’s performance. Existing DRL-
based intelligent routing algorithms generate fixed 
and unchanged weighting coefficients through 
manually defined methods. Although they can 
achieve good convergence performance under 
fixed requirements and network environments, 
these algorithms cannot adapt when the algo-
rithm environment changes or new application 
requirements emerge. This leads to various issues, 
such as weak generalization and poor flexibility.

To address above challenges (i.e., weak gen-
eralization and poor flexibility), we propose an 
online routing optimization algorithm based on 
GNN and DRL, namely G-Routing. The core of 
G-Routing is a novel dynamic-target DRL frame-
work, which automatically adjusts the weighting 
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1 The optimization problem 
in a large search space refers 
to how to effectively select 
the optimal routing solution 
from a large number of avail-
able routing options in a net-
work with a large topology. 
 
2 The target policy refers to 
the method of configuring 
the reward function. Differ-
ent methods of configuring 
the reward function can 
guide DRL-based algorithms 
to continuously optimize 
toward different targets.
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coefficient of the policy target to enhance the 
fl exibility of the routing algorithm. The newly pro-
posed G-Routing consists of two parts: DRL-based 
routing generation algorithm and GNN-based 
metric prediction algorithm. The DRL-based rout-
ing generation algorithm adopts an Actor-Critic 
model to generate optimal paths in real-time that 
meet the target requirements. The GNN-based 
metric prediction algorithm perceives the global 
network environment for a certain time period 
and dynamically adjusts the weighting coeffi  cient 
of the policy target. It is implemented based on 
the GNN message passing mechanism [5], which 
can perform relational reasoning and combinatori-
al generalization. By modeling the graph structure 
information, it predicts network performance met-
ric accurately.

Although there are many literatures on network 
modeling based on GNN to achieve metric predic-
tion, most of them cannot be well adapted to spe-
cific application scenarios. G-Routing establishes 
a customized GNN model to better adapt to the 
dynamic network change scenario, and considers a 
new feature type (i.e., fl ow) into our GNN model. 
The algorithm can aggregate and update the 
information from various features (i.e., path, fl ow, 
and link) to comprehend the intricate relationship 
between routes and traffi  c. This enables accurate 
estimation of path-level metrics in the next time 
period, and assists the routing algorithm to adjust 
the target policy in real-time. Therefore, G-Routing 
can rapidly adapt to changes in the environment 
and select a relatively optimal path.

The application scenario of our G-Routing is 
illustrated in Fig. 1. Specifi cally, the network envi-
ronment often presents large gaps in network 
states according to the occurrence of specifi c sce-
narios, such as network load aggravation caused 
by traffi  c change, network link failure caused by 
attacks or emergencies, and network topology 
changes caused by configuration. This leads to 
large changes in the state and demand of the 
network in the next time period. For example, 
during the live broadcast of the World Cup, the 
video backbone network traffic will surge at the 
beginning of the game, and the network load will 
increase. This new environment will last 90 min-
utes or even longer. To ensure the quality of live 
video applications, we should pay more atten-
tion to the two metrics of latency and throughput. 
Correspondingly, our G-Routing can fl exibly adapt 
to this new demand. By sensing and modeling 
the current network environment, the predicted 
future information can adjust the reward weights 
(i.e., w1, w2, and w3 illustrated in Fig. 1) in real 
time. Therefore, the agent can fl exibly grasp the 
current focus of the network, and then learn a 
more realistic optimal routing path.

We summarize the key contributions of this 
article as follows:
• We propose a context-aware routing optimiza-

tion algorithm framework, which utilize GNN 
to assist DRL agents in routing selection. By 
flexibly changing the configuration of target 
policy, the agent can adapt to environmental 
changes faster and more accurately.

• We propose a customized GNN-based met-
ric prediction algorithm for dynamic network 
environments, which takes into account the 
cyclic dependency relationships among three 

network features (i.e., path, fl ow, and link).
• By using the network topology and traffic 

data in the real world, multiple comparison 
experiments are carried out under two envi-
ronment change scenarios. Extensive experi-
mental results demonstrate the reliability and 
stability of G-Routing.

rElAtEd WorK
This section mainly introduces relevant research 
on network modeling and intelligent rout-
ing, including the development path and latest 
research achievements of the two fi elds.

nEtWorK modElIng
The task of the network modeling is to predict the 
network performance metrics (e.g., throughput 
and latency) under various “what-if” scenarios, 
such as network device reconfi gurations. Network 
modeling offers the advantage of reducing the 
cost of online performance monitoring through 
real-time reasoning. Traditional network modeling 
can be approached in two ways. One approach 
involves using queuing theory to establish an anal-
ysis model with simplified assumptions, but the 
problem with this approach is that the assump-
tions may be too strong to be practical. Another 
approach involves using network simulators (e.g., 
NS3) to simulate real scenarios, but this approach 
has high computational costs and cannot perform 
real-time reasoning tasks.

With the development of deep learning, there 
have been many relevant network modeling 
works. For example, Deep-Q[6] uses the gener-
ative models to infer the network quality of ser-
vice (QoS). However, its model is relatively simple 
and cannot be generalized. GNN has been found 
to be very suitable for modeling graph structure 
information. Moreover, GNN-based network 
modeling can improve generalization and accura-
cy. For example, RouteNet [7] performs accurate 
path-level performance estimation and generalizes 
to unseen topologies and routing schemes, while 

FIGURE 1. Routing optimization algorithm scenario.
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xNet [8] fully considers the fi ne-grained require-
ments of network model prediction and provides 
flow-level modeling capabilities. However, the 
problem with RouteNet is that it is too simple to 
be applied to complex scenarios. On the other 
hand, although xNet is detailed, the model is too 
complex and considers too many elements, mak-
ing it also unsuitable for simple scenarios.

Taking into account the above considerations, 
we propose a customized GNN architecture for 
dynamic network changes, which endows DRL-
based routing with generalization capabilities to 
adapt to specifi c scenarios.

IntEllIgEnt routIng
Intelligent routing [9] has become a research 
hotspot. For example, Mao et al. [10] envision 
a supervised deep learning system to construct 
the routing tables. Geyer et al. [11] propose a 
distributed routing algorithm that uses GNN to 
learn shortest paths and max-min routing strat-
egies. However, the routing method based on 
supervised learning can only learn the policy of a 
specifi c network. It is diffi  cult to adapt and gener-
alize under the dynamic change of the network.

To improve the generalization ability, DRL-
based routing methods are proposed. For example, 
Liu et al. [12] propose an online routing algorithm 
that uses multi-agent DRL to meet various service 
requirements. It models the route generation pro-
cess as a multi-agent Markov decision process. 
However, it mainly focuses on a variety of appli-
cation requirements, and its target policy is fi xed. 
Therefore, it still cannot adapt well to dynamically 
changing network environments. Paul et al. [4] pro-
pose a DRL+GNN architecture for routing optimi-
zation. It optimizes network routing by modeling 
the Q-value in deep Q-network (DQN) with GNN, 
and generalizes on arbitrary topologies never seen 
before. However, the DRL algorithm used by Paul 
et al. [4] is too simple and cannot be well adapted 
to complex network environments.

To solve the above contradiction, our pro-
posed DRL-based routing can easily select the 
appropriate action in the continuous action space 
and achieve a single-step fast update. At the 
same time, the target policy used in G-Routing 

can dynamically change with the environment to 
enhance fl exibility.

g-routIng scHEmE
In this section, we fi rst introduce the architecture 
of G-Routing in detail, including the input and out-
put of each part. Then we introduce the design 
details of DRL-based routing generation algorithm 
and GNN-based metric prediction algorithm. 
Finally, we introduce the weight update method 
of the policy target.

ArcHItEcturE
Our proposed G-Routing requires the control 
plane to quickly perceive changes in the network 
environment. It explores the potential of routing 
algorithm to fi nd the optimal target policy in the 
current environment, and chooses a better path 
for each incoming traffic demand. The architec-
ture of the algorithm is illustrated in Fig. 2.

The control plane algorithm consists of two 
parts: a GNN-based metric prediction algorithm 
that predicts future path-level information, and 
a DRL-based routing generation algorithm that 
learns the optimal route in real-time. Both GNN 
model and DRL agent receive real-time network 
state information from the data plane. The DRL 
agent generates routing scheme based on traffi  c 
demand and sends it to the GNN model and data 
plane simultaneously. The GNN model generates 
the next-stage predictive information of metrics 
based on routing scheme and network state (i.e., 
topology, traffi  c matrix). It also updates the target 
policy in real-time based on the predicted values, 
and guides the DRL agent’s routing behavior in 
the next time period.

dEsIgn
Here, we provide a detailed introduction to the 
control plane in Fig. 2. including internal architec-
ture details and the network design of G-Routing, 
illustrated in Fig. 3.

DRL-Based Routing Generation Algorithm: It 
is deployed on the DRL agent, which selects the 
appropriate next hop based on the network state 
and traffi  c demand. When the selected next hop 
reaches the destination, the source-destination 
path is generated, and loaded to the data plane 
for execution.

The DRL agent adopts the proximal policy 
optimization (PPO) algorithm [13], and it solves 
the problem of low sample utilization. As illustrat-
ed in Fig. 3, PPO algorithm belongs to Actor-Critic 
algorithm and includes two models (i.e., actor and 
critic). The actor model probabilistically selects 
an action, while the critic model assesses the 
score of that action based on the reward feed-
back from the environment. Moreover, the actor 
model modifi es the probability of action selection 
according to the critic’s score.

The state input of the DRL agent consists 
of the environment state S and the condition 
state C. The environment state S includes traffic 
demands (e.g., source node, destination node, 
and data rate), topology information, and state 
information (e.g., remaining link capacity). The 
conditional state C indicates the selected nodes 
for the soon-to-be generated path. The output of 
the actor model is the probability distribution of 
which neighbor node to choose as the next hop, 

FIGURE 2. Architecture of routing optimization algorithm.
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and the next hop is selected randomly based on 
the set probability distribution. After the path is 
generated, it will be loaded into the data plane for 
execution, and the model will be updated based 
on the reward feedback from the environment. Rt
is defi ned as the reward value of the action taken 
at time t. To calculate the reward Rt, the utility 
function combines multiple performance metrics 
(i.e., throughput Thr, latency Lat, and loss Loss), 
which can be compatible with various fl ows. Let 
Thrt, Latt and Losst be the throughput, latency and 
loss of the fl ow at time t, respectively. The utility 
function is illustrated in Eq. 1.

(1) Rt = w1logThrt – w2Latt – w3Losst

where w1, w2, and w3 represent the weighting 
coeffi  cient of each performance metric. The pre-
dicted values generated by our GNN-based met-
ric prediction algorithm will be used to update w1, 
w2, and w3, as detailed below.

GNN-Based Metric Prediction Algorithm: As 
illustrated in Fig. 3, our GNN model considers 
three network features, namely path, link, and 
flow. It learns the complex relationships among 
these three features to accurately estimate the 
performance metrics of each source-destination 
pair’s path.

Our prediction algorithm periodically collects 
various environmental information from the net-
work, including topology, global routing schemes, 
path-level information (e.g., average latency, 
throughput, and loss), link-level information (e.g., 
bandwidth, usage of the link), and flow-level 
information (e.g., maximum data rate). It uses 
a fixed-dimensional vector to encode the state 
of path, link, and flow, defined as hp, hl, and hf, 
respectively. The information is propagated and 
updated among states using the message pass-
ing mechanism. This mechanism for each feature 
state consists of two parts: message passing and 
updating. Message passing collects and aggre-
gates hidden states from different features. And 
then, updating encodes the new aggregated 
information and the hidden state of that feature 
together to generate the next stage’s hidden state.

More specifi cally, our message passing mecha-
nism is based on three considerations:
• The state of a path depends on the states of 

all the links in the path and the fl ows fl owing 
through the path.

• The state of a flow depends on the state of 
the path it travels.

• The state of a link depends on the states of 
all the fl ows passing through the link.
Based on the cyclic dependency relationship 

among the features described above, we depict 
the computation path of the GNN model as 
illustrated in Fig. 3. We also provide a detailed 
description of the forward propagation process of 
the GNN via Algorithm 1.

In Algorithm 1, our GNN model takes the 
route description P, flow description F, link 
description L, initial path feature hp

0, initial flow 
feature hf

0, and initial link feature hl
0 as input, and 

outputs the inferred metric ŷp for each path.
Specifically, lines 2 to 10 represent the mes-

sage passing process of the path. Lines 4 and 7 
represent that each path collects information from 
all the links it contains and all the flows flowing 

through it, respectively. Due to the sequential 
dependencies of links within each path, a recur-
rent neural network (RNN) is utilized to aggregate 
link-level messages. Specifi cally, the RNN employs 
a gate recurrent unit (GRU) network for this pur-
pose. Since there is no sequential correlation for 
all fl ows along this path, summation is used directly 
to aggregate fl ow-level messages. Line 9 represents 
the update process of path-level information, and 
the update function uses three diff erent trainable 
neural networks f, m, and p. Lines 11 to 13 repre-
sent the message passing process of the fl ow. It is 
set up in a simple way by directly specifying the 
path-level information that the fl ow fl ows through 
as the collected fl ow-level information. And then, 
a trainable neural network ψ is used to update the 
flow-level information. Lines 14 to 17 represent 
the message passing process of the link, where the 
states of all fl ows passing through the link is aggre-
gated by summing, and another RNN is used to 
update the link-level information. The algorithm 
loop the three-stage message passing process T
times to reach a convergent state.

Finally, Readout (line 19) represents a read-
out function that uses the path hidden state hp

T

to predict some path-level metrics (ŷp). The GNN 
model outputs three predicted performance met-
rics for Thr, Lat, and Loss. Correspondingly, we 
use the triplet (i, j) = [Thr, Lat, Loss] to stores 
the prediction information (i.e., Thr, Lat, and Loss) 
on the path from source node i to destination 
node j in the next time period. The global average 
performance of each metrics is calculated and 
standardized. Further more, w1, w2, and w3 are 
automatically confi gured according to the propor-
tion of diff erent metrics, as illustrated in Eq. 1.

WEIgHt updAtE
The initial weights are set to w1 = 0.4, w2 = 0.3, 
and w3 = 0.3. The experiment is designed to gen-
erate a sample per 100 source-destination pair 

FIGURE 3. The network design of G-Routing.
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requests, which includes the routing scheme on 
each path, path-level information (e.g., through-
put, latency, and loss), and link-level information 
(e.g., link utilization). When 10 samples have 
been generated, the function is called to pack 
the 10 samples into a dataset for the current time 
period. The pre-trained GNN model uses these 
samples of the dataset and predicts the metrics 
of the next time period. The GNN model updates 
the parameters based on the feedback of the next 
time period.

The average performance of each metrics 
returned by the GNN is computed and saved in 
their respective lists. Take Thr as an example, the 
change rate Thrchange between the prediction and 
the current metric is calculated. Thrchange is multi-
plied by the weight w1

t of Thr from the previous 
stage, and then the weight w1

t+1 =w1
t  Thrchange of 

Thrt+1 can be obtained. The weights (i.e., w2
t+1 and 

w3
t+1) of Latt+1 and Losst+1 are updated in the same 

way, and new weights can be used to calculate the 
reward for the next time period of DRL agent.

Experiments
This section focuses on the evaluation method 
and experimental results of G-Routing.

Experimental Configuration
We use Ryu and Mininet [14] to build SDN archi-
tecture, in which Ryu is used as the controller and 
Mininet is used to simulate data plane. On the 
control plane, we use Pytorch 1.0 to implement 
our proposed G-Routing.

Parameter Setting: In the experiment, the DRL 
model we used is composed of three parts, name-
ly the input layer, the feature extraction layer, and 
the policy layer. Our GNN model chooses a size 
of 32 for the hidden state of the path (hp), 32 for 
the hidden state of the flow (hf), and 16 for the 
hidden state of the link (hl). In addition, for each 
forward propagation, we perform T = 8 iterations. 

We utilize the Adam optimizer to minimize losses, 
and the learning rate is set to 0.001.

Datasets: We use two real-world network topol-
ogies (i.e., Abilene [14] and GEANT [15]), where 
Abilene is a topology with 11 nodes and 14 bidi-
rectional links, and GEANT is a larger topology with 
23 nodes and 37 bidirectional links. Each nodes is 
connected to a host, and requests for flows are 
randomly generated based on the measured real 
traffic matrix. The sending rate of flow is fixed at 
1500 kb/s, and the flow duration is 10 time slots. 
The environmental information (e.g., latency, 
throughput ratio, loss, and transmitted packets) is 
recored per 20 packets on each path.

Evaluation Criteria: Regarding comparison 
baselines, we first evaluate shortest path routing 
(SPR), which always uses the route with the least 
number of hops for each flow request. Second, 
we evaluate a DRL-based routing algorithm (DRL-
OR) [12], which configures a fixed target through 
expert experience and uses it to learn a DRL 
model. We evaluate the average latency, through-
put ratio, and loss of flows over a period of time 
when using each method in our experiments.

We compare the performance (i.e., latency, 
throughput ratio, and loss) of G-Routing with two 
baselines under environment change scenarios, 
and evaluate the adaptability of two DRL-based 
algorithms. Environment change scenarios include:
•	 Traffic change: Change the load in the net-

work environment. A light load scenario with 
a flow duration of 10 time slots at initial time 
t0 changes to a heavy load scenario with 30 
time slots at time t1.

•	 Link failure: Link failure occurs. All links are 
intact at the initial time t0, and a small num-
ber of links are disconnected at time t1.

Analysis of Performance
We evaluated the stability, generalization, and 
adaptability of G-Routing under link failure and 
traffic change. Specifically, for Fig. 4, the upper 
subplots and the lower subplots represent the 
experimental results under Abilene topology and 
GEANT topology, respectively. Likewise, the two 
row subplots in Fig. 5 are also the same configu-
ration. Note that the analysis on stability is based 
on Abilene topology (i.e., the upper subplots in 
Figs. 4 and 5). Experiments on GEANT topology 
are used to compare the generalization ability 
between two DRL-based algorithm (i.e., DRL-OR 
and G-Routing).

Stability: Figures 4 and 5 illustrate the stability 
of different algorithms under two scenarios: traf-
fic change and link failure. For traffic change, we 
simulate traffic bursts at time slot 10,000. As illus-
trated in Fig. 4a, when using DRL-OR based on 
a fixed policy target, the latency would increase 
sharply, even gradually entering a stable state, 
up to 75ms, which cannot adapt well to the new 
environment. Since the path selected by SPR 
is always fixed, that is, only the shortest path is 
selected, the change in the environment will not 
cause a significant fluctuation in performance of 
SPR. Our proposed G-Routing can quickly adapt 
to changes in the environment and maintain a 
lower latency after stabilization, approximately 
13.5ms. Therefore, G-Routing reaches a stable 
state more quickly and obtains more stable rout-
ing schemes.

ALGORITHM 1. Internal architecture of GNN.

	 Input:	 P, F, L, h0
p, h0

f, h
0
l

	 Output:	̂yp
1	 for t = 1:T do
		  // Message passing of paths
2		  foreach pi in P do
3			   foreach lj in pi do
4				    mp,l = RNN(ht

pi, h
t
lj)

5			   end
6			   foreach fj in pi
7				    mp,f = Sht

fj
8			   end
9			   hpi

t+1 = f(m(mp,l), p(mp,f), h t
pi)

10		  end
		  // Message passing of flows
11		  foreach fi in F do
12			   hfi

t+1 =ψp:fp(hpi
t+1, ht

fi)
13		  end
		  // Message passing of links
14		  foreach li in L do
15			   mli = Slif hf

t+1

16			   hli
t+1 = RNN(hli

t, mli)
17		  end
18	 end
	 // Readout function
19:	ŷp = Readout(hp

t=T)
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By comparing the throughput ratio of diff erent 
algorithms in Fig. 4b under traffi  c change, except 
for the SPR algorithm, both DRL-based routing 
algorithms (i.e., DRL-OR and G-Routing) have a 
decreased throughput ratio after traffic change, 
but G-Routing still has a relatively small change and 
higher throughput ratio after stabilization, indicat-
ing that our proposed G-Routing is more stable.

Similarly, for link failures, we simulate bottleneck 
link failures at time slot 10,000. In Figs. 5a and 5b, 
it can be found that the G-Routing algorithm is still 
the most stable among the three algorithms.

We also use boxplots to illustrate the data jitter 
under traffi  c change and link failure, illustrated in 
Figs. 4c and 5c, respectively. The boxplots illus-
trate the latency and throughput ratios from the 
beginning of environmental changes to the algo-
rithm convergence (the data were extracted from 
time slots 10,000 to 20,000). It can be found that 
the variance of DRL-OR is signifi cantly higher than 
that of G-Routing, indicating that our algorithm 
has stronger stability.

Generalization: Figures 4a, 4b, 5a, and 5b 
contain experimental results on different topol-
ogies (i.e., Abilene and GEANT), with the same 
experimental environment. They illustrate that our 
algorithm can achieve better stability on diff erent 
topology structures, proving that our algorithm 
can generalize to diff erent topologies.

Adaptability: To demonstrate the adaptability 

of G-Routing to new environments, we compare 
it to DRL-OR. Under traffic change, Fig. 6 illus-
trates the change in rewards of G-Routing and 
DRL-OR over time. The reward curve of G-Rout-
ing illustrates that the convergence speed of 
G-Routing is signifi cantly faster than that of DRL-
OR. Specifically, the reward of G-Routing basi-
cally converges at around the 25,000th time slot, 
while the convergence of DRL-OR is around the 
40,000th time slot, indicating that G-Routing has 
a 2X faster convergence speed. Furthermore, the 
fi nal convergence reward of G-Routing is higher 
than that of DRL-OR.

conclusIon And futurE WorK
In this article, we propose G-Routing, an online 
routing algorithm based on GNN and DRL. The 
algorithm employs GNN to predict the evolution 
of network performance metrics in the future time 
period, and assist DRL-based routing algorithm in 
selecting the optimal path. We implement G-Rout-
ing on the control plane, and simulate it under 
two environment change scenarios. Experimen-
tal results demonstrate that when the network 
environment changes signifi cantly, our proposed 
G-Routing converges faster and produces a more 
dependable routing scheme.

The proposed GNN-based online routing 
sheds new light on better adapt to changes in the 
network environment. Due to the lack of inter-

FIGURE 4. Results on fl ow latency and throughput ratio under traffic change: a) latency under traffi  c change; b) thr. ratio under traffi  c 
change; c) boxplot of the latency under traffi  c change.

a) b) c)

FIGURE 5. Results on fl ow latency and throughput ratio under link failure: a) latency under link failure; b) thr. ratio under link failure; c) 
boxplot of the latency under link failure.

a) b) c)
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pretability of the neural network on which GNN 
relies, there are still potential pitfalls in large-scale 
deployment. In the future, we will focus on the 
interpretability of such methods. With a clearer 
explanation of the internal mechanism of GNN, 
we can further improve the efficiency of intelli-
gent routing.
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FIGURE 6. Adaptability to new environment.
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